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Abstract Recently, Leonov and Kuznetsov have introduced a new definition “hid-

den attractor”. Systems with hidden attractors, especially chaotic systems, have

attracted significant attention. Some examples of such systems are systems with

a line equilibrium, systems without equilibrium or systems with stable equilib-

ria etc. In some interesting new research, systems in which equilibrium points are

located on different special curves are reported. This chapter introduces a three-

dimensional autonomous system with a square-shaped equilibrium and without equi-

librium points. Therefore, such system belongs to a class of systems with hidden

attractors. The fundamental dynamics properties of such system are studied through

phase portraits, Poincaré map, bifurcation diagram, and Lyapunov exponents. Anti-

synchronization scheme for our systems is proposed and confirmed by the Lyapunov

stability. Moreover, an electronic circuit is implemented to show the feasibility of the

mathematical model. Finally, we introduce the fractional order form of such system.
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1 Introduction

Chaos theory, chaotic systems, and chaos-based applications have been studied in

last decades [5–8, 18, 19, 54, 71, 76, 106]. A significant amount of new chaotic

systems has been introduced and discovered such as Lorenz [54], Rössler system

[66], Arneodo system [4], Chen system [18], Lü system [55], Vaidyanathan sys-

tem [83], time-delay systems [11], nonlinear finance system [78], four-scroll chaotic

system [2].

Chaotic systems, that are highly sensitive to initial conditions, were applied in dif-

ferent areas. A new four-scroll chaotic system was used to design a random number

generator [2]. Tang et al. implemented image encryption using chaotic coupled map

lattices with time-varying delays [79]. Reconfiguration chaotic logic gates based on

novel chaotic circuit were discovered in [12]. Chenaghlu et al. introduced a novel

keyed parallel hashing scheme based on a new chaotic system [20]. Kajbaf et al.

proposed fast synchronization of non-identical chaotic modulation-based secure sys-

tems using a modified sliding mode controller [38]. A new hybrid algorithm based on

chaotic maps for solving systems of nonlinear equations was presented in [44]. Tacha

et al. studied analysis, adaptive control and circuit simulation of a novel nonlinear

finance system [78]. Performance improvement of chaotic encryption via energy and

frequency location criteria was studied in [70]. Orlando investigated a discrete math-

ematical model for chaotic dynamics in economics [58].

Recent developments include systems with hidden attractors which are important

in engineering applications [34, 35, 48, 61, 85, 110, 112]. Especially, chaotic sys-

tems with hidden attractors such as chaotic systems without any equilibrium points,

chaotic systems with infinitely many equilibrium points and chaotic systems with

stable equilibria have been introduced [34, 35, 43, 56, 99]. Finding new chaotic

systems with different families of hidden attractors should be studied further.

In this chapter, we introduce a novel three-dimensional (3D) chaotic system. Espe-

cially the new system displays both hidden chaotic attractor with square equilibrium

and hidden chaotic attractor without equilibrium. This chapter is organized as fol-

lows. The related works are reported in the next section. Section 3 presents the the-

oretical model of the new system. Dynamics and properties of the new system are

investigated in Sect. 4 while the adaptive anti-synchronization scheme for such new

system is proposed in Sect. 5. Section 6 presents circuital implementation of the the-

oretical model. Moreover, fractional-order form of the new no-equilibrium system

is described in Sect. 7. Finally, conclusions are drawn in Sect. 8.

2 Related Work

Recently, Leonov and Kuznetsov have proposed a new approach to classify nonlinear

systems. They considered dynamical systems with self-excited attractors and dynam-

ical systems with hidden attractors [46, 48, 50, 51]. A self-excited attractor has a
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basin of attraction that is excited from unstable equilibria. Therefore, self-excited

attractors can be localized numerically by using the standard computational proce-

dure. In contrast, hidden attractor cannot be found by using a numerical method in

which a trajectory started from a point on the unstable manifold in the neighbourhood

of an unstable equilibrium [34, 48]. “Hidden attractor” is important both in nonlinear

theory and practical problems [45, 50, 60, 63, 69]. Thus various researches relating

hidden attractors have been introduced [16, 36, 68, 73].

