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Abstract The importance of synchronization schemes in natural and physical

systems including communication modes has made chaotic synchronization an

important tool for scientist. Synchronization of chaotic systems are usually con-

ducted without considering the efficiency and robustness of the scheme used. In

this work, performance evaluation of three different synchronization schemes: Direct

Method, Open Plus Closed Loop (OPCL) and Active control is investigated. The

active control technique was found to have the best stability and error convergence.

Numerical simulations have been conducted to assert the effectiveness of the pro-

posed analytical results.

1 Introduction

Strogatz [40] defined chaos as the aperiodic long term behaviour in a determinis-

tic system that exhibit sensitive dependence on initial conditions. Using Lyapunov

exponents, a chaotic system is one with at least one positive Lyapunov exponent. A

system with more than one positive Lyapunov exponent is referred to as an hyper-

chaotic system. Since the proposition of the first chaotic system by Lorenz [19], the

study of chaos has evolved due to development of high computing resources and

mathematical procedures for analysis [39]. Chaotic systems has been developed in

the form of maps, ordinary differential equations, partial differential equations and

fractional order differential equations and presence of chaos investigated. Due to

complex nature of natural systems, the study of chaos has been extended to time
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series analysis in natural systems with the development of appropriate tools [25].

The sensitivity of chaotic system to initial conditions implies that two more systems

with different initial conditions will exhibit different dynamics. However, with the

addition of appropriate functions, trajectories of similar or different chaotic systems

can be made to coincide [24]. This is referred to as synchronization.

Synchronization of chaos refers to a process wherein two (or many) chaotic sys-

tems (either equivalent or nonequivalent) adjust a given property of their motion

to a common behavior due to a coupling or to a forcing (periodical or noisy) [5].

The first evidence of synchronization phenomenon was given by Huygen’s pendu-

lum clocks [17] while the first synchronization of chaotic system was proposed by

Pecora and Carroll [37]. Since the pioneering work of Pecora and Carroll [37], the

study of chaos synchronization has gained a lot of interest because of its applica-

tions. Several methods of secure communication and encryption has been proposed

based on chaos synchronization [30]. The principle assumes that communication

between two persons X and Y embedded in a chaotic signal can only be retrieved if

the right system parameters (keys) are known. A practical demonstration of secure

communication is presented in Strogatz [40].

As the study of chaos synchronization evolves, several types of synchronization

such as generalized synchronization [35], lag synchronization [20], complete syn-

chronization, phase synchronization and projective synchronization [32], modified

and function projective synchronization [18], etc. have been discovered. In order to

achieve any of these type of synchronization, different synchronization techniques

such as backstepping [31], active control, direct method [42], Open Plus Close Loop

(OPCL) [16] etc. have been developed and implemented. Early studies of differ-

ent types of synchronization using any of the mentioned techniques on dynamical

systems usually involves two systems. Over the years, real life applications of syn-

chronization requires the synchronization of different systems and a given number

of systems higher than the traditional two systems. This has given rise to reduced

and increased order synchronization [24, 35], combination synchronization [26, 33,

34], combination-combination synchronization [27, 29] and compound combination

synchronization [28].

The Caputo’s definition of fractional order differ-integral equations are given as

C
a D

𝛼

t f (t) =
1

𝛤 (𝛼 − m) ∫
t

a

f (m)𝜏
(t − 𝜏)𝛼+1−m

d𝜏 (1)

where m − 1 < 𝛼 ≤ m 𝜀 ℕ and 𝛼 𝜀 ℝ is a fractional order of the differ-integral of the

function f (t) [10]. Applications of fractional order are found in transmission line the-

ory, chemical analysis of aqueous solutions, design of heat-flux meters, rheology of

soils, growth of intergranular grooves on metal surfaces, quantum mechanical calcu-

lations, and dissemination of atmospheric pollutants [7]. Analysis of football player’s

motion has been analysed using fractional calculus [9]. Several chaotic fractional

order systems have been proposed, these include: fractional order Lorenz system,

fractional order Chua system, fractional order memristor based system, fractional
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order Duffing system, fractional order Chen system etc. There is a growing inter-

est in fractional order systems due to its many applications in control and natural

systems.

The use of Grunwald-Letnikov’s definition for solving fractional order differential

equations is described by Concepcion et al. [8] and stated here.

