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Abstract The chaotic dynamics of fractional-order systems and their applications in

secure communication have gained the attention of many recent researches.

Fractional-order systems provide extra degrees of freedom and control capability

with integer-order differential equations as special cases. Synchronization is a nec-

essary function in any communication system and is rather hard to be achieved for

chaotic signals that are ideally aperiodic. This chapter provides a general scheme of

control, switching and generalized synchronization of fractional-order chaotic sys-

tems. Several systems are used as examples for demonstrating the required mathe-

matical analysis and simulation results validating it. The non-standard finite differ-

ence method, which is suitable for fractional-order chaotic systems, is used to solve

each system and get the responses. Effect of the fractional-order parameter on the

responses of the systems extended to fractional-order domain is considered. A con-

trol and switching synchronization technique is proposed that uses switching para-

meters to decide the role of each system as a master or slave. A generalized scheme

for synchronizing a fractional-order chaotic system with another one or with a linear

combination of two other fractional-order chaotic systems is presented. Static (time-

independent) and dynamic (time-dependent) synchronization, which could generate

multiple scaled versions of the response, are discussed.
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1 Introduction

Chaotic systems and their implementations have been studied heavily during the last

four decades [41, 42, 45, 50, 80]. The sensitivity of chaotic systems to parame-

ters and initial conditions is required for many applications such as chemical reac-

tions [18], biological systems [33, 67], circuit theory [40, 46, 51, 52], electron-

ics [62], control [4, 5], secure communication [14, 16, 27] and cryptography [1, 2,

6, 26, 47, 48, 56, 58–60]. Much attention has been devoted to the search for bet-

ter and more efficient methods for obtaining the analytical or numerical solutions or

controlling the responses of chaotic systems. During the last few decades, fractional

calculus has also become a powerful tool in describing the dynamics of complex sys-

tems which appear frequently in several branches of science and engineering. There-

fore, fractional differential equations and their numerical techniques find numerous

applications in the field of viscoelasticity, robotics, feedback amplifiers, electrical

circuits, control theory, electro analytical chemistry, fractional multi-poles, electro-

magnetics, bioengineering, and image encryption [10, 17, 30, 39, 49, 54, 55, 57,

63, 64].

The chaotic dynamics of fractional-order systems began to attract the interest of

the scientific community in recent years associated with the advances in numeri-

cal methods for solving fractional-order systems and their electronic implementa-

tions [10]. In addition, fractional calculus is more suitable for modeling the con-

tinuous non-standard behaviors of nature due to the flexibility offered by the extra

degrees of freedom. Recently, most of the chaotic dynamical systems based on

integer-order calculus have been extended into the fractional-order domain to fit the

experimental data much precisely than the integer-order modeling.

The coupling of two or more chaotic systems is referred to as synchronization.

Control and synchronization of fractional-order chaotic systems have found their way

to many applications such as biological and physical systems, structural engineering,

ecological models, secure communication and cryptography [3, 7–9, 11, 12, 15,

22, 35, 36, 66, 76, 79]. Since the introduction of the concept of synchronization of

two chaotic signals starting at different initial conditions [38], there has been a lot

of work on chaos control and synchronization. Chaotic synchronization represents a

challenge due to the sensitivity to initial conditions characteristic of chaotic systems.

Two trajectories starting at slightly different initial conditions exponentially diverge

from each other in the long-term evolution. Several papers handled conventional

synchronization of two identical chaotic systems, their anti-synchronization [21],

as well as synchronization of two different systems [77]. More recent researches

extended the concept to fractional-order domain [33], introduced generalized scaled

dynamic (time-dependent) synchronization [43, 61], and provided the capability

of control and switching for exchanging roles between master and slave systems

[19, 44].

The aim of this chapter is to introduce several methods for control and synchro-

nization of fractional-order chaotic systems using active nonlinear control technique.

Several chaotic systems are extended to fractional-order domain and the effect of the
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fractional-order parameter on the output responses is studied. The concept of active

control using two on/off switches for the synchronization between two fractional-

order chaotic systems is proposed. A generalized synchronization scheme is applied

to synchronize two identical or different fractional-order chaotic systems. In addition,

a new chaotic system is formed as a linear combination of two systems where the

generalized synchronization scheme is applied to synchronize a system with the lin-

ear combination of two other systems. A block diagram of the generalized synchro-

nization scheme and the associated mathematical analysis are presented. The control

signals are obtained in terms of the responses, parameters and scaling factors. Gener-

alizations permit conventional synchronization, anti-synchronization, static scaling,

as well as dynamic scaling where the type of synchronization and the scaling factor

vary as time advances. Mathematical analysis and various examples are presented

at different values of fractional-orders using Grünwald-Letnikov method of approx-

imation and Non-Standard Finite Difference (NSFD) discretization technique [24].

Simulation results, including time series and strange attractors, are consistent with

the performed analysis.

Section 2 of this chapter provides a brief introduction to relevant concepts and

a survey of previous works on control and synchronization of chaotic dynamics.

