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Abstract In this paper we consider a simple trading system (TS) based on a set of
Technical Analysis (TA) indicators. Their peculiarity is the dependence on the time-
window widths used to calculate them. To attempt to improve the performances
of the TS, we optimize these parameters (that is the time-window widths) by the
Particle Swarm Optimization (PSO), which is a metaheuristic used to solve global
optimization problems. The use of PSO is necessary since the involved optimization
problem is nonlinear, nondifferentiable and integer: in summary, it is complex.
In such a case, the use of exact solution methods would be excessively time-
consuming, in particular for practical purposes. The proposed TS is tested using the
daily closing prices from January 2, 2001, to June 30, 2016, of eight Italian stocks
of different economic sectors. As benchmark, we consider the same TS but with
standard time-window lengths. Irrespective of their signs, both in-sample and out-
of-sample performances achieved by the TS with optimized parameters are better
than those achieved by the benchmark, highlighting that parameter optimization can
play an important role in TA-based TSs.

1 Introduction

The massive amount of data available in the financial markets, also free download-
able, allows us to strategically process and to convert them into useful information
about the future trend of the prices of one or more assets.

Hu et al. [5] identify three different analysis methods: technical, fundamental
and blending. The main aim of Technical Analysis (TA) is to compute technical
indicators using the time series of stock prices and volumes and, starting from these
indicators, to generate a Buy, Hold or Sell (BHS) signal [8]. On the other hand,
Fundamental Analysis generates trading rules when the stock is undervalued or
overvalued with respect to its fundamental value. The last analysis, the Blending
one, combines both of them.
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As underlined by Wu et al. [11], to elaborate a set of profitable trading rules
we have to forecast the direction of the asset prices, so an effective information
extraction is needed.

In this work, we consider the formulation of a trading system (TS) from the
perspective of TA, so that the analysis of the patterns of price and/or of volume
sequences can enables us to generate trading rules [3]. The literature on TA
has proposed several indicators, to each of which is associated a trading rule
generating BHS signal. The indicators, and consequently the signals generated,
depend on some parameters, the most important of which is the time-window
width. Thus, the selection of the time-window width is crucial. According to the
latest state of our knowledge, there is not an estimation methodology for these
parameters, furthermore the rule of thumb used by many practitioners appears to us
inappropriate and risky. The BHS signals generated by an indicator results in profits
or losses. So, we need a procedure to select the time-window widths in a such way
to maximize the profit or to minimize the losses. According to this, we look for an
optimization algorithm allowing the estimation of the time-window widths.

Several Authors, [1, 5, 9, 12], present interesting applications of evolutionary
optimization approaches implemented in the trading framework. For instance, the
Ant Colony Optimization (ACO), as well as Particle Swarm Optimization (PSO),
that maximizes/minimizes a fitness function by mimicking the behaviour of a group
of insects or animals. Moreover, designing a TS based on several indicators, we
have to consider possible conflicting BHS signals, so we have also to tackle the
issue of combining these signals. It follows that there are two aspects to face when
we examine this problem. On one hand we have to determine the parameter values
(that is the time-window widths), on the other we have to combine the different
signals in a single one.

In this paper we focus on the first problem, since the combination of the signals
can be solved considering the simple unweighted sum of each signal. In particular,
in this paper we propose a TS based on four indicators: two momentum indicators,
typically used for trend detection, such as the Exponential Moving Average (EMA)
and the Bollinger Bands (BB), and two oscillator indicators such as the Relative
Strength Index (RSI) and the Moving Average Convergence/Divergence (MACD).
All these indices depend on the time-window widths that we can specify using the
swarm intelligence approach.

The paper is organized as follows. The next section will introduce the methodol-
ogy we will use. In Sect. 3 we will show some in-sample and out-of-sample results
of the implementedmethodology. In the last section we will give some final remarks.