Using the approximation

𝔇𝛼f (t) ≈ 𝛥
𝛼

h f (t) (2)

𝛥
𝛼

h f (t)|t=kh = h−𝛼
k∑

j=0
(−1) j

(
𝛼

j

)

f (kh − jh). (3)

For a system given by a𝔇𝛼u(t) + bu(t) = q(t), with a = 1 and zero initial condi-

tions

h−𝛼
k∑

j=0
w(𝛼)
j yk−j + byk = qk (4)

where tk = kh, yk = y(tk), y0 = 0, qk = q(tk), k = 0, 1, 2,⋯, and

w(𝛼)
j = (−1) j

(
𝛼

j

)

(5)

the numerical solution is then obtained using

yk = −bh𝛼yk−1 −
k∑

j=1
w(𝛼)
j yk−j + h𝛼qk (6)

Synchronization of fractional order systems have been conducted by many

researchers. Synchronization of a system consisting of multiple drive and one

response was carried out in Zhou et al. [44]. Design, realization, control and syn-

chronization of a novel 4D hyperchaotic fractional order system was carried out

using time-delayed feedback control [11]. Generalized synchronization of a novel

fractional order chaotic system in different order and dimension has been investi-

gated with success using nonlinear feedback control [43].

In realization of chaos synchronization for real life application such as communi-

cation systems, it is intuitive to choose a method and technique which will minimize

cost and error while giving the desired robust outputs. Ojo et al. [31] compared the

backstepping and active control technique for complete synchronization of chaotic

systems. From their results, active control transient error dynamics convergence and

synchronization time are achieved faster via the backstepping than that of the active

control technique but the control function obtained via the active control is simpler

with a more stable synchronization time and hence, it is more suitable for practical

implementation. There is the need to investigate an efficient and robust method of

synchronization in light of growing interest in fractional order chaotic systems. The
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aim of this chapter is to compare the performance of three different techniques for

complete synchronization of an hyperchaotic fractional order chaotic system. System

performance will be investigated using both linear and nonlinear tools.

2 Related Work

Comparison of two different synchronization scheme was carried out on integer order

chaotic systems [31]. Recent advances in synchronization of fractional chaotic sys-

tems has seen results such as hybrid synchronization [36], exponential synchroniza-

tion with mixed uncertainties [22], combination-combination synchronization [21],

synchronization of nonidentical systems using modified active control [13], synchro-

nization of fractional order switching chaotic system [15], synchronization of frac-

tional order hyperchaotic systems using a new adaptive sliding mode control [23],

combination synchronization using nonlinear feedback control method [3], reduced

order synchronization of fractional order systems using adaptive control [2], fuzzy

adaptive synchronization [6] and robust methods [36] have been reported. Circuit

realization of a fractional order chaotic systems has also been implemented [11].

3 Synchronization Methods

A mathematical definition of synchronization was proposed by Wu and Chua [42].

Two systems ẋ = f (x, y, t) and ẏ = g(x, y, t) are uniform-synchronized with error

bound 𝜀 if there exist 𝛿 > 0 and T ≥ 0 such that

‖xi,j(t0) − yk,l(t0)‖ ≤ 𝛿 (7)

In order to achieve this, several techniques have been proposed. In the following

subsections, three of the popular techniques are discussed.

3.1 Direct Method

The mathematical definition of Lyapunov Direct Method was given by Wu and Chen

[42] and is stated here. Consider the systems ẋ = f (x, t) and ẏ = f (y, t). Supposed that

there exist a Lyapunov function V(t, x, y) such that for all t ≥ t0

a(‖x − y‖) ≤ V(t, x, y) ≤ b(‖x − y‖)
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where a(⋅) and b(⋅) are functions. Supposed that there exist 𝜇 > 0 such that for all

t > t0 and ‖x − y‖ ≥ 𝜇

V̇(t, x, y) ≤ −c

for some constant c > 0 where V̇(t, x, y) is the generalized derivative of V along the

trajectories of the systems Wu and Chua [42]. The Lyapunov direct method has been

used successfully for the synchronization of ...., anti-synchronization etc.

3.2 Open Plus Closed Loop (OPCL)

The method of Open Plus Closed Loop was proposed by Grosu [16]. The method

has been used for robust synchronization [14].