Section 3 provides the preliminaries of numerical solution of fractional-order differ-

ential equations and reviews the properties of the systems chosen for numerical sim-

ulations. Section 4 illustrates the effect of parameters and fractional-orders on the

responses of the utilized chaotic systems. Section 5 presents active nonlinear con-

trol and synchronization using two on/off switches for the synchronization between

two different chaotic systems. Section 6 discusses the analysis required to get the

control signals, which is suitable for achieving any required synchronization case.

This analysis is validated through simulation results for two identical or different

fractional-order chaotic systems. Section 7 proposes analysis and simulation results

in case of synchronizing a fractional-order chaotic system with a linear combination

of two other systems. In addition, results show that the linear combination provides

another way of controlling the obtained attractor diagram. Finally, Sect. 8 summa-

rizes the main contributions of the chapter.

2 Control and Synchronization of Chaotic Dynamics

System parameters and fractional-orders represent a way of controlling the type of

obtained response with no external control procedure. Chaos control requirements

differ according to the given specifications and application. It is sometimes required

to stabilize the system and force it to follow a certain periodic solution, while other

cases require conservative systems with quasi-periodic solutions. Other modeling

applications as well as pseudo-random number generation and utilization in cryp-

tography require chaotic responses.
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Continuous flows expressed in terms of ordinary differential equations can have

numerous types of post transient solution(s). Reporting when these systems of dif-

ferential equations exhibit chaos represents a rich research field. Research efforts

have been exerted (e.g., [25, 65]) to come up with simple novel chaotic flows other

than the well-known conventional systems (Lorenz, Rössler, . . . ). These researches

depend on Poincaré-Bendixson theorem, [20] which states that for any autonomous

first-order ordinary differential equations with continuous functions to have chaotic

solutions it requires at least three dimensions with at least one nonlinear term. Some

systematic numerical search methods have been developed for detecting the presence

of chaotic solutions for new equations that contain multiple parameters. These para-

meters mainly appear as the coefficients of each term in the system of differential

equations. Methods aim at setting many coefficients to zero with the others set to ±1
if possible or otherwise to a small integer or decimal fraction with the fewest possible

digits. These systems, with the least number of existing coefficients and nonlinear

terms, should exhibit chaotic properties of aperiodic bounded long-time evolution

and sensitive dependence on initial conditions for some ranges of parameters.

Continuous chaotic systems can be classified into two wide categories. Dissipa-

tive systems, to which most of the studied systems belong, usually exhibit chaos

for most initial conditions in a specified range of parameters. On the other hand, a

conservative system exhibits periodic and quasi-periodic solutions for most values

of parameters and initial conditions, and can exhibit chaos for special values only.

Consequently, dissipative systems usually appear in most applications of chaos the-

ory such as chaos-based communication, physical and financial modeling. It should

be noted that conservative systems have another different set of applications where

they are useful to study the development of chaos in some kinds of systems.

Another important classification of chaotic or strange attractors is either self-

excited or hidden attractors. A self-excited attractor has a basin of attraction that

is associated with or excited from unstable equilibria. For example, the well-known

Lorenz and Rössler attractors are self-excited. From a computational point of view,

this allows one to use a numerical method in which a trajectory started from a point,

on the unstable manifold in the neighborhood of an unstable equilibrium, reaches an

attractor and identifies it. On the other hand, a hidden attractor has a basin of attrac-

tion that does not intersect with small neighborhoods of any equilibrium points. Hid-

den attractors cannot be found by the previous method and are important in engineer-

ing applications because they allow unexpected and potentially disastrous responses

to perturbations in a structure like a bridge or an airplane wing.

As for external control methods, Pecora and Carroll [38] were the first to intro-

duce the concept of synchronization of two systems with different initial conditions.

Many chaotic synchronization schemes have also been introduced during the last

decade such as adaptive control [68–73], time delay feedback approach [13, 37],

sliding mode control [11, 23], nonlinear feedback synchronization, and active con-

trol [22]. However, most of these methods have been tested for two identical chaotic

systems. When Ho and Hung [22] presented and applied the concept of active con-

trol method on the synchronization of chaotic systems, many recent papers inves-

tigated this technique for different systems and in different applications [28, 74].
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The synchronization of three chaotic fractional-order Lorenz systems with bidirec-

tional coupling in addition to the chaos synchronization of two identical systems via

linear control were investigated in [34, 78]. Moreover, two different fractional-order

chaotic systems can be synchronized using active control as in [7]. The hyper-chaotic

synchronization of the fractional-order Rössler system, which exists when its order

is as low as 3.8, was shown by Yua and Lib [78].

Anti-synchronization is a phenomenon in which the state vectors of the synchro-

nized systems have the same amplitude but opposite signs to those of the driving

system. Therefore, the sum of two signals is expected to converge to zero when anti-

synchronization appears. Since the discovery of anti-synchronization experimentally

in the context of self-synchronization, it has been applied in many different fields,

such as biological and physical systems, structural engineering, and ecological mod-

els [75]. Liu et al. [29] shows that either synchronization or anti-synchronization can

appear depending on the initial conditions of the coupled pendula. Active control

method is used to study the anti-synchronization for two identical and nonidentical

systems [7, 22].

Before we proceed to presenting our work on control and synchronization of

fractional-order chaotic systems, the numerical methods associated with fractional-

order differential equations are briefly reviewed in the next section.

