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Abstract In this study, the problem of inverse matrix projective synchronization

(IMPS) between different dimensional fractional order chaotic systems is investi-

gated. Based on fractional order Lyapunov approach and stability theory of frac-

tional order linear systems, new complex schemes are proposed to achieve inverse

matrix projective synchronization (IMPS) between n-dimension and m-dimension

fractional order chaotic systems. To validate the theoretical results and to verify the

effectiveness of the proposed schemes, numerical applications and computer simu-

lations are used.
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1 Introduction

Fractional calculus, as generalization of integer order integration and differentiation

to its non-integer (fractional) order counterpart, has proved to be valuable tool in

the modeling of many physical phenomena [1–5] and engineering problems [6–13].

Fractional derivatives provide an excellent instrument for the description of memory

and hereditary properties of various materials and processes [14, 15]. The main rea-

son for using integer-order models was the absence of solution methods for fractional

differential equations [16, 17]. The advantages or the real objects of the fractional

order systems are that we have more degrees of freedom in the model and that a

“memory” is included in the model [18]. One of the very important areas of appli-

cation of fractional calculus is the chaos theory [19, 20].

Chaos is a very interesting nonlinear phenomenon which has been intensively

studied [21–26]. It is found to be useful or has great application potential in many

fields such as secure communication [27], data encryption [28], financial systems

[29] and biomedical engineering [30]. The research efforts have been devoted to

chaos control [31–33] and chaos synchronization [34–40] problems in nonlinear sci-

ence because of its extensive applications [41–57].

Recently, studying fractional order systems has become an active research area.

The chaotic dynamics of fractional order systems began to attract much attention in

recent years. It has been shown that the fractional order systems can also behave

chaotically, such as the fractional order Chua’s system [58], the fractional order

Lorenz system [59], the fractional order Chen system [60, 61], the fractional order

Rössler system [62], the fractional-order Arneodo’s system [63], the fractional

order Lü system [64], the fractional-order Genesio-Tesi system [65], the fractional

order modified Duffing system [66], the fractional-order financial system [67], the

fractional order Newton–Leipnik system [68], the fractional order Lotka-Volterra

system [69] and the fractional order Liu system [70]. Moreover, recent studies show

that chaotic fractional order systems can also be synchronized [71–78]. Many scien-

tists who are interested in this field have struggled to achieve the synchronization of

fractional–order chaotic systems, mainly due to its potential applications in secure

communication and cryptography [79–81].

A wide variety of methods and techniques have been used to study the synchro-

nization of the fractional–order chaotic such as sliding mode controller [82–84],

active and adaptive control methods [85–87], feedback control method [88, 89], lin-

ear and nonlinear control methods [90, 91], scalar signal technique [92, 93]. Many

types of synchronization for the fractional-order chaotic systems have been presented

[94–127]. Among all types of synchronization, projective synchronization (PS) has

been extensively considered. In PS, slave system variables are scaled replicas of

the master system variables. A variation of projective synchronization is the so-

called matrix projective synchronization (MPS) (or full state hybrid projective syn-

chronization) [128–130]. Also, matrix projective synchronization (MPS) between

fractional order chaotic systems has been studied [131–134]. In this type of synchro-

nization the single scaling parameter originally introduced in [135] is replaced by
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a diagonal scaling matrix [136, 137] or by a full scaling matrix [138]. Recently, an

interesting scheme has been introduced [139], in which each master slave system

state achieves synchronization with any arbitrary linear combination of slave system

states. Since master system states and slave system states are inverted with respect

to the MPS, the proposed scheme is called inverse matrix projective synchroniza-

tion (IMPS). Obviously, the problem of inverse matrix projective synchronization

(IMPS) is an attractive idea and more difficult than the problem of matrix projective

synchronization (MPS). The complexity of the IMPS scheme can have important

effect in applications.