Consider a drive system ẏ = F(y) and a response system given by ẋ = F(x) +
D(x, g) where x, y𝜀ℜn

and g = 𝛼y, 𝛼 is a constant. The goal is to satisfy the condition

lim
t→∞

(x(t) − g(t)) = 0

From the OPCL theory, there exist an open-loop action, H given by

H(g, dg∕dt, t) =
dg
dt

− F(g, t)

and a linear feedback (closed-loop), K given as

K(g, x, t) =
(
dF
dg

− A
)

[g(t) − x(t)]

where g(t)𝜀ℜn
is an arbitrary smooth function and A is an arbitrary constant Hurwitx

matrix with negative real part [14]. The driving term D, can be written as the sum

of the open-loop and closed-loop as

D =
dg
dt

− F(g, t) +
(
dF
dg

− A
)

[g(t) − x(t)] (8)

3.3 Active Control

The Active Control method of synchronization was proposed by Bai and Lonngren

[4]. Considering a drive system ẋ = f (x) and a response defined as ẏ = f (y) + u(t),
where u(t) are the control functions. Defining the error function as
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lim
t→∞

‖e(t)‖ = lim
t→∞

‖f (x) − f (y)‖ = 0 (9)

we define a subcontroller v(t) = −𝕂e, where 𝕂 is a linear controller gain for control

of response feedback strength. The error term can be written as

ė(t) = Aie(t) + v(t)

where Ai are residuals of the system parameters. Substituting the values of v(t)m, we

obtain

ė(t) = Ze(t) (10)

where Z = (Ai − K). If all the eigenvalues of the matrix Z have negative real parts, it

is an Hurwitz matrix, which implies that the zero solution of the closed loop system

is globally asymptotically stable [1].

4 System Description

The Lorenz system was proposed by Lorenz [19] and can be regarded as the first

deterministic system. It is a 3D autonomous system given by

ẋ1 = a(x2 − x1)
ẋ2 = cx1 − x2 − x1x3
ẋ3 = x1x2 − bx3

(11)

The system has been found to be chaotic when a = 10, b = 8∕3, c = 28 with Lya-

punov exponents 1.49, 0, −22.46 indicating a strange attractor. Chaotic synchroniza-

tion of the Lorenz system has been done using different techniques such as increased

and reduced order using Active control [24], complete synchronization using OPCL

[14].

Gao et al. [12] introduced the 3D fractional order chaotic Lorenz system with

order 0.98.
dq1x1
dtq1

= a(x2 − x1)

dq2x2
dtq2

= cx1 − x2 − x1x3
dq3x3
dtq3

= x1x2 − bx3

(12)

By adding a nonlinear term ẋ4 = −x2x3 + rx4 to Eq. 11, a new system given by
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ẋ1 = a(x2 − x1) + x4
ẋ2 = cx1 − x2 − x1x3
ẋ3 = x1x2 − bx3
ẋ4 = −x2x3 + rx4

(13)

was obtained. The system was found to be hyperchaotic when r = −1.

A 4D hyperchaotic fractional system developed based on Eqs. (12) and (13) sys-

tem will be used in this paper

dq1x1
dtq1

= a(x2 − x1) + x4
dq2x2
dtq2

= cx1 − x2 − x1x3
dq3x3
dtq3

= x1x2 − bx3
dq4x4
dtq4

= −x2x3 + rx4

(14)

where the parameters are chosen as a = 10, b = 8∕3, c = 28, r = −1. The system

has Lyapunov exponents 𝜆1 = 0.3362, 𝜆2 = 0.1568, 𝜆3 = 0, 𝜆4 = −15.172 when

the order of the system is 0.98 [38, 41]. The attractor of the fractional order Lorenz

system is shown in Fig. 1 and the uncontrolled time series in Fig. 2.
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Fig. 2 (2) Time series of each component of the system (x1, x2, x3, x4) against time

5 Synchronization of Chaos in Fractional Order Lorenz
System Using Direct Method

5.1 Design of Controllers

Let the drive system of the 4D fractional order Lorenz system be as described in

Eq. 14 and the response system as

dq1y1
dtq1

= a(y2 − y1) + y4 + u1(t)

dq2y2
dtq2

= cy1 − y2 − y1y3 + u2(t)

dq3y3
dtq3

= y1y2 − by3 + u3(t)

dq4y4
dtq4

= −y2y3 + ry4 + u4(t)

(15)

where ui(t)(i = 1, 2, 3, 4) is the control function to be determined. We define the error

function of the form

e1 = y1 − 𝛼1x1
e2 = y2 − 𝛼2x2
e3 = y3 − 𝛼3x3
e4 = y4 − 𝛼4x4

(16)
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where 𝛼i(i = 1, 2, 3, 4) are scaling parameters.

