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Abstract Over the years, several forms of sliding mode control (SMC), such as
conventional SMC, terminal SMC (TSMC) and fuzzy SMC (FSMC) have been
developed to cater to the control needs of complex, non-linear and uncertain sys-
tems. However, the chattering phenomenon in conventional SMC and the singu-
larity errors in TSMC make the application of these schemes relatively impractical.
In this chapter, terminal full order SMC (TFOSMC), the recent development in this
line, has been explored for efficient control of the uncertain chaotic systems. Two
important chaotic systems, Genesio and Arneodo-Coullet have been considered in
fractional order as well as integer order dynamics. The investigated fractional and
integer order chaotic systems are controlled using fractional order TFOSMC and
integer order TFOSMC, respectively and the control performance has been assessed
for settling time, amount of chattering, integral absolute error (IAE) and integral
time absolute error (ITAE). To gauge the relative performance of TFOSMC, a
comparative study with FSMC, tuned by Cuckoo Search Algorithm for the mini-
mum IAE and amount of chattering has also been performed using settling time,
amount of chattering, IAE and ITAE performances. The intensive simulation
studies presented in this chapter clearly demonstrate that the settling time, amount
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of chattering and steady-state tracking errors offered by TFOSMC are significantly
lower than that of FSMC; therefore, making TFOSMC a superior scheme.

Keywords Slidingmode control ⋅ Chaotic system ⋅ Fractional order ⋅ Genesio ⋅
Arneodo-Coullet

1 Introduction

Chaos is a non-linear complex phenomenon characterized by a high sensitivity to
initial conditions which implies that two chaotic trajectories starting infinitesimally
close to each other will diverge exponentially with time, giving rise to an infinite
number of unstable periodic orbits. Chaotic dynamics result in a trajectory wherein
the system states move in the neighborhood of one of these periodic orbits for a
while, then erratically move to a different unstable, periodic orbit where it remains
for a limited time, and so forth [23]. Coupled with the fact that experimental
conditions are never known perfectly, these systems are inherently unpredictable
even while being mathematically deterministic [10, 31].

Chaos has been found to occur in a wide variety of disciplines such as the
Raleigh-Bernard convection in fluid dynamics, the Belousov-Zhaobitinsky reaction
in chemistry [47], multimode solid state lasers in optics [51], the Chua-Matsumoto
oscillator in electronics [30], population models [49], meteorology, in physiological
models such as certain heart and respiratory rhythms [32] and so on. Dynamics of
chaotic systems can be described using integer as well as non-integer (fractional)
order calculus. Novel methods of modeling and control system designing of chaotic
systems has always been a sought after area of research [11, 12, 54, 55]. Fractional
order calculus allows us to describe and model a real system more accurately than
the classical integer order calculus methods. Consequently, it has been reported that
the dynamics of several chaotic systems can also be elegantly described by frac-
tional order dynamical equations making use of fractional order operators [29, 35,
46, 66, 67, 76]. In the light of aforementioned potential applications and related
issues, stabilization and control of fractional order chaotic systems can be consid-
ered to be of fundamental importance [9, 14, 28, 66, 70].

Over the course of time, several schemes have been proposed for control of
non-linear complex systems; one of the most recent one has been the terminal full
order sliding mode control (TFOSMC) proposed by Feng et al. [26]. It has been
claimed to be more efficient over its counter parts. Claimed superiority of TFOSMC
has motivated the authors to explore its applications on the Genesio and
Arneodo-Coullet chaotic systems for their effective control. Therefore, the objective
of this chapter is to demonstrate the application of TFOSMC scheme to effectively
control both fractional as well as integer order Genesio and Arneodo-Coullet
chaotic systems in the presence of system uncertainties and external disturbances.
The numerical simulations, as demonstrated later, clearly indicate that the output of
TFOSMC is smooth and chatter-free to a good extent while simultaneously it is able
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to address the problems of singularity and finite-time convergence. Further, to
gauge the relative performance of TFOSMC controller, a comparative study has
also been performed with fuzzy sliding mode control (FSMC), whose gains have
been tuned by cuckoo search algorithm (CSA) [27] for minimum integral absolute
error (IAE) and amount of chattering [25]. Extensive simulation studies have been
presented which demonstrate that the settling time, amount of chattering, IAE and
integral time absolute error (ITAE) offered by TFOSMC are significantly lower
than that of FSMC; therefore, making TFOSMC a superior scheme. Several con-
tributions of this chapter can be listed as follows:

1. For the first time, implementation of TFOSMC for effective control of chaotic
systems has been demonstrated in this chapter.

2. Genesio and Arneodo-Coullet chaotic systems have been successfully controlled
in the presence of system uncertainties and external disturbances.

3. Control performance of TFOSMC, assessed in terms of settling time, amount of
chattering, IAE and ITAE has been found to be superior over its potential
counterpart, FSMC (tuned using CSA).

Rest of the chapter is organized as follows. Section 2 provides a brief survey of
the related works carried out in the domain of chaotic system control. In Sect. 3,
some requisite preliminaries of fractional calculus are presented. Section 4 provides
the dynamical models of the two investigated systems (fractional and integer order
Genesio and Arneodo-Coullet) along with their 3D chaotic attractors and the

Fig. 1 Organization of various control schemes applied to the considered chaotic systems
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problem formulation. In Sect. 5, description and design of the various SMC vari-
ants namely conventional SMC, FSMC and TFOSMC are presented followed by
MATLAB simulation results illustrating their performances. Finally, Sect. 6 pro-
vides a comparative study between FSMC and TFOSMC and Sect. 7 concludes the
findings with some future directions.

To summarize the presented work, flowchart in Fig. 1 depicts various combi-
nations of control schemes and the considered chaotic systems in this chapter. As
seen in Fig. 1, eight case studies have been investigated in this chapter resulting
from the two chaotic systems of integer as well as fractional order dynamics and
two control schemes.

2 Literature Survey

The stabilization and control of complex systems with characteristic non-linearities
and uncertainities has been one of the prime topics of research inviting works on
several control methodologies based on classical, modern and robust control [5–8].
For chaotic systems, in the initial phase, two approaches used for their control were
the OGY (Ott, Grebogi and Yorke) method [42] and the Pyragas continuous control
method [48] both of which require a preliminary determination of the unstable
orbits of the system before the control law can be designed. Over the time, several
forms of sliding mode control (SMC) have emerged to cater to the control needs of
complex, non-linear and uncertain chaotic systems [13, 56, 63]. SMC is a
non-linear control method wherein the system state trajectories are driven to a
predefined manifold called the sliding surface and are subsequently kept in a close
vicinity of the surface through high frequency switching [1, 37, 45]. Several works
have been reported on the implementation of SMC on integer as well as fractional
order systems [24, 39, 52, 64, 73]. Chen et al. [21] proposed application of SMC to
control a class of fractional order chaotic systems. However, the finite time delays in
conventional SMC where the switching is not infinitesimally fast, resulted in a
phenomenon called chattering in the controller output, which can cause damage to
system components in practical engineering systems.

