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Abstract In this chapter, a fractional order fuzzy PD controller with grey predictor
(FOFPD-GP) is presented for effective control of a moving cart inverted pendulum.
FOFPD-GP was tuned with the help of Genetic Algorithm for minimum settling
time and its performance has been assessed using Integral of Absolute Error
(IAE) and Integral of Square Error (ISE). Further, a comparative study of
FOFPD-GP with its potential counterparts such as fuzzy PD with grey predictor
(FPD-GP) controller, a fractional order fuzzy PD (FOFPD) controller and fuzzy PD
(FPD) controller has also been carried out to assess its relative performance.
Additionally, the pendulum was subjected to the impulse and sinusoidal distur-
bances and the disturbance rejection capabilities of the investigated controllers were
analyzed and have been presented in this chapter. The simulation results revealed
that FOFPD-GP controller outperformed all the other controllers under study by
offering least IAE and ISE values.
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1 Introduction

Inverted pendulum, an inherently non-linear and unstable system, has always been a
topic of interest for control engineers since many decades. It has been a classical
benchmark problem for designing, testing and evaluating contemporary control
techniques. Inverted pendulum finds uses in military and space application, such as
space shuttles and missiles, where there is requirement to maintain a precise vertical
orientation.

Conventional PID controllers have been in use for a very long time. They have
proved to be efficient controllers, providing satisfactory response at a very moderate
cost. The evidence of their popularity lies in the fact that even today, 90% of the
industry employs PID controller, one of the most popular conventional controller.
PID controllers have been able to provide efficient output when tuned appropriately.
However, conventional controllers fail to serve the purpose when the plant is
non-linear and uncertain. This has led the scholars to search for alternative
solutions.

For the past three decades lots of research has been reported on in the intelligent
controllers. One of the most important outcomes of this research has been fuzzy
logic control. It tries to mimic the process of human decision making based on
‘if-else’ logic. Fuzzy logic controller (FLC) is seen as the most suitable option to
replace the conventional PID as it provides an easier option of implementing rules
that resemble instructions given by a human operator. However, fuzzy logic lacks
the capability to predict future data and take necessary actions. This aspect can be
incorporated into the plant by using a grey predictor (GP).

Grey system theory was first introduced by Professor Deng Julong [17]. A sys-
tem can be defined with a color that represents the amount of clear information
about that system. For instance, a system can be called as “black box”, if its internal
characteristics or mathematical equations that describe its dynamics are completely
unknown. On the other hand, if the description of the system is completely known,
it is named as a white system. Similarly, a system that has both known and
unknown information is defined as a grey system. In real life, every system can be
considered as a grey system because there are always some uncertainties associated
with the physical systems.

The use of fractional order calculus in the field of control engineering is another
interesting development that has taken place over the last several years. Fractional
order calculus has been used to define chaotic systems accurately. It allows
description and modeling of a real system more accurately than the classical integer
order calculus methods. When fractional order calculus is used as a part of the
controller, its action resembles that of adding more tuning knobs to the controller,
which helps in the generation of the desired response.

Good works have been reported on intelligent fractional controllers and grey
prediction, but their combined potential appears to be underexplored. This has been
the main motivation for this chapter, which aims to investigate GP based fractional
order fuzzy PD (FOFPD) controller. In this chapter, a fractional order fuzzy PD
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controller with grey predictor (FOFPD-GP) has been implemented on a moving cart
inverted pendulum. The performance of the FOFPD-GP has been compared with
fuzzy PD (FPD), fuzzy PD with grey predictor (FPD-GP) and FOFPD for settling
time when an impulse disturbance is given at the controller output. The gains of the
controllers were tuned with the help of inbuilt optimization tool genetic algorithm
(GA). Later, the pendulum was subjected to impulse and sinusoidal disturbances,
and the disturbance rejection capabilities of the controllers were investigated by
comparing the Integral of Absolute Error (IAE) and Integral of Square Error
(ISE) values.

This chapter is organized as follows: Following the introduction in Sect. 1, a
brief literature survey in Sect. 2 related to the proposed study has been presented. In
Sect. 3, a complete description of the moving cart inverted pendulum is given.
Fractional order calculus and its implementation on a controller as Oustaloup’s
recursive approximation (ORA) are described in Sect. 4. In Sect. 5, GP and its
mathematical model are described. Subsequently, mathematical model of FPD,
design and implementation of FPD, FOFPD, FPD-GP and FOFPD-GP controllers
are described with the help of block diagrams and their corresponding Simulink
diagrams in Sect. 6. Finally, results for settling time of investigated controllers and
their comparison on robustness have been presented in Sect. 7 followed by the
conclusion and future scope in Sect. 8.

2 Literature Survey

As already has been mentioned above, the popularity of PID is due to its ease of
implementation, cost effectiveness and its ability to provide a satisfactory response.
Large numbers of PID variants have been developed to suit the needs of verities of
the plants. Azar and Serrano presented an internal model control plus PID tuning
procedure for cascade control systems based on the gain and phase margin speci-
fications of the inner and outer loop [2]. Azar and Serrano also developed PI loop
shaping control design implementing a describing function to find the limit cycle
oscillations and the appropriate control gains, thus showing the stabilization of
cart-pendulum system with the proposed control scheme [6]. However, conven-
tional controllers do not give successful results when used with non-linear plants.
A survey on classical PID as well as fuzzy PID (FPID) controllers has been pre-
sented by Kumar et al. where it was realized that classical PID controllers are
effective for linear systems but not suitable for nonlinear systems [21]. Conse-
quently, the focus has been shifted from conventional to intelligent control.

