Marco Corazza
Florence Legros
Cira Perna

Marilena Sibillo
Editors

Mathematical and
Statistical Methods
for Actuarial
Sciences and Finance



Mathematical and Statistical Methods
for Actuarial Sciences and Finance



Marco Corazza * Florence Legros ¢ Cira Perna ¢
Marilena Sibillo

Editors

Mathematical and Statistical
Methods for Actuarial
Sciences and Finance

MAF 2016

@ Springer



Editors

Marco Corazza Florence Legros
Department of Economics Département Finance, Audit, Comptabilité
Ca’ Foscari University of Venice et Controle
Venezia, Italy ICN Business School
Nancy, France
Cira Perna Marilena Sibillo
Department of Economics and Statistics Department of Economics and Statistics
University of Salerno University of Salerno
Fisciano (SA), Italy Fisciano (SA), Italy
ISBN 978-3-319-50233-5 ISBN 978-3-319-50234-2  (eBook)

https://doi.org/10.1007/978-3-319-50234-2
Library of Congress Control Number: 2017962872

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-319-50234-2

Preface

This volume is a collection of referred papers from the several tens that were
presented at the international conference MAF 2016—Mathematical and Statistical
Methods for Actuarial Sciences and Finance.

The conference was held in Paris (France), from March 30 to April 1, 2016, at
the Université Paris-Dauphine. It was organized by the Executive MBA CHEA—
Centre des Hautes Etudes d’ Assurances and by the Department of Economics of the
Ca’ Foscari University of Venice (Italy), with the collaboration of the Department
of Economics and Statistics of the University of Salerno (Italy).

The conference was the seventh of an international biennial series which began in
2004. It was born out of the idea that enhanced cooperation between mathematicians
and statisticians working in actuarial sciences, in insurance, and in finance can result
in improved research in these fields.

The wide participation at all the conferences in the series constitutes proof of the
merits of this idea.

The papers published in this volume present theoretical and methodological
contributions and their applications to real contexts.

Of course, the success of MAF 2016 would not have been possible without
the valuable help of all members of the Scientific Committee, the Organizing
Committee, and the Local Committee.

Finally, we are pleased to inform readers that the organizing machine for the
next edition is already in action: the conference MAF 2018 will be held in Madrid
(Spain), from April 4 to 6, 2018 (for details visit the website http://www.est-econ.
uc3m.es/maf2018/).

We look forward to seeing you there.

Venezia, Italy Marco Corazza
Nancy, France Florence Legros
Fisciano (SA), Italy Cira Perna
Fisciano (SA), Italy Marilena Sibillo

August 2017
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The Effects of Credit Rating Announcements
on Bond Liquidity: An Event Study

Pilar Abad, Antonio Diaz, Ana Escribano, and M. Dolores Robles

Abstract This paper investigates liquidity shocks on the US corporate bond market
around credit rating change announcements. These shocks may be induced by the
information content of the announcement itself, and abnormal trading activity can
be triggered by the release of information after any upgrade or downgrade. Our
findings show that: (1) the market anticipates rating changes, since trends liquidity
proxies prelude the event, and additionally, large volume transactions are detected
the day before the downgrade; (2) the concrete materialization of the announcement
is not fully anticipated, since we only observe price overreaction immediately
after downgrades; (3) a clear asymmetric reaction to positive and negative rating
events is observed; (4) different agency-specific and rating-specific features are
able to explain liquidity behavior around rating events; (5) financial distress periods
exacerbate liquidity responses derived from downgrades and upgrades.

1 Introduction

Information on rating actions has been a permanent subject of debate. Credit rating
agencies (CRAs) state that they consider insider information when assigning and
revising ratings, without disclosing specific details to the public at large. The
literature examines prices and/or returns responses to rating events. However, the
information about the creditworthiness of issuers disclosed by rating actions can not
only affect prices. Besides this, it can induce specific market dynamics concerning
the liquidity of the re-rated bonds. One important role of ratings is to reduce
the information asymmetry between lenders and borrowers. As this asymmetry is
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inversely related to liquidity, if credit rating changes (CRCs) release specific news
about the financial situation of firms, they will affect firms’ bond liquidity.