2 Methodology

As we said in the previous section, effective TA tools settings are crucial to
reach good performance by a TS. Nevertheless, the evidence is that many trading
practitioners follow a rule of thumb, meaning that parameters have a default. For
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example, several financial web-sites, like for instance finance.yahoo.com or,
in an Italian context, borsaitaliana.it, provide indicators and oscillators
with identical or very similar settings. In order to improve the performances of
TA indicators, we propose a more objective method to optimize their parameter
settings. In particular, we use a metaheuristic known as Particle SwarmOptimization
(PSO) to estimate the best time-windowwidths. The use of this solver is justified by
the complexity of the involved optimization problem for which the exact solution
methods could be extremely time-consuming for practical purposes.

In the next subsection we will describe the adopted TS. Then, we will introduce
the optimization problem. At last, in Sect. 2.3, the PSO and its specific implementa-
tion will be presented in the considered context.

2.1 A Simple TS

As previously highlighted, we propose a combination of four classical and widely
used indicators, two momentum indicators and two oscillators, to define our TS. The
main aim of this work is to verify if using PSO allow us to improve the performance
in terms of rate of return with respect to the same TS with default settings of the
indicators. The involved TA indicators are: Exponential Moving Average (EMA),
Bollinger Bands (BB), Moving Average Convergence/Divergence (MACD), and
Relative Strength Index (RSI). For the description of such indicators we refer to [7].

For each indicator we define a decisional rule that provides a trading signal. More
precisely the signal may be: “�1”, namely “Sell or stay short in the market”; “0”,
namely “Stay out from the market”; “C1”, namely “Buy or stay long in the market”.
The four trading signals are then aggregated in order to obtain a single signal. As
far as the four decisional rules are concerned, let us specify as trading period the
discrete time interval t D 1; : : : ;T > 1, and let us assume that at time t D 1 each of
the four trading signals is equal to 0. From t D 2 to t D T, the four decisional rules
are:

• the one based on EMA, with EMAf .�/ a fast EMA and EMAs.�/ a slow EMA:

signalEMA.t/ D

8
ˆ̂
<

ˆ̂
:

�1 if EMAf .t/ < EMAs.t/ ^ EMAf .t � 1/ � EMAs.t � 1/

C1 if EMAf .t/ > EMAs.t/ ^ EMAf .t � 1/ � EMAs.t � 1/I
signalEMA.t � 1/ otherwise

• the one based on RSI:

signalRSI.t/ D

8
ˆ̂
<

ˆ̂
:

�1 if RSI.t/ > 70 ^ RSI.t � 1/ � 70

C1 if RSI.t/ < 30 ^ RSI.t � 1/ � 30I
signalRSI.t � 1/ otherwise
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• the one based on MACD, where DL.�/ and SL.�/ are respectively the so-called
differential line and signal line:

signalMACD.t/ D

8
ˆ̂
<

ˆ̂
:

�1 if DL.t/ < SLsl.t/ ^ DL.t � 1/ � SLsl.t � 1/

C1 if DL.t/ > SLsl.t/ ^ DL.t � 1/ � SLsl.t � 1/I
signalMACD.t � 1/ otherwise

• the one based on BB, where P.�/ is the price of the considered financial asset,
BBL.�/ and BBU.�/ are respectively the lower band and the upper band:

signalBB.t/ D

8
ˆ̂
<

ˆ̂
:

�1 if P.t/ < BBU.t/ ^ P.t � 1/ � BBU.t � 1/

C1 if P.t/ > BBL.t/ ^ P.t � 1/ � BBL.t � 1/:

signalBB.t � 1/ otherwise

We must keep in mind that any decisional rule will depends on the values of
the indicators which, in their turn, will depends on a given parametrization. In the
following, we will denote byw the vector of the following parameters:wf andws are
the time-window widths related to the fast EMA and to the slow EMA, respectively;
wRSI is the time-window width related to RSI; wMACD;1, wMACD;2 and wsl are the
three time-window widths related toMACD; wLB and wUB are the two time-window
widths related to BB.