3 Fractional-Order Chaotic Systems and Their Numerical
Solution

Finding robust and stable numerical and analytical methods for solving the frac-

tional differential equations has recently been an active research topic. These meth-

ods include the fractional difference method, the Adomian decomposition method,

the homotopy-perturbation method, the variational iteration method, and the Adams-

Bashforth-Moulton method. Recently, the non-standard finite difference (NSFD)

scheme [31, 32] has been applied for the numerical solutions of fractional differential

equations [24]. The scheme has been developed as an alternative method for solving

a wide range of problems whose mathematical models involve algebraic, differen-

tial, biological models, and chaotic systems. The definition of Grünwald-Letnikov

derivative has been used in numerical analysis to discretize the fractional differen-

tial equations. The technique has many advantages over the classical techniques, and

provides an efficient numerical solution.

The Caputo fractional derivative [17] of order 𝛼 is defined as:

D𝛼f (t) = d𝛼 f (t)
dt𝛼

=

{ 1
𝛤 (m−𝛼)

∫ t
0

f m(𝜏)
(t−𝜏)𝛼−m+1 d𝜏 m − 1 < 𝛼 < m

dm

dtm f (t) 𝛼 = m
,

(1)



330 A.G. Radwan et al.

where m is the first integer greater than 𝛼 and 𝛤 (.) is the gamma function defined by:

𝛤 (z) =
∞

∫
0

e−ttz−1dt, 𝛤 (z + 1) = z𝛤 (z). (2)

Consider the fractional-order differential equation

D𝛼x(t) = f (t, x). (3)

Grünwald-Letnikov method of approximation [24] is defined as follows:

D𝛼x(t) = lim
h→0

h−𝛼
t∕h∑
j=0

(−1)j
(
𝛼

j

)
x(t − jh), (4)

where h is the step size. This equation can be discretized as follows:

n+1∑
j=0

cj
𝛼x(t − jh) = f (tn, x(tn)), j = 1, 2, 3,… (5)

where tn = nh and cj
𝛼

are the Grünwald-Letnikov coefficients defined as:

cj
𝛼 =

(
1 − 1 + 𝛼

j

)
cj−1

𝛼

, j = 1, 2, 3,… , c0𝛼 = h−𝛼. (6)

The NSFD discretization technique is based on replacing the step size h by a function

𝜙(h) [24, 33] and applying it with (5) to solve (3). In the rest of this paper, NSFD

with 𝜙(h) = 1 − e−h
is used to solve the systems of differential equations. In addi-

tion, a time step of 0.005 is employed according to the system properties and a total

simulation time of 200 points is used except where stated otherwise.

Same algebraic manipulation can be applied to a system of three fractional-order

differential equations

D𝛼x = f1(x, y, z), (7a)

D𝛽y = f2(x, y, z), (7b)

D𝛾z = f3(x, y, z), (7c)

where 0 < 𝛼, 𝛽, 𝛾 ≤ 1, to obtain the corresponding solutions. All state variables (x,

y, z, . . . ), scaling factors (sx, sy, sz, . . . ), and control functions (ux, uy, uz, . . . ) that

will appear later on are in general functions of time, i.e., their values may change at

every time instant.
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3.1 Systems Utilized for Synchronization Purposes

The first three systems are Lü, Newton-Leipnik and Chua’s circuit, which have

appeared before in fractional-order form in [39, 53] and others. The rest of the uti-

lized systems appeared before in integer-order [25, 65], yet, in this section, they are

extended to fractional-order domain. One of the systems is the slave, while the master

may be one of the other two systems or a linear combination of them as detailed later

on in Sect. 7. Table 1 shows the equations of the selected systems in fractional-order

domain and their strange attractors in the integer-order case. They are a dissipative

Table 1 Equations of the utilized systems, their properties, discretized solutions and attractor dia-

grams



332 A.G. Radwan et al.

hidden attractor with no equilibria and quadratic non-linearity [25], a dissipative

self-excited attractor with quadratic non-linearity [65], and a conservative one [25]

with the equations shown in Table 1.

Discretized solutions to the systems could be obtained using (5) and NSFD. Non-

linear terms including the same state variable that is being calculated are replaced

with the aid of the nonlocal discrete representations. For example, in the equation of

D𝛽y, the following rules are used for replacement:

y ≈ yn y2 ≈ ynyn+1, xy ≈ 2xn+1yn − xn+1yn+1, and zy ≈ 2znyn − znyn+1. (8)

The relations used for solving the systems are given in Table 1.

Subscripts will be used later on to characterize different roles that a system could

act as a master or slave. There are various possible values for the fractional-orders

where the effect of fractional-orders and criteria of choosing them are studied in the

next section.

4 Sensitivity to Fractional-Orders and Parameters
Variation

In this section, we discuss the sensitivity of the six presented systems to parameters

and fractional-orders. Numerical simulations are used to identify when they generate

periodic or chaotic responses. In addition, we compare the shape of their attractors

in integer-order and fractional-order. For simplicity, the three fractional-orders in

Table 2 Lü system responses versus fractional-order 𝛼 and parameter a
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Table 3 Newton-Leipnik system responses versus fractional-order 𝛼 and parameters

Table 4 Chua’s circuit system responses versus fractional-order 𝛼 and parameter a

the system of fractional differential equations are assumed to be equal, i.e., in this

section 𝛼 = 𝛽 = 𝛾 and the unified fractional-order is denoted by 𝛼.