To limit the chattering about switching surface, the boundary layer approach was
introduced by Liu et al. [37]. When the system uncertainties are large, a higher
switching gain with a wider boundary layer was required to eliminate the increased
chattering effect. But, if the boundary layer width is progressively increased, the
system effectively reduces to one without sliding mode. Additionally, conventional
SMC makes use of a linear sliding surface which can only guarantee asymptotic
convergence of the tracking errors. In [3], Aghababa proposed terminal sliding
mode control (TSMC) of chaotic Lorenz and Arneodo systems which guarantees
finite-time convergence of the system states to the desired trajectory but suffers
from chattering and singularity errors. Non-singular TSMC addressed the problem
of singularity errors [2].
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Since the introduction of fuzzy set theory by Zadeh [75], fuzzy logic based
schemes have been successfully applied to a variety of applications over the past
four decades [18–20, 52, 74]. Yau and Chen proposed to control the chaotic
Genesio system by replacing the discontinuous signum function in the reaching law
by fuzzy logic control (FLC) [72]. Several key breakthroughs have been brought
about in the control and synchronization of chaotic systems using adaptive tech-
niques. Vaidyanathan and Azar have led the way in this regard with numerous
successful applications of different adaptive control methods such as feedback and
backstepping on many complex chaotic systems with unknown parameters [57–62].
Additionally, adaptive fuzzy controllers have also been used to control and syn-
chronize chaotic systems [9, 15, 16, 34, 36, 40].

Recently, Feng et al. [26] proposed TFOSMC for two general non-linear systems
in which a full order sliding manifold is utilized. During the full order sliding mode,
the system had desirable full-order dynamics, rather than reduced-order dynamics.
Furthermore, the derivatives of the terms with fractional powers do not appear in
the control law, avoiding the control singularities. However, being relatively new
TFOSMC has not yet been implemented on chaotic systems. Thus, the aim of this
chapter is to effectively control the aforementioned two chaotic systems by means
of TFOSMC and to prepare a performance analysis between the results obtained by
TFOSMC and those obtained by FSMC on the basis of settling time, amount of
chattering, IAE and ITAE.

3 Some Preliminaries of Fractional Calculus

For the past three decades, significant progress has been witnessed in fractional
order calculus (FOC) as it finds extensive applications in modeling phenomena such
as diffusion, turbulence, electromagnetism, signal processing, and quantum evo-
lution of complex systems [4].

Several types of fractional order sliding mode controllers have been proposed in
literature as they offer greater robustness and lower chattering in comparison to
integer order controllers, though at the cost of higher computational requirements
[22]. The design idea of the fractional order controller was first proposed by
Oustaloup [43, 44]. To obtain a finite approximation of fractional order systems in a
desired range of frequencies, he gave the approximation algorithm that is widely
used wherein a frequency band of interest is considered within which the following
approximation holds.

Suppose that the desired frequency range is given by ωl,ωh½ �. The function
considered for fractional order integrator/differentiator [17, 55] approximation is of
the form:

HðsÞ= sγ, γ ∈R, γ ∈ − 1; 1½ � ð1Þ
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The Oustaloup’s approximation function to this fractional order differentiator sγ

can be written as,

bHðsÞ= ωu

ωh

� �γ

∏
N

k= −N

1+ s ω̸′

k

1+ s ω̸k
ð2Þ

where,

ω′

k =ωl
ωh

ωl

� �k+N +1 2̸− γ 2̸
2N + 1

ð3Þ

and

ωk =ωl
ωh

ωl

� �k+N +1 2̸+ γ 2̸
2N + 1

ð4Þ

are respective zeros and poles of rank k. The total number of zeros or poles is given
by 2N +1. Frequency ωu =

ffiffiffiffiffiffiffiffiffiffi
ωlωh

p
is the geometric mean of lower and upper

bounds of the frequencies.

4 Chaotic System Descriptions and Problem Formulation

This section presents the mathematical models of the considered chaotic systems
along with their respective initial conditions and system parameters. The systems
are graphically introduced with the help of their resulting chaotic attractor and
uncontrolled state trajectories. It may be noted that the considered systems are
(i) Fractional order γ =0.993ð Þ and Integer order γ =1ð Þ Genesio system and
(ii) Fractional order γ =0.993ð Þ and Integer order γ =1ð Þ Arneodo-Coullet system.
These systems are described in brief in the following sub-sections with the help of
their uncontrolled chaotic attractor and their uncontrolled system states.

4.1 Genesio Chaotic System

The Genesio chaotic system arises from a jerk equation and represents jerky
dynamics, which is the third derivative of position. Genesio chaotic system is
described as [72]:

Dγx1 = x2
Dγx2 = x3

Dγx3 = − cx1 − bx2 − ax3 + x21

ð5Þ
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where x1, x2 and x3 are state variables and a, b and c are the positive real con-
stants. For instance, the Genesio system is chaotic for the parameter values of
a=1.2, b=2.92, c=6 and γ =0.993. In this work, initial conditions of this system
are considered as x1 = 3, x2 = − 4 and x3 = 2.

Figures 2 and 3 show the uncontrolled Genesio three-dimensional chaotic
attractor and the time responses of the states, respectively.

Fig. 2 Chaotic attractor of
Genesio system

Time (s)
0 50 100 150

x 1
(t)

-4

-2

0

2

4

6

Time (s)
0 50 100 150

x 2
(t)

-6

-4

-2

0

2

4

6

8

Time (s)
0 50 100 150

x 3
(t)

-20

-10

0

10

20

(a) (b)

(c)

Fig. 3 Uncontrolled trajectories of Genesio system: a state x1; b state x2; c state x3
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4.2 Arneodo-Coullet System

The Arneodo-Coullet chaotic system represents the dynamics of a forced oscillator.
The system is mathematically described as [53]:

Dγx1 = x2
Dγx2 = x3

Dγx3 = cx1 − bx2 − ax3 − x31

ð6Þ

where x1, x2 and x3 are state variables and a, b and c are the positive real con-
stants. For instance, the Arneodo-Coullet system is chaotic for the parameter values
of a=0.45, b=1.1, c=0.8 and γ =0.993. In this work, initial conditions of this
system are considered as x1 = − 1.2, x2 = 1.2 and x3 = 0.4. Figures 4 and 5 show
the uncontrolled Arneodo-Coullet three-dimensional chaotic attractor and the time
response of the individual system states, respectively.

It can be clearly seen from the above chaotic dynamics that it consists of a
motion in the three-dimensional space where the system state moves in the
neighborhood of one of the periodic orbits for a while, then falls close to a different
unstable, periodic orbit where it remains for a limited time, and so forth. This results
in a complicated and unpredictable wandering over longer periods of time. Control
of chaos is the stabilization of these unstable periodic orbits. The result is to render
an otherwise chaotic motion more stable and predictable. In the subsequent sec-
tions, varied forms of sliding mode control law are proposed to control chaos in a
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Fig. 4 Chaotic attractor of Arneodo-Coullet system
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class of fractional and integer order chaotic systems [47, 48]. The controllers are
derived to stabilize the states of these chaotic systems, even if the systems with
uncertainty are in the presence of external disturbance.