Based on these considerations, this study presents new control schemes for the

problem of IMPS in fractional-order chaotic dynamical systems. Based on Laplace

transform and fractional Lyapunov stability theory, the study first analyzes a new

IMPS scheme between n−dimensional commensurate fractional-order master sys-

tem and m−dimensional commensurate fractional-order slave system. Successively,

by using some properties of fractional derivatives and stability theory of fractional-

order linear systems, IMPS is proved between n−dimensional incommensurate

fractional-order master system and m−dimensional commensurate fractional-order

slave system. Finally, several numerical examples are illustrated, with the aim to

show the effectiveness of the approaches developed herein.

This study is organized as follow. In Sect. 2, some basic concepts of fractional-

order systems are introduced. In Sect. 3, the master and the slave systems are

described to formulate the problem of IMPS. In Sect. 4, two control schemes are

proposed which enables IMPS to be achieved for commensurate master system and

incommensurate master system cases, respectively. In Sect. 5, simulation results

are performed to verify the effectiveness and feasibility of the proposed schemes.

Finally, concluding remarks end the study.

2 Basic Concepts

In this section, we present some basic concepts of fractional derivatives and stabil-

ity of fractional systems which are helpful in the proving analysis of the proposed

approaches.

2.1 Caputo Fractional Derivative

The idea of fractional integrals and derivatives has been known since the develop-

ment of the regular calculus, with the first reference probably being associated with

Leibniz in 1695. There are several definitions of fractional derivatives [140]. The

Caputo derivative [141] is a time domain computation method. In real applications,

the Caputo derivative is more popular since the un-homogenous initial conditions

are permitted if such conditions are necessary. Furthermore, these initial values are
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prone to measure since they all have idiographic meanings [142]. The Caputo deriv-

ative definition is given by

Dp
t f (t) = Jm−pf m (t) , (1)

where 0 < p ≤ 1,m = [p], i.e., m is the first integer which is not less than p, f m
is

the m-order derivative in the usual sense, and Jq (q > 0) is the q-order Reimann-

Liouville integral operator with expression:

Jqf (t) = 1
𝛤 (q)

t

∫

0

(t − 𝜏)q−1f (𝜏) d𝜏, (2)

where 𝛤 denotes Gamma function.

Some basic properties and Lemmas of fractional derivatives and integrals used in

this study are listed as follows.

Property 1 For p = n, where n is an integer, the operation Dp
t gives the same result

as classical integer order n. Particularly, when p = 1, the operation Dp
t is the same

as the ordinary derivative, i.e., D1
t f (t) = df (t)

dt
; when p = 0, the operation Dp

t f (t) is
the identity operation: D0

t f (t) = f (t).

Property 2 Fractional differentiation (fractional integration) is linear operation:

Dp
t
[
af (t) + bg (t)

]
= aDp

t f (t) + bDp
t g (t) . (3)

Property 3 The fractional differential operator Dp
t is left-inverse (and not right-

inverse) to the fractional integral operator Jp, i.e.

Dp
t Jpf (t) = D0f (t) = f (t) . (4)

Lemma 1 [143] The Laplace transform of the Caputo fractional derivative rule
reads

𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) −

n−1∑

k=0
sp−k−1f (k) (0) , (p > 0, n − 1 < p ≤ n) . (5)

Particularly, when 0 < p ≤ 1, we have

𝐋
(
Dp

t f (t)
)
= sp𝐅 (s) − sp−1f (0) . (6)

Lemma 2 [144] The Laplace transform of the Riemann-Liouville fractional integral
rule satisfies

𝐋 (Jqf (t)) = s−q𝐅 (s) , (q > 0) . (7)
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Lemma 3 [103] Suppose f (t) has a continuous kth derivative on [0, t] (k ∈ N,

t > 0), and let p, q > 0 be such that there exists some 𝓁 ∈ N with 𝓁 ≤ k and p,
p + q ∈ [𝓁 − 1,𝓁]. Then

Dp
t Dq

t f (t) = Dp+q
t f (t) , (8)

Remark 1 Note that the condition requiring the existence of the number 𝓁 with the

above restrictions in the property is essential. In this work, we consider the case that

0 < p, q ≤ 1, and 0 < p + q ≤ 1. Apparently, under such conditions this property

holds.