In order to analyze this question, we go beyond the traditional price analysis
by analyzing corporate bond liquidity patterns around CRC announcements. We
examine different dimensions of corporate bond liquidity, and compute different
adaptations of traditional microstructure-based liquid measures on stock markets to
bond markets, as well as other traditional bond market liquidity measures.'

Our paper relates to several strands of the literature. First, we contribute to
research that seeks to better understand the liquidity of corporate bond markets (e.g.
[1, 8] and Chen et al. [3]). Second, to the literature that studies the information
content of rating announcements and their impact on bond market (e.g. Steiner and
Heinke [18] and May [15]) and on stock markets (e.g. Norden and Weber [16]).

We study a comprehensive sample of 2727 CRCs in the whole US corporate bond
market, using TRACE transaction data from 2002 to 2010. We also study the impact
of the recent global financial crisis on the response of the different liquidity aspects
to CRC announcements. We consider the default of Lehman Brothers in mid-2008
to be the starting point of the financial turmoil.

Our results indicate three clear patterns in liquidity and prices, depending on
the time period around the announcement when we consider the whole sample
period. First, we observe trends in prices and liquidity deterioration before the
announcement. Additionally, nervousness emerges in the market the day before
downgrades. Second, there is price pressure for a few days after the downgrades.
This fact could imply transaction prices below fundamental values. Third, we
observe that prices converge to the correct value and the level of trading activity
clearly rises during the second fortnight. In the case of upgrades, there is no price
impact.

Aside from analyzing impacts on liquidity derived from credit rating migrations,
we examine the determinants of abnormal liquidity observed before and after the
announcements. To find the drivers of abnormal liquidity, we carry out a cross-
sectional analysis including as key factors different characteristics of the rating
event, the issue, and the issuer, to explain liquidity responses to rating changes. Our
premise is that rating changes that provide more relevant information to the market
must cause stronger impacts on liquidity.

Our results should enable market participants to manage portfolios, given that
they need to have an understanding of the way in which the liquidity and the liquidity
premium on prices behave around CRC.

The remainder of the paper is arranged as follows: Sect. 2 explains the hypotheses
to be tested. Section 3 presents the data description. Section 4 examines different
measures of abnormal liquidity. The main results are presented in Sect. 5. Section 6
includes the cross-sectional analysis. Finally, Sect. 7 concludes.

'Recent papers using some of these measures corroborate the liquidity effects on prices (see, e.g.,
Bao et al. [1], Dick-Nielsen et al. [8] and Friewald et al. [10]).
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2 The Expected Response of Liquidity to Rating Actions

We consider that the effects of rating changes can be explained by different
possible hypotheses. The main hypothesis states that CRAs are supplied with
considerable non-public information about firms, such as information about the total
firm value and its organizational effectiveness. In the liquidity literature, the market
microstructure models indicate that trading activity responses to news releases
are related to the existence of asymmetric information among informed traders,
uninformed traders, and market-makers. Kim and Verrecchia [14] state that the fact
that some traders are able to make better decisions than others, based on the same
information, leads to information asymmetry and positive abnormal trading volume,
despite a reduction in liquidity after the release of new information about the firm.
A rating revision may provide additional information about the firm. Different
investors’ risk perception can induce portfolio rebalancing processes. In this context,
higher trading activity after CRCs will be expected.

The second theory we analyze is the reputation hypothesis. This hypothesis
(Holthausen and Leftwich [11]) states that rating agencies face asymmetric loss
functions, and that they allocate more resources to revealing negative credit
information than positive information, because the loss of reputation is more severe
when a false rating is too high than when it is too low. Reputation costs create an
incentive for CRAs to truthfully reveal the investment quality, since investors can
eventually learn and punish the agency.