To define only one operational trading signal, we propose to aggregate the trading
signals in the following way:

signal.t/ D sign.signalEMA.t/ C signalRSI.t/ C signalMACD.t/ C signalBB.t//,

where sign.�/ is the signum function.
Note that if three or four out of four decisional rules give the same trading signal

then the single operational trading signal is equal to it. Moreover, it is easy to
prove that if two decisional rules provide the same trading signal and the other two
decisional rules provide different trading signals, also between them, then the single
operational trading signal is equal to the one of the two former decisional rules.

2.2 The Optimization Problem

In this paper we measure the performance of a TS in a quite simple way, although
there are other ways to do this. An intuitive measure is the net capital at the end of
the trading period, C.T/, where “net” means that we explicitly take into accounts of
the transaction costs. In detail, let ı be the transaction costs expressed in percentage;
we define the net rate of return, e.t/, obtained by the TS from t � 1 to t, as follows:

e.t/ D signal.t � 1/ ln

�
P.t/

P.t � 1/

�

� ı jsignal.t/ � signal.t � 1/j , t D 2; : : : ;T;



An Evolutionary Approach to Improve a Simple Trading System 87

and, fixing C.1/, the equity line produced by the TS is:

C.t/ D C.t � 1/Œ1 C e.t/�, t D 2; : : : ;T.

At this stage, we can formulate the constrained optimization problem as:

max
w

C.T/

s.t.

8
ˆ̂
<

ˆ̂
:

wEMAf < wEMAs

wsl < wMACD;1 < wMACD;2

wEMAf ;wEMAs ;wRSI;wsl;wMACD;1;wMACD;2;wBB 2 N
C

: (1)

This constrainedmaximization problem is “complex” because the objective function
C.�/ is nonlinear a non differentiable, moreover it is formulated in terms of variables
that must assume integer values. So, as underlined above, we need to use as a solver
a metaheuristic like PSO.

2.3 Particle Swarm Optimization

PSO is an iterative metaheuristic for the solution of global unconstrained continuous
optimization problems [6, 10], that may be adapted for solving also constrained
ones. The basic idea of PSO is to mimic the social behaviour of swarm of bees
or of flocks of birds cooperating for searching for food. For this purpose, each
particle, or member, of the swarm moves in the search area. The direction and
the velocity of the movement depend on its best position reached so far, and on
the exchanges of information with the neighboring particles in the swarm. The
behaviour of each particle allows to the whole swarm to converge towards the
best global position. From a mathematical point of view, the paradigm of a flying
swarm may be formulated as follows: given an optimization problem, each particle
of the swarm represents a possible solution; its starting position x1

j and starting
velocity v1

j are randomly assigned, so determining its initial direction and velocity
of movement.

Let us consider the global unconstrained optimization problem minx2Rd f .x/;

where f W R
d 7! R is the objective function. Suppose to solve it using PSO and

considering M particles. At the k-th iteration of the algorithm, three vectors are
associated to the j-th particle, with j D 1; : : : ;M:

• the position xkj 2 R
d;

• the velocity vkj 2 R
d;

• the best position visited so far pj 2 R
d.
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Moreover, pbestj D f .pj/ is the value of the objective function in position pj, while
pg and gbest are respectively the best position reached by the swarm and the value
of the objective function in such a position.

The steps of the algorithm are the following:

1. Randomly assign the starting position x j
1 and the starting velocity v j

1 for j D
1; : : : ;M.

2. Set pbestj D C1 for j D 1; : : : ;M, set gbest D C1, and set k D 1.
3. Evaluate f .xkj / for j D 1; : : : ;M.
4. If f .xkj / < pbestj then set pj D xkj and pbestj D f .xkj / for j D 1; : : : ;M.
5. If f .xkj / < gbest then set pg D xkj and gbestj D f .xkj / for j D 1; : : : ;M.
6. Update position and velocity of the j-th particle for j D 1; : : : ;M as:

vkC1
j D wkC1vkj C U�1 ˝ .pj � xkj / C U�2 ˝ .pg � xkj / (2)

xkC1
j D xkj C vkC1

j (3)

where U�1 ;U�2 2 R
d and their components are uniformly randomly distributed

in Œ0; �1� and Œ0; �2� respectively, and denoting ˝ the component-wise product.
7. If a convergence criterion is not satisfied then set k D k C 1 and go to step 3.