5 Sliding Mode Control

This section is organized as follows. Section 5.1 presents the description and design
of conventional SMC along with numerical simulations to demonstrate the chat-
tering phenomenon. In Sect. 5.2, the FSMC design for each of the considered
systems is presented. The simulations are graphically illustrated and the resulting
performance indices are given in tabular form. A brief overview of the CSA is also
provided. Section 5.3 presents the design of TFOSMC for each of the considered
systems along with the requisite finite-time stability analysis. The simulations are
graphically illustrated and the resulting performance indices are given in tabular
form.

SMC is a variable structure, non-linear control technique that possesses desirable
features of accuracy and robustness. SMC is designed to drive the system states
onto a particular manifold called the sliding surface. Once the sliding surface is
reached, SMC keeps the states in a close neighborhood of the sliding surface.
In SMC, the feedback control law is not a continuous function of time. Instead,
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Fig. 5 Uncontrolled trajectories of Arneodo-Coullet system: a state x1; b state x2; c state x3
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it switches from one continuous control structure to another based on the current
position of the system trajectories in the state space. Thus, the control path has a
negative gain if the state trajectory of the plant is “above” the surface and a positive
gain if the trajectory drops “below” the surface. The two primary advantages of
sliding mode control are elucidated as follows:

1. In the formulation of any control problem there are bound to be discrepancies
between the actual plant and the mathematical model of the plant used for the
controller design. This mismatch may be due to variation in system parameters,
unmodeled dynamics or the approximation of complex plant behavior by a
simplified model. With SMC, the closed loop response of the system becomes
relatively insensitive to parametric uncertainties.

2. The dynamic behavior of the system may be controlled by an appropriate choice
of the switching function.

5.1 Conventional Sliding Mode Control

As shown in Fig. 6, conventional SMC comprises typically of a sliding surface
described by s=0 and the sliding motion along the surface [41]. The sliding motion
comprises of a reaching phase and a sliding phase. The SMC controller design
involves the design of the switching surface and a second phase derives the control
law required to drive the system state trajectories onto the sliding surface.

5.1.1 Sliding Surface Design

A typical nth order non-linear chaotic dynamical system with the relative degree
n may be directly described as follows [72]:

)( 0tx

2x

1x

)( 1tx
Sliding Phase

Reaching Phase

Sliding Surface

0=s

( )0,0

Fig. 6 Phase plane plot of a
system with sliding mode
control
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xi̇ = xi+1, 1≤ i≤ n− 1
xṅ = b0ðX, tÞ+ΔbðX, tÞ+ dðtÞ+ uðtÞ, X = x1 x2 ⋯ xn½ � ð7Þ

where XðtÞ= x1ðtÞ x2ðtÞ . . . xnðtÞ½ �= xðtÞ x ̇ðtÞ ⋯ xðn− 1ÞðtÞ
� �

∈Rn is the
state vector, ΔbðX, tÞ and b0ðX, tÞ are uncertain part and known part of chaotic
systems, respectively, uðtÞ∈R is the controller output, and dðtÞ is the external
disturbance of system. In general, the uncertain term ΔbðX, tÞ and disturbance term
dðtÞ are assumed to be bounded i.e.

ΔbðX, tÞj j≤ α and dðtÞj j≤ β ð8Þ

where α and β are positive.
From a geometrical point of view, s=0 defines a surface in the error space. The

control problem is to get the system to track an n-dimensional desired vector XdðtÞ,
such that,

XdðtÞ= xd1ðtÞ xd2ðtÞ . . . xdnðtÞ½ �= xdðtÞ xḋðtÞ ⋯ xðn− 1Þ
d ðtÞ

h i
ð9Þ

The tracking error can be then defined as,

EðtÞ=XðtÞ−XdðtÞ
= xðtÞ− xdðtÞ x ̇ðtÞ− xḋðtÞ ⋯ xðn− 1ÞðtÞ− xðn− 1Þ

d ðtÞ
h i

= eðtÞ e ̇ðtÞ ⋯ eðn− 1ÞðtÞ
� �

= e1ðtÞ e2ðtÞ ⋯ enðtÞ½ �
ð10Þ

The resulting state response of tracking error vector should satisfy,

lim
t→∞

EðtÞk k= lim
t→∞

XðtÞ−XdðtÞk k→ 0 ð11Þ

where, ∙k k is the Euclidean norm of a vector.
The sliding surface depends on the tracking error e and its derivatives, and is

usually of the Proportional-Derivative (PD) form given as follows [72],

s= en + ∑
n− 1

i=1
ciei ð12Þ

When the closed-loop system is in the sliding mode, it satisfies s ̇=0 and then the
equivalent control law is obtained by,

ueq = − b0ðX, tÞ−ΔbðX, tÞ− dðtÞ− ∑
n− 1

i=1
ciei+1 + xðnÞd ðtÞ ð13Þ
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If the reaching law is ur, then the overall control u is determined by,

u= ueq + ur ð14Þ

5.1.2 Reaching Laws

Generally three reaching laws as described below are used.

Constant Rate Reaching Law This reaching law is normally used in conventional
SMC and is given by:

s ̇= −K sgnðsÞ, K >0

s ̇=
K, s<0

−K, s>0

� ð15Þ

It constraints the switching variable to reach the switching surface s at a constant
rate K. If K is too small, the reaching time will be too long and on the other hand if
K is too large, there will be severe chattering.

Exponential Reaching Law It is given by the following expression:

s ̇= −KsgnðsÞ− βs,K >0, β>0 ð16Þ

where, − βs is the exponential term, and its solution is s= sð0Þe− βt. Clearly, by
adding the proportional term − βs, the state is forced to approach the switching
manifolds faster when s is large.

Power Rate Reaching Law This law, as stated below, offers a fast and low chat-
tering reaching mode.

s ̇= −K sj jαsgnðsÞ, K >0.1> α>0 ð17Þ

This reaching law increases the reaching speed when the state is far away from
the switching manifold. However, it reduces the rate when the state is near the
manifold.

5.1.3 SMC Implementation on Chaotic Systems

The design and implementation of conventional SMC for Genesio and
Arneodo-Coullet chaotic systems has been described in this section. The resulting
state trajectories and controller output have been graphically depicted in order to
demonstrate the phenomenon of chattering. It may be noted that this specific study
is notional with a purpose to demonstrate in closed loop while the control was
manually tuned.
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Conventional SMC of Genesio Chaotic System