Tables 2, 3, 4, 5, 6 and 7 show the post-transient time series of the 3 phase space

dimensions x, y and z as well as the post-transient attractor diagram with the initial

point marked in red illustrating the obtained type of solution (periodic or chaotic)

for different values of the fractional-order. It should be noted that in the upcoming
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Table 5 Response type of the dissipative system with hidden attractor at various values of

fractional-order 𝛼 and parameter a



Control and Synchronization of Fractional-Order Chaotic Systems 335

Table 6 Response type of the dissipative system with self-excited attractor at various values of

fractional-order 𝛼 and parameters a and b

Table 7 Conservative system responses versus fractional-order 𝛼 and parameter a
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sections, transient regions of the time series and attractors are shown to illustrate that

synchronization takes place early at the beginning of simulation time.

The dissipative system with hidden attractor exhibits a narrow range of fractional-

orders that yield chaotic behavior and may exhibit divergent responses. Conse-

quently, it is utilized in Sects. 6 and 7 as a slave system to control its response. For

the dissipative system with self-excited attractor, the parameter c is just a scaling

parameter [65], so the effect of a, b as well as 𝛼 is considered.

5 Control and Switching Synchronization

In this section, a control and switching technique for synchronizing the response

of any chaotic system to follow another pattern is presented. This can be achieved

through two switches that control the role of each system whether it acts as a master

or a slave. Figure 1 shows the general block diagram that describes the proposed tech-

nique for two chaotic systems. Conventional synchronization is defined as changing

the response of the slave system to synchronize with the master chaotic system and

exactly follow its pattern. This purpose is achieved using active control functions

which affect only the slave response without any loading on the master system [7,

43].

The switching synchronization technique is applied to the Lü system and the

Newton-Leipnik system. Hence, their equations with the switches and control func-

tions effect being considered are given by:

D𝛼x1 = a1(y1 − x1) − S1ux, (9a)

D𝛽y1 = b1y1 − x1z1 − S1uy, (9b)

D𝛾z1 = x1y1 − c1z1 − S1uz, (9c)

and

D𝛼x2 = −a2x2 + y2 + 10y2z2 + S2ux, (10a)

D𝛽y2 = −x2 − 0.4y2 + 5x2z2 + S2uy, (10b)

D𝛾z2 = b2z2 − 5x2y2 + S2uz, (10c)

where S1 and S2 are on-off parameters (digital bit), which either have the values

“1” or “0” according to the required dependence between both systems as shown in

Fig. 1. The unknown terms (ux, uy, uz) in (9) and (10) are active control functions to

be determined, and the error functions can be defined as:
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Fig. 1 Block diagram of the switched synchronization scheme between two different fractional-

order chaotic systems

ex = x2 − x1, ey = y2 − y1, ez = z2 − z1. (11)

Equation (11) together with (9) and (10) yield the error system

D𝛼ex = −a2(ex + x1) + (1 + 10(ez + z1))(ey + y1) − a1(y1 − x1) + (S1 + S2)ux,

(12a)

D𝛽ey = −(ex + x1) − 0.4(ey + y1) + 5(ex + x1)(ez + z1) − b1y1 + x1z1 + (S1 + S2)uy,

(12b)

D𝛾ez = b2(ez + z1) − 5(ex + x1)(ey + y1) − x1y1 + c1z1 + (S1 + S2)uz. (12c)

The active control functions (ux, uy, uz) are defined as follows

(S1 + S2)ux = Vx(ex) − (1 + 10(ez + z1))(ey + y1) + a1(y1 − x1) + a2x1, (13a)

(S1 + S2)uy = Vy(ey) + ex + x1 + (0.4 + b1)y1 − 5(ex + x1)(ez + z1) − x1z1, (13b)

(S1 + S2)uz = Vz(ez) − (b2 + c1)z1 + 5(ex + x1)(ey + y1) + x1y1. (13c)

The terms Vx, Vy and Vz are linear functions of the error terms ex, ey and ez. With

the choice of ux, uy and uz given by (13) the error system between the two chaotic

systems (12) becomes

D𝛼ex = −a2ex + Vx(ex), D𝛽ey = −0.4ey + Vy(ey), D𝛾ez = b2ez + Vz(ez). (14)
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There is no need to solve (14) if the solution converges to zero. Therefore, the control

terms Vx, Vy and Vz can be chosen such that the system (15) becomes stable with zero

steady state. ⎛⎜⎜⎝
Vx(ex)
Vy(ey)
Vz(ez)

⎞⎟⎟⎠ = A
⎛⎜⎜⎝

ex
ey
ez

⎞⎟⎟⎠ , (15)

where A is a 3 × 3 real matrix chosen so that all eigenvalues 𝜆i of the system (15)

satisfy the following condition:

|arg(𝜆i)| > 𝛼𝜋

2
. (16)

Hence, the matrix A is chosen as follows

A =
⎛⎜⎜⎝

a2 − kx 0 0
0 0.4 − ky 0
0 0 −b2 − kz

⎞⎟⎟⎠ . (17)

Then the eigenvalues of the linear system (15) satisfy the necessary and sufficient

condition (16) for all fractional-orders 𝛼 < 2 [53]. In this specific case, kx = ky =
kz = 100 is chosen to overcome the large difference between ranges of x, y and z
between the two chosen systems.