For the last four decades, with the advent of soft computing, it has become
possible to implement relatively complex control structures with ease. There have
been numerous successful attempts for control using intelligent control systems [9].
Among the different intelligent techniques, fuzzy logic was proposed by Zadeh
[45–51] and FLC was initially proposed by Mamdani [27, 28]. Meghni et al.
presented a second-order sliding mode and FLC for optimizing energy management
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[29]. Giove et al. used fuzzy logic to prevent dialysis hypotensive episodes [15].
Wang et al. presented an observer-based adaptive fuzzy neural network controller
with supervisory mode for a certain class of higher order unknown non-linear
dynamic systems [44]. An implementation in industries, for the first time, was
presented by King and Mamdani for a complex dynamic and poorly defined system
[20]. Nour et al. modeled a non-linear inverted pendulum on Simulink and
implemented PID controller and FLC on it [32]. It was observed that FLC provided
a better control action than PID controller. A similar trend was noticed in the works
of Prasad et al. and Tyagi et al. [23, 40]. Kumar et al. proposed a new formula-
based fuzzy PI controller and the effectiveness of the controller was assessed by
controlling outlet flow concentration of a nonlinear non-thermic catalytic continu-
ous stirred-tank reactor [22]. Boulkroune et al. presented an interesting work
dealing with adaptive fuzzy control-based function vector synchronization between
two chaotic systems with both, unknown dynamic disturbances and input nonlin-
earities [12]. In another stimulation work, Boulkroune et al. used a fuzzy adaptive
controller for a fractional order chaotic system with uncertain dynamics to realize a
practical projective synchronization [11]. However, fuzzy wasn’t predictive in
nature as mentioned above, thus, it gave way to GP.

GP theory distinguished with its ability to deal with systems that have partially
unknown parameters. With the use of grey system mathematics (for instance, grey
equations and grey matrixes) it is possible to generate meaningful information using
little poor data. GP has ability to predict the future outputs of a system by using
recently obtained data [19]. Over the last two decades, grey system theory has been
developed rapidly and caught the attention of researchers with its successful
real-time practical applications. It has been applied to analysis, modeling, predic-
tion, decision making and control of various systems such as social, economic,
financial, scientific and technological, agricultural, industrial, transportation,
mechanical, meteorological, ecological, geological, medical, military, etc. [18]. GP
has been used with sliding mode control of higher order non-linear systems and
non-linear liquid level systems [42]. In both these cases, it was observed that using
a GP along with the sliding mode and fuzzy controller independently, the response
of the system improved. This showed superior performance of the GP.

Some of the areas of application of advanced intelligent systems in modeling and
control of multi-disciplinary complex processes are electronic, chemical, mechan-
ical, and aerospace, as explained by Azar and Vaidyanathan [7, 8]. Azar and Zhu
presented quality works on control of non-linear, uncertain and coupled systems
like robot arms, internal combustion engines etc. using sliding mode control tuned
by GA [10]. Zhu and Azar also presented different soft computing methods for
management of waste, wind-up control and application in biomedical systems [52].
Azar and Serrano presented soft computing method for wind-up control [5]. Azar
and Serrano also devised an adaptive sliding mode consisting of a sliding mode
control law with an adaptive gain, making the controller more flexible and reliable
than other sliding mode control algorithms and nonlinear control strategies, for a
furuta pendulum [3]. Mekki et al. highlighted the benefits of sliding modes when
applied to the field of fault tolerant control [30]. Azar and Serrano proposed a novel
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approach for the dead beat control of multivariable discrete time systems [4]. Azar
presented an adaptive neuro-fuzzy inference system as a novel approach for
post-dialysis urea rebound prediction [1].

Another development in control engineering has been that of the fractional order
control systems which make use of fractional order calculus. Fractional order cal-
culus was described as a paradox from which useful results can be obtained. It has
been used to describe systems, especially chaotic systems, and provide an effective
control structure [16, 38]. Fractional controller helps in providing intermediate
options to the plant. Ghoudelbourk et al. implemented a fractional pitch angle
controller in a wind turbine to tap maximum energy in wind power generation [14].
FOFPD and fractional order fuzzy PI have (FOFPI) been used in cascaded loops for
speed control of highly non-linear hybrid electric vehicle [24]. Recently, Sharma
et al. investigated a fractional order fuzzy PID (FOFPID) on a two-link planar rigid
robotic manipulator. The resulting response was seen to outperform fuzzy PID
(FPID), fractional order PID (FOPID) and conventional PID [41].

The survey presented above shows that lots of work has been done on intelligent
fractional controllers and grey prediction, but their combined utility appears to be
underexplored. Thus the aim of the chapter is to investigate the GP based FOFPD
controller and check its effectiveness against the potential counterparts.

3 Problem Formulation and Plant Model

This section presents the problem formulation and mathematical model of the
considered moving cart inverted pendulum system along with its respective initial
conditions and system parameters. Before delving into designing a controller for the
plant, one needs to have an accurate mathematical model that can be replicated.

3.1 Inverted Pendulum

An inverted pendulum is a pendulum that has its centre of mass above its pivot
point. Whereas a pendulum is stable when hanging downwards, an inverted pen-
dulum is in its unstable equilibrium position when upright. Even a slight distur-
bance from its upright position can bring the pendulum down, so it requires active
control. There are various kinds of inverted pendulums that are used in the research
field by scholars, such as moving cart inverted pendulum and multiple segmented
inverted pendulums on a cart. Another platform is a two wheeled balancing inverted
pendulum having the ability to spin on the spot offering a great deal of
manoeuvrability.

A moving cart inverted pendulum has been used in this chapter. One of the main
reasons for its choice is its wide practical applications such as rocket launchers,
hover boards, etc. The pendulum is maintained at a desired reference angle by

Grey Predictor Assisted Fuzzy and Fractional Order … 61



changing the position of the cart, so effectively it is a form of stabilization control.
In this chapter, a reference angle of 1° has been considered for positioning the
pendulum. For the purpose of effective control, it is necessary to understand the
dynamics of the moving cart pendulum system, which can be done by deriving the
mathematical model of the pendulum.