The dynamical model of the Genesio system is as follows,

Dγx1 = x2
Dγx2 = x3

Dγx3 = − cx1 − bx2 − ax3 + x21 +ΔbðX, tÞ+ dðtÞ+ uðtÞ
ð18Þ

The initial conditions of the system are x1 = 3, x2 = − 4, x3 = 2 and γ =1. The
system is perturbed by an uncertainty term ΔbðX, tÞ and excited by a disturbance
term dðtÞ. Here, ΔbðX, tÞ=0.1 sin 4πx1 sin 2πx2 sin πx3 and dðtÞ=0.1 sinðtÞ satisfy,
respectively, ΔbðX, tÞj j≤ α=0.1 and dðtÞj j≤ β=0.1. Control objective is to drive
the uncertain chaotic system to the desired trajectory xdðtÞ. Selecting
c1 = 10 and c2 = 6 to result in a stable sliding mode. Therefore, the switching
surface is,

sðtÞ= e3ðtÞ+ c1e1ðtÞ+ c2e2ðtÞ ð19Þ

The equivalent control law is obtained as,

ueq =1.2x1 + 2.92x2 + 6x3 − x21 − c1e2ðtÞ− c2e3ðtÞ ð20Þ

Taking K =1 the constant rate reaching law becomes,

ur = −KsgnðsÞ= − sgnðsÞ ð21Þ

Thus, the overall control law becomes,

u=1.2x1 + 2.92x2 + 6x3 − x21 − c1e2ðtÞ− c2e3ðtÞ− sgnðsÞ ð22Þ
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Fig. 7 State trajectories of
Genesio system controlled
using conventional SMC
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The simulations were run for t=50 s using the 4th order Runge-Kutta method
with a step time of 0.001 s. The obtained simulation results are shown in Figs. 7, 8
and 9 representing the states’ time responses, controller output and sliding surface
dynamics, respectively.

As indicated by the resulting plots, the system states settle at t≈ 3.8 s (computed
for the worst trajectory) and as expected, the chattering behaviour of conventional
SMC is clearly demonstrated in the controller output. It may be noted that though
the chattering can be reduced but cannot be removed in this scheme.
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Conventional SMC of Arneodo-Coullet Chaotic System

The dynamical model of the Arneodo-Coullet system is as follows,

Dγx1 = x2
Dγx2 = x3

Dγx3 = cx1 − bx2 − ax3 − x31 +ΔbðX, tÞ+ dðtÞ+ uðtÞ
ð23Þ

The initial conditions of the system are x1 = − 1.2, x2 = 1.2, x3 = 0.4 and γ =1.
The system is perturbed by an uncertainty term ΔbðX, tÞ and excited by a distur-
bance term dðtÞ. Here, ΔbðX, tÞ=0.1 sin 4πx1 sin 2πx2 sin πx3 and dðtÞ=0.1 sinðtÞ
satisfy, respectively, ΔbðX, tÞj j≤ α=0.1 and dðtÞj j≤ β=0.1. Control objective is
to drive the uncertain chaotic system to the desired trajectory xdðtÞ. Selecting
c1 = 10 and c2 = 6 to result in a stable sliding mode. Now, the switching surface is,

sðtÞ= e3ðtÞ+ c1e1ðtÞ+ c2e2ðtÞ ð24Þ

The equivalent control law is obtained as,

ueq = − 0.8x1 + 1.1x2 + 0.45x3 + x31 − c1e2ðtÞ− c2e3ðtÞ ð25Þ

Taking K =12, the constant rate reaching law becomes,

ur = −KsgnðsÞ= − 12sgnðsÞ ð26Þ

Thus, the overall control law becomes,

u= − 0.8x1 + 1.1x2 + 0.45x3 + x31 − c1e2ðtÞ− c2e3ðtÞ− 12sgnðsÞ ð27Þ
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The obtained simulation results are shown in Figs. 10, 11 and 12 representing the
states’ time responses, controller output and sliding surface dynamics, respectively. As
indicated by the resulting plots, the system states settle at t≈ 5.8 s (computed for the
worst trajectory) and the problem of chattering is obtained in the controller output.

5.1.4 Problems with Conventional SMC

As observed in the results of the simulations, conventional SMC suffers from two
main problems [50]. (1) Chattering: In the theoretical description of sliding mode
control, the system stays confined to the sliding surface and need only be viewed as
sliding along the surface. However, real implementations of sliding mode control
approximate this theoretical behaviour with a high-frequency switching control
signal that causes the system to “chatter” in a tight neighbourhood of the sliding
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surface. This phenomenon is called chattering and it may damage the actuators in a
practical system. (2) Asymptotic Convergence: The sliding surface adopted in
conventional sliding mode control is a linear dynamical equation
sðtÞ= e3ðtÞ+ c1e1ðtÞ+ c2e2ðtÞ. The linear sliding surface can only guarantee
asymptotic error convergence in the sliding motion, i.e., the output error cannot
converge to zero in finite time. This is practically undesired.

5.2 Fuzzy Sliding Mode Control

Fuzzy logic formalizes the human ability to reason and judge under uncertainty [50,
75]. In traditional SMC, the reaching law is selected as ur = kwuw and the overall
control u is determined by [55]:

u= ueq + ur = ueq + kwuw ð28Þ

where kw is the switching gain (positive) and uw is obtained by

uw = − sgnðsÞ ð29Þ

where,

sgnðsÞ=
1, for s>0,
0, for s=0,
− 1, for s<0,

8<
: ð30Þ

However, the signum function in the overall control law u will cause chattering
in the controller output due to finite time delays in the switching. This problem can
be tackled by using FLC [65]. A set of rules derived from expert knowledge
determine the dynamic behavior of the FLC. On the basis of these rules, the
Takagi-Sugeno-Kang fuzzy inference mechanism provides the necessary control
action. Since the rules of the fuzzy controller are based on SMC, it is called fuzzy
SMC (FSMC) [24, 68, 69].

The employed control scheme is depicted in Fig. 13 [72]; the overall control law
is the algebraic sum of the equivalent control part and the FSMC output.

The equivalent control part is obtained from the system equations and the
reaching law is selected as:

ur = kfsufs ð31Þ

where, kfs is the normalization factor (fuzzy gain) of the output variable, and ufs is
the output obtained from FSMC, which is determined by s and s ̇. The overall
control law u is then obtained as:
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u= ueq + ur = ueq + kfsufs ð32Þ

The fuzzy control rules depend on the sliding surface s and the rate of change of
the sliding surface s ̇.

ufs =FSMCðs, s ̇Þ ð33Þ

The membership functions of input linguistic variables s and s ̇, and the mem-
bership functions of output linguistic variable ufs are shown in Figs. 14 and 15,
respectively. They are partitioned into seven fuzzy membership functions expressed
as negative big (NB), negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PB) and positive big (PB) in order to cover
the entire sample space. The fuzzy rule table is given in Table 1 [72].

