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Abstract Recently, a new classification of nonlinear dynamics has been introduced

by Leonov and Kuznetsov, in which two kinds of attractors are concentrated, i.e.

self-excited and hidden ones. Self-excited attractor has a basin of attraction excited

from unstable equilibria. So, from that point of view, most known systems, like

Lorenz’s system, Rössler’s system, Chen’s system, or Sprott’s system, belong to

chaotic systems with self-excited attractors. In contrast, a few unusual systems such

as those with a line equilibrium, with stable equilibria, or without equilibrium, are

classified into chaotic systems with hidden attractor. Studying chaotic system with

hidden attractors has become an attractive research direction because hidden attrac-

tors play an important role in theoretical problems and engineering applications.

This chapter presents a three-dimensional autonomous system without any equilib-

rium point which can generate hidden chaotic attractor. The fundamental dynamics

properties of such no-equilibrium system are discovered by using phase portraits,
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Lyapunov exponents, bifurcation diagram, and Kaplan–Yorke dimension. Chaos

synchronization of proposed systems is achieved and confirmed by numerical

simulation. In addition, an electronic circuit is implemented to evaluate the theo-

retical model. Finally, fractional-order form of the system with no equilibrium is

also investigated.

Keywords Chaos ⋅ Hidden attractor ⋅ No-Equilibrium ⋅ Lyapunov exponents ⋅
Bifurcation ⋅ Synchronization ⋅ Circuit ⋅ SPICE

1 Introduction

In 1963, Lorenz found a chaotic system when studying a model for atmospheric

convection [50]. The most well-known feature of a chaotic system is the sensitiv-

ity on initial conditions, named “butterfly effect”. This means that a small variation

on initial conditions of a system will generate a totally different chaotic trajectory.

After the invention of Lorenz, there has been significant interest in chaos theory,

chaotic systems, and chaos-based applications [5–8, 18, 19, 67, 72, 104]. Espe-

cially, various new chaotic systems have been discovered such as Rössler’s system

[61], Arneodo’s system [4], Chen’s system [18], Lü’s system [51], Vaidyanathan’s

systems [79, 85, 87, 88, 90], time-delay systems [11], nonlinear finance system [75],

four-scroll chaotic attractor [2] and so on [58, 82]. Complex behaviors of chaotic sys-

tem were used in different applications. True random bits were generated by using

a double-scroll chaotic attractor [103]. Volos et al. controlled autonomous mobile

robots via chaotic path planning [96]. Han et al. implemented a fingerprint images

encryption scheme based on chaotic attractors [27]. Hoang and Nakagawa proposed

applications of time delay systems in secure communication due to their complex

dynamics [31]. Application of synchronization of Chua’s circuits with multi-scroll

attractors in communications was introduced in [24]. In addition, Akgul et al. pre-

sented engineering applications of a new four-scroll chaotic attractor [2].

When studying chaotic systems, their equilibrium points play important role [69,

98]. As have been known, most reported chaotic systems have a countable number

of equilibrium points [68]. Therefore, chaos in these systems can be proved by using

Shilnikov criteria where at least one unstable equilibrium for emergence of chaos is

required [66]. However, a few chaotic systems without equilibrium have been pro-

posed recently [34]. We cannot apply the Shinikov method for verifying chaos in

such systems because they have neither homoclinic nor heteroclinic orbits. Chaotic

systems without equilibrium are categorized as systems with “hidden attractor" and

have been received significant attention [44, 46].

In this chapter, a novel system is introduced and its chaotic attractors are dis-

played. The special is that such new system does not have equilibrium points. This

chapter is organized as follows. The related works are summarized in the next

section. The model of the new system is proposed in Sect. 3. Dynamics and proper-

ties of the new system are investigated in Sect. 4. The adaptive anti-synchronization
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scheme is studied in Sect. 5. Section 6 presents a circuital implementation of the the-

oretical model. Fractional-order form of the new no-equilibrium system is proposed

in Sect. 7. Finally, conclusions are drawn in the last section.