Fig. 2 Static switching setting Lü as a master and Newton-Leipnik as a slave a Time series,

b Attractor diagrams
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Fig. 3 Static switching setting Newton-Leipnik as a master and Lü as a slave a Time series,

b Attractor diagrams

Simulation results validate the previous analysis as shown in Fig. 2. Time

series and attractor diagrams are shown for the case (S1, S2) = (0, 1) at (𝛼, 𝛽, 𝛾) =
(0.95, 0.96, 0.97). Lü system works normally and the Newton-Leipnik system adapts

its response to follow the Lü system. Time series of Lü are represented by the solid

lines while the dotted lines correspond to those of Newton-Leipnik. Similarly, Fig. 3

shows time series and attractor diagrams in the reverse case when (S1, S2) = (1, 0).
Dynamic or mixed synchronization could also be achieved in which the switches

become functions of time. In this case, the role of each system is not fixed throughout

the simulation time, i.e., both systems can exchange their roles at any time instant.

6 Synchronization of Two Fractional-Order Chaotic
Systems

6.1 Generalized Synchronization

Generalized synchronization aims at changing the response of the slave system to

follow a given relation with the master system. Based on the active control method

for synchronization and anti-synchronization [21] and the generalized synchroniza-
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Fig. 4 Block diagram of the generalized synchronization scheme between two different fractional-

order chaotic systems

tion that has been applied to identical systems [43], a more general synchroniza-

tion scheme is adapted as shown in Fig. 4 such that it becomes suitable for different

systems too. For 3D phase space systems, the error vector between the generated

responses of the two synchronized systems is given by

e =
⎛⎜⎜⎝

ex
ey
ez

⎞⎟⎟⎠ =
⎛⎜⎜⎝

xm + sxxs
ym + syys
zm + szzs

⎞⎟⎟⎠ , (18)

where (xm, ym, zm) and (xs, ys, zs) are the responses of the master and slave systems,

respectively. Hence,

xs(t) = −
xm(t)
sx(t)

, ys(t) = −
ym(t)
sy(t)

, zs(t) = −
zm(t)
sz(t)

. (19)

This generalized synchronization permits various special cases to appear at dif-

ferent values of the scaling factors. The cases listed below are used in this section to

validate the proposed generalized synchronization technique.

6.1.1 Case 1: Scaled Synchronization and Anti-synchronization

In this case, each si, i ∈ {x, y, z}, is a constant value which is time-independent. All

responses (x, y and z for 3-D) could be scaled with the same factor or each with a

different factor. For si negative, the slave response is in phase (synchronized) with

the master response, while for positive values of si they have an opposite phase (anti-
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Fig. 5 Examples on scaling factors a s(t) = −2 + int(t∕20) and b s(t) = 1 + (mod(t∕20))∕20

synchronized). Moreover, when |si| < 1, the slave response has a higher amplitude

than the master response, whereas it has a lower amplitude when |si| > 1 according

to (19).

6.1.2 Case 2: Scaling Factors si(t) Are Functions of Time

Multiple cases in which si is a function of time could be described. For example,

si(t) = c + int(t∕m), where c, m are constants and int(.) returns the quotient of integer

division. This is a stair-case function which performs scaling in a variable manner as

time advances. The type of synchronization (anti-synchronization) and/or its scale

change every m time units as the example shown in Fig. 5a. Another example is

si(t) = c + (mod(t∕m))∕m, where c, m are constants and mod(.) returns the remainder

of integer division. This is a periodic ramp function which is time-dependent too. The

value of the scaling factor increases within every interval of m time units and resets

at the end of each interval as the example shown in Fig. 5b.

6.2 Simulation Results for Two Fractional-Order Systems

First, we consider generalized synchronization of two identical systems in which

only parameters and/or initial conditions differ. For this purpose, fractional-order

Chua’s circuit is used which is a 4-D system. The slave (response) and master (drive)

systems are described, respectively, by the following equations. However, the initial

condition of the drive system is different from that of the response system.

D𝛼x1 = a1(y1 − f (w1)x1) + ux, D𝛽y1 = z1 − x1 + uy,

D𝛾z1 = −b1y1 + c1z1 + uz, Dw1 = x1 + uw. (20)
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D𝛼x2 = a2(y2 − f (w2)x2), D𝛽y2 = z2 − x2,
D𝛾z2 = −b2y2 + c2z2, Dw2 = x2. (21)

Extending Eq. (18) to 4-D, substituting in it and calculating the fractional deriv-

atives of the error functions, the set of Eq. (22) is obtained.