3.2 Mathematical Modeling

The moving cart inverted pendulum under investigation is shown in Fig. 1 [13, 33].
It consists of a rod free to move about the pivot in the x-axis. The mass of the cart is
M, the mass of the rod is m, the length of the rod is 2l, x is the displacement of the
cart from the origin, the angle of the rod with the perpendicular at the pivot is θ and
u is the control force acting on the cart so as to the reference angle. The surface is
taken to be frictionless and the mechanical joint is assumed to be smooth.

Figure 2 shows the free body diagram of the plant from which the non-linear
dynamics of the system are derived. Both the forces H and V are internal forces
which the pivot and rod exert on each other whenever the rod is subjected to any
disturbance. H is the horizontal force acting on both the rod and the pivot but in
opposite directions. Similarly, V is the vertical force acting on rod and pivot but in
the opposite directions.

Net torque about the end of the rod not pivoted is,

I*θ ̇=V*l*sinθ−H*l*cosθ ð1Þ

where I is the moment of inertia of the rod about the rod’s end.

Fig. 1 A moving cart
inverted pendulum
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Force balancing in the x-direction for the rod,

m
d2ðx+ l * sinθÞ

dt2
=H ð2Þ

Force balancing in the y-direction for the rod,

m
d2ðl * cosθÞ

dt2
=V −mg ð3Þ

Force balancing in the x-direction for the cart,

M
d2x
dt2

= u−H ð4Þ

Using Eqs. 2 and 4,

M*x ̈= u− fmx ̈+m * l * ðθ ̇cosθ− θ2sinθÞg ð5Þ

x ̈ðM +mÞ= u−m*l*ðθ ̇cosθ− θ2sinθÞ ð6Þ

Putting value of x ̈ from Eq. 6 in Eq. 4,

H = u−Mðu+mlðθ2 sin θ− θ̇ cos θÞ
M +m

Þ ð7Þ

Fig. 2 Free body diagram of
an inverted pendulum
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H =
mu−Mm*l* θ2 sin θ− θ̇ cos θ

� �
M +m

ð8Þ

Force balance in y-direction of the rod,

V −mg= −m * l * ðθ2sinθ+ θ ̇cosθÞ ð9Þ

V =m g− l * θ2sinθ+ θ ̇cosθ
� �� � ð10Þ

Using values of H and V from Eqs. 8 and 10 respectively and subsequently
putting in Eq. 1,

Iθ ̇=m g− l θ2sinθ+ θ ̇cosθ
� �� �

l * sinθ− l * cosθ
mu−Mm * l θ2sinθ− θ ̇cosθ

� �
M +m

( )

ð11Þ

Using the value of moment of inertia,

I =
m 2 * lð Þ2

3
=

4m * l2

3
ð12Þ

θ̇
ml

4ml2

3
+ml2 sin2θ−

Mml2 cos2θ
M +m

� �
=

g sin θ− u cos θ
M +m − lθ2 sin θ cos θ

+
M*l*cos θ sin θ θ2ð Þ

M +m

 !
ð13Þ

θ ̇ * l *
4
3
−

mcos2θ
M +m

� �
= gsinθ+ cosθ

− u−m * l * θ2sinθ
M +m

� �
ð14Þ

θ ̇=
gsinθ+ cosθ − u−m * l * θ2sinθ

M +m

� 	

l * 4
3 −

mcos2θ
M +m

� � ð15Þ

As can be clearly seen from Eq. 15, the dynamics of the plant is non-linear and a
suitable controller is required to maintain the pendulum at a certain position. In this
study, the value of m is 1 kg, M is 2 kg and l is 1 m.

4 Fractional Order Calculus

The mention of fractional calculus can be dated back to 1695, when L’ Hôpital
commented on the ‘meaning of derivatives with non-integer order’ as “It will be an
apparent paradox fromwhich one day useful consequences will be derived”. For a few
centuries, the development of fractional calculus has been in theory, but with the
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advent of high computational devices, it can be utilized in effective control of complex
plants. Fractional derivatives describe memory and hereditary properties in an extre-
mely appropriate manner. This is the main advantage of fractional order derivatives
when compared with integer-order models, in which such effect is neglected.

The use of fractional order calculus for the purpose of control emerged with
Bode [31]. Bode presented an elegant solution to robust design problem where it
was desired to have the closed loop performance invariant to changes in the
amplifier gain. He came up with fractional order integrator with transfer function
G sð Þ= ωcg

s

� �α, known as Bode’s ideal transfer function where ωcg is the gain
crossover frequency. Fractional calculus is a generalization of integration and dif-
ferentiation to a non-integer order fundamental operator aDr

t , where a and t are the
limits of the operation. The continuous integro-differential operator is defined as:

aDr
t =

dr
dtr , R rð Þ>0
1, R rð Þ=0Rt
a

dτð Þ− r, R rð Þ<0

8>><
>>:

ð16Þ

where r is the order of the operation, generally r∈R, but r could also be a complex
number.

The three equivalent forms of the fractional integro-differential most commonly
used are the Grunwald-Letnikov (GL) definition, the Riemann-Liouville (RL) and
the Caputo definition. The GL definition is given as:

aDr
t f tð Þ= limh→ 0h− r ∑

t− a
h½ �

j=0
− 1ð Þ j r

j

 !
f t− jhð Þ, ð17Þ

where [.] means the integer part.
The RL definition is given as:

aDr
t f tð Þ= 1

Γ n− rð Þ
dn

dtn

Z t

a

f τð Þ
t− τð Þr− n+1dτ ð18Þ

where ðn− 1< r< nÞ and Γð.Þ is the Gamma function.
The Caputo definition can be written as:

ωz, 1 =ωL
ffiffiffi
η

p ð19Þ

for ðn− 1< r< nÞ. The initial conditions for the fractional order differential equa-
tions with the Caputo derivatives are in the same form as for the integer-order
differential equations.
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The most usual way of making use, both in simulations and hardware imple-
mentations, of transfer functions involving fractional powers of ‘s’ is to approxi-
mate them with usual (integer order) transfer functions with a similar behaviour
[35–37]. So as to perfectly mimic a fractional transfer function, an integer transfer
function would have to include an infinite number of poles and zeroes. Oustaloup’s
approximation makes use of recursive distribution of poles and zeros to obtain
series of rational functions whose frequency response fit the frequency response of
the irrational function within specific frequency band. This method, also known as
ORA is defined as follows for frequency band of ½ωl;ωh�.