The values of �1 and �2 strongly affect the strength of the attractive forces towards
the personal and the swarm best positions explored so far by the particles. Thus,
in order to get the convergence of the swarm, they have to be set carefully in
accordance with the value of the inertia weight wk. The parameter wk generally
decreases linearly with the number of steps, as:

wk D wmax C wmin � wmax

K
k

where K is usually the maximum number of iterations allowed. The values for wmax

and wmin are typically 0:9 and 0:4.
We previously said that our optimization problem is a constrained integer one

and, for this reason, we have to adapt the standard PSO algorithm to deal with these
peculiarities.

As concern the presence of integer variables, we apply the approach suggested
in [7] and �[e]ach particle of the swarm [is] truncated to the closest integer, after
the determination of its new position [by (3)]� [7, p. 1584]. As pointed out in
[7] �[t]he truncation of real values to integers seems not to affect significantly
the performance of the method, as the experimental results indicate. Moreover,
PSO outperforms the [Branch and Bound] technique for most test problems� [7,
p. 1583]. So, with this approach we can manage the constraints wEMAf , wEMAs , wRSI ,
wsl, wMACD;1, wMACD;2, wBB 2 N

C of our optimization problem.



An Evolutionary Approach to Improve a Simple Trading System 89

As regards the other constraints, different strategies are proposed in literature.
In this paper we use PSO as a tool for the solution of unconstrained optimization
problems according to its original aim, so we have to reformulated our problem
into an unconstrained one. To this purpose, we use an approach described in [4]
and recently applied in the financial context [2]. Such an approach uses a nondiffer-
entiable `1 penalty function to reformulated our problem into an unconstrained one
and is known as exact penalty method. The term “exact” refers to the correspondence
between the minimizers of the original constrained problem and the minimizers of
the unconstrained (penalized) one.

Let � be the penalty parameter, then the reformulated version of our optimization
problem is:

max
w

C.T/ � 1

�

h
maxf0;wEMAf � wEMAsg C maxf0;wsl

�wMACD;1g C maxf0;wMACD;1 � wMACD;2g
i
:

(4)

A correct choice of the value of the penalty parameter ensures the correspondence
between the solutions of the original constrained problem and of the reformulated
unconstrained one. Note that in the (4), the constraints wEMAf , wEMAs , wRSI , wsl,
wMACD;1, wMACD;2, wBB 2 N

C do not appear as they are taken into account by the
truncation of real values described above.

3 Applications

As stated above, in this paper we want to study the performances of a simple TS
based on indicators coming from TA, finding the optimal values of the time-window
widths associated to such indicators by using PSO.

To assess the actual improvement of the applied procedure, we have carried out
both an in-sample and an out-of-sample analysis. In particular, we have determined
the optimized parameter values of the considered TS solving the optimization
problem (4) by the version of the PSO described in Sect. 2.3.

We have considered time series of eight stocks in the period from January 2,
2001 to June 30, 2016 (3932 prices). More specifically, we have tested the TS
on the following stocks: BUZZI UNICEM S.p.A. (BU), ENEL S.p.A. (EE), ENI
S.p.A. (EI), Generali S.p.A. (GE), INTESA SANPAOLO S.p.A. (IS), LUXOTTICA
GROUP S.p.A. (LG), STMICROELECTRONICS S.p.A. (ST) and TELECOM
ITALIA S.p.A. (TI). We have choosen the stocks considering their importance in the
Italian stock market. In fact, all of them are components of the Italian stock index
FTSE MIB and they represent some meaningful sectors of the Italian economy.
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We have performed the in-sample analysis in the period going from June 2, 2001
to June 30, 2016 (3880 prices1), whereas the out-of-sample analysis has been carried
out in the period from November 1, 2011 to June 30, 2016 (1180 prices), using
the period from January 2, 2001 to October 31, 2011 (2752 prices) to evaluate the
optimal values of the time-window widths.