Hidden attractors have discovered in a smooth Chua’s system [52], in mathe-

matical model of drilling system [49], in a relay system with hysteresis [112], in

nonlinear control systems [47], in Van der Pol-Duffing oscillators [16], in a sim-

ple four-dimensional system [105], in an impulsive Goodwin oscillator with time

delay [111] or in a multilevel DC/DC converter [110]. In addition, hidden chaotic

attractors are observed in 3-D chaotic autonomous system with only one stable equi-

librium [43], in elementary quadratic chaotic flows with no equilibria [35], in simple

chaotic flows with a line equilibrium [34], in a 4-D Rikitake dynamo system [97], in

5-D hyperchaotic Rikitake dynamo system [95], in a 5-D Sprott B system [57], in a

chaotic system with an exponential nonlinear term [62] or in a system with memris-

tive devices [10].

It is interesting that chaotic systems with an infinite number of equilibrium points

or without equilibrium belong to a class of dynamical systems with “hidden attrac-

tor” [35]. A few three-dimensional chaotic systems with infinite equilibria and with-

out equilibrium have been reported. Jafari and Sprott found chaotic flows with a line

equilibrium [34]. New class of chaotic systems with circular equilibrium was pre-

sented in [26]. Gotthans et al. introduced a 3-D chaotic system with a square equilib-

rium in [27]. By applying a tiny perturbation into the Sprott D system, Wei obtained

a new system with no equilibria [101]. Wang and Chen proposed a no-equilibrium

system when constructing a chaotic system with any number of equilibria [100].

Especially, Jafari et al. found a gallery of chaotic flows with no equilibria [35]. How-

ever, investigation of new systems which can display both hidden chaotic attractors

with infinite equilibria and hidden chaotic attractors without equilibrium is still an

attractive research direction.

3 Model of the No-Equilibrium System

Gotthans et al. proposed an interesting three-dimensional chaotic system with a

square equilibrium [27]. Gotthans’s system is given by

⎧
⎪
⎨
⎪
⎩

ẋ = z
ẏ = −z (ay + b |y|) − x |z|
ż = |x| + |y| − 1,

(1)
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where x, y, z are state variables, while a, b are two positive parameters. System (1)

is the simplest system with a square equilibrium and chaotic behavior. Moreover it

is an example of a system with hidden attractor [27].

In this work, we study a new 3-D system based on system (1):

⎧
⎪
⎨
⎪
⎩

ẋ = z
ẏ = −z (ay + b |y|) − x |z| − c
ż = |x| + |y| − 1,

(2)

in which x, y, z are state variables and a, b, c are three positive parameters. Dynamics

and properties of new nonlinear system (2) are studied in the next section.

4 Dynamics and Properties of the Proposed System

The equilibrium points of system (2) are found by solving ẋ = 0, ẏ = 0, and ż = 0.

Therefore, we have

z = 0, (3)

− z (ay + b |y|) − x |z| − c = 0, (4)

|x| + |y| − 1 = 0, (5)

From (3), (4), we have z = 0 and

c = 0. (6)

Therefore system (2) has an infinite number of equilibrium points when c = 0. More-

over equilibrium points are located on a square (5). This case has been studied in [27],

so we do not discuss about it. We focus on the case for c ≠ 0. Obviously, Eq. (6) is

inconsistent when c ≠ 0. On the other word, there is no real equilibrium in system

(2). Interestingly, system (2) belongs to a newly introduced class of systems with

hidden attractors because its basin of attractor does not contain neighbourhoods of

equilibria [48, 50].

We consider the new system (2) for the selected parameters a = 5, b = 3, c = 0.02
and the initial conditions are

(x (0) , y (0) , z (0)) = (0, 0.0, 0) . (7)

Lyapunov exponents, which measure the exponential rates of the divergence and

convergence of nearby trajectories in the phase space of the chaotic system [72, 76],

are calculated by using the algorithm in [104]. As a result, the Lyapunov exponents

of the system (2) are
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𝜆1 = 0.1386, 𝜆2 = 0, 𝜆3 = −1.1731. (8)

The 2-D and 3-D projections of the chaotic attractors without equilibrium in this

case are illustrated in Figs. 1, 2, 3 and 4.