2 Related Work

The terminology “hidden attractor” has been proposed recently when Leonov and

Kuznetsov introduced types of attractors: self-excited attractors and hidden attractors

[42, 44, 46, 47]. A self-excited attractor has a basin of attraction that is excited

from unstable equilibria. In contrast, hidden attractor cannot be found by using a

numerical method in which a trajectory started from a point on the unstable manifold

in the neighbourhood of an unstable equilibrium [33]. “Hidden attractor” plays a

vital role in nonlinear theory and practical problems [41, 46, 54, 59, 65]. Therefore,

various noticeable results relating to this topic has been reported in recent years.

The presence of hidden attractors has witnessed in a smooth Chua’s system [48], in

mathematical model of drilling system [45], in nonlinear control systems [43], or

in a multilevel DC/DC converter [107]. Hidden attractors appear in a 4-D Rikitake

dynamo system [94], in 5-D hyperchaotic Rikitake dynamo system [92], in a 5D

Sprott B system [52] or in a chaotic system with an exponential nonlinear term [56].

Other works on hidden attractors were introduced in [16, 35, 64, 69] and references

therein.

Interesting that chaotic systems without equilibrium belong to a class of nonlin-

ear systems with “hidden attractor” [34]. A few three-dimensional chaotic systems

without equilibrium points have been discovered. Wei applied a tiny perturbation

into the Sprott D system to create a new system with no equilibia [99]. Wang and

Chen proposed a no-equilibrium system when constructing a chaotic system with

any number of equilibria [98]. Especially, Jafari et al. found catalog of chaotic flows

with no equilibria [34].

Moreover, four-dimensional chaotic systems without equilibrium points have

been investigated recently. Based on a memristive device, a novel four-dimensional

system has been proposed [57]. The peculiarity of the memristive system is that it

does not display any equilibria and exhibits periodic, chaotic, and also hyperchaotic

dynamics. Vaidyanathan has presented analysis, control and synchronization of a

ten-term novel 4-D highly hyperchaotic system with three quadratic nonlinearities

[81]. The author have been shown that it is a novel hyperchaotic system does not

have any equilibrium point. Dynamics, synchronization and SPICE implementation

of a memristive system with hidden hyperchaotic attractor have been reported in

[55]. Investigation of new systems without equilibrium is still an attractive topic and

should receive further attention.
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3 Model of the No-Equilibrium System

Jafari et al. introduced a list of simple chaotic flows without equilibrium (denoted

NE1-NE14) [34]. Interestingly, the system NE8 can display coexisting hidden attrac-

tors [64]. The system NE8 is described as

⎧
⎪
⎨
⎪
⎩

ẋ = y
ẏ = −x − yz
ż = xy + 0.5x2 − a,

(1)

where x, y, z are state variables and a is a positive parameter. The Lyapunov expo-

nents of system NE8 in (1) are 𝜆1 = 0.0314, 𝜆2 = 0, 𝜆3 = −10.2108 and the Kaplan–

Yorke dimension is DKY = 2.0031 (for a = 1.3) [34].

Based on system NE8 in (1), in this work we study a new system in the following

form

⎧
⎪
⎨
⎪
⎩

ẋ = y
ẏ = −x − yz
ż = xy + ax2 + by2 − c,

(2)

where a, b, c are three positive parameters and c ≠ 0. A detailed study of dynamics

and properties of no-equilibrium system in (2) is presented in the next section.

4 Dynamics and Properties of the No-Equilibrium System

The equilibrium points of the system in (2) are found by solving ẋ = 0, ẏ = 0, and

ż = 0, that is

y = 0, (3)

− x − yz = 0, (4)

xy + ax2 + by2 − c = 0, (5)

From (3), (4), we have x = y = 0. Therefore Eq. (5) is inconsistent. In the other

words, there is no real equilibrium in the system (2).