The last hypothesis points out that the usual liquidity premium on prices widens
after a CRC. We examine whether the liquidity impact on prices is exacerbated after
a CRC. If rating announcements disclose new and relevant information about the
default risk of a bond, then prices should immediately incorporate this information.
Independently of price adjustment, liquidity may drive additional price changes.
The traditional literature considers liquidity to be a key component of corporate
bond prices. Recent papers corroborate this result. For instance, [1] conclude that
illiquidity explains a substantial part of the yield spreads of high-rated bonds,
overshadowing the credit risk component. Chen et al. [3] and Friewald et al.
[10] also observe that the economic impact of liquidity is significantly larger for
speculative-grade bonds.

3 Data Description

We use two main sources of data in our analysis: the NASD’s Trade Reporting
and Compliance Engine (TRACE) transactions data for corporate bonds and the
Mergent Fixed Income Securities Database (FISD), with complete information
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on the characteristics of each bond.> According with FISD bond information, we
limit the sample to straight corporate bonds.? FISD data set also provides rating
information per bond from the main three CRAs, i.e. Moody’s, Standard and Poor’s,
and Fitch, from which we compute more than 225,000 CR changes.

Matching both data sets, we select those CR announcements which meet certain
criteria. First, a minimum trading activity level. The bond should be traded at least
once in the 20 working days before the event, and once in a similar period after
the event. Second, bonds must be traded for at least 20% of the trading days in the
period of 1 month starting 2 months prior the CRC. Third, events preceded by other
rating announcements in the previous 61 working days, are also ignored.

The final data sample consists of 2620 unique CRC, involving 1342 bonds from
286 issuers; and with nearly 4.5 million trades, it forms approximately 10.6% of the
total number of trades reported by TRACE during the period July 1, 2002 to March
31,2010.* It comprises 907 upgrades and 1713 downgrades.

4 Proxies of Liquidity

We consider liquidity proxies that focus on three aspects of liquidity, i.e. price
impact, market impact, and trading frequency, and select some of the most used
measures in the existing empirical literature on liquidity. As price impact measures,
we compute the ‘Amivest’ ratio (AV), the ‘Bao’ et al. measure (Bao), the imputed
roundtrip cost measure (IRC) and the ‘price dispersion’ measure (PD). As proxies
of market impact, we consider both the ‘market share’ (MS) and the ‘trading
volume’ (7V). Finally, we compute the ‘number of trades’ (NT) as trading frequency
measure.

The use of the TRACE data set for research purposes requires previous filtering. Edwards et al.
[9] and Dick-Nielsen [7] propose using algorithms to filter out the reporting errors, and we apply
these, introducing minor variations. From the original 45 million transactions, we include in our
sample about 4.5 million.

3We exclude zero or variable coupon bonds, TIPS, STRIPS, perpetual bonds and bonds with
embedded options, such as putable, callable, tendered, preferred, convertible or exchangeable
bonds. Additionally, we ignore municipal bonds, international bonds and eurobonds. We also
eliminate those bonds that are part of a unit deal.

“Bonds double- or triple-rated by more than one CRAs, are set as unique events. We compute the
final rating as the average rating using the numeric value assigned by the long-term debt rating
equivalences, with values from AAA =1 to D = 25. CRC:s in the opposite direction are ignored.
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4.1 Amivest

1 Di TVix

AV, =
"7 Dy = Irixl

ey

The Amivest liquidity ratio proposed by Cooper et al. [4] is a liquidity proxy.
Following this ratio, larger liquidity implies lower price impact of new transactions.
Bonds with high levels of this ratio are the most liquid bonds, i.e. those bonds with
less price impact.

4.2 Bao

Bao;; = —Cov(Apy, Apiy1) (2)

The [1] measure is a illiquidity measure. Following this measure, an illiquid bond
is traded with a large bid-ask spread, which implies highly negatively correlated
consecutive prices and hence a high positive value of the Bao measure.

4.3 Imputed Roundtrip Cost

max min
ke, = T i 3)
it =

P
Dick-Nielsen et al. [8] proposes the IRC measure. According to this illiquidity
measure, higher values represent large differences between the maximum and
minimum prices, which can be interpreted as large transaction costs. Therefore,

bonds with high IRC values are less liquid bonds.