sλ½ωl ,ωh� = k ∏
N

n=1

1+ S
ωz, n

1+ S
ωp, n

ð20Þ

ωz, 1 =ωL
ffiffiffi
η

p
, ð21Þ

ωp, n =ωz, nα, n=1 . . .N,
ωz, n+1 =ωp, nη, n=1 . . .N − 1, ð22Þ

α=
ωh

ωl

� �λ
N

ð23Þ

η=
ωh

ωl

� �ð1− λÞ N̸
ð24Þ

where k is a constant that should be chosen such that the magnitude of the
approximate shall have unity gain (0 dB) at 1 rad/s. N represents the number of
poles and zeros which should be chosen beforehand. Large value of N permits good
approximation but increases the computational complexity. On the other hand,
small value results in simpler approximation but could cause appearance of ripple in
gain and phase behavior. Low and high frequencies band limitations could avoid
the use of infinite numbers of rational transfer function besides limiting the high
frequency gain of the derivative effect [44].

5 Grey Predictor

GP is employed when there is a lack of information about the system model. It
extracts present and past information from a plant to generate future values in order
to minimize the error. In real life, due to noise that arises from both the inside and
outside of the system (and the limitations of our cognitive abilities), the information
one perceives about that system is always uncertain and limited in scope [19]. One
of the characteristics of grey system is the construction of model with small amount
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of data. Grey prediction models can be used to predict the future values of the
system with high accuracy.

5.1 GP Model

Themain task of grey system theory is to extract realistic governing laws of the system
using available data. This process is known as the generation of the grey sequence. It
is argued that even though the available data of the system,which generally consists of
white numbers, is too complex or chaotic, it always contains some governing laws. If
the randomness of the data obtained from a system is somehow smoothed, it is easier
to derive any special characteristics of that system. For instance, the sequence that
represents the speed values of a motor might be given as:

Q 0ð Þ= 820, 840, 835, 850, 890ð Þ ð25Þ

It is obvious that the sequence does not have a clear regularity. If accumulating
generation is applied to original sequence, Q 1ð Þ is obtained which has a clear
growing tendency [25].

Q 1ð Þ= 820, 1660, 2495, 3345, 4235ð Þ ð26Þ

As one plots the data points from Eq. 25 which represents the speed values of a
motor, a random graph as shown in Fig. 3 with no definite pattern or future growing
tendency, is obtained.

Fig. 3 The original data set
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As data points of accumulated data are plotted from Eq. 26, a graph as shown in
Fig. 4 is obtained. This graph has a clear growing tendency and gives more
information about the system than the original data set.

5.2 GM (n, m) Model

In grey systems theory, GM (n, m) denotes a grey model, where n is the order of the
difference equation and m is the number of variables. Although various types of
grey models can be mentioned, most of the previous researchers have focused their
attention on GM (1, 1) model for their predictions because of its computational
efficiency. It should be noted that in real time applications, the computational
burden is the most important parameter after performance [18].

5.2.1 GM (1, 1) Model

GM (1, 1) type of grey model is the most widely used in literature and is pro-
nounced as “Grey Model First Order One Variable”. This model is a time series
forecasting model. The differential equations of the GM (1, 1) model have
time-varying coefficients. In other words, the model is renewed as the new data
becomes available to the prediction model. The GM (1, 1) model can only be used
in positive data sequences [19]. In this chapter, an inverted pendulum plant with

Fig. 4 The accumulated data set

68 A.S. Sidana et al.



reference angle more than 0° is used, so that the value of θ is never negative. Hence,
the GM (1, 1) model can be used to forecast the position of the pendulum.

In order to smooth the randomness, the primitive data obtained from the system
to form a GM (1, 1) it is subjected to an operator named accumulating generation
operation (AGO) [19]. The differential equation (i.e. GM (1, 1)) thus evolved is
solved to obtain the n-step ahead predicted value of the system. Finally, using the
predicted value, the inverse accumulating operation (IAGO) is applied to find the
predicted values of original data [18].

5.2.2 Mathematical Modeling of GP

Consider a single input and single output system. Assuming that the time sequence
Qð0Þ represents the output of the system

Qð0Þ = ðqð0Þð1Þ, qð0Þð2Þ, . . . qð0ÞðmÞÞ, m≥ 4 ð27Þ

where Qð0Þ is a non-negative sequence and m is the sample size of the data. This
sequence is then subjected to AGO to obtain the sequence, Qð1Þ. Through Eq. 28, it
can be observed that Qð1Þ is monotone increasing

Qð1Þ = ðqð1Þð1Þ, qð1Þð2Þ, . . . qð1ÞðmÞÞ, m≥ 4 ð28Þ

where qð1ÞðjÞ= ∑
j

i=1
qð0ÞðiÞ, j=1, 2, 3, . . .m

This shows that each term in the Qð1Þ sequence is actually a cumulated sum of all
the terms from the beginning till that term.