2.2 Stability of Linear Fractional Systems

Consider the following linear fractional system

Dpi
t xi(t) =

n∑

j=1
aijxj(t), i = 1, 2, ..., n, (9)

where pi is a rational number between 0 and 1 and Dpi
t is the Caputo fractional deriv-

ative of order pi, for i = 1, 2, ..., n. Assume that pi =
𝛼i

𝛽i
,
(
𝛼i, 𝛽i

)
= 1, 𝛼i, 𝛽i ∈ ℕ, for

i = 1, 2, ..., n. Let d be the least common multiple of the denominators 𝛽i’s of pi’s.

Lemma 4 [145] If pi’s are different rational numbers between 0 and 1, then the
system (9) is asymptotically stable if all roots 𝜆 of the equation

det
(
diag

(
𝜆

dp1
, 𝜆

dp2
, ..., 𝜆

dpn
)
− A

)
= 0, (10)

satisfy |arg (𝜆)| > 𝜋

2d
, where A =

(
aij
)

n×n.

2.3 Fractional Lyapunov Method

Definition 1 A continuous function 𝛾 is said to belong to class-K if it is strictly

increasing and 𝛾 (0) = 0.

Theorem 1 [146] Let X = 0 be an equilibrium point for the following fractional
order system

Dp
t X (t) = F (X (t)) , (11)

where 0 < p ≤ 1. Assume that there exists a Lyapunov function V (X (t)) and class-K
functions 𝛾i (i = 1, 2, 3) satisfying

𝛾1 (‖X‖) ≤ V (X (t)) ≤ 𝛾2 (‖X‖) . (12)
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Dp
t V (X (t)) ≤ −𝛾3 (‖X‖) . (13)

Then the system (11) is asymptotically stable.

Theorem 2 [147] If there exists a positive definite Lyapunov function V (X (t)) such
that Dp

t V (X (t)) < 0, for all t > 0, then the trivial solution of system (11) is asymp-
totically stable.

In the following, a new lemma for the Caputo fractional derivative is presented.

Lemma 5 [148] ∀X(t) ∈ 𝐑n
, ∀p ∈

]
0, 1

]
and ∀t > 0

1
2

Dp
t
(
XT (t)X(t)

)
≤ XT (t)Dp

t (X(t)) . (14)

3 System Description and Problem Formulation

We consider the following fractional chaotic system as the master system

Dp
t X (t) = AX (t) + f (X (t)) , (15)

where X (t) =
(
x1 (t) , x2 (t) , ..., xn (t)

)T
is the state vector of the master system (15),

A =
(
aij
)

n×n is a constant matrix, f =
(
fi
)
1≤i≤n is a nonlinear function, Dp

t =
[
Dp1

t ,

Dp2
t , ...,Dpn

t
]

is the Caputo fractional derivative and pi, i = 1, 2, ..., n, are rational

numbers between 0 and 1.

Also, consider the slave system as

Dq
t Y (t) = g (Y (t)) + U, (16)

where Y(t) =
(
y1 (t) , y2 (t) , ..., ym (t)

)T
is the state vector of the slave system (16),

g =
(
gi
)
1≤i≤m, Dq

t is the Caputo fractional derivative of order q, where q is a rational

number between 0 and 1 and U =
(
ui
)
1≤i≤m is a vector controller to be designed.

Before proceeding to the definition of inverse matrix projective synchronization

(IMPS) for the coupled fractional chaotic systems (15) and (16), the definition of

matrix projective synchronization (MPS) is provided.