Equivalent
Control

Chaotic
System

fskFSMCSliding
Function

equ

req uuu +=

fsu

ru

ix

dx
Desired 
signal sdotk

sk

2c

s

s

1c

Fig. 13 FSMC implementation scheme

ZE PS PM PBNSNMNB

0-1/3-2/3-1 1/3 2/3 1
ss,

Fig. 14 Membership
functions for FSMC
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5.2.1 Design and Implementation of FSMC

As determined by Eq. (32), the overall control action u is obtained as

u= ueq + ur = ueq + kfsufs ð34Þ

In the practical system, the system uncertainty ΔbðX, tÞ and external disturbance
are not known and the equivalent controller output reduces to,

ueq = − b0ðX, tÞ− ∑
n− 1

i=1
ciei+1 + xðnÞd ðtÞ ð35Þ

Now the overall control becomes,

u= ueq + kfsufs = − b0ðX, tÞ− ∑
n− 1

i=1
ciei+1 + xðnÞd ðtÞ+ kfsufs ð36Þ

-1/3-2/3-1 1/3 2/3 10

ZE PS PM PBNSNMNB

fsu

Fig. 15 Fuzzy output singletons

Table 1 Fuzzy rules for FSMC

ufs S

NB NM NS ZE PS PM PB

s ̇ NB PB PB PB PB PM PS ZE
NM PB PB PB PM PS ZE NS
NS PB PB PM PS ZE NS NM
ZE PB PM PS ZE NS NM NB
PS PM PS ZE NS NM NB NB
PM PS ZE NS NM NB NB NB
PB ZE NS NM NB NB NB NB
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The constants appearing in the control law as well as the fuzzy gains were
optimised using CSA for minimum IAE and amount of chattering. The algorithm is
described in the following subsection:

Cuckoo Search Algorithm

CSA is a new meta-heuristic search algorithm of global optimization based on the
behaviour of cuckoos proposed by Yang & Deb. This algorithm is based on the
parasitic behaviour of some cuckoo species in combination with the Lévy flight
behaviour of some birds and fruit flies [71].

It is based on the following natural operations:

1. How cuckoos lay their eggs in the host nests.
2. How, if undetected, the eggs are hatched to chicks by the hosts.

Before applying CSA over various structural engineering problems, CSA was
benchmarked using standard problems such as the Travelling Salesman’s problem.
The theoretical analysis of CSA deals with how the cuckoo eggs banish the host
eggs, thus allowing for an environment where their survival rate is improved. It is
based on the following three idealized rules [27]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
2. The best nests with high quality of eggs (solutions) will carry over to the next

generations.
3. The number of available host nests is fixed, and a host can discover an alien egg

with a probability Pa ∈ 0, 1½ �. In this case, the host bird can either throw the egg
away or abandon the nest so as to build a completely new nest in a new location.
Each egg in a nest represents a solution and a cuckoo egg represents new
solution.

When generating new solutions xðt+1Þ for, say cuckoo i, a Lévy flight is
performed and the formula used is:

xiðt+1Þ= xiðtÞ+ α⊕Lev́yðλÞ ð37Þ

Where α is the step size and λ is the Lev́y coefficient
The following is a pseudo-code for CSA [33]:
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In this work, for CSA, following parameter settings were used:

1. Discovery rate of alien eggs = 0.25
2. Number of nests = 20
3. Total iterations = 30
4. λ=1.5

The fitness/cost function to be minimized using CSA was taken as
y=0.2 × IAEðe1 + e2 + e3Þ+0.4 ×Amount of chattering.

FSMC of Genesio Chaotic System

In this section, results of simulations for both the integer and fractional order
Genesio chaotic system [63, 64] are presented. Considering the fractional order
Genesio chaotic system, the control objective is to drive the uncertain chaotic
system to the desired trajectory xdðtÞ.

Therefore, the fractional order switching surface is proposed as,

sðtÞ=Dγ − 1e3ðtÞ+ c1Dγ − 1e1ðtÞ+ c2Dγ − 1e2ðtÞ ð38Þ
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The overall control law is obtained as,

uðtÞ=1.2x1 + 2.92x2 + 6x3 − x21 + xð3Þd ðtÞ− c1e2 − c2e3 + kfsufs ð39Þ

For γ =0.993 and initial conditions x1 = 3, x2 = − 4 and x3 = 2, the CSA opti-
mised values of the aforementioned fuzzy gains are given in Table 2.

All subsequent simulations were run for t=10s using the 4th order Runge-Kutta
method with a step time of 0.001 s.

The simulation results obtained with the CSA optimised values of the afore-
mentioned fuzzy gains are shown in Figs. 16 and 17. Table 3 presents the
assessment of the system for the performances indices viz. settling time, amount of
chattering, IAE, ITAE and the cost function.

For γ =1, the integer order Genesio system exhibits the following results, as
shown in Figs. 18 and 19, using the CSA optimised gains given in Table 4.

The depicted figures clearly show that the tracking errors and state trajectories
converge to zero with a settling time t≈ 4.5 s for fractional order Genesio chaotic
system and t≈ 3.4 s for integer order Genesio chaotic system, indicating that sta-
bilisation is indeed realised and the controller output is almost chatter-free. The
performance parameters for fractional and integer FSMC are recorded in Tables 3
and 5, respectively.

Table 2 CSA tuned fuzzy
gains for fractional order
Genesio System

Parameter CSA optimized values

kfs 17.5333

ks 7.8159
ksdot 14.7451
c1 10.9875
c2 5.9221
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Fig. 16 State trajectories of
fractional order Genesio
system controlled using
FSMC
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Table 3 Performance
parameters of FSMC for
fractional order Genesio
system

Performance index Value

Settling time (s) 4.5

∑ Δuj j 181.95

IAE e1: 1454.5
e2: 3001.8
e3: 4082.4

ITAE e1: 586.06
e2: 1483.4
e3: 3071.8

Cost Function 1703.980
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Fig. 18 State trajectories of
integer order Genesio system
controlled using FSMC
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FSMC of Arneodo-Coullet Chaotic System

In this section, results of simulations for both the integer and fractional order
Arneodo-Coullet chaotic system [63, 64] are presented. The control objective is to
drive the uncertain chaotic system to the desired trajectory xdðtÞ.
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100Fig. 19 Control action
versus time plot for FSMC
controlled integer order
Genesio system

Table 4 CSA tuned fuzzy
gains for integer order
Genesio system

Parameter CSA optimized values

kfs 19.1568

ks 4.8771
ksdot 25.4487
c1 18.6205
c2 2.7342

Table 5 Performance
parameters for FSMC of
integer order Genesio system

Performance index Value

Settling time (s) 3.4

∑ Δuj j 223.19

IAE e1: 1429.3
e2: 3005.6
e3: 4416.2

ITAE e1: 552.2
e2: 1432.0
e3: 3192.4

Cost Function 1617.692
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Therefore, the fractional order switching surface is proposed as,

sðtÞ=Dγ − 1e3ðtÞ+ c1Dγ − 1e1ðtÞ+ c2Dγ − 1e2ðtÞ ð40Þ

The overall control law is obtained as,

uðtÞ= − 0.8x1 + 1.1x2 + 0.45x3 + x31 + xð3Þd ðtÞ− c1e2 − c2e3 + kfsufs ð41Þ

The CSA optimised values of the aforementioned fuzzy gains are given in
Table 6. For γ =0.993 and initial conditions x1 = − 1.2, x2 = 1.2 and x3 = 0.4, the
obtained simulation results are shown in Figs. 20 and 21 and are summarized in
(Table 7).

For γ =1, the Arneodo-Coullet system has an integer order and the CSA opti-
mised values of the fuzzy gains are given in Table 8. The obtained simulation
results are shown in Figs. 22 and 23.