The mean sequence W ð1Þ of Qð1Þ, is defined as:

W ð1Þ = ðwð1Þð1Þ,wð1Þð2Þ, . . .wð1ÞðmÞÞ ð29Þ

where wð1ÞðjÞ terms in Eq. 29 are actually the mean values of adjacent data terms,
which can be obtained as shown in Eq. 30,

wð1ÞðjÞ=0.5qð1ÞðjÞ+0.5qð1Þðj− 1Þ, j=2, 3, . . . ,m ð30Þ

The least square estimate sequence of the grey difference equation of GM (1, 1)
is defined as follows:

qð0ÞðjÞ+ cwð1ÞðjÞ= v ð31Þ
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The whitening equation is therefore written as follows:

dqð1ÞðtÞ
dq

+ cqð1ÞðtÞ= v ð32Þ

In Eq. 32, ½c, v�T is a sequence of parameters that can be found from Eq. 33:

½c, v�T = ðOTOÞ− 1OTP ð33Þ

where,

P= ½qð0Þð2Þ, qð0Þð3Þ, . . . qð0ÞðmÞ�T ð34Þ

O=

−wð1Þð2Þ 1
−wð1Þð3Þ 1

⋮ ⋮
−wð1ÞðnÞ 1

0
BB@

1
CCA ð35Þ

The solution of qð1ÞðtÞ at time k is obtained as follows:

qð1Þz ðj+1Þ= ½qð0Þð1Þ− v
c
�e− cj +

v
c

ð36Þ

To obtain the predicted value of the primitive data at time (j + 1), IAGO is used
to establish the grey model as shown in Eq. 37:

qð0Þz ðj+1Þ= ½qð0Þð1Þ− v
c
�e− cjð1− ecÞ ð37Þ

The parameter ‘−c’ in the GM (1, 1) model is called ‘development coefficient’
and gives information about the development of states. The parameter ‘v’ is called
the ‘grey action quantity’ which reflects changes in the data that have arisen
because of being derived from the background values [18].

GM (1,1) Rolling Model: GM (1,1) rolling model is based on the forward data
sequence to build the GM (1,1). For instance, using q(0)(j), q(0)(j+1), q(0)(j+2) and
q(0)(j+3), model predicts the value of the next point q(0)(j+4). In the next step, the
first point is always shifted to the second. It means that q(0)(j+1), q(0)(j+2), q(0)(j
+3) and q(0)(j+4) are used to predict the value of q(0)(j+5). This procedure is
repeated till the end of the sequence and the method is called rolling check. GM
(1,1) rolling model is used to predict the long continuous data sequences such as the
output of a system, price of a specific product, trend analysis for finance statements,
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social parameters, etc. In this chapter, GM (1,1) rolling model is used to predict the
future outputs of the moving cart inverted pendulum system [10].

6 Integer/Fractional Order FPD Controller
with/without GP

This section introduces the integer and fractional order FLC design and its
implementation. For this task, initially the FPD controller is described along with its
mathematical equations and block diagram in Sect. 6.1. Following this, in Sect. 6.2,
FOFPD controller is introduced by replacing the integer order derivative with a
fractional order derivative and its application model is explained. Sections 6.3 and
6.4 describe the way GP is combined with FPD and FOFPD controllers in order to
transform them into FPD-GP and FOFPD-GP controllers respectively. The mem-
bership functions, rule base, inference mechanism and defuzzification technique
which have been used in the operation of all the four controllers are elaborated in
Sect. 6.5.

6.1 FPD Controller

The standard equation of a conventional PD controller in time domain is defined as:

uPD tð Þ=K ′

p e tð Þ+Tde ̇ tð Þ½ � ð38Þ

or

uPD tð Þ= K ′

pe tð Þ+K ′

de ̇ tð Þ
h i

ð39Þ

where K ′

p is the proportional constant, Td is the derivative time constant, K ′

d is the
derivative gain, uPDðtÞ is the output of PD controller, eðtÞ is error.

In discrete form, Eq. 39 can be written as:

uPD kð Þ= K ′

pe kð Þ+K ′

dr kð Þ
h i

ð40Þ

where r kð Þ= ðe kð Þ− eðk− 1ÞÞ ̸T is the rate of change of error and T is the sampling
period.

Now, the FPD controller can be designed based on the discrete form of the
conventional PD controller as given in Eq. 40. The inputs to the FPD controller are
error e kð Þ and rate of change of error r kð Þ and the output is uFPD kð Þ [39].
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uFPD kð Þ=KupdDF FF Kpe kð Þ,Kdr kð Þ� �� � ð41Þ

Equation 41 gives the control action of a FPD controller, where Kp and Kd are
the scaling factors of the inputs and Kupd is the scaling factor of the defuzzified
output. FF refers to the fuzzification of inputs and DF refers to the defuzzification of
the fuzzified output. The implementation of the FPD controller can be shown
through a block diagram in Fig. 5.

6.2 FOFPD Controller

When fractional calculus is implemented in conjunction with FPD controller, a
better response can be expected than a conventional FPD. This can be attributed to
the fact that the FOFPD controller would be less sensitive to the parametric vari-
ations of the system due to an extra degree of freedom. In terms of mathematical
variations from the FPD controller, the d

dt term in Eq. 39 would be replaced by dλ
dtλ

where λ∈ ð0, 1Þ. The block diagram in Fig. 6 shows the design of the FOFPD
controller.

As can be observed from Fig. 6, putting back λ=1 would result in FPD con-
troller. The actual FOFPD controller has been realized using a transfer function

Fig. 5 Block diagram of FPD controller

Fig. 6 Block diagram of FOFPD controller
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which employs ORA as discussed earlier in Sect. 3. The Simulink model imple-
menting the same is shown in Fig. 7.

6.3 FPD-GP Controller

The GP designed for the inverted pendulum uses data terms obtained from previous
four samples to predict the future value. This helps in minimization of error and
consequently, in a better transient response. GP is positioned in the feedback path of
the FPD controller. Hence, the error received by FPD controller is more or less
similar to the error which would have resulted in the next sample time in absence of
GP. Thus, in a way, GP can be said to have accelerated the error detection process
and help in the error reduction a step ahead. GP was implemented with the help of
‘Interpreted MATLAB function’. The above working can be demonstrated using a
block diagram shown in Fig. 8.

6.4 FOFPD-GP Controller

FOFPD-GP controller is constructed by juxtaposition of FOFPD controller and
GP. It combines the advantages of fractional calculus and GP, i.e. the fractional part
compensates for the dynamical instabilities of the plant and makes the response
more robust, while the GP helps in prediction of future values which the controller

Fig. 7 Simulink model of FOFPD controller on inverted pendulum
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can act upon and reduce the error. The block diagram in Fig. 9 clearly depicts the
entire setup.