All the applications have used ı D 0:15% (percentage transaction cost currently
applied by several Italian brokerage companies) and C.1/ D 100.

As regards the PSO algorithm, we have used the following setting: M D 10

as number of particles; K D 100 as maximum number of iterations; �1 D �2 D
1:49618 as coefficients; � D 0:0001 as penalty parameter. The first two values have
been determined by a trial-and error procedure, the last three values are commonly
suggested in the literature. Considering that the methodology proposed in Sect. 2.3
is stochastic in reason of the random initialization (of both position and velocity
of the particles) and of the random disturbance in the updating equation of the
velocity (see step 6 of the algorithm presented in Sect. 2.3), we have applied 100
times our methodology to each stock, then we have calculated the mean values and
other statistics.

As far as the TS with standard setting is concerned, following the relevant
professional literature, we have used the following values for the parameters:
wEMAf D 12, wEMAs D 26, wRSI D 26, wsl D 9, wMACD;1 D 12, wMACD;2 D 26

and wBB D 26.

3.1 In-Sample Analysis

The in-sample performances achieved by the two TSs (with default and optimized
settings) for the eight stocks are presented in Table 1. More specifically, in column
2 we report the annualized rate of return performed by the TS with standard setting
(r); in columns 3 and 4 we respectively report the average annualized rate of
return performed by the TS with optimized parameter values (r) and the associated
standard deviation (sr); column 5 shows the 95% confidence interval calculated
using r and sr (Œ�; ��95%;r); in columns 6 and 7 we have theminimumof r (rmin) and the
maximum of r (rmax), respectively, over the 100 applications of our methodology;
in column 8 and 9 we respectively report the average percentages of times in which,
during the trading period, the value of the equity line produced by the TS with
optimized parameter values has been greater than, and not less than, the value of the
equity line produced by the TS with standard setting (% > and % �).

1The first 52 prices need to calculate the starting values of indicators.
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Table 1 In-sample performances achieved by the various TSs

Stock r r sr Œ�; ��95%;r rmin rmax % > % �
BU �2:86% 16:25% 4:26% Œ7:89%; 24:60%� 1:14% 23:75% 90:18% 91:66%

EE �17:12% 4:31% 2:60% Œ�0:79%; 9:41%� �3:17% 9:75% 87:89% 89:30%

EI �16:77% 0:46% 2:84% Œ�5:11%; 6:034%� �9:20% 10:63% 98:66% 99:98%

GE �4:92% 9:00% 3:03% Œ3:07%; 14:93%� 0:00% 13:65% 95:90% 97:72%

IS �9:69% 18:08% 6:79% Œ4:77%; 31:38%� 0:00% 33:47% 93:16% 94:71%

LG �5:88% 13:20% 3:04% Œ7:24%; 19:15%� 0:00% 17:30% 74:97% 76:43%

ST �1:00% 16:01% 5:99% Œ4:26%; 27:76%� �1:52% 24:49% 95:24% 96:63%

TI �9:56% 10:75% 4:88% Œ1:19%; 20:30%� �3:29% 18:51% 98:11% 99:59%

We point out that all the annualized rates of return achieved by the TS with
standard setting are negative, whereas all the average annualized rates of return
performed by the TS with optimized parameter values are far greater than the
former ones and are all positive. It indicates that also in the case of simple TA-based
TS, like the one considered in this paper, the parameters optimization can play an
important role. Then, no average annualized rate of return achieved by the TS with
standard setting belongs to the 95% confidence interval calculated using r and sr .
This indicates that, for all the investigated stocks, r is statistically different from r at
the 5% significance level. Moreover, note also that, with the only exception of the
stock asset ST, all rs are lower than the corresponding rmin (rmins are in column 6),
which means that the worst results obtained with optimized parameters is generally
better than those obtained with standard settings.