Definition 1 If the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1

complete synchronization of the drive-response system is achieved.

Definition 2 If the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = −1

complete anti-synchronization of the drive-response system is achieved.

Definition 3 If the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = p

where p ≠ 0 or 1 projective synchronization of the drive-response system is achieved.

Definition 4 The drive-response system is said to experience projective antisyn-

chronization if the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = −p

where p ≠ 0 or 1.

Definition 5 The drive-response system is said to experience modified projective

antisynchronization if the scaling factors 𝛼i(i = 1, 2, 3, 4) are chosen such that

𝛼1 ≠ 𝛼2 ≠ 𝛼3 ≠ 𝛼4 ≠ −p

where p ≠ 0 or 1.

Definition 6 If 𝛼1 = 𝛼3 = 1 and 𝛼2 = 𝛼4 = −1, hybrid synchronization is achieved.

Definition 7 If 𝛼1 = 𝛼3 and 𝛼2 = 𝛼4 = p, where p ≠ 0,±1 projective hybrid syn-

chronization is achieved.

Definitions (1)–(7) can be obtained from any of the synchronization method

described in this chapter.

The error system is then obtained as

Dqe1 = a(e2 − e1) + e4 + u1
Dqe2 = ce1 − e2 − (y1y3 − 𝛼2x1x3) + u2
Dqe3 = −be3 + y1y2 − 𝛼3x1x2 + u3
Dqe4 = re4 − (y2y3 − 𝛼4x2x3) + u4

(17)
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Choosing a quadratic Lyapunov function of the form

V = 1
2

4∑

i=1
e2i (18)

Its derivative is obtained as

V̇ =
4∑

i=1
eiDqei (19)

Applying this to the system,

V̇ = e1[a(e2 − e1) + e4 + u1] + e2[ce1 − e2 − (y1y3 − 𝛼2x1x3) + u2]
+ e3[−be3 + y1y2 − 𝛼x1x2 + u3] + [re4 − (y2y3 − 𝛼4x2x3) + u4)] (20)

If,

u1 = −ae2 − e4
u2 = −ce1 + (y1y3 − 𝛼x1x3)
u3 = −y1y2 + 𝛼x2x3
u4 = −re4 + (y2y3 − 𝛼4x2x3) − ke4

(21)

Then,

V̇ = −ae21 − e22 − be23 − ke24 < 0 (22)

since a, b, k are positive numbers. We assume k = 1.

5.2 Numerical Simulation Results

To verify the effectiveness of the synchronization between the drive and response

systems using the Lyapunov Direct Method, we used Eq. (6) with the initial

conditions xi(i = 1, 2, 3, 4) and yi(i = 1, 2, 3, 4) taken as (−80 50 50 100) and

(0.08 −0.5 1 0) respectively. The order of the system is taken to be 0.98. A

time step of 0.005 was used the systems parameters used are a = 10, b = 8∕3, c =
28, r = −0.99 to ensure chaotic dynamics of the state variables. Solving the drive

(Eq. 14) and response (Eq. 15) with the control defined in Eq. (21). The results are

shown in Figs. 3, 4, 5, 6 and 7 for the different scaling parameters (𝛼 = 1,−1, 2,−2).

The drive and response systems could be seen to achieve synchronization as indi-

cated by the convergence of the error state variables to zero (i.e. ei(1, 2, 3, 4) → 0).