The practical realization of the FOFPD-GP controller using a Simulink model
can be shown in Fig. 10.

6.5 Framework of Fuzzy Controllers

A typical FPD controller consists of the arrangement shown in Fig. 11.
The membership functions and their universes of discourse need to be designed

depending upon the plant model. Following this, the rule base must be defined for
all the possible combination of inputs. Fuzzy inference would then map the given
inputs into output according to the rule base. Finally, a suitable defuzzification
technique is required to convert the fuzzy output signal into a crisp control signal,
which is made available to the plant input. The fuzzy logic used for all the con-
trollers in this study is identical.

Fig. 8 Block diagram of FPD-GP controller

Fig. 9 Block diagram of a FOFPD-GP controller
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6.5.1 Membership Functions

Seven membership functions have been used for both the inputs and the output.
Membership functions for error and rate of change of error are same and defined in
the range − π ̸2< eðkÞ ̸rðkÞ< π ̸2 as shown in Fig. 12. The reason for choice of
this universe of discourse is accredited to the fact that outside this range, the
pendulum rod falls down and needs different control techniques like swing up
control to get back to its unstable equilibrium position.

Membership function for output is defined in the range − 15< u<15 as shown
in Fig. 13. Asymmetric membership functions are selected instead of the usual
symmetric ones because of the fact that the practical range of angle θ never exceeds
5◦ and for error larger than this value, the system becomes less dynamic. Therefore,

Fig. 10 Simulink model of FOFPD-GP controller on inverted pendulum

Fig. 11 Block diagram of a FPD controller
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the membership functions close to the 0◦ mark are spaced close to each other so as
to provide better sensitivity and more amplification [26].

6.5.2 Rule Base

In the matrix form, the rules are defined in Table 1. The reasoning behind the rule
base can be explained by taking a particular case as an example, if the error and rate
of change of error are NB and NM respectively, this suggests that the current output

Fig. 12 Input membership functions for error and rate of change of error

Fig. 13 Output membership functions

Table 1 Rule table ė e

NB NM NS Z PS PM PB

NB PB PB PB PB PM PS Z
NM PB PB PB PM PS Z NS
NS PB PB PM PS Z NS NM
Z PB PM PS Z NS NM NB
PS PM PS Z NS NM NB NB
PM PS Z NS NM NB NB NB
PB Z NS NM NB NB NB NB
where NB, NM, NS, Z, PS, PM and PB represent Negative Big,
Negative Medium, Negative Small, Zero, Positive Small, Positive
Medium and Positive Big respectively
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is at a very large distance from the reference and moving away from it at a con-
siderable speed. Therefore, PB is required to bring the output back close to refer-
ence position [37].

6.5.3 Inference Engine and Defuzzification Method

The inference method used in the above analysis for all the controllers is Mam-
dani’s max-min inference process.

Defuzzification refers to the process of converting the fuzzy output signal to a
crisp non-fuzzy value. It is done because fuzzy values cannot be directly used for
actuators applications. The defuzzification technique employed in this study is
centroid method. Mathematically, it’s given as

z* =

R
μC zð Þ ⋅ z dzR
μC zð Þ dz ð42Þ

7 Results and Discussions

Application of FPD and FPD-GP controller on an inverted pendulum aims to
control the rod at the reference position when an impulse disturbance is given.
However, in order to further reduce the settling time, a transfer function employing
ORA is used to convert FPD and FPD-GP into FOFPD and FOFPD-GP controllers
respectively. A comparative study for settling time is demonstrated for the four
abovementioned controllers and their controller gains tuned through GA are pre-
sented in Sect. 6.1. The error and control signal comparisons for all the controllers
have also been shown. Further, all the controllers are subjected to sinusoidal dis-
turbances at plant input and plant output individually for their robust testing. This
study has been presented in Sects. 6.2 and 6.3. The performance of FOFPD and
FOFPD-GP controller is found to be more efficient than FPD and FPD-GP con-
troller respectively with significant reduction in settling time.

7.1 Optimization of Controllers

The gains and the fractional order exponent (for FOFPD and FOFPD-GP), used in
the controllers are tuned for their optimum performance in the given bounds for all
the controllers used in the chapter. The tuning is done using GA which is available
as an inbuilt optimization tool in MATLAB. Three gains (Kp, Kd and Kupd) and the
fractional order exponent λ (in case of FOFPD and FOFPD-GP) are tuned. The
parameters’ settings used for tuning are shown in Table 2.
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The gains are tuned so as to produce minimum settling time. A pulse of width
10 ms and amplitude 100 N is applied at 1 s to the plant at the controller output,
which disturbs the plant from its initial position. The best fitness plots for all the
four types of controllers are shown below.

The convergence plot in Fig. 14 comes out to be smooth and becomes almost
constant after 15 generations.

From Fig. 15, it can be observed that there are only minor variations after 10
generations. However, the graph settles completely only towards the latter part.

Figure 16 depicts the plot that is monotonically decreasing and more or less
settles around 20th generation.

The graph in Fig. 17 shows that the plot for mean fitness settles very late to the
best fitness plot (around 25th generation). However, the major fall occurs by the
10th generation only.

Table 2 Various parameters
values for GA

Parameter Values

Population size 50
Generation 30
Function tolerance 1E-6
Lower bound gains 1E-6
Upper bound gains 100
Solver Runga-Kutta (ode4)
Step size 1 ms

Fig. 14 Convergence plot for FPD
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From the above convergence plots, it can be observed that the mean fitness value
settles very close to the best value and continues to be stable till the last generation.
The exact settling time and tuned gains’ values for various controllers are listed in
Table 3.

The reference set point tracking responses for all the investigated controllers are
shown in Fig. 18 for the case when an impulse was given at the controller output.