It has been known that the Kaplan–Yorke fractional dimension, which presents

the complexity of attractor [23], is given by

DKY = j + 1
|
|
|
𝜆j+1

|
|
|

j∑

i=1
𝜆i, (9)

where j is the largest integer satisfying

j∑

i=1
𝜆i ≥ 0 and

j+1∑

i=1
𝜆i < 0. Thus, the calculated

fractional dimension of no-equilibrium system (2) when a = 5, b = 3, c = 0.02 is

DKY = 2 +
𝜆1 + 𝜆2
|
|𝜆3

|
|

= 2.1181. (10)

Fig. 1 2-D projection of

system (2) in the (x, y)-plane,

for a = 5, b = 3, c = 0.02
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Fig. 2 2-D projection of

system (2) in the (x, z)-plane,

for a = 5, b = 3, c = 0.02
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Fig. 3 2-D projection of

system (2) in the (y, z)-plane,

for a = 5, b = 3, c = 0.02
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Fig. 4 3-D projection of

system (2) in the

(x, y, z)-space, for a = 5,

b = 3, c = 0.02
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Fig. 5 Poincaré map of

system (2) in the (x, y)-plane,

for a = 5, b = 3, c = 0.02
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Equation (10) indicates a strange attractor. In addition, as seen in Fig. 5, the Poincaré

map of system (2) in the (x, y)-plane also illustrates the strange of attractor.

The bifurcation diagram provides a useful tool in nonlinear science. It gives the

change of system’s dynamical behavior. In more details, Fig. 6 presents the bifur-

cation diagram of the variable y versus the parameter c. The system’s complexity

has also been verified by the corresponding diagram of largest Lyapunov exponents

versus the parameter c (see Fig. 7). In the regions where the value of the largest Lya-

punov exponent is equal to zero the system is in a periodic state, while in the regions

where the largest Lyapunov exponent has a positive value the system is in a chaotic
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Fig. 6 Bifurcation diagram

of system (2) when changing

c for a = 5, b = 3
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Fig. 7 Largest Lyapunov

exponent of system (2) when

varying c for a = 5, b = 3
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Fig. 8 Limit cycle of

system (2) for a = 5, b = 3,

and c = 0.1
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state. As seen in Fig. 6, there is a reverse period doubling to chaos when increasing

the value of parameter c from 0 to 0.15. When c < 0.057 a more complex behav-

ior is emerged. For example, system exhibits chaotic behavior for c < 0.039. When

c > 0.057 the system remains always in periodic states. For instant, system presents

periodic behavior for c = 0.1 (see Fig. 8).
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5 Adaptive Anti-synchronization of the Proposed System

Synchronization of nonlinear systems has been discovered extensively in literature

because of its vital practical applications [13, 17, 22, 24, 39, 40, 59, 63, 74, 84,

86, 87, 94, 109]. Results about synchronization of various systems are reported such

as synchronized states in a ring of mutually coupled self-sustained nonlinear elec-

trical oscillators [103], ragged synchronizability of coupled oscillators [75], various

synchronization phenomena in bidirectionally coupled double-scroll circuits [98],

observer for synchronization of chaotic systems with application to secure data trans-

mission was studied in [1], or shape synchronization control [33]. Futhermore differ-

ent kind of synchronizations have been investigated, for example lag synchronization

[65], frequency synchronization [3], projective-anticipating synchronization [31],

anti-synchronization [82], adaptive synchronization [88–91, 93, 96], hybrid chaos

synchronization [40], generalized projective synchronization [92], fuzzy synchro-

nization [14, 15] or fast synchronization [38] etc. Interestingly, anti-synchronization

has received significant attention [32, 42, 82, 108]. Anti-synchronization indicates

the relationship between two oscillating systems that have the same absolute values

at all times, but opposite signs [32, 42, 108].