We consider the system (2) for the selected parameters a = 0.5, b = 0.1, c = 1.3
and the initial conditions are

(x (0) , y (0) , z (0)) = (0, 0.1, 0) . (6)

Lyapunov exponents, which measure the exponential rates of the divergence and

convergence of nearby trajectories in the phase space of the chaotic system [68, 72],
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are calculated by using the algorithm in [102]. As a result, the Lyapunov exponents

of the system (2) are

𝜆1 = 0.0453, 𝜆2 = 0, 𝜆3 = −3.2903. (7)

The non-equilibrium chaotic system is dissipative because the sum of the Lyapunov

exponents is negative. It is worth noting that this non-equilibrium system can be

classified as a nonlinear system with hidden strange attractor because its basin of

attractor does not contain neighbourhoods of equilibria [44, 46]. The 2-D and 3-D

projections of the chaotic attractors without equilibrium in this case are presented in

Figs. 1, 2, 3 and 4.

It has been known that the Kaplan–Yorke dimension, which presents the com-

plexity of attractor [23], is defined by

DKY = j + 1
|
|
|
𝜆j+1

|
|
|

j∑

i=1
𝜆i, (8)

Fig. 1 2-D projection of the

chaotic system without

equilibrium in (2) in the

(x, y)-plane
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Fig. 2 2-D projection of the

chaotic system without

equilibrium in (2) in the

(x, z)-plane
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Fig. 3 2-D projection of the

chaotic system without

equilibrium in (2) in the

(y, z)-plane
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Fig. 4 3-D projection of the

chaotic system without

equilibrium in (2) in the

(x, y, z)-space
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where j is the largest integer satisfying

j∑

i=1
𝜆i ≥ 0 and

j+1∑

i=1
𝜆i < 0. Thus, the calculated

fractional dimension of no-equilibrium system in (2) when a = 0.5, b = 0.1, c = 1.3
is

DKY = 2 +
𝜆1 + 𝜆2
|
|𝜆3

|
|

= 2.0138. (9)

Equation (9) indicates a strange attractor.

It is easy to see that the system in (2) has rotational symmetry with respect to

the z-axis as evidenced by their invariance under the transformation from (x, y, z) to

(−x,−y, z). Therefore, any projection of the attractor has symmetry around the origin.

In the other words there is a symmetric coexisting attractor as shown in Fig. 2. In

addition, the attractor of the system is displayed in Fig. 4. The bifurcation diagrams of

system in (2) illustrated in Fig. 5 indicate the presence of muti-stability. For example,

there are coexisting attractors when b = 0.15 as shown in Figs. 6, 7, 8, and 9.
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Fig. 5 Bifurcation diagram

of the chaotic system without

equilibrium (2) when

varying the value of the

parameter b for a = 0.5,

c = 1.3, and the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)

0 0.1 0.2 0.3 0.4
1.5

2

2.5

3

3.5

4

b

x
Fig. 6 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(x, y)-plane
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Fig. 7 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(x, z)-plane for the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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Fig. 8 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(y, z)-plane for the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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Fig. 9 Coexisting attractors

of the chaotic system without

equilibrium in (2) in the

(x, y, z)-space for the initial

conditions

(x (0) , y (0) , z (0)) =
(0, 0.1, 0) (blue), and

(x (0) , y (0) , z (0)) =
(0,−0.1, 0) (red)
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5 Adaptive Anti-synchronization of the No-Equilibrium
System

The most vital practical feature relating to chaotic systems is the possibility of syn-

chronization of two coupled chaotic systems [12, 21, 38, 53]. Synchronization of

nonlinear systems has been discovered extensively in literature [17, 24, 39, 59, 70,

80, 83, 84, 91, 106]. Some important obtained results can be listed as follows:

synchronized states in a ring of mutually coupled self-sustained nonlinear electri-

cal oscillators [101], ragged synchronizability of coupled oscillators [71], various

synchronization phenomena in bidirectionally coupled double-scroll circuits [95],

observer for synchronization of chaotic systems with application to secure data trans-

mission was studied in [1], or shape synchronization control [32]. Moreover, various

kinds of synchronizations have been reported, for example lag synchronization [60],

frequency synchronization [3], projective-anticipating synchronization [30], anti-

synchronization [78], adaptive synchronization [86, 93], hybrid chaos synchroniza-