As it can be observed from Fig. 18, the settling time obtained from FOFPD-GP
is minimum as compared to all the other controllers. Also, the undershoot is least

Fig. 15 Convergence plot for FOFPD

Fig. 16 Convergence plot for FPD-GP
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Fig. 17 Convergence plot for FOFPD-GP

Table 3 Tuned gains and obtained settling time values for the controllers

Parameters FPD FPD-GP FOFPD FOFPD-GP

Kp 99.976 93.7628 98.106 40.2241
Kd 1.449 1E-6 1.7 35.0111
Kupd 22.908 99.7668 32 86.9323
λ 1 1 0.91 0.254
Settling time (sec) 0.0504 0.0370 0.0351 0.0175
where λ refers to the order of derivative

Fig. 18 Set point tracking responses of controllers
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for FOFPD-GP controller, thereby demonstrating its effectiveness in maintaining
the pendulum angle at reference position. The corresponding error and the control
signal comparisons for all the controllers are shown in Figs. 19 and 20.

It can be observed from Fig. 19, that the error signals of FOFPD and FOFPD-GP
controllers come out to be smaller in amplitude and tend to settle earlier than the
error signal of their integral counterparts, FPD and FPD-GP. Also, it can be clearly
seen that the error for FOFPD-GP comes out to be the least.

Fig. 19 Error comparison for all the controllers

Fig. 20 Control signal comparison for all the controllers
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As it is visible in Fig. 20, the control signals for FOFPD and FOFPD-GP are
smoother and faster than FPD and FPD-GP respectively. This dominant perfor-
mance of the control signals is responsible for better overall settling time response
of the fractional controllers. Again, FOFPD-GP outperformed all the other
controllers.

Further, the controllers developed, with their tuned gains, were subjected to
various disturbances at different points to test their robustness and disturbance
rejection capabilities. The following subsections present the relevant investigations.

7.2 Disturbance at Controller Output

This disturbance is analogous to a vibrating cart which has inverted pendulum
mounted on cart. For the same, a sinusoidal disturbance was given at the controller
output, D1 at time 0 s. Now, additionally; an impulse signal at 1 s was introduced
as shown in Fig. 5. The impulse given at time t = 1 s has a pulse width of 10 ms
and amplitude 100 N. The sinusoidal disturbance was varied in two different ways.
First, the frequency was kept constant and the amplitude was varied, then the
amplitude was kept constant and frequency was varied. IAE and ISE values were
calculated for all the four responses obtained from different controllers. In all the
cases, the tuned values of gains computed earlier were used. Firstly, a sinusoidal
signal with constant amplitude and varying frequencies was given as a disturbance.
The amplitude of the signal is taken to be 5 N. A plot for responses of FOFPD-GP,
FPD-GP, FOFPD and FPD controllers when sine disturbance of frequency 50 rad/s
and an impulse at t = 1 s is given is shown in Fig. 21 as a sample case study.

Fig. 21 Disturbance rejection study for sinusoidal disturbance of 5 N and 50 rad/s
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It can be observed from Fig. 21 that the response obtained for FOFPD-GP is the
most robust as it doesn’t oscillate from its mean position as much as responses of
other controllers. Therefore, the IAE and ISE values are also found to be lower for
FOFPD-GP controller. The IAE and ISE values for constant amplitude and varying
frequencies are shown in Table 4.

Again, it can be confirmed from Table 4 that the addition of fractional com-
ponents improves the response by a significant factor. FOFPD-GP outperformed
FPD-GP, FOFPD and FPD controllers as its IAE and ISE values for all the con-
sidered frequencies came out to be lowest.

Next, a sinusoidal signal with constant frequency and varying amplitude was
applied. The frequency of the sinusoidal disturbance was taken to be 100 rad/s.
Comparative plot depicting responses of FOFPD-GP, FPD-GP, FOFPD and FPD
controllers for amplitude 6 N and frequency 100 rad/s is shown in Fig. 22 as a
typical study.

It can be observed from Fig. 22 that the response obtained for FOFPD-GP is
most robust, as its amplitude variations are very less in response to sinusoidal
signal. Therefore, the IAE and ISE values are also lowest for FOFPD-GP. Table 5
shows the IAE and ISE values for constant frequency and varying amplitudes.

As can be clearly noted from Table 5, the controllers with fractional derivatives
performed considerably better than those without fractional components.
FOFPD-GP outperformed FPD-GP, FOFPD and FPD controllers as its IAE and ISE
values for all the frequencies came out to be lowest.

Table 4 Performance
analysis: Disturbance of
constant amplitude and
varying frequency at D1

Frequency
(rad/s)

FOFPD-GP FPD-GP
IAE ISE IAE ISE

50 0.0400 9.94E-06 0.1095 3.45E-05
75 0.0399 9.88E-06 0.1127 3.48E-05
100 0.0392 9.81E-06 0.1170 3.52E-05
125 0.0388 9.35E-06 0.1222 3.56E-05
150 0.0385 9.72E-06 0.1278 3.61E-05
175 0.0390 9.72E-06 0.1330 3.65E-05
Frequency
(rad/s)

FOFPD FPD
IAE ISE IAE ISE

50 0.1348 7.03E-05 0.2773 1.47E-04
75 0.1236 7.01E-05 0.2507 1.47E-04
100 0.1162 6.98E-05 0.2297 1.43E-04
125 0.1112 6.93E-05 0.2105 1.39E-04

150 0.1037 6.89E-05 0.1926 1.34E-04
175 0.1029 6.81E-05 0.1765 1.29E-04
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7.3 Disturbance at Plant Output

Referring to Fig. 5, a sinusoidal disturbance was added to the plant output at D2 to
further analyze the relative performances of the investigated controllers. The
sinusoidal disturbance was given at t = 1.5 s for 1 time period and it was varied in
two ways in line with the previous case i.e. frequency and amplitude one at a time.
In all the cases, the tuned values of gains computed earlier were used.