D𝛼ex = a2(y2 − f (w2)x2) + sx(a1(y1 − f (w1)x1) + ux), (22a)

D𝛼ey = z2 − x2 + sy(z1 − x1 + uy), (22b)

D𝛼ez = −b2y2 + c2z2 + sz(−b1y1 + c1z1 + uz), (22c)

D𝛼ew = x2 + sw(x1 + uw). (22d)

For the purpose of synchronization, all terms except those which are function of

the corresponding error term should be canceled. For example, in the equation of

D𝛼ex only ex should appear. Hence, the vector of control functions u is given by:

ux =
1
sx

(
−a2(y2 − f (w2)x2) − sx(−a1(y1 − f (w1)x1)) − kxex

)
, (23a)

uy =
1
sy

(
−z2 + x2 − sy(z1 − x1) − kyey

)
, (23b)

uz =
1
sz

(
b2y2 − c2z2 − sz(−b1y1 + c1z1) − kzez

)
, (23c)

uw = 1
sw

(
−x2 − swx1 − kwew

)
, (23d)

which result in decaying error functions as the values of kx, ky, kz and kw are posi-

tive. The procedure is simple for this case, however, a more detailed analysis for the

general case is provided in Sect. 7.

Figure 6 shows samples of successfully achieved generalized synchronization

between the slave and master system at (𝛼, 𝛽, 𝛾) = (0.93, 0.95, 0.97) for different

parameter values (a1, b1, c1) = (4.5, 0.9, 0.6) and (a2, b2, c2) = (4, 1, 0.65) and start-

ing at different initial conditions (x10, y10, z10,w10) = (0.02, 0.03, 0.02, 0.06) and

(x20, y20, z20,w20) = (0.01, 0.02, 0.01, 0.05).
Figure 6a shows static synchronization with sx = −3 where the x-time series of

the slave synchronizes with that of the master system at a scaling factor of (1/3).

Figure 6b shows static synchronization with sy = 0.25 where the y-time series of
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Fig. 6 Generalized synchronization of Chua’s circuit at a sx = −3, b sy = 0.25, c sz = −0.5 +
int(t∕20) and d Attractor diagrams of the slave system (in red) different from the original attractor

(in blue)

the slave is anti-synchronized with that of the master system at a scaling factor of

4. Figure 6c shows dynamic synchronization at sz(t) = −0.5 + int(t∕20) where the

scaling factor starts with a value equals −0.5 and increases by 1 every 20 time units.

Figure 6d shows the resulting attractor diagram with new shape after applying these

scaling functions.

Further simulation results are also presented to illustrate the generalized synchro-

nization of two different fractional-order systems whether they generate periodic

or chaotic responses. The following equations represent a dissipative hidden attrac-

tor [25] as the slave system (system 1) as well as a dissipative self-excited attrac-

tor [65] (system 2) and a conservative system [25] (system 3) as the master systems

alternatively.

D𝛼x1 = −y1 + ux, D𝛽y1 = x1 + z1 + uy, D𝛾z1 = 2y12 + x1z1 − a1 + uz.

(24)

D𝛼x2 = y2, D𝛽y2 = z2, D𝛾z2 = −y2 − a2z2 + b2

(
x22

c2
− c2

)
. (25)

D𝛼x3 = y3, D𝛽y3 = −x3 − z3y3, D𝛾z3 = y32 − a3. (26)

The methodology of obtaining the control signals using active nonlinear control

method is performed similar to the previous section and as discussed in [44].
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Fig. 7 Static synchronization (Case 1) with system 2 as master and system 1 as slave at a
{𝛼, 𝛽, 𝛾} = {0.97, 1, 0.95} and sx = 1, b sx = sy = sz = −1, c {𝛼, 𝛽, 𝛾} = {0.93, 0.93, 0.93} and

sy = −2, and d sx = sy = sz = −1

Consider the synchronization of the slave system with system 2 as the master

system. The plots in Fig. 7 match the expected behavior where at sx = 1, the slave

response is the exact anti-synchronization of the master response, and at sy = −2 it

is the halved-synchronization. The master and slave attractor diagrams are shown

to be co-incident in the case of full-synchronization sx = sy = sz = −1. It is worth

mentioning that the system exhibits different attractors when varying the values

of fractional-orders as illustrated by the two y-z projections plotted at {𝛼, 𝛽, 𝛾} =
{0.97, 1, 0.95} and {𝛼, 𝛽, 𝛾} = {0.93, 0.93, 0.93}.

Figure 8 shows the synchronization of the slave system with system 3 as the master

system. The integer-order case, or autonomous system of three first order ordinary

differential equations, is shown to follow the same expected behavior as a special

case of generalized fractional-order.

Figure 9 shows dynamic synchronization at sy(t) = −2.5 + int(t∕20) where the

scaling factor starts with a value of −2.5 and increases by 1 every 20 time units.

It also shows dynamic synchronization at sx = −0.5 + int(t∕40) where the scaling

factor starts with a value of −0.5 and increases by 1 every 40 time units.
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Fig. 8 Static synchronization (Case 1) with system 3 as master and system 1 as slave at a
{𝛼, 𝛽, 𝛾} = {1, 1, 1} and sy = 2, b sx = sy = sz = −1, c {𝛼, 𝛽, 𝛾} = {0.97, 1, 0.99} and sz = −0.5,

and d sx = sy = sz = −1

Fig. 9 Dynamic synchronization (Case 2) with system 2 as master and system 1 as slave at a
{𝛼, 𝛽, 𝛾} = {0.93, 0.93, 0.93} and sy = −2.5 + int(t∕20) and b {𝛼, 𝛽, 𝛾} = {0.97, 1, 0.99} and sx =
−0.5 + int(t∕40)