tion [39], generalized projective synchronization [89], fuzzy control-based function

synchronization [15] or fast synchronization [37] etc. It is interesting that fuzzy adap-

tive synchronization of uncertain fractional-order chaotic systems has been intro-

duced in [14].
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In this Section, we study the adaptive anti-synchronization of identical no-

equilibrium systems with three unknown parameters. Here the no-equilibrium

system in (2) is considered as the master system as

⎧
⎪
⎨
⎪
⎩

ẋ1 = y1
ẏ1 = −x1 − y1z1
ż1 = x1y1 + ax12 + by12 − c,

(10)

in which x1, y1, z1 are state variables. The slave system is considered as the controlled

no-equilibrium system and its dynamics is described as

⎧
⎪
⎨
⎪
⎩

ẋ2 = y2 + ux
ẏ2 = −x2 − y2z2 + uy
ż2 = x2y2 + ax22 + by22 − c + uz,

(11)

where x2, y2, z2 are the states of the slave system. Here the adaptive controls are

ux, uy, and uz. These controls will be designed for the anti-synchronization of the

master and slave systems. A(t), B(t) and C(t) are used in order to estimate unknown

parameters a, b and c.

The anti-synchronization error between no-equilibrium systems (10) and (11) is

given by the following relation

⎧
⎪
⎨
⎪
⎩

ex = x1 + x2
ey = y1 + y2
ez = z1 + z2.

(12)

As a result, the anti-synchronization error dynamics is described by

⎧
⎪
⎨
⎪
⎩

ėx = ey + ux
ėy = −ex −

(
y1z1 + y2z2

)
+ uy

ėz =
(
x1y1 + x2y2

)
+ a

(
x12 + x22

)
+ b

(
y12 + y22

)
− 2c + uz.

(13)

Our aim is to construct the appropriate controllers ux, uy, uz to stabilize system

(13). Therefore, we propose the following controllers for system (13):

⎧
⎪
⎨
⎪
⎩

ux = −ey − kxex
uy = ex +

(
y1z1 + y2z2

)
− kyey

uz = −
(
x1y1 + x2y2

)
− A(t)

(
x12 + x22

)

−B(t)
(
y12 + y22

)
+ 2C(t) − kzez.

(14)
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in which kx, ky, kz are positive gain constants for each controllers and the estimate

values for unknown system parameters are A(t), B(t), and C(t). The update laws for

the unknown parameters are determined as

⎧
⎪
⎨
⎪
⎩

̇A = ez
(
x12 + x22

)

̇B = ez
(
y12 + y22

)

̇C = −2ez.

(15)

Then, the main result of this section will be introduced and proved.

Theorem 15.1 If the adaptive controller (14) and the updating laws of parameter
(15) are chosen, the anti-sychronization between the master system (10) and the slave
system (11) is achieved.

Proof It is noting that the parameter estimation errors ea(t), eb(t) and ec(t) are given

as

⎧
⎪
⎨
⎪
⎩

ea (t) = a − A (t)
eb (t) = b − B (t)
ec (t) = c − C (t) .

(16)

Differentiating (16) with respect to t, we have

⎧
⎪
⎨
⎪
⎩

ėa (t) = − ̇A (t)
ėb (t) = − ̇B (t)
ėc (t) = − ̇C (t) .

(17)

Substituting adaptive control law (14) into (13), the closed-loop error dynamics

is defined as

⎧
⎪
⎨
⎪
⎩

ėx = −kxex
ėy = −kyey
ėz = (a − A (t))

(
x12 + x22

)

+ (b − B (t))
(
y12 + y22

)
− 2 (c − C (t)) − kyey

(18)

Then substituting (16) into (18), we have

⎧
⎪
⎨
⎪
⎩

ėx = −kxex
ėy = −kyey
ėz = ea (t)

(
x12 + x22

)
+ eb (t)

(
y12 + y22

)
− 2ec (t) − kzez.

(19)

We consider the Lyapunov function given as
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V (t) = V
(
ex, ey, ez, ea, eb, ec

)

= 1
2

(
e2x + e2y + e2z + e2a + e2b + e2c

)
. (20)

The Lyapunov function (20) is clearly definite positive.