4.4 Price Dispersion

Nis
1
PD, = | > (Piks = Pi)? TVigs @
k;l Tvi,k,t k=1

The price dispersion measure proposed by Jankowitsch et al. [12] is an illiquidity
measure. It can be interpreted as the volatility of the price dispersion, hence a low
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level of PD measure indicates high liquidity, i.e. the bond can be traded close to its
fair value.

4.5 Market Share

N;,
Zk; 1 TViks

MS,'J - TTV
k

&)

Following Diaz et al. [6] we compute market share as the ratio of the trading volume
of a bond in a day to the total trading volume in the whole market, including any
transaction involving any outstanding issue. The larger the market share, the higher
the bond liquidity.

Finally, we also include the trading volume (7V) as a market activity measure
and the number of trades (NT) as a trading frequency measure. A larger volume as
well as a large number of trades indicates large liquidity.

S Effects of Rating Change Announcements on Liquidity

5.1 Methodology

To analyze the effects of CRC announcements we carry out an event study. We
compare liquidity around the rating-change days to normal liquidity days. We define
the date of the announcement as day ¢ = 0, and compute the observed liquidity in a
window around the CRC, from day t = #; to day t = £, (CRC window) for each
CRC in the sample as the averaged liquidity proxy:

;z—t lis
OLi(tl,tz) = ;Ol ’ (6)

where OL;(, ,) is the observed liquidity for bond i in the window (#1, 1), To is the
number of days in (71, ;) and /;, is the liquidity proxy computed in a day-by-day
basis for the CRC i.

We compare this observed liquidity to the expected liquidity in “stable-rating
times”.> We consider 2 months prior the CRC announcement without any other

SFollowing Corwin and Lipson [5] we use the firm-specific past history to compute the expected
liquidity in a period of typical liquidity. Other alternative is considering an appropriate matching
portfolio of similar bonds with stable ratings. However, the lack of liquidity in corporate bond
markets makes this approach unsuitable. Bessembinder et al. [2] indicate that construct abnormal
bond returns using the matching portfolio models (the benchmark is a matching portfolio designed
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credit event. Then, we define the stability-rating window from day t = —41 to day
t = —21. The window ends 21 trading days prior to the announcement day, in order
to avoid possible price lead-up preceding the shocks. The expected liquidity, EL;,
for CRC i is computed as the averaged liquidity proxy in this benchmark window:

21
1
ELi(tl,tz) = N Z li,t (7)

t=—41

To taking into account the different scales of liquidity proxies across different bonds,
we compare the liquidity around the rating change and the expected liquidity in
logarithms. Then, the abnormal liquidity in a specific event window (¢, t,) for the
CRC i is obtained as the difference between observed liquidity in that rating-change
window and the expected liquidity both in logs:

ALi(ty 1) = In(OLi, 1,)) — In(ELit, 1,)) ®)

where In(.) indicates the natural logarithm.
In order to test the null hypothesis of no effects on liquidity due to rating changes,
we compute the Averaged Abnormal Liquidity as:

N
1
AALGy ) = N ZALi(tlstZ) ©
i=1

where N is the number of rating changes in the considered subsample of events
(upgrades or downgrades). Under the null, the expected value of AAL must be zero.

To test the statistical significance we first compute the well-known t-ratio test,
asymptotically normally distributed under the null hypothesis. Second, we compute
two non-parametric tests (the Fisher sign test and Wilcoxon rank test) that are
robust to non-normality, skewness and other statistical characteristics of liquidity
data that may affect the t-ratio properties. The Fisher sign test calculates the
number of times abnormal liquidity is positive. The Wilcoxon rank test accounts for
information of both magnitudes and signs. We report p-values for the asymptotic
normal approximation to these tests.®

We study different width windows to analyze the behavior of abnormal liquidity
before and after the release date: [—10, —6], [-5, —1], [0, 5], [6, 10], and [11, 20].
Besides, we examine separately the effects from both, downgrades and upgrades.

to adjust risk and time-to-maturity) or the mean-adjusted model (the benchmark is Treasury
security with the most similar maturity date) induces a bias.