Definition 2 The n-dimensional master system X(t) and the m-dimensional slave

system Y(t) are said to be matrix projective synchronization (MPS), if there exists

a controller U =
(
ui
)
1≤i≤m and a given constant matrix 𝛬 =

(
𝛬ij

)
m×n, such that the

synchronization error

e(t) = Y(t) − 𝛬 × X(t), (17)

satisfies that lim t⟶+∞ ‖e (t)‖ = 0.
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Definition 3 The n-dimensional master system X(t) and the m-dimensional slave

system Y(t) are said to be inverse matrix projective synchronization (IMPS), if there

exists a controller U =
(
ui
)
1≤i≤m and a given constant matrix M =

(
Mij

)
n×m, such

that the synchronization error

e(t) = X(t) − M × Y(t), (18)

satisfies that lim t⟶+∞ ‖e (t)‖ = 0.

Remark 2 The problem of inverse matrix projective synchronization in chaotic

discrete-time systems have been studied and carried out, for example, in Ref. [149].

4 Fractional IMPS Schemes

In this section, we discuss two schemes of IMPS between the master system (15)

and the slave system (16): The first scheme is proposed when the master system is

commensurate system and the second one is constructed when the master system is

incommensurate system. In this study, we assume that n < m.

4.1 Case 1

In this case, we assume that p1 = p2 = ... = pn = p and q < p. The error system of

IMPS, in scalar form, between the master system (15) and the slave system (16) is

defined by

ei(t) = xi(t) −
m∑

j=1
Mij × yj(t), i = 1, 2, ..., n. (19)

Suppose that the controllers ui, i = 1, 2, ...,m, can be designed in the following

form

ui = −gi (Y (t)) + Jp−q (vi
)
, i = 1, 2, ...,m, (20)

where vi, 1 ≤ i ≤ m, are new controllers to be determined later.

By substituting Eq. (20) into Eq. (16), we can rewrite the slave system as

Dq
t yi (t) = Jp−q (vi

)
, i = 1, 2, ...,m. (21)

Now, applying the Laplace transform to (21) and letting

𝐋
(
yi(t)

)
= 𝐅i(s), i = 1, 2, ...,m, (22)
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we obtain,

sq𝐅i(s) − sq−1yi(0) = sq−p𝐋
(
vi
)
, i = 1, 2, ...,m, (23)

multiplying both the left-hand and right-hand sides of (23) by sp−q
, and again apply-

ing the inverse Laplace transform to the result, we obtain

Dp
t yi(t) = vi, i = 1, 2, ...,m. (24)

Now, the Caputo fractional derivative for order p of the error system (19) can be

derived as

Dp
t ei (t) = Dp

t xi(t) −
m∑

j=1
Mij × Dp

t yj(t)

=
n∑

j=1
aijxj (t) + fi (X (t)) −

m∑

j=1
Mij × vj, i = 1, 2, ..., n. (25)

Furthermore, the error system (25) can be written as

Dp
t ei (t) =

n∑

j=1

(
aij − cij

)
ej + Ri −

m∑

j=1
Mij × vj, i = 1, 2, ..., n, (26)

where
(
cij
)
∈ 𝐑n×n

are control constants and

Ri =
n∑

j=1

(
cij − aij

)
ej +

n∑

j=1
aijxj (t) + fi (X (t)) , i = 1, 2, ..., n. (27)

Rewriting the error system (26) in the compact form

Dp
t e (t) = (A − C) e (t) + R − M × V , (28)

where e (t) =
(
e1 (t) , e2 (t) , ..., en (t)

)T
, C =

(
cij
)

n×n is a control matrix to be selected

later, R =
(
R1,R2, ...,Rn

)T
and V =

(
v1, v2, ..., vn, vn+1, ..., vm

)T
.

Theorem 3 If the control matrix C ∈ 𝐑n×n is chosen such that P = A − C is a nega-
tive definite matrix, then the master system (15) and the slave system (16) are globally
inverse matrix projective synchronized under the following control law

(
v1, v2, ..., vn

)T = ̂M−1 × R, (29)

and
vn+1 = vn+2 = ... = vm = 0, (30)
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where ̂M−1 is the inverse matrix of ̂M =
(
Mij

)
n×n .