In this section, the adaptive anti-synchronization of identical proposed systems

with three unknown parameters is proposed. The newly introduced system (2) is

considered as the master system:

⎧
⎪
⎨
⎪
⎩

ẋ1 = z1
ẏ1 = −ay1z1 − b ||y1|| z1 − x1 ||z1|| − c
ż1 = |

|x1|| + |
|y1|| − 1,

(11)

in which x1, y1, z1 are state variables. The slave system is considered as the controlled

system and its dynamics is described by:

⎧
⎪
⎨
⎪
⎩

ẋ2 = z2 + ux
ẏ2 = −ay2z2 − b ||y2|| z2 − x2 ||z2|| − c + uy
ż2 = |

|x2|| + |
|y2|| − 1 + uz,

(12)

where x2, y2, z2 are the states of the slave system. Here the adaptive controls are

ux, uy, and uz. These controls will be designed for the anti-synchronization of the

master and slave systems. We used A(t), B(t) and C(t) in order to estimate unknown

parameters a, b and c.

The anti-synchronization error between systems (11) and (12) is given by the

following relation

⎧
⎪
⎨
⎪
⎩

ex = x1 + x2
ey = y1 + y2
ez = z1 + z2.

(13)
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As a result, the anti-synchronization error dynamics is described by

⎧
⎪
⎨
⎪
⎩

ėx = ez + ux
ėy = −a

(
y1z1 + y2z2

)
− b

(
|
|y1|| z1 + |

|y2|| z2
)
−
(
x1 ||z1|| + x2 ||z2||

)
− 2c + uy

ėz = |
|x1|| + |

|x2|| + |
|y1|| + |

|y2|| − 2 + uz.

(14)

Our aim is to construct the appropriate controllers ux, uy, uz to stabilize system

(14). Therefore, we propose the following controllers for system (14):

⎧
⎪
⎨
⎪
⎩

ux = −ez − kxex
uy = A(t)

(
y1z1 + y2z2

)
+ B(t)

(
|
|y1|| z1 + |

|y2|| z2
)
+
(
x1 ||z1|| + x2 ||z2||

)

+2C(t) − kyey
uz = − |

|x1|| − |
|x2|| − |

|y1|| − |
|y2|| + 2 − kzez.

(15)

in which kx, ky, kz are positive gain constants for each controllers and the estimate

values for unknown system parameters are A(t), B(t), and C(t). The update laws for

the unknown parameters are determined as

⎧
⎪
⎨
⎪
⎩

̇A = −ey
(
y1z1 + y2z2

)

̇B = −ey
(
|
|y1|| z1 + |

|y2|| z2
)

̇C = −2ey.

(16)

Then, the main result of this section will be introduced and proved.

Theorem 5.1 If the adaptive controller (15) and the updating laws of parameter
(16) are chosen, the anti-sychronization between the master system (11) and the slave
system (12) is achieved.

Proof It is noting that the parameter estimation errors ea(t), eb(t) and ec(t) are given

as

⎧
⎪
⎨
⎪
⎩

ea (t) = a − A (t)
eb (t) = b − B (t)
ec (t) = c − C (t) .

(17)

Differentiating (17) with respect to t, we have

⎧
⎪
⎨
⎪
⎩

ėa (t) = − ̇A (t)
ėb (t) = − ̇B (t)
ėc (t) = − ̇C (t) .

(18)

Substituting adaptive control law (15) into (14), the closed-loop error dynamics

is defined as
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⎧
⎪
⎨
⎪
⎩

ėx = −kxex
ėy = − (a − A (t))

(
y1z1 + y2z2

)

− (b − B (t))
(
|
|y1|| z1 + |

|y2|| z2
)
− 2 (c − C (t)) − kyey

ėz = −kzez

(19)

Then substituting (17) into (19), we have

⎧
⎪
⎨
⎪
⎩

ėx = −kxex
ėy = −ea (t)

(
y1z1 + y2z2

)
− eb (t)

(
|
|y1|| z1 + |

|y2|| z2
)
− 2ec (t) − kyey

ėz = −kzez.

(20)

We consider the Lyapunov function given as

V (t) = V
(
ex, ey, ez, ea, eb, ec

)

= 1
2

(
e2x + e2y + e2z + e2a + e2b + e2c

)
.

(21)

The Lyapunov function (21) is clearly definite positive.

Taking time derivative of (21) along the trajectories of (13) and (17) we have

̇V (t) = exėx + eyėy + ezėz + eaėa + ebėb + ecėc. (22)

From (18), (20), and (22) we get

̇V (t) = −kxe2x − kye2y − kze2z − ea
[
ey
(
y1z1 + y2z2

)
+ ̇A

]

−eb
[
ey
(
|
|y1|| z1 + |

|y2|| z2
)
+ ̇B

]
− ec

(
2ey + ̇C

)
.