6See Sheskin [17] for details.
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5.2 Event Study Results for Downgrades and Upgrades

The left-hand side of Table 1 presents results for rating downgrades.” In the case
of price impact proxies (Panel A), results suggest that liquidity becomes scarce
both before and after the event. In the case of the AV liquidity measure, the mean
abnormal value estimated is negative and statistically significant in all the pre-
and post-announcement day event windows. This result suggests an increase of
the cost of demanding liquidity around a downgrade event. This result is robust
to the method that we use (mean and median abnormal liquidity, parametric
and non-parametric tests). The abnormal value of the Bao illiquidity measure is
only statistically significant for the last two windows, with positive estimated
coefficients. This result suggests larger effective bid-ask spreads, i.e. a liquidity
deterioration, during the period [6, 20]. The analysis for the IRC illiquidity proxy
depicts significant positive abnormal values for all the windows, with higher mean
and median values after the event. Results indicate a fall of liquidity around the
event, i.e. transaction costs higher than usual. Finally, the PD illiquidity measure
shows positive and statistically significant abnormal values after the event. The price
dispersion increases after a downgrade. These results are in line with those in [18],
that find significant bond price reactions after downgrades.

Panel B shows the market impact measures. MS and 7V show a decrease in
abnormal trading activity in the previous days to the downgrade and in the second
post-announcement week, while these measures are positive and significant in the
first week after. We highlight that mean and median abnormal liquidity are negative
and particularly low in the weeks previous to the event. Trading activity drops again
during the second post-announcement week [6, 10] and converges to regular values
from the second fortnight after the downgrade [11, 20]. Abnormal TV is insignificant
for the first week [0, 5]. These findings are consistent with results in [15], that find
increasing trading activity after CR downgrade announcements.

Finally, Panel C of Table 1 displays the results for the trading frequency measure,
NT. In this case, there is a significantly abnormal number of trades after the event,
in the [0, 20] window. The estimated coefficient is especially high immediately after
the event [0, 5]. These results are also robust to the tests applied.

The right-hand side of Table 1 presents the results for upgrades. Panel A shows
the effects on liquidity, measured by the price impact measures. In general, mean
and median abnormal values of the four proxies are statistically significant, but
their signs are a little confusing. Liquidity level becomes abnormally high during
all the periods [—10, 20] according to three proxies (Bao, IRC and PD), but we
observe the opposite result in the case of Amivest. This suggests shorter effective
bid-ask spreads, lower transaction costs, and lesser price dispersion during all the
periods, but a higher price impact of new transactions. Results show inappreciable
differences of these proxies between each week around the event.

7Other results for different subsamples and periods are available upon request.
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Panels B and C show the results for the market impact and trading frequency
measures. Results for the abnormal liquidity behavior of MS, TV and NT indicate a
statistically significant drop in the trading activity around the upgrade, except for an
increase in the average number of trades immediately after the announcement.

6 Determinants of the Liquidity Response to Credit Rating
Changes

In this section we identify the drivers of the abnormal liquidity levels that we found
in the previous sections. We expect to find stronger reactions of abnormal liquidity
in the case of events that provide more information to the market.

First, we consider rating-specific features. As Jorion and Zhang [13] state, we
expect that the liquidity reaction to rating changes would depend on the prior rating
level. In addition, the liquidity response to the final CRC can be affected by the
opening of a rating review process. The size of the rating change, i.e. the number of
notches, must be also important in determining abnormal liquidity. We hypothesize
that the number of notches downgraded (or upgraded) acts as a signal of the amount
of information that this rating change conveys.

Besides, we analyse whether there is an agency-specific effect on the liquidity
response to rating actions. We also consider information derived from rating
agencies collected through dummy variables, such as, different initial ratings;
simultaneous announcements; agencies disagreements; agencies consensus; rating
trends or rating break trends.