Proof By using (30), the error system (28) can be writtes as

Dp
t e (t) = (A − C) e (t) + R − ̂M ×

(
v1, v2, ..., vn

)T
, (31)

where ̂M =
(
Mij

)
n×n. Applying the control law given in Eqs. (29) to (31) yields the

resulting error dynamics as follows

Dp
t e (t) = (A − C) e (t) . (32)

If a Lyapunov function candidate is chosen as

V (e (t)) = 1
2

eT (t) e (t) , (33)

then the time Caputo fractional derivative of order p of V along the trajectory of the

system (32) is as follows

Dp
t V (e (t)) = 1

2
Dp

t
(
eT (t) e (t)

)
, (34)

and by using Lemma 5 in Eq. (34) we get

Dp
t V (e (t)) ≤ eT (t)Dp

t e (t)
= eT (t) (A − C) e (t) = eT (t)Pe (t) < 0.

Thus, from Theorem 2, it is immediate that is the zero solution of the system (32)

is globally asymptotically stable and therefore, systems (15) and (16) are globally

inverse matrix projective synchronized.

4.2 Case 2

Now, in this case, we assume that p1 ≠ p2 ≠ … ≠ pn and q < pi for i = 1, 2, ..., n.
The vector controller U =

(
ui
)
1≤i≤m can be designed a

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
u2
⋮
un

un+1
⋮

um

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−g1 (Y (t)) + Jp1−q (v1
)

−g2 (Y (t)) + Jp2−q (v2
)

⋮
−gn (Y (t)) + Jpn−q (vn

)

−gn+1 (Y (t))
⋮

−gm (Y (t))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (35)
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where vi, i = 1, ..., n, are new controllers. By substituting Eq. (35) into Eq. (16), we

can rewrite the slave system as

Dq
t yi (t) = Jpi−q (vi

)
, i = 1, ..., n, (36)

and

Dq
t yi (t) = 0, i = n + 1, n + 2, ...,m. (37)

By applying the Caputo fractional derivative of order pi − q to both the left and

right sides of Eq. (36) and by using Lemma (3), we obtain

Dpi
t yi (t) = Dpi−q

t
(
Dq

t yi (t)
)

= Dpi−q
t Jpi−q (vi

)

= vi, i = 1, ..., n. (38)

In this case, the error system between the master system (15) and the slave system

(16) can be derived as

Dpi
t ei (t) = Dpi

t xi (t) − Dpi
t

(
m∑

j=1
Mijyj (t)

)

=
m∑

j=1
aijxj (t) + fi (X (t)) −

m∑

j=1
j≠i

MijD
pi
t yj(t) − Miivi, i = 1, 2, ..., n. (39)

Furthermore, the error system (39) can be written as

Dpi
t ei (t) =

n∑

j=1
aijej + Ti − Miivi, i = 1, 2, ..., n, (40)

where

Ti = −
n∑

j=1
aijej +

n∑

j=1
aijxj (t) + fi (X (t)) −

m∑

j=1
j≠i

MijD
pi
t yj(t). (41)

Rewriting the error system (41) in the compact form

Dp
t e (t) = Ae (t) + T − diag

(
M11,M22, ...,Mnn

)
× V , (42)

where Dp
t =

[
Dp1

t ,Dp2
t , ...,Dpn

t
]
, e (t) =

[
e1 (t) , e2 (t) , ..., en (t)

]T
, T =

(
T1,T2, ...,Tn

)T

and V =
(
v1, v2, ..., vn

)T
.