The depicted figures show that the tracking errors and state trajectories converge
to zero with a settling time t≈ 2.2 s for fractional order Arneodo-Coullet chaotic
system and t≈ 2.5 s for integer order Arneodo-Coullet chaotic system, indicating
that stabilisation is indeed realised. Further, the controller output as shown in
Figs. 21 and 23 is smooth and chatter-free. The performance parameters for frac-
tional and integer FSMC are recorded in Tables 7 and 9, respectively.

Table 6 CSA tuned fuzzy
gains for fractional order
Arneodo-Coullet system

Parameter CSA optimized values

kfs 85.7679

ks 0.0500
ksdot 0.1000
c1 55.3645
c2 9.7040
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Fig. 20 State trajectories of
fractional order
Arneodo-Coullet system
controlled using FSMC
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5.3 Terminal Full Order Sliding Mode Control

Conventional SMC employs a reduced order sliding surface which results in the
singularity errors in TSMC and chattering in both conventional SMC and TSMC.
Therefore, a variant of TSMC, i.e., TFOSMC was proposed by Feng et al. [26],
wherein a full order sliding surface was chosen so that the control law can be
directly obtained from the sliding surface. Consequently, the need for taking the
derivative of the sliding surface containing terms having fractional powers is
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Table 7 Performance
parameters of FSMC for
fractional order
Arneodo-Coullet system

Performance index Value

Settling time (s) 2.2

∑ Δuj j 380.62

IAE e1: 700.18
e2: 1208.0
e3: 4391.8

ITAE e1: 275.03
e2: 725.91
e3: 2171.8

Cost function 1084.272

Table 8 CSA tuned fuzzy
gains for integer order
Arneodo-Coullet system

Parameter CSA optimized values

kfs 50.9436

ks 22.0565
ksdot 12.1092
c1 39.5731
c2 9.3487
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Table 9 Performance
parameters for FSMC of
integer order Arneodo-Coullet
system

Performance index Value

Settling time (s) 2.5

∑ Δuj j 240.94

IAE e1: 940.07
e2: 1309.3
e3: 3602.5

ITAE e1: 447.95
e2: 1004.8
e3: 2376.4

Cost Function 1180.697
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eliminated, thereby avoiding control singularities. Here, a continuous control
strategy is developed to achieve a chattering free sliding mode control. Since sliding
mode control is a system dependent scheme, during ideal sliding mode motion, the
systems has desirable full order dynamics rather than reduced-order dynamics.

5.3.1 Sliding Surface Design

Considering a non-linear system with order n [26]:

x ̇1 = x2
x2̇ = x3

⋮
xṅ− 1 = xn

xṅ = f ðX, tÞ+ dðtÞ+ bðX, tÞu

ð42Þ

where, XðtÞ= x1ðtÞ x2ðtÞ . . . xnðtÞ½ �∈Rn represents the system state vector,
f ðX, tÞ and bðX, tÞ≠ 0 are two non-linear functions and u is the controller output.
The function dðtÞ represents the external disturbance.

SMC is implemented for non-linear systems to force the system states onto the
desired trajectory along the pre-defined sliding surface, through an induced ideal
sliding motion along the surface. A control strategy is developed to realize the
illustrated technique utilizing a finite-time reaching phase.

A terminal sliding mode (TSM) manifold for the above system can be selected as
follows:

s= xðnÞ1 + cnsgn xðn− 1Þ
1

� 	
xðn− 1Þ
1




 


αn +⋯+ c1sgn x1ð Þ x1j jα1

= xṅ + cnsgn xnð Þ xnj jαn +⋯+ c1sgn x1ð Þ x1j jα1
ð43Þ

Where ci and αiði=1, 2, . . . , nÞ are constants. Parameter ci can be selected such
that the polynomial pn + cnpn− 1 +⋯+ c2p2 + c1, which corresponds to TSM
manifold, satisfies Hurwitz criterion. αi can be determined according to the fol-
lowing relation:

α1 = α, n = 1
αi− 1 = αiαi+ 1

2αi+1 − αi
, i = 2, 3, . . . , n ∀n≥ 2 ð44Þ

where, αn+1 = 1, αn = α, α∈ ð1− ζ, 1Þ, ζ∈ ð0, 1Þ.
Establishing ideal sliding mode satisfied by s=0, the system dynamics follow

xṅ + cnsgn xnð Þ xnj jαn +⋯+ c1sgn x1ð Þ x1j jα1 = 0 ð45Þ

or
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x1̇ = x2
x2̇ = x3

⋮
xṅ− 1 = xn

xṅ = − cnsgnðxnÞ xnj jαn −⋯− c1sgnðx1Þ x1j jα1
ð46Þ

The above non-linear system will reach s=0 in finite time and then converge to
zero, the equilibrium point, along s=0 within finite-time, if the sliding mode
surface s is selected as (43) and the control is designed as follows:

u= b− 1ðX, tÞðueq + unÞ ð47Þ

ueq = − f ðX, tÞ− cnsgnðxnÞ xnj jαn −⋯− c1sgnðx1Þ x1j jα1 ð48Þ

uṅ + Tun = v ð49Þ

v= − kd + kT + ηð ÞsgnðsÞ ð50Þ

where unð0Þ=0; ci and αiði=1, 2, . . . , nÞ are all constants, as defined in (44); η is a
positive constant; kd is a constant defined as follows:

The derivative of dðtÞ in system (43) is bounded— dð̇tÞ

 

≤ kd where kd >0 is a
constant. Two constants T ≥ 0 and kT are selected to satisfy the following
condition:

kT ≥Tld ð51Þ

In the above condition, the control signal is equivalent to a low-pass filter, where
vðtÞ is the input and unðtÞ is the output of the filter. The Laplace transfer function of
the filter (49) is:

unðsÞ
vðsÞ =

1
s+T

ð52Þ

where ω= T is the bandwidth of the low-pass filter, vðtÞ is the virtual control and is
non-smooth because of the switching function and unðtÞ is the output of the
low-pass filter, softened to be a smooth signal. It may be noted that a pure integrator
is more difficult for hardware implementation in practical applications than the
low-pass filter that is why it has been replaced with the above low-pass filter.
Differentiating terms cisgnðxiÞ xij jαi are prevented in the TSM manifold from
deriving the control laws. Therefore, singularity is avoided, and the ideal TSM,
s=0 is nonsingular.

On the Terminal Full Order Sliding Mode Control … 415



The Lyapunov stability [38] is shown to be satisfied by taking the Lyapunov
function as V = 1

2 s
2. For the considered TSM manifold,

s= dðtÞ+ un ð53Þ

Taking the time derivative,

ṡ= dð̇tÞ+ uṅ = dð̇tÞ+Tun − Tun = dð̇tÞ+ v− Tun ð54Þ

Substituting (50) into the above equation,

s ̇= dð̇tÞ− ðkd + kT + ηÞsgnðsÞ−Tun ð55Þ

ss ̇= dð̇tÞs− ðkd + kT + ηÞ sj j−Tuns= dð̇tÞs− kd sj j
� �

+ −Tuns− kT sj jð Þ− η sj j ð56Þ

From above equations,

V ̇= ss ̇≤ − η sj j<0 for sj j≠ 0 ð57Þ

which implies that the system takes finite time to reach s=0.