(23)

Then by applying the parameter update law (16), Eq. (23) become

̇V (t) = −kxe2x − kye2y − kze2z . (24)

Obviously, the time-derivative of the Lyapunov function V is negative semi-definite.

According to Barbalat’s lemma in the Lyapunov stability theory [41, 67], it follows

that ex (t) → 0, ey (t) → 0, and ez (t) → 0, exponentially when t → 0. That is, anti-

synchronization between master and slave system exponentially. This completes the

proof. □

A numerical example is presented to illustrate the effectiveness of our proposed

anti-synchronization scheme. The parameters of the no-equilibrium systems are

selected as a = 5, b = 3, c = 0.02 and the positive gain constant as k = 6. The initial

conditions of the master system (11) and the slave system (12) have been chosen

as x1 (0) = 0, y1 (0) = 0, z1 (0) = 0, and x2 (0) = 0.5, y2 (0) = 1, z2 (0) = 0.9, respec-

tively. We assumed that the initial values of the parameter estimates are A (0) = 10,

B (0) = 2, and C (0) = 0.
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Fig. 9 Anti-synchronization

of the states x1(t) and x2(t)
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Fig. 10 Anti-synchronization

of the states y1(t) and y2(t)
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It is easy to see that when adaptive control law (15) and the update law for the

parameter estimates (16) are applied, the anti-synchronization of the master (11)

and slave system (12) occurred as illustrated in Figs. 9, 10 and 11. Time series of

master states are denoted as blue solid lines while corresponding slave states are

plotted as red dash-dot lines in such figures. Moreover, the time-history of the anti-

synchronization errors ex, ey, and ez is reported in Fig. 12. The anti-synchronization

errors converge to the zero. Therefore the chaos anti-synchronization between the

no-equilibrium systems is realized.

6 Electronic Circuit of the Proposed System

Implementation of theoretical chaotic model by electronic circuits is an approach

to confirm the feasibility of the theoretical one [2, 64, 78, 97]. In this section, we

choose integrator synthesis to synthesize a circuit from the differential equations in

system (2) as shown in Fig. 13.
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Fig. 11 Anti-synchronization

of the states z1(t) and z2(t)
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Fig. 12 Time series of the

anti-synchronization errors
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As seen in Fig. 13, there are only some basic blocks such as integrators, summing

amplifiers, multipliers or absolute value blocks. These blocks have been realized

easily by electronic components (resistors, capacitors, operational amplifiers, analog

multipliers). As a result, the circuit have been implemented in PSpice as illustrated

in Fig. 14. Signals in the circuit are measured at the outputs of inverting integrators.

Figures 15, 16, 17 present the obtained PSpice results. The designed circuit emulates

well the theoretical model.

7 Fractional Order Form of the No-Equilibrium System

As have been known that practical models such as heat conduction, electrode-

electrolyte polarization, electronic capacitors, dielectric polarization, viso-elastic

systems are more adequately described by the fractional-order different equations

[9, 30, 37, 77, 81, 102]. Adams-Bashforth-Mounlton numerical algorithm is often

used to investigate fractional-order differential equations [21, 25, 80]. Here we

present this algorithm briefly.



A Three-Dimensional Chaotic System . . . 625

Fig. 13 Block schematic to synthesize the circuit of system (2)

Fig. 14 Observation of the electronic circuit implemented by using PSpice

We consider the fractional-order differential equation as follows:

{
dqx(t)

dtq = f (t, x (t)) , 0 ≤ t ≤ T ,
x(i) (0) = x(i)0 i = 0, 1, ...,m − 1,

(25)
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Fig. 15 PSpice phase

portrait of the circuit in

−V(−x) − V(y) plane

Fig. 16 PSpice phase

portrait of the circuit in

−V(−x) − V(z) plane

where m − 1 < q ≤ m ∈ Z+
. Equation (25) is equivalent to the following Volterra

integral equation:

x (t) =
m−1∑

i=0

ti

i!
x(i)0 + 1

𝛤 (q)

t

∫
0

(t − 𝜏)q−1f (𝜏, x (𝜏)) d𝜏, (26)
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Fig. 17 PSpice phase

portrait of the circuit in

V(y) − V(z) plane

in which the Gamma function 𝛤 (.) is defined as

𝛤 (q) =
∞

∫
0

e−ttq−1dt. (27)