Taking time derivative of (20) along the trajectories of (12) and (16) we have

̇V (t) = exėx + eyėy + ezėz + eaėa + ebėb + ecėc. (21)

From (17), (19), and (21) we get

̇V (t) = −kxe2x − kye2y − kze2z + ea
[
ez
(
x12 + x22

)
− ̇A

]

+eb
[
ez
(
y12 + y22

)
− ̇B

]
− ec

(
2ez + ̇C

)
. (22)

Then by applying the parameter update law (15), Eq. (22) become

̇V (t) = −kxe2x − kye2y − kze2z . (23)

Obviously, derivative of the Lyapunov function is negative semi-define. According

to Barbalat’s Lemma in Lyapunov stability theory [40, 63], it follows that ex (t) → 0,

ey (t) → 0, and ez (t) → 0 exponentially when t → 0, i.e. anti-synchronization

between master and slave system is achieved. This completes the proof. □
We illustrate the proposed anti-synchronization scheme with a numerical exam-

ple. The parameters of the no-equilibrium systems are selected as a = 0.5, b = 0.1,

c = 1.3 and the positive gain constant as k = 4. The initial conditions of the mas-

ter system in (10) and the slave system in (11) have been chosen as x1 (0) = 0.0,

y1 (0) = 0.1, z1 (0) = 0, and x2 (0) = 0.5, y2 (0) = 1, z2 (0) = 0.8, respectively. We

assumed that the initial values of the parameter estimates are A (0) = 1, B (0) = 0.4,

and C (0) = 1.5.

We see that when adaptive control law in (14) and the update law for the parameter

estimates in (15) are applied, the anti-synchronization of the master in (10) and slave

Fig. 10 Anti-

synchronization of the states

x1(t) and x2(t)

0 50 100 150
−4

−2

0

2

4

Time

x 1
,x

2
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Fig. 11 Anti-

synchronization of the states

y1(t) and y2(t)
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Fig. 12 Anti-

synchronization of the states
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Fig. 13 Time series of the

anti-synchronization errors
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system in (11) occurs as illustrated in Figs. 10, 11 and 12. Time series of master states

are denoted as blue solid lines while corresponding slave states are plotted as red

dash-dot lines in such figures. Moreover, the time-history of the anti-synchronization

errors ex, ey, and ez is reported in Fig. 13. The anti-synchronization errors converge

to the zero, which indicates that the chaos anti-synchronization between the no-

equilibrium systems is realized.
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6 Circuit Implementation of the No-Equilibrium System

Electronic circuits have been used for emulating theoretical chaotic models [13, 17,

22, 74]. In addition, circuit implementation of chaotic models plays an important role

from the point of application view. Circuital realization of chaotic systems has been

applied in various engineering fields such as secure communication, signal process-

ing, random bit generator, or path planning for autonomous mobile robot etc. [10,

24, 62, 96, 97, 103].

Therefore, in this section, we introduce an electronic circuit which emulates the

theoretical model in (2). By using the operational amplifiers approach [22], the cir-

cuit is designed and presented in Fig. 14. The state variables x, y, z of no-equilibrium

system in (2) are the voltages across the capacitor C1, C2, and C3, respectively. As

seen in Fig. 14, theoretical model in (2) is realized by using only common electronic

components such as resistors, capacitors, operational amplifiers and analog multipli-

ers. By applying Kirchhoff’s laws to the electronic circuit in Fig. 14, its correspond-

ing circuital equations are derived in the following form

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dvC1
dt

= 1
R1C1

vC2
dvC2

dt
= − 1

R2C2
vC1

− 1
10R3C2

vC2
vC3

dvC3
dt

= 1
10R4C3

vC1
vC2

+ 1
10R5C3

v2C1
+ 1

10R6C3
v2C2

− 1
R7C3

Vc,

(24)

Fig. 14 Schematic of the designed circuit which modelling system without equilibrium in (2)
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in which vC1
, vC2

, and vC3
are the voltages across the capacitors C1, C2, and C3,

respectively.