5.3.2 Design and Implementation of TFOSMC

The design and implementation of TFOSMC for both fractional and integer order
Genesio and Arneodo-Coullet chaotic systems has been described in this section.

TFOSMC of Genesio Chaotic System

Considering the fractional order Genesio chaotic system, a TSM manifold is
designed as follows:

s=Dγx3 + 15sgnx3 x3j j7 1̸0 + 66sgnx2 x2j j7 1̸3 + 80sgnx1 x1j j7 1̸6 ð58Þ

where, the parameters α1, α2 and α3 are kept as 7/10, 7/13 and 7/16, respectively.
The polynomial is selected as p3 + 15p2 + 66p+80= ðp+2Þðp+5Þðp+8Þ satis-
fying Hurwitz criterion. It may be noted that the considered sliding surface designed
is free from the system dynamics.

Based on Eq. (47), u= ueq + un is designed as:

ueq =1.2x1 + 2.92x2 + 6x3 − x21 − 15sgnx3 x3j j7 1̸0

− 66sgnx2 x2j j7 1̸3 − 80sgnx1 x1j j7 1̸6
ð59Þ
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uṅ +0.1un = v ð60Þ

v= − 10sgnðsÞ ð61Þ

For γ =0.993 and initial conditions x1 = 3, x2 = − 4 and x3 = 2, the results
obtained are illustrated in Figs. 24 and 25.

For γ=1, the Genesio system has an integer order and the results obtained are
illustrated in Figs. 26 and 27.

The depicted Figs. 24 and 26 show that the state trajectories converge to zero
with a settling time t≈ 1.81 s for fractional order Genesio chaotic system and
t≈ 2.35 s for integer order Genesio chaotic system. Further, the controller outputs
shown in Figs. 25 and 27 are smooth and chatter-free. The performance parameters
for fractional and integer order TFOSMC are recorded in Tables 10 and 11,
respectively.

Time (s)
0 2 4 6 8 10

St
at

e 
Tr

aj
ec

to
rie

s

-6

-4

-2

0

2

4
x1(t)

x2(t)

x3(t)

Fig. 24 State trajectories of
fractional order Genesio
system controlled using
TFOSMC

Time (s)
0 2 4 6 8 10

C
on

tro
lle

r O
ut

pu
t

-15

-10

-5

0

5

10Fig. 25 Control action
versus time plot for TFOSMC
controlled fractional order
Genesio system

On the Terminal Full Order Sliding Mode Control … 417



Time (s)
0 2 4 6 8 10

St
at

e 
Tr

aj
ec

to
rie

s

-4

-2

0

2

4
x1(t)

x2(t)

x3(t)

Fig. 26 State trajectories of
integer order Genesio system
controlled using TFOSMC

Time (s)
0 2 4 6 8 10

C
on

tro
lle

r O
ut

pu
t

-10

-5

0

5

10Fig. 27 Control action
versus time plot for TFOSMC
controlled integer order
Genesio system

Table 10 Performance
parameters for TFOSMC of
fractional-order Genesio
system

Performance index Value

Settling time (s) 1.81

∑ Δuj j 79.61

IAE e1: 1422.2
e2: 3001.1
e3: 3999.3

ITAE e1: 507.68
e2: 1438.5
e3: 3036.2
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TFOSMC of Arneodo-Coullet Chaotic System

Considering the fractional order Arneodo-Coullet chaotic system, a TSM manifold
is designed as follows:

s=Dγx3 + 15sgnx3 x3j j7 1̸0 + 66sgnx2 x2j j7 1̸3 + 80sgnx1 x1j j7 1̸6 ð62Þ

where, the parameters α1, α2 and α3 are kept as 7/10, 7/13 and 7/16, respectively.
The polynomial is selected as p3 + 15p2 + 66p+80= ðp+2Þðp+5Þðp+8Þ satis-
fying Hurwitz criterion. It may be noted that the considered sliding surface designed
is free from the system dynamics.

Based on Eq. (47), u= ueq + un is designed as:

ueq = − 0.8x1 + 1.1x2 + 0.45x3 + x31 − 15sgnx3 x3j j7 1̸0

− 66sgnx2 x2j j7 1̸3 − 80sgnx1 x1j j7 1̸6
ð63Þ

uṅ +0.1un = v ð64Þ

v= − 10sgnðsÞ ð65Þ

For γ =0.993 and initial conditions x1 = − 1.2, x2 = 1.2 and x3 = 0.4, the results
for the state trajectories and the controller output are shown in Figs. 28 and 29,
respectively.

For γ =1, the Arneodo-Coullet system has an integer order and the results
obtained are shown in Figs. 30 and 31.

The depicted Figs. 28 and 30 show that the state trajectories converge to zero
with a settling time t≈ 1.8 s for fractional order Arneodo-Coullet chaotic system
and t≈ 1.9 s for integer order Arneodo-Coullet chaotic system, indicating that
stabilisation is indeed realised. Further, the controller output as shown in Figs. 29
and 31 is smooth and chatter-free. The performance parameters for fractional and
integer FSMC are recorded in Tables 12 and 13, respectively.

Table 11 Performance
parameters for TFOSMC of
integer order Genesio system

Performance index Value

Settling time (s) 2.35

∑ Δuj j 51.507

IAE e1: 1426.1
e2: 3003.9
e3: 4023.7

ITAE e1: 509.62
e2: 1427.9
e3: 3041.6
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Fig. 28 State trajectories of
fractional order
Arneodo-Coullet system
controlled using TFOSMC
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6 Results and Discussions

In this chapter, TFOSMC and FSMC control schemes are successfully implemented
for the considered two chaotic systems namely Genesio and Arneodo-Coullet. The
chaotic systems are considered in integer as well as in fractional order dynamics and
both the control schemes are therefore implemented in the form of integer as well as
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8Fig. 31 Control action
versus time plot for TFOSMC
controlled integer order
Arneodo-Coullet system

Table 12 Performance
parameters for TFOSMC of
fractional-order
Arneodo-Coullet system

Performance index Value

Settling time (s) 1.8

∑ Δuj j 29.1851

IAE e1: 624.21
e2: 1200.2
e3: 1381.6

ITAE e1: 232.66
e2: 631.49
e3: 1230.3

Table 13 Performance
parameters for TFOSMC of
integer order Arneodo-Coullet
system

Performance index Value

Settling time (s) 1.9

∑ Δuj j 31.832

IAE e1: 625.54
e2: 1201.2
e3: 1396.6

ITAE e1: 233.50
e2: 629.914
e3: 1231.8
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fractional order controllers. The fractional order controllers were applied to frac-
tional order chaotic systems and the integer order controllers were applied to integer
order chaotic systems. External disturbances and uncertainties were also considered
for all the resulting eight cases:

1. Integer order FSMC on integer order Genesio system
2. Integer order TFOSMC on integer order Genesio system
3. Fractional order FSMC on fractional order Genesio system
4. Fractional order TFOSMC on fractional order Genesio system
5. Integer order FSMC on integer order Arneodo-Coullet system
6. Integer order TFOSMC on integer order Arneodo-Coullet system
7. Fractional order FSMC on fractional order Arneodo-Coullet system
8. Fractional order TFOSMC on fractional order Arneodo-Coullet system

For arriving at the final results, following comparative studies are performed
between the performances of TFOSMC and FSMC. For this purpose, the perfor-
mance of fractional order TFOSMC, applied to the fractional order chaotic systems,
was compared with the fractional order FSMC, applied to the same plant. Similarly,
the performance of integer order TFOSMC, applied to the integer order chaotic
systems, was compared with the integer order FSMC, applied to the same plant. For
each case, the state trajectories and controller output were compared graphically in
addition to the other performance indices like settling time, amount of chattering,
IAE and ITAE organized and presented in a tabular form. Resulting percentage
improvements were also calculated and have been presented for each of these per-
formance indices which clearly demonstrate the efficiency of TFOSMC over FSMC.