To test these hypotheses, we run different regressions of the abnormal liquidity
against a set of variables to control for relevant bonds’ characteristics and dummy
variables.® We estimate all econometric models by OLS and compute standard
errors by using the White heteroskedasticity-consistent covariance matrix. We
consider a 10% or lower significance level for the tests.

Table 2 shows the results for the impact of rating changes in liquidity during the
4 weeks after the rating change announcement.’ Panel A displays the results for the
pre-Lehman Brothers’ Default (LBD) period. On the left-hand side, the results for
downgrades indicates that variables related to rating-specific and agency-specific
features explain abnormal liquidity levels after the disclosure of new information.
Variables such as the prior rating, the existence of a previous review process,
or the jump size explain abnormal liquidity after downgrades. On the right-hand
side we present the results for upgrades, where we do not find a large number
of variables that can explain the abnormal liquidity detected in previous sections.
Panel B displays the results during the post-LBD period. On the left-hand side we

8 As control variables we include the bond’s age, the relative offering amount, and two dummy
variables for firms in the industrial and financial industries.

Other results for the pre-event window [—5, —1] are available upon request.
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present results for downgrades and the drivers of abnormal liquidity seem to be the
same as for the pre-LBD period, but sometimes with different signs. Finally, on
the right-hand side we present the results for upgrades. In this case, few from the
proposed variables are able to explain abnormal liquidity after the credit event. We
only observe a positive response in abnormal liquidity in the post-LBD period, when
the upgrade implies a break in the rating history trend. These results are in line with
results in [16], that find differences in the market reaction to rating announcements
by Moody’s and S&P.

7 Concluding Remarks

This paper examines liquidity performance around CR changes in the US corporate
bond market. Our sample involves 1342 straight bonds from 286 issuers that are
affected by 2620 rating changes over the period from July 2002 to March 2010.

Our results indicate shocks in liquidity around downgrades with three clear
patterns: before, immediately after, and during 1 month after the announcement.
First, liquidity proxies before downgrades suggest that the market anticipates the
deterioration of credit quality. Second, there is price pressure and abnormally high
trading volumes during the first days after the downgrades. Third, prices converge to
a stable level, with low-impact price liquidity and normal levels of trading activity,
during the second fortnight. In the case of upgrades, proxies of price impact show
liquidity levels to be higher than usual, whereas trading activity remains below the
common level. Our results are similar than those in [15], that show different intensity
responses to CRC depending on whether it deals with a downgrade or an upgrade.

To conclude, the cross-sectional analyses show different variables that may
affect abnormal liquidity levels. Distinguishing the different responses depending
on pre- and post-LBD periods, the results show that abnormal liquidity before
the announcement is affected by rating-change specific features, such as the
size of the jump, or the category, for both upgrades and downgrades. Abnormal
liquidity immediately after the announcement can be explained by rating change
characteristics, principally by the size of the jump and the fallen angel/rising star
condition, for both upgrades and downgrades. These findings are in line than those
reported by Jorion and Zhang [13], where the bond reaction to credit rating changes
depend on the prior rating level.

Finally, our findings have important implications for corporate bond pricing, as
long as prices around credit events may have information. Credit risk managers can
also anticipate trading and search for better positions.
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The Effect of Credit Rating Events
on the Emerging CDS Market

Laura Ballester and Ana Gonzalez-Urteaga

Abstract We document the cross-border spillover impact of S&P sovereign credit
rating events on sovereign CDS using an extensive sample of emerging economies.
First, we find on average a competition (imitation) effect of downgrades (upgrades)
among emerging portfolios. Results confirms that non-event portfolios responds
positively to credit deteriorations in terms of an improvement in sovereign credit
risk. Second, the sovereign credit risk of non-event countries within the same
portfolio benefit (suffer) from downgrades (upgrades). As expected, this implies
a competition effect in terms of sovereign credit risk. Moreover, we find that
downgrades are more likely to spill over into other emerging markets than upgrades,
and they do so with a greater impact. Finally, there is enough evidence of cross-over
effects to support the importance of this study.