To achieve IMPS between the master system (15) and the slave system (16), we

assume that Mii ≠ 0, i = 1, 2, ..., n. Hence, we have the following result.
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Theorem 4 There exists a feedback gain matrix L ∈ 𝐑n×n to realize inverse matrix
projective synchronization between the master system (15) and the slave system (16)
under the following control law

V = diag
(

1
M11

,

1
M22

, ...,

1
Mnn

)
× (T + Le (t)) . (43)

Proof Applying the control law given in Eq. (43) to Eq. (42), the error system can

be described as

Dp
t e (t) = (A − L) e (t) . (44)

The feedback gain matrix L is chosen such that all roots 𝜆, of

det
(
diag

(
𝜆

dp1
, 𝜆

dp2
, ..., 𝜆

dpn
)
+ L − A

)
= 0, (45)

satisfy |arg (𝜆)| > 𝜋

2d
, where d is the least common multiple of the denominators of

pi, i = 1, 2, ..., n. According to Lemma 4, we conclude that the zero solution of the

error system (44) is globally asymptotically stable and therefore, systems (15) and

(16) are IMPS synchronized.

5 Numerical Examples

In this section, two numerical examples are used to show the effectiveness of the

derived results.

5.1 Example 1

In this example, we consider the commensurate fractional order Lorenz system as the

master system and the controlled hyperchaotic fractional order, proposed by Zhou

et al. [151], as the slave system.

The master system is defined as

Dpx1 = 𝛼

(
x3 − x1

)
, (46)

Dpx2 = 𝛾x1 − x2 − x3x1,
Dpx3 = −𝛽x3 + x2x1,

where x1, x2 and x3 are states. For example, chaotic attractors are found in [150],

when (𝛼, 𝛽, 𝛾) = (10, 8
3
, 28) and p = 0.993. Different chaotic attractors of the frac-

tional order Lorenz system (46) are shown in Figs. 1 and 2.



508 A. Ouannas et al.

Compare system (46) with system (15), one can have

A =
⎛
⎜
⎜
⎝

−10 10 0
28 −1 0
0 0 −8

3

⎞
⎟
⎟
⎠
, f =

⎛
⎜
⎜
⎝

0
−x1x3
x1x2

⎞
⎟
⎟
⎠
.

The slave system is described by

Dqy1 = 0.56y1 − y2 + u1, (47)

Dqy2 = y1 − 0.1y2y23 + u2,
Dqy3 = 4y2 − y3 − 6y4 + u3,
Dqy4 = 0.5y3 + 0.8y4 + u4,

where y1, y2, y3, y4 are states and ui, i = 1, 2, 3, 4, are synchronization controllers.

The uncontrolled fractional hyperchaotic system (47) (i.e. the system (47) with

u1 = u2 = u3 = u4 = 0) exhibits hyperchaotic behavior when q = 0.95. Attractors in

2-D and 3-D of the uncontrolled fractional hyperchaotic system (47) are shown in

Figs. 3 and 4.

Fig. 1 Phase portraits of the master system (46) in 2-D
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Fig. 2 Phase portraits of the master system (46) in 3-D

Fig. 3 Phase portraits of the slave system (47) in 2-D
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Fig. 4 Phase portraits of the slave system (47) in 3-D

In this example, the error system of IMPS between the master system (46) and

the slave system (47) is defined as

e1 = x1 −
4∑

j=1
M1jyj, (48)

e2 = x2 −
4∑

j=1
M2jyj,

e3 = x3 −
4∑

j=1
M3jyj,

where

M =
(
Mij

)
3×4 =

⎛
⎜
⎜
⎝

2 0 0 4
0 1 0 5
0 0 3 6

⎞
⎟
⎟
⎠
.

So,

̂M =
⎛
⎜
⎜
⎝

2 0 0
0 1 0
0 0 3

⎞
⎟
⎟
⎠

and ̂M−1 =
⎛
⎜
⎜
⎝

1
2
0 0

0 1 0
0 0 1

3

⎞
⎟
⎟
⎠
.
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According to Theorem 3, there exists a control matrix C ∈ 𝐑3×3
so that systems

(46) and (47) realize the IMPS. For example, the control matrix C can be chosen as

C =
⎛
⎜
⎜
⎝

0 10 0
28 0 0
0 0 0

⎞
⎟
⎟
⎠
. (49)

It is easy to show that A − C is a negative definite matrix. Then the control func-

tions are designed as

u1 = −0.56y1 + y2 + J0.043
(
−10y1 − 20y4 + 5x3

)
, (50)

u2 = −y1 + 0.1y2y23 + J0.043
(
−y2 − 4y4 + 28x1 − x3x1

)
,

u3 = −4y2 + y3 + 6y4 + J0.043
(
−8
3

y3 −
16
3

y4 +
1
3

x2x1
)
,

u4 = −0.5y3 − 0.8y4.