We set h = T
N

, N ∈ Z+
, and tn = nh (n = 0, 1, ...,N). So we can discrete Eq. (26)

as follows

xh
(
tn+1

)
=

m−1∑

i=0

ti
n+1
i!

x(i)0 + hq

𝛤 (q+2)
f
(
tn+1, x

p
h

(
tn+1

))

+ hq

𝛤 (q+2)

n∑

j=0
aj,n+1f

(
tj, xh

(
tj
))
,

(28)

where

aj,n+1 =
⎧
⎪
⎨
⎪
⎩

nq+1 − (n − q) (n + 1)q, if j = 0,
(n − j + 2)q+1 + (n − j)q+1
−2(n − j + 1)q+1, if 1 ≤ j ≤ n,
1, if j = n + 1.

(29)

It is noting that the predicted value xp
h

(
tn+1

)
is calculated as

xp
h

(
tn+1

)
=

m−1∑

i=0

ti
n+1

i!
x(i)0 + 1

𝛤 (q)

n∑

j=0
bj,n+1f

(
tj, xh

(
tj
))
, (30)
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in which

bj,n+1 =
hq

q
(
(n + 1 − j)q − (n − j)q

)
, 0 ≤ j ≤ n. (31)

Here the estimation error e in the method is given by

e = max ||
|
x
(
tj
)
− xh

(
tj
)|
|
|
= O (hp) (j = 0, 1, ...,N) , (32)

with p = min (2, 1 + q).
Existence of chaos in fractional-order systems are investigated [28, 29, 53, 107].

In this section, we consider the fractional-order from of the no-equilibrium system

which is described as

⎧
⎪
⎨
⎪
⎩

dqx(t)
dtq = z

dqy(t)
dtq = −z (ay + b |y|) − x |z| − c

dqz(t)
dtq = |x| + |y| − 1,

(33)

where a, b, c are three positive parameters and c ≠ 0 for the commensurate order 0 <

q ≤ 1. Fractional-order system (33) has been studied by applying Adams-Bashforth-

Mounlton numerical algorithm [21, 25, 80]. It is interesting that chaos exists in

fractional-order system (33). Figures 18, 19, 20 display chaotic attractors generated

from fractional-order system (33) for the commensurate order q = 0.999, the para-

meters a = 5, b = 3, c = 0.02 and the initial conditions

(x (0) , y (0) , z (0)) = (0, 0, 0) . (34)

However, when decreasing the value of the commensurate order i.e. q = 0.995,

fractional-order system (33) generates limit cycles as illustrated in Fig. 21.

Fig. 18 2-D projection of

the fractional-order system

(33) in the (x, y)-plane
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Fig. 19 2-D projection of

the fractional-order system

(33) in the (x, z)-plane
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Fig. 20 2-D projection of

the fractional-order system

(33) in the (y, z)-plane
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Fig. 21 3-D projection of

the fractional-order system

(33) in the (x, y, z)-space for

the commensurate order

q = 0.995, the parameters

a = 5, b = 3, c = 0.02, and

the initial conditions

(x (0) , y (0) , z (0)) = (0, 0, 0)
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8 Conclusion

A new three-dimensional autonomous system is proposed in this chapter. This

system can exhibit chaotic attractors with square equilibrium and without equi-

librium. As a result, such system is considered as a system with “hidden attrac-

tor”. Fundamental dynamical properties of the introduced system are investigated

through calculating equilibrium points, phase portraits of chaotic attractors, Poincaré

map, bifurcation diagram, largest Lyapunov exponents and Kaplan-Yorke dimension.

Moreover, synchronization and electronic implementation of our novel system are
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discussed and verified by numerical examples. This work is not only to present a

new system with hidden attractors but also to extend the knowledge about systems

with different families of hidden attractors. Other chaotic systems with different fam-

ilies of hidden attractors will be presented in our next researches. In addition, further

studies about potential applications of such system in secure communications and

cryptography will be done in our future works.
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