7 Synchronization of a Fractional-Order Chaotic System
and a Linear Combination of Two Other Systems

In this section, a novel fractional-order chaotic system is formed as a linear combi-

nation of two fractional-order systems and another system is synchronized with this

linear combination. This linear combination represents another means of controlling

the system response and forcing it to yield chaos. The block diagram of the gener-

alized synchronization scheme is shown in Fig. 10 where the linear combination of

systems 2 and 3 is the master and system 1 is the slave.
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Fig. 10 Block diagram of generally synchronizing a fractional-order chaotic system with a linear

combination of two systems

Table 8 shows the attractor diagrams of different linear combinations of systems

2 and 3 at various values of fractional-orders where the post-transient part is colored

in blue. Several examples show that the linear combination can yield more chaotic

responses or sequences with long periods in fractional-order in comparison with the

single systems shown in Tables 6 and 7. These cases can be proven to exhibit chaotic

behavior through well-known techniques such as maximum Lyapunov exponent cal-

culation.

The procedure in [44] is applied but with an added capability of generalized syn-

chronization with the cases explained in Sect. 6. As previously mentioned, all state

variables, scaling factors and control functions are in general functions of time. The

combined responses of the two systems shown in Fig. 10 can be written as:

xm = m1x2 + m2x3, (27a)

ym = m1y2 + m2y3, (27b)

zm = m1z2 + m2z3, (27c)

substituting in (18) and calculating the fractional derivatives, the set of equations (28)

is obtained. For the purpose of synchronization, all terms except those which are

function of the corresponding error term should be canceled. For example, in the

equation of D𝛼ex only ex should appear. Hence, the vector of control functions u is

given by (29).
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Table 8 Attractor diagrams of different linear combinations of systems 2 and 3 at various values

of fractional-orders

D𝛼ex = D𝛼

(
xm + sxxs

)
= D𝛼

(
m1x2 + m2x3 + sxx1

)
= m1y2 + m2y3 − sxy1 + sxux

= m1y2 + m2y3 − sx

(ey − ym

sy

)
+ sxux, (28a)

D𝛽ey = D𝛽

(
ym + syys

)
= D𝛽

(
m1y2 + m2y3 + syy1

)
= m1z2 − m2x3 − m2z3y3 + syx1 + syz1 + syuy

= m1z2 − m2x3 − m2z3y3 + sy

(
ex − xm

sx

)
+ sy

(ez − zm

sz

)
+ syuy, (28b)
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D𝛾ez = D𝛾

(
zm + szzs

)
= −m1y2 − m1a2z2 + m1b2

(
x22

c2
− c2

)
+ m2y32 − m2a3

+ 2szy12 + szx1z1 − sza1 + szuz

= −m1

(
y2 + a2z2 − b2

(
x22

c2
− c2

))
+ m2

(
y32 − a3

)

+ sz

(
2
(ey − ym

sy

)2

+
(

ex − xm

sx

)(ez − zm

sz

)
− a1 + uz

)
. (28c)

Therefore, the control functions can be obtained by using (15) as follows:

ux = Vx(ex) −
m1
sx

y2 −
m2
sx

y3 −
1
sy

ym + 1
sy

ey = Vx(ex) −
1
sx

ym − 1
sy

ym + 1
sy

ey,

(29a)

uy = Vy(ey) −
m1
sy

z2 +
m2
sy

x3 +
m2
sy

z3y3 +
1
sx

xm + 1
sz

zm − 1
sx

ex −
1
sz

ez, (29b)

uz = Vz(ez) +
m1
sz

y2 +
m1
sz

a2z2 −
m1
sz

b2

(
x22

c2
− c2

)
−

m2
sz

y32 +
m2
sz

a3

− 2
(ey − ym

sy

)2

−
(

ex − xm

sx

)(−zm

sz

)
+ a1. (29c)

Recalling that (ex − xm)∕sx = x1 from (18), the following equations for fractional

derivatives of error are, thus, obtained:

D𝛼ex = sxVx(ex), (30a)

D𝛽ey = syVy(ey), (30b)

D𝛾ez = szVz(ez) + x1ez. (30c)

Based on the nonlinear control theory and Lyapunov stability theory [53], these

derivatives should be decaying functions of the error. The terms Vx(ex), Vy(ey), and

Vz(ez) form a system of linear equations in the errors ex, ey, and ez. They should be

chosen carefully to form a stable system with zero steady state [44]. Consequently,

they should force negative eigen values for the synchronization system:
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⎛⎜⎜⎝
Vx(ex)
Vy(ey)
Vz(ez)

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

− kx

sx
0 0

0 − ky

sy
0

0 0 −
(

kz+x1
sz

)
⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

ex
ey
ez

⎞⎟⎟⎠ . (31)

Here, the coefficients kx, ky, kz are simply chosen as ones. It could be proved, similar

to [43, 44], that the designed controller achieves the general required synchronization

function.

Simulation results are presented, which validate the synchronization of a chaotic

system with a linear combination of two other systems. The plots shown in Figs. 11,

12 and 13 match the explanation of different cases of generalized synchronization

explained in Sect. 6 with the same parameters and initial values given in Table 1.