Fig. 22 Disturbance rejection study for sinusoidal disturbance of 6 N and 100 rad/s

Table 5 Performance
analysis: disturbance of
constant frequency and
varying amplitude at D1

Amplitude FOFPD-GP FPD-GP
IAE ISE IAE ISE

1 0.0186 9.58E-06 0.0426 3.15E-05
2 0.0235 9.57E-06 0.0609 3.20E-05
3 0.0287 9.62E-06 0.0794 3.27E-05
4 0.0336 9.68E-06 0.0981 3.38E-05
5 0.0392 9.81E-06 0.1170 3.52E-05
6 0.0445 9.99E-06 0.1361 3.69E-05
Amplitude FOFPD FPD

IAE ISE IAE ISE
1 0.0542 6.17E-05 0.0977 1.24E-04
2 0.0689 6.31E-05 0.1290 1.28E-04
3 0.0840 6.57E-05 0.1615 1.32E-04
4 0.1002 6.76E-05 0.1950 1.37E-04
5 0.1168 6.98E-05 0.2297 1.43E-04
6 0.1327 7.24E-05 0.2653 1.51E-04
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First, a sinusoidal signal with varying amplitudes and constant frequency was
given as a disturbance. The frequency of the signal was taken to be 2πrad/s.
Controller outputs for amplitude 5π/180 rad and frequency 2πrad/s are shown in
Fig. 23 as a sample case study.

It can be observed from Fig. 23 that the response obtained from FOFPD-GP is
the least unwavering, as it doesn’t oscillate from its mean position as much as the
response of other controllers. Therefore, the IAE and ISE values also come out to be
lowest for FOFPD-GP. Table 6 shows the IAE and ISE values of the controllers for
the case of constant frequency and varying amplitudes.

Table 6 again confirms that controllers with fractional components outperformed
the controllers with integer derivatives and FOFPD-GP offers the best response
among all the controllers.

Next, amplitude of the sinusoidal disturbance is taken to be π/180 rad/s. Con-
troller outputs for amplitude π/180 rad and frequency π rad/s are shown in Fig. 24.

Fig. 23 Disturbance rejection study for sinusoidal disturbance of 5π/180 rad and 2π rad/s

Table 6 Performance
analysis: disturbance of
constant frequency and
varying amplitude at D2

Amplitude
(rad)

FOFPD-GP FPD-GP
IAE ISE IAE ISE

π/180 0.0113 2.39E-07 0.0147 1.03E-06
3π/180 0.0340 1.97E-05 0.0466 3.19E-05
5π/180 0.0570 6.20E-05 0.0850 1.1E-04
Amplitude
(rad)

FOFPD FPD
IAE ISE IAE ISE

π/180 0.0346 1.88E-06 0.0437 4.1E-06
3π/180 0.0928 3.59E-05 0.1368 7.24E-05

5π/180 0.1551 1.36E-04 0.2342 2.19E-04

Grey Predictor Assisted Fuzzy and Fractional Order … 85



Again, it is revealed from Fig. 24 that the response obtained from FOFPD-GP is
more robust, as it doesn’t oscillate from its mean position as much as the response
of FPD-GP, FOFPD and FPD controllers. Therefore, the IAE and ISE values are
also lowest for FPD-GP. Table 7 compares the IAE and ISE values for constant
amplitude and varying frequencies:

As can be proved from Table 7, FOFPD-GP and FOFPD controllers perform
considerably better than their integer counterparts, FPD-GP and FPD respectively.
Further, it is to be noted from Table 7, that FOFPD-GP outperformed FPD-GP,
FOFPD and FPD controllers.

Fig. 24 Disturbance rejection study for sinusoidal disturbance of π/180 rad and π rad/s

Table 7 Performance
analysis: disturbance of
constant amplitude and
varying frequency at D2

Frequency
(rad/s)

FOFPD-GP FPD-GP
IAE ISE IAE ISE

π/2 0.0052 5.10E-08 0.0209 2.23E-07
π 0.0093 4.49E-07 0.0268 8.65E-07
2π 0.0147 2.39E-07 0.0437 4.10E-06
Frequency
(rad/s)

FOFPD FPD
IAE ISE IAE ISE

π/2 0.0160 8.50E-08 0.0429 3.32E-07
π 0.0086 2.26E-07 0.0244 6.16E-07
2π 0.0113 1.00E-06 0.0346 1.88E-06
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8 Conclusions and Future Scope

Fractional Order Fuzzy PD with Grey Predictor (FOFPD-GP), Fuzzy PD with Grey
Predictor (FPD-GP), Fractional Order Fuzzy PD (FOFPD) and Fuzzy PD
(FPD) controllers were successfully implemented and compared on a moving cart
inverted pendulum. The simulations were done using Simulink on MATLAB.
Initially, an impulse disturbance was given to the plant model for which the plant
was tuned for minimum settling time using inbuilt optimization tool Genetic
Algorithm. It was observed that the settling time of FOFPD-GP was improved from
FPD by 2.88 times, from FPD-GP by 2.11 times and FOFPD by 2 times. Based on
these facts, it is deduced that FOFPD-GP controller outperformed the other con-
trollers under investigation.

Further, when sinusoidal disturbances were given at plant input and plant output,
it was noted that the Integral of Absolute Error (IAE) and Integral of Square Error
(ISE) values for FOFPD-GP came out to be better than FOFPD, FPD-GP and FPD
for both the disturbances when the amplitude was kept constant and frequency was
varied or when frequency was kept constant and amplitude was varied. Overall
FOFPD-GP offered better responses than FOFPD, FPD-GP and FPD controllers in
all the investigated cases for the moving cart inverted pendulum.

As a future scope, effectiveness of other inference mechanisms, different
membership functions, defuzzification methods and other control varieties of fuzzy
control schemes may be explored for moving cart inverted pendulum or such
complex plants. Additionally, new and advanced and optimization techniques can
also be applied to further effectively tune the control gains.
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