6.1 Comparison Between FSMC and TFOSMC

The state trajectories of the fractional order Genesio system when controlled by
fractional order FSMC and TFOSMC are as shown along with the controller out-
puts for the same in Fig. 32. Figure 32a–c show the comparative time response of
the individual state trajectories and Fig. 32d depicts the controller output for each of
the two control schemes.

The state trajectories of the integer order Genesio system when controlled by
integer order FSMC and TFOSMC are as shown along with the controller outputs
for the same in Fig. 33. Figure 33a–c show the comparative time response of the
individual state trajectories and Fig. 33d depicts the controller output for each of the
two control schemes.

The data comparing the performance indices of FSMC and TFOSMC for
Genesio chaotic system is recorded in Table 14. As tabulated, the settling time
shows an improvement of 59.77% and 30.88% for fractional and integer TFOSMC,
respectively. Further, the chattering also reduces by 56.24% and 76.5% in the case
of fractional and integer order TFOSMC, respectively. It can be inferred all the
performance indices show a positive percentage improvement.
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Fig. 32 Comparative performance of Fractional order FSMC and fractional order TFOSMC on
fractional order Genesio System: a state x1; b state x2; c state x3; d controller output
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Fig. 33 Comparative performance of integer order FSMC and TFOSMC on integer order Genesio
System: a state x1; b state x2; c state x3; d controller output
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The state trajectories of the fractional order Arneodo-Coullet system when
controlled by fractional order FSMC and TFOSMC are as shown along with the
controller outputs for the same in Fig. 34. Figure 34 (a)-(c) show the comparative
time response of the individual state trajectories and Fig. 34 (d) depicts the con-
troller output for each of the two control schemes.

The state trajectories of the integer order Arneodo-Coullet system when con-
trolled by integer order FSMC and TFOSMC are as shown along with the controller

Table 14 Controller performance comparison for Genesio chaotic system

Performance
index

Fractional order system ðγ =0.993Þ Integer order system ðγ =1Þ
Fractional
FSMC

Fractional
TFOSMC

Improvement
(%)

FSMC TFOSMC Improvement
(%)

Settling time 4.5 1.81 59.77 3.4 2.35 30.88

∑ Δuj j 181.95 79.61 56.24 223.19 51.50 76.50

IAE e1
e2
e3

1454.50
3001.80
4082.40

1422.20
3001.10
3999.30

2.20
0.02
2.03

1429.30
3005.60
4416.20

1426.10
3003.90
4023.70

0.20
0.08
8.89

ITAE e1
e2
e3

586.06
1483.40
3071.80

507.68
1438.50
3036.20

13.40
3.03
1.13

552.27
1432.00
3192.40

509.62
1427.90
3041.60

7.78
0.34
4.73
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Fig. 34 Comparative performance of fractional FSMC and TFOSMC on fractional order
Arneodo-Coullet System: a state x1; b state x2; c state x3; d controller output
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outputs for the same in Fig. 35. Figure 35 (a)-(c) show the comparative time
response of the individual state trajectories and Fig. 35 (d) depicts the controller
output for each of the two control schemes.

The data comparing the performance parameters of FSMC and TFOSMC for
Genesio chaotic system is recorded in Table 15. As tabulated, the settling time
shows an improvement of 29.42% and 24% for fractional and integer TFOSMC,
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Fig. 35 Comparative performance of integer order FSMC and TFOSMC on integer order
Arneodo-Coullet System: a state x1; b state x2; c state x3; d controller output

Table 15 Controller performance comparison for Arneodo-Coullet Chaotic system

Performance
index

Fractional order system ðγ =0.993Þ Integer order system ðγ =1Þ
Fractional
FSMC

Fractional
TFOSMC

Improvement
(%)

FSMC TFOSMC Improvement
(%)

Settling time 2.2 1.8 29.42 2.5 1.9 24.00

∑ Δuj j 380.62 29.19 92.30 240.94 31.83 86.70

IAE e1
e2
e3

700.18
1208.00
4391.80

624.21
1200.20
1381.60

10.80
0.66
68.40

940.07
1309.30
3602.50

625.54
1201.20
1396.60

33.52
8.23
61.20

ITAE e1
e2
e3

275.03
725.91
2171.80

232.66
631.49
1230.30

15.63
15.63
43.30

447.95
1004.80
2376.40

233.50
629.91
1231.80

47.80
37.30
48.10
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respectively. Further, the chattering also reduces by 92.30% and 86.70% in the case
of fractional and integer order TFOSMC, respectively. It can be inferred from the
table that all the performance indices show a positive percentage improvement.

7 Conclusions and Future Scope

In this chapter, application of a recently developed control scheme known as ter-
minal full order sliding mode control (TFOSMC) has been successfully explored
for efficient control of uncertain chaotic systems. Two important chaotic systems,
Genesio and Arneodo-Coullet have been considered in fractional order as well as
integer order dynamics. The investigated fractional and integer order chaotic sys-
tems are controlled using fractional order TFOSMC and integer order TFOSMC,
respectively and the control performance has been assessed for settling time,
amount of chattering, integral absolute error (IAE) and integral time absolute error
(ITAE). Furthermore, to gauge the relative performance of TFOSMC, a compara-
tive study with its potential counterpart, Fuzzy Sliding Mode Control (FSMC),
tuned by Cuckoo Search Algorithm for minimum IAE and amount of chattering
was also carried out and the relative performance was assessed using settling time,
amount of chattering, IAE and ITAE. From the presented intensive simulation
studies on integer order and fractional order Genesio and Arneodo-Coullet chaotic
systems, it was clearly observed that all the above mentioned performance indices
exhibited significant improvements when TFOSMC was employed instead of
FSMC. Another notable outcome of this study has been the significantly lower and
smoother controller output and reduced chattering in case of TFOSMC. Based on
these detailed investigations and presented results it is concluded that TFOSMC is a
better control scheme over FSMC to control the chaotic systems.

Future work, in this line, can be pursued with the performance investigations of
cross implementations of the controllers and systems i.e. application of
fractional-order controllers on integer order plants and vice versa. Furthermore,
applications on the other chaotic systems can also be taken up. Apart from con-
trolling the sys-tem trajectories, investigations on the chaotic systems’ synchro-
nization can also be considered.
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