All the previous remarks concern with the performances achieved by the various
TSs in the final time instant t D T of the trading period, that is June 30, 2016. But
the results in column 8 and 9 well put in evidence that for very large part of the
trading period (never lower than 74.97%) the TSs with optimized parameter values
perform better than the TS with standard setting.

As example, in Fig. 1 we show the in-sample performance related to the stock
asset TI. In particular, on the top, the closing price time series is shown; in the
second panel, the operational trading signal is reported; on the bottom, the time
series of the gross equity line produced by the TS with optimized parameter values
(dotted curve), of the net equity line produced by the same TS (bold curve), and of
the net equity line produced by the TS with standard setting (continuous curve) are
shown.

3.2 Out-of-Sample Analysis

In Table 2 we present the out-of-sample performances attained by the various TSs.
Its columns are the same of those of Table 1.
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Table 2 Out-of-sample performances achieved by the various TSs

Stock r r sr Œ�; ��95%;r rmin rmax % > % �
BU �27:07% �9:27% 9:34% Œ�27:57%; 9:04%� �34:87% 10:93% 79:65% 79:75%

EE �21:11% �7:85% 8:68% Œ�24:86%; 9:16%� �28:57% 8:12% 81:92% 82:02%

EI �19:04% �8:89% 9:70% Œ�27:90%; 10:12%� �31:89% 14:74% 86:23% 86:31%

GE �9:99% �9:31% 6:10% Œ�21:27%; 2:65%� �27:86% 4:90% 28:12% 28:21%

IS �18:67% �7:36% 11:88% Œ�30:65%; 15:93%� �25:63% 29:91% 54:89% 55:00%

LG �13:89% �3:04% 9:82% Œ�22:29%; 16:20%� �31:91% 18:10% 59:49% 59:57%

ST �21:18% �16:92% 9:38% Œ�35:30%; 1:47%� �39:35% 1:60% 70:08% 70:17%

TI �15:23% �12:14% 8:24% Œ�28:28%; 4:00%� �32:02% 1:21% 86:41% 86:50%

Similarly to what highlighted by the in-sample analysis, even in the out-of-
sample one all the annualized rates of return achieved by the TS with standard
setting (column 2) are negative and all the average annualized rates of return
performed by the TS with optimized parameter values (column 3) are greater than
the former. But conversely, now all rs are negative. It indicates that the parameter
optimization play a positive role also in the out-of-sample applications, although
its importance is significantly diminished with respect to the in-sample ones. As
a further confirmation of such an importance reduction, note that now all the
annualized rates of return achieved by the TS with standard setting (column 2)
belong to the 95% confidence intervals calculated using r and sr (column 5), and
that each r is greater than the corresponding rmin (rmins are in column 6). This may
suggest that in the out-of-sample applications the standard setting does not appear
so far from the optimal setting.

We recall that all the previous remarks concern with the performances obtained
by the various TSs in the final time instant t D T, that is June 30, 2016. But the
results in column 8 and 9 point out that, with the only exception of the stock asset
GE, for large part of the trading period the TSs with optimized parameter values
perform better than the TS with standard setting.

As example, in Fig. 2 we show the out-of-sample performances related to the
stock asset TI. Its panels are the same of those of Fig. 1.

4 Conclusions

In this paper we have considered a simple TS based on four indicators, two
momentum and two oscillators, coming from TA. Instead of using a rule of thumb
to select the time-window widths, we have proposed to apply an adapted version of
PSO in order to determine the optimal values of these parameters. The results we
have obtained, summarized in Table 1 for the in-sample analysis and in Table 2 for
the out-of-sample analysis, show that parameter optimization can play an important
role as the results of our proposal, expressed in terms of annualized rate of return,
are always better than the classical TA-based ones.
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Another advantage of the procedure is that the parameter setting may vary
according to the stock, so avoiding the use of the same parameter values in possible
different contexts.

Our future goals are: to check the proposed technique with different price time
series coming from other financial markets; to improve our methodology in order
to anticipate the market signals using observational data; to generalize the proposed
procedure in order to generate trading rule.
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