From the results obtained, the effectiveness of the controller was confirmed.
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Fig. 3 Error dynamics between Slave and Master system using direct method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1
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Fig. 4 Error dynamics between Slave and Master system using direct method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = −1
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Fig. 5 Error dynamics between Slave and Master system using direct method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 2
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Fig. 7 Error dynamics between Slave and Master system using direct method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1

6 Synchronization of Chaos in Fractional Order Lorenz
System Using OPCL

6.1 Design of Controllers

If the drive system is taken as Eq. 14 and the response as Eq. 15, then the error state

of the system can be written as

e1 = y1 − g1
e2 = y2 − g2
e3 = y3 − g3
e4 = y4 − g4

(23)

where

⎡
⎢
⎢
⎢
⎣

g1
g2
g3
g4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛼1x1
𝛼2x2
𝛼3x3
𝛼4x4

⎤
⎥
⎥
⎥
⎦

and

⎡
⎢
⎢
⎢
⎣

ġ1
ġ2
ġ3
ġ4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛼1ẋ1
𝛼2ẋ2
𝛼3ẋ3
𝛼4ẋ4

⎤
⎥
⎥
⎥
⎦

Defining the drive system as a function of g
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f (g) =
⎡
⎢
⎢
⎢
⎣

a(g2 − g1) + g4
cg1 − g2 − g1g3
g1g2 − bg3
−g2g3 + rg4

⎤
⎥
⎥
⎥
⎦

(24)

Also, the Jacobian is obtained as

𝜕fg
𝜕g

=
⎛
⎜
⎜
⎜
⎝

−a a 0 1
(c − g3) −1 −g 0

g2 g1 −b 0
0 −g3 −g2 r

⎞
⎟
⎟
⎟
⎠

(25)

To ensure the stability of the system, we choose as Hurwitz matrix

H =
⎛
⎜
⎜
⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟
⎟
⎟
⎠

(26)

Using the OPCL theory, the controller is defined as

U = ġ − f (g) +
[

H −
𝜕fg
𝜕g

]

e (27)

The control ui(i = 1, 2, 3, 4) is then obtained as

u1 = 𝛼1ẋ1 − a(g2 − g1) − g4 + (a − 1)e1 − a2e2 − e4
u2 = 𝛼2ẋ2 − [cg1 − g2 − g1g3] − (c − g3)e1 + g1e3
u3 = 𝛼3ẋ3 − [g1g2 − bg3] − g2e1 − g1e2 + (b − 1)e3
u4 = 𝛼4ẋ4 − [rg4 − g2g3] + g3e2 + g2e3 − (1 + r)e4

(28)

6.2 Numerical Simulation Results

To verify the effectiveness of the synchronization between the drive and response

systems using the OPCL method, we used Eq. (6) with the initial conditions xi(i =
1, 2, 3, 4) and yi(i = 1, 2, 3, 4) taken as (−80 50 50 100) and (0.08 −0.5 1 0)
respectively. The order of the system is taken to be 0.98. A time step of 0.005 was

used the systems parameters used are a = 10, b = 8∕3, c = 28, r = −0.99 to ensure

chaotic dynamics of the state variables. Solving the drive (Eq. 14) and response

(Eq. 15) with the control defined in Eq. (28). The results are shown in Figs. 8, 9,

10, 11 and 12 for the different scaling parameters (𝛼 = 1,−1, 2,−2). The drive and
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Fig. 8 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1
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Fig. 9 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = −1

response systems could be seen to achieve synchronization as indicated by the con-

vergence of the error state variables to zero (i.e. ei(1, 2, 3, 4) → 0). From the results

obtained, the effectiveness of the controller was confirmed.
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Fig. 10 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
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Fig. 11 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
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Fig. 12 Error dynamics between Slave and Master system using OPCL method for 𝛼1 = 𝛼2 = 𝛼3 =
𝛼4 = 1

7 Synchronization of Chaos in Fractional Order Lorenz
System Using Active Control

7.1 Design of Controllers

If the drive system is taken as Eq. 14, the response as Eq. 15, then the error state of

the system as Eq. 16, in line with the method of Active Control, we can eliminate

terms which cannot be expressed as linear terms in e1, e2, e3, e4 as

u1 = v1(t)
u2 = y1y3 − 𝛼2x1x3 + v2(t)
u3 = −y1y2 + 𝛼3x1x2 + v3(t)
u4 = y2y3 − 𝛼4x2x3 + v4(t)

(29)

the parameter vi(t)(i = 1, 2, 3, 4) will be obtained later. Substituting Eq. (29) into

Eq. (17) yields

Dqe1 = a(e2 − e1) + e4 + v1(t)
Dqe2 = ce1 − e2 + v2(t)
Dqe3 = −be3 + v3(t)
Dqe4 = re4 + v4(t)