In this work, the power supply to all active devices are ±15VDC and we use the

operational amplifiers TL084. The values of components in Fig. 14 are chosen as

follows: R1 = R2 = R6 = R7 = R = 10kΩ, R3 = R4 = 1kΩ, R5 = 2kΩ, Vc = 1.3VDC,

and C1 = C2 = C3 = 10nF. For the chosen set of components, the values of parame-

ters in system (2) are: a = 0.5, b = 0.1, and c = 1.3.

The designed circuit has implemented in SPICE. The obtained results are reported

in Figs. 15 and 16 which display the attractors of the circuit in different phase planes

(vC1
, vC2

), (vC1
, vC3

), and (vC2
, vC3

) respectively (Fig. 17). It is easy to see that there is

a good agreement between the theoretical attractors (Figs. 1–2) and the circuital ones

(Figs. 15 and 16). It can be concluded that the circuit simulations are consistent with

the numerical simulations. Moreover, the designed circuit, which is built by using

off-the-shelf electronic components, can be applied in practical applications.

Fig. 15 Obtained SPICE attractor of the designed circuit in the (vC1
, vC2

) phase plane
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Fig. 16 Obtained SPICE attractor of the designed circuit in the (vC1
, vC3

) phase plane

7 Fractional Order Form of the No-Equilibrium System

As have been known that, practical models such as heat conduction, electrode-

electrolyte polarization, electronic capacitors, dielectric polarization, viso-elastic

systems are more adequately described by the fractional-order different equations

[9, 29, 36, 73, 77, 100]. Existence of chaos in fractional-order systems are investi-

gated [26, 28, 49, 105]. In this section, we consider the fractional-order from of the

no-equilibrium system which is described as

⎧
⎪
⎨
⎪
⎩

dqx(t)
dtq = y

dqy(t)
dtq = −x − yz

dqz(t)
dtq = xy + ax2 + by2 − c,

(25)

where a, b, c are three positive parameters and c ≠ 0 for the commensurate order 0 <

q ≤ 1. Fractional-order system (25) has been studied by applying Adams–Bashforth-

Mounlton numerical algorithm [20, 25, 76]. It is interesting that chaos exists in

fractional-order system (25). Figures 18, 19, and 20 display chaotic attractors gen-

erated from fractional-order system (25) for the commensurate order q = 0.99, the

parameters a = 0.5, b = 0.1, c = 1.3 and the initial conditions
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Fig. 17 Obtained SPICE attractor of the designed circuit in the (vC2
, vC3

) phase plane

Fig. 18 2-D projection of

the fractional-order system

without equilibrium (2) in

the (x, y)-plane

−4 −2 0 2 4
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−4

−2

0

2

x

y

(x (0) , y (0) , z (0)) = (0, 0.1, 0) . (26)

This research would enable future engineering applications by considering the advan-

tages of the system without equilibrium and the fractional order theory.
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Fig. 19 2-D projection of

the fractional-order system

without equilibrium (2) in

the (x, z)-plane
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Fig. 20 2-D projection of

the fractional-order system

without equilibrium (2) in

the (y, z)-plane
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8 Conclusion

This work introduces a new autonomous chaotic system with special features. There

is no any equilibrium points in the proposed system, therefore it is classified as a sys-

tem with hidden attractor. There is a coexistence of different attractors in the system

when changing the values of initial conditions. We have discovered the dynamical

properties of such system without equilibrium by using phase portraits, bifurcation

diagram, Lyapunov exponents and Kaplan–Yorke dimension. The possibility of syn-

chronization of no-equilibrium systems is studied through an anti-synchronization

scheme. The proposed no-equilibrium system are suitable for chaos-based engineer-

ing applications because of its complex behavior as well as its feasibility, which has

been confirmed by designing an electronic circuit. Fractional order of the proposed

system has been given and the result showed that the attractor has no equilibrium.

Potential applications of the proposed system should be investigated. Further

studies about fractional-order chaotic systems without equilibrium will be presented

in our future works.
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