Hence, the IMPS between the master system (46) and the slave system (47) is

achieved. The error system can be described as follows

D0.993e1 = −10e1, (51)

D0.993e2 = −e2,

D0.993e3 = −8
3

e3.

For the purpose of numerical simulation, fractional Euler integration method

has been used. In addition, simulation time Tm = 120 s and time step h = 0.005s
have been employed. The initial values of the master system and the slave system

are [x1(0), x2(0), x3(0)] = [3, 4, 5] and [y1(0), y2(0), y3(0), y4(0)] = [−1, 1.5,−1,−2],
respectively, and the initial states of the error system are [e1(0),
e2(0), e3(0)] = [13, 12.5, 20]. Figure 5 displays the time evolution of the errors of

IMPS between the master system (46) and the slave system (47).

5.2 Example 2

In this example, we assumed that the incommensurate fractional order Liu system is

the master system and the incommensurate fractional order hyperchaotic Liu system

[153] is the slave system. The master system is defined as

Dp1x1 = a
(
x2 − x1

)
, (52)

Dp2x2 = bx1 − x1x3,
Dp3x3 = −cx3 + 4x21,
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Fig. 5 Time evolution of synchronization errors between the master system (46) and the slave

system (47)

where x1, x2 and x3 are states. For example, chaotic attractors are found in [152],

when
(
p1, p2, p3

)
= (0.93, 0.94, 0.95) and (a, b, c) = (10, 40, 2.5). The Liu chaotic

attractors are shown in Figs. 6 and 7.

Compare system (52) with system (15), one can have

A =
⎛
⎜
⎜
⎝

−10 10 0
40 0 0
0 0 −2.5

⎞
⎟
⎟
⎠
, f =

⎛
⎜
⎜
⎝

0
−x1x3
4x21

⎞
⎟
⎟
⎠
.

The slave system is given by

Dqy1 = 10
(
y2 − y1

)
+ y4 + u1, (53)

Dqy2 = 40y1 + 0.5y4 − y1y3 + u2,
Dqy3 = −2.5y3 + 4y21 − y4 + u3,

Dqy4 = −
(10
15

y2 + y4
)
+ u4,

where y1, y2, y3, y4 are states and ui, i = 1, 2, 3, 4, are synchronization controllers.
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Fig. 6 Phase portraits of the master system (52) in 2-D

Fig. 7 Phase portraits of the master system (52) in 3-D



514 A. Ouannas et al.

The fractional order hyperchaotic Liu system (i.e. the system (53) with u1 = u2 =
u3 = u4 = 0) exhibits hyperchaotic behavior when q = 0.9 [153]. Attractors in 2-D

and 3-D of the fractional hyperchaotic Liu system are shown in Figs. 8 and 9.

In this example, the error system of IMPS between the master system (52) and

the slave system (53) is defined as

e1 = x1 −
4∑

j=1
M1jyj, (54)

e2 = x2 −
4∑

j=1
M2jyj,

e3 = x3 −
4∑

j=1
M3jyj,

where

M =
(
Mij

)
=
⎛
⎜
⎜
⎝

6 3 −2 4
0 −5 0 5
2 1 4 −1

⎞
⎟
⎟
⎠
.

Fig. 8 Phase portraits of the slave system (53) in 2-D
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Fig. 9 Phase portraits of the slave system (53) in 3-D

So,

diag
(
M11,M22,M33

)
=
⎛
⎜
⎜
⎝

6 0 0
0 −5 0
0 0 4

⎞
⎟
⎟
⎠
.