Various generalized static and dynamic synchronization cases for different values of

the linear combination’s coefficients m1 and m2 are demonstrated.

The case m1 = m2 = 1 represents synchronizing the slave system with the sum

of the two other systems. In addition, the response of the slave system follows the

selected synchronization case among the cases illustrated in Sect. 6 and according

to (19). For example, when sx = 0.5, x-time series of the slave system is the dou-

bled anti-synchronization of that of the linear combination (master system). When

sz(t) = 1 + (mod(t∕50))∕50, the z-time series of the slave starts as the exact anti-

synchronized version of that corresponding to the master. Then, the scaling factor

Fig. 11 Static synchronization (Case 1) of system 1 with a linear combination of systems 2

and 3 at m1 = m2 = 1 and a {𝛼, 𝛽, 𝛾} = {1, 1, 1} and sy = −3, b sx = sy = sz = −1, c {𝛼, 𝛽, 𝛾} =
{0.97, 1, 0.95} and sx = 0.5, and d sx = sy = sz = −1
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Fig. 12 Static synchronization (Case 1) of system 1 with a linear combination of systems 2 and 3

at m1 = 1.4 and m2 = −0.6 and a {𝛼, 𝛽, 𝛾} = {0.97, 0.99, 0.99} and sx = 1.5, b sx = sy = sz = −1,

c {𝛼, 𝛽, 𝛾} = {0.98, 0.98, 0.98} and sy = −0.5, and d sx = sy = sz = −1

Fig. 13 Dynamic synchronization (Case 2) a m1 = m2 = 1, {𝛼, 𝛽, 𝛾} = {0.97, 1, 0.95} and sz =
1 + (mod(t∕50))∕50 and b m1 = 2 and m2 = −0.5, {𝛼, 𝛽, 𝛾} = {0.98, 0.98, 0.98} and sz = −0.5 +
int(t∕40)

increases gradually such that the amplitude of the slave system decreases till t = 50.

At t = 50, the system returns to exact anti-synchronization followed by the gradual

decrease in the amplitude of the slave. Synchronization at other values of m1 and m2
could be described similarly, e.g., m1 = 1.4 and m2 = −0.6 shown in Fig. 12. The

resulting attractor diagram is usually similar to that of the system which has a higher

value for the coefficient, or weight.

The time series at values of fractional-orders around those in Figs. 11, 12 and 13

show that the response of the linear combination is chaotic, i.e., the values do not

repeat. Setting m1 = 1 and m2 = 0, or alternatively m1 = 0 and m2 = 1, yields the

same results as those in Sect. 6. Other values for the coefficients are possible and

yield consistent results too.
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8 Conclusions

Six chaotic systems were selected and utilized in their fractional-order form to ana-

lyze and validate three proposed block diagrams of synchronization systems. Dis-

cretized solutions to the systems were obtained using the Grünwald-Letnikov method

of approximation and the nonstandard finite difference method for discretization.

Synchronization techniques were based on active nonlinear control and Lyapunov

stability. The nonlinear controller is designed to ensure the stability and convergence

of the proposed synchronization scheme.

The first block diagram presents a switching synchronization scheme between

two different chaotic systems or one chaotic system with different parameters using

the active control method. By using the proposed technique, it is possible to per-

form static synchronization (switching control independent of time), mono-dynamic

synchronization (one of the control switches depends on time) or bi-dynamic syn-

chronization (the two switches are time dependent). The concepts introduced in this

block diagram have been verified by using the fractional-order version of two dif-

ferent known chaotic systems, which are the Lü and the Newton-Leipnik chaotic

systems. Moreover, the switching parameters can be a function of time to introduce

a new concept of static and dynamic switching of synchronizations, which makes

the system more flexible as shown from the results.

The second block diagram presents a generalized synchronization scheme that

has been validated to work for different chaotic systems as well as identical systems.

This generalized synchronization permits both static and dynamic synchronization or

anti-synchronization with various scaling factors. Hence, conventional synchroniza-

tion is considered a very narrow subset from the proposed technique where the scale

between the output response and the input response can be controlled via control

functions and this scale may be either constant (positive, negative) or time depen-

dent. Many examples including synchronization and anti-synchronization, between

identical or different systems with the same or different system parameters and initial

conditions, are discussed. The scaling functions are chosen to be positive/negative

and constant/dynamic, which covers all possible cases.

The proposed technique utilizing dynamic scaling functions can be useful in

amplitude modulation applications in which the amplitude of the output signal

should be a function of the input signal. The scaling factors in this case play the

role of information signal, which is modulated by the chaotic dynamics of the sys-

tem to give the modulated signal. Demodulation can be done similarly by reversing

the operation.

Finally, a new chaotic system, constructed as a linear combination of two dif-

ferent systems, was introduced with two extra parameters that correspond to more

degrees of freedom and response controlling capability. The generalized synchro-

nization method was shown to successfully synchronize a third system with the

system formed by the linear combination through both mathematical analysis and

simulation results. All cases of the generalized synchronization scheme were vali-

dated in generalized fractional-order domain, with integer-order as a special case,
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for different choices of the linear combination’s coefficients and values of the scal-

ing factors. Time series for various system responses and attractor diagrams were

plotted to demonstrate different cases of generalized synchronization.
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