(30)
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Using the Active Control method, a constant matrix D is chosen which will control

the error dynamics (Eq. 30) such that the feedback matrix is

⎛
⎜
⎜
⎜
⎝

v1(t)
v2(t)
v3(t)
v4(t)

⎞
⎟
⎟
⎟
⎠

= D

⎛
⎜
⎜
⎜
⎝

e1
e2
e3
e4

⎞
⎟
⎟
⎟
⎠

where D is a 4 × 4 matrix. There are various choices of the feedback D which can be

chosen to control the error dynamics but we optimize this choice so that the problem

of controller complexity is significantly reduced [31]. Hence, D is chosen to be of

the form

D =
⎛
⎜
⎜
⎜
⎝

(a − 𝜆1) −a 0 −1
−c (1 − 𝜆2) 0 0
0 0 (b − 𝜆3) 0
0 0 0 −(r + 𝜆4)

⎞
⎟
⎟
⎟
⎠

(31)

The eigenvalues 𝜆i(i = 1, 2, 3, 4) are chosen to be negative in order to achieve a stable

synchronization between the drive and response system.

7.2 Numerical Simulation Results

To verify the effectiveness of the synchronization between the drive and response

systems using the Active control method, we used Eq. (6) with the initial
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Fig. 13 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = 1
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conditions xi(i = 1, 2, 3, 4) and yi(i = 1, 2, 3, 4) taken as (−80 50 50 100) and

(0.08 −0.5 1 0) respectively. The order of the system is taken to be 0.98. A

time step of 0.005 was used the systems parameters used are a = 10, b = 8∕3,
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Fig. 14 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = −1
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c = 28, r = −0.99 to ensure chaotic dynamics of the state variables. Solving the

drive (Eq. 14) and response (Eq. 15) with the control defined in Eq. (31). The results

are shown in Figs. 13, 14, 15, 16 and 17 for the different scaling parameters (𝛼 =
1,−1, 2,−2). The drive and response systems could be seen to achieve synchro-
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Fig. 16 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = −2
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Fig. 17 Error dynamics between Slave and Master system using active control method for 𝛼1 =
𝛼2 = 𝛼3 = 𝛼4 = 1
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nization as indicated by the convergence of the error state variables to zero (i.e.

ei(1, 2, 3, 4) → 0). From the results obtained, the effectiveness of the controller was

confirmed.

8 Comparison of Direct Method, OPCL and Active Control
Techniques

The performance of the three different synchronization scheme is to be compared.

The error components for the system and error magnitude are presented in Figs. 18

and 19 respectively. From Fig. 18, apart from the top-left figure, the convergence of

the synchronization technique in order of increasing speed is: active control, Lya-

punov Direct Method and OPCL. The same trend and order could be observed in

the error magnitude as shown in Fig. 19. The behaviour of the error dynamics before

achieving convergence is important. The speed of convergence is referred to as syn-

chronization time [24, 31]. From Fig. 18, the active control technique was found to

have minimal variations before attaining convergence while the two other techniques

show different behaviours in fluctuation. From the dynamics of the error dynamics,

it could be observed that the OPCL method showed the highest variation in error

amplitude before convergence while the active control has the lowest amplitude vari-

ation.
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Fig. 18 Error dynamics between Slave and Master system for each component of the system for

each of the synchronization techniques under consideration when 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 2
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Fig. 19 Error dynamics between Slave and Master system for the three synchronization techniques

when 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1

9 Conclusion

The synchronization of chaotic fractional order Lorenz system has been investigated

using three techniques: active control, Lyapunov direct method and OPCL. In each

of the synchronization scheme, control functions have been achieve for the complete

synchronization between the drive and response systems. Numerical simulations

have been conducted to assert the effectiveness of the proposed analytical results.

Comparing the three techniques, active control offers the best stability and fast con-

vergence of error terms. The synchronization dynamics of fractional order systems

under periodic driving force can be investigated. There is the need to study the per-

formance of the different synchronization schemes considered here under different

types of noise and noise strength to test their reliability. This study can be extended

to maps and integer order systems. Practical realization using electronic simulations

and/or circuit for communication can be investigated to determine efficiency and

practicability of these results under field scenario. In real life applications of syn-

chronization schemes for secure communication, there is interaction between mul-

tiple users, hence, further work can be carried out to study the best scheme under

multiple drive and multiple response system with applications to secure communi-

cation systems.
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