According to Theorem 4, there exists a feedbak gain matrix L ∈ 𝐑3×3
so that

systems (52) and (53) realize the IMPS. For example, the feedbak gain matrix L can

be selected as

L =
⎛
⎜
⎜
⎝

0 10 0
40 5 0
0 0 0

⎞
⎟
⎟
⎠
.

and the control functions are constructed as follows

u1 = 10
(
y1 − y2

)
− y4 + J0.03 1

6
(
10e1 + 10

(
x2 − x1

)
− 3D0.93

t y2

+ 2D0.93
t y3 − 4D0.093

t y4
)
, (55)

u2 = −40y1 − 0.5y4 + y1y3 − J0.04 1
5
(
5e2 + 40x1 − x1x3 − 5D0.94

t y4
)
,

u3 = 2.5y3 − 4y21 + J0.05 1
4
(
2.5e3 − 2.5x3 + 4x21 − 2D0.95

t y1 − D0.95
t y2 + D0.95

t y4
)
,

u4 =
10
15

y2 + y4.
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The roots of det
(
diag

(
𝜆

d0.93
, 𝜆

d0.94
, 𝜆

d0.95) + L − A
)
= 0, where d is the least

common multiple of the denominators of the numbers 0.93, 0.94 and 0.95, can be

written as follows

𝜆1 = 10
1

d0.93

[
cos

(
𝜋

d0.93

)
+ 𝐢 sin

(
𝜋

d0.93

)]
,

𝜆2 = 5
1

d0.94

[
cos

(
𝜋

d0.94

)
+ 𝐢 sin

(
𝜋

d0.94

)]
,

𝜆3 = 2.5
1

d0.95

[
cos

(
𝜋

d0.95

)
+ 𝐢 sin

(
𝜋

d0.95

)]
.

It is easy to see that arg
(
𝜆i
)
>

𝜋

2d
, i = 1, 2, 3, and therefore, the IMPS between

systems (52) and (53) is achieved.

The error system can be described as follows

D0.93e1 = −10e1, (56)

D0.94e2 = −5e2,
D0.95e3 = −2.5e3.

Fig. 10 Time evolution of synchronization errors between the master system (52) and the slave

system (53)
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For the purpose of numerical simulation, fractional Euler integration method

has been used. In addition, simulation time Tm = 120 s and time step h = 0.005s
have been employed. The initial values of the master system and the slave system

are [x1(0), x2(0), x3(0)] = [0, 3, 9] and [y1(0), y2(0), y3(0), y4(0)] = [2,−1, 1, 1],
respectively, and the initial states of the error system are [e1(0), e2(0), e3(0)] =
[−11,−7, 3]. Figure 10 displays the time evolution of the errors of IMPS between

the master system (52) and the slave system (53).

6 Conclusions

In this study, two new complex schemes of the inverse matrix projective synchro-

nization (IMPS) were proposed between a master system of dimension n and a

slave system of dimension m. Namely, by exploiting the fractional Lyapunov tech-

nique and stability theory of fractional-order linear system, the IMPS is rigorously

proved to be achievable including the two cases: commensurate and incommensu-

rate master systems. Finally, the effectiveness of the method has been illustrated

by synchronizing a three-dimensional commensurate fractional Lorenz system with

four-dimensional commensurate hyperchaotic fractional Zhou-Wei-Cheng system,

and a three-dimensional incommensurate fractional order Liu system with four-

dimensional commensurate fractional order hyperchaotic Liu system

The proposed approach presents some useful features:

(i) it enables chaotic (hyperchaotic) fractional system with different dimension to

be synchronized;

(ii) it is rigorous, being based on theorems;

(iii) it can be applied to a wide class of chaotic (hyperchaotic) fractional systems;

(iv) due to the complexity of the proposed scheme, the fractional IMPS may enhance

security in communication and chaotic encryption schemes.
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