1 Introduction

During the last decade, sovereign credit ratings and their impact on sovereign
debt have received considerable attention, playing a pivotal role especially for
emerging market investments, given the expansion of these economies over recent
years. The latest literature confirms that sovereign ratings serve the function of
enhancing the transparency of the emerging market’s credit risk profile and therefore
can significantly influence its national stock and bond market investment flows
[5]. Kim and Wu [13] hypothesize that rating changes within emerging markets
have significant information value to improve institutional quality for facilitating
long-run financial and economic development. In short, sovereign ratings represent
valuations of governments’ capacity to deal with their financial obligations, as well
as their capacity to obtain better financial conditions.
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Nowadays, emerging sovereigns are among the largest high-yield borrowers
in the world; however, their nature is different from other high-yield obligors.
Since rating agencies usually assign them the non-investment grade status, they are
considered to be more likely to default. However, emerging countries in financial
distress generally do not enter bankruptcy proceedings or ever liquidate their
assets, but rather they go through debt restructuring mechanisms that allow them
to exchange defaulted bonds for new longer maturity, lower yield debt instruments.

This paper extends the literature related to the effect of credit rating announce-
ments on emerging markets, providing new analyses untested to date. Initial studies
have investigated the reaction of international sovereign and/or corporate CDS
spreads to credit events, [8, 9, 11, 15], among others. Overall, they find that the CDS
market anticipates ratings announcements, especially for downgrades. However,
they all focus exclusively on the effect on the rerated firm or country. A growing
strand of the literature focuses on cross-border spillover effects, measuring whether
the impact of rating events also extends to economies beyond the respective country.
In this line, [7, 10] and [1] examine the cross-border effect of sovereign credit ratings
on international sovereign bond spreads, stocks and European Union sovereign bond
and CDS spreads, respectively. They all find the existence of asymmetric spillovers,
with the negative effect of downgrades being the most pronounced. More recently,
[4] confirm previous results, studying the impact of sovereign rating events on
the international sovereign bond market. In addition, their results suggest that the
effect is more pronounced for countries within the same region. By contrast, at
the international CDS corporate level, [17] find the existence of spillover effects
on competitors. This means that non-event firms benefit (suffer) from downgrades
(upgrades) in a given firm.

In this paper, we focus exclusively on emerging markets, given the significant
growth that their credit market has experienced in recent years. Following [17],
we argue that an analysis of the reaction on the country where the event occurs
is incomplete, because it does not reveal how much of the rating announcement’s
information is country-specific and how much is market-wide. Given this result,
we focus on the cross-border analysis, that allows us to investigate if non-event
countries (seen as competitors) benefit or not from the rating event in a given
country. We distinguish between positive and negative rating events to test the
potential asymmetry of events. Additionally, we also examine the effect in different
time windows, differentiating between periods surrounding the event, as well as
before and after the event. Moreover, given the advantages of CDS spreads over
bond spreads, we use them as a proxy of the sovereign credit risk.

In this sense, this paper is closely related with [12] who investigate the cross-
border spillover impact of sovereign credit events on sovereign CDS spreads during
the period 2001-2009. However, we differ from their paper in several ways. We
have doubled the number of emerging markets analysed, and the sample period
includes the more recent period, from 2004 to 2015. Following related literature
(e.g., [8, 11, 15, 17]) we use the event study methodology to test a great variety
of different spillover analyses. In a first analysis, we test the spillover effect on
average through all the countries and events considered in the sample. As a novel
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contribution of the paper, we provide a better understanding of how the spillover
works in the sovereign CDS emerging market. In a second analysis, we study
the effect at portfolio level with the aim to examine whether the CDS market
reaction to rating announcements are different across representative portfolios. More
concretely, at this point, we perform two different analysis. We examine whether
a rating event in a given portfolio have significant effects in the other portfolios
considered all together. Afterwards, we study whether there is any portfolio that
leads the spillover effect, with the purpose of isolating each transmitting portfolio.
Finally, we repeat the same steps to analyse the relationships at the country level
inside each portfolio. We argue that is seems more likely to find significant effects
among the countries belonging to the same portfolio, since they are more likely to
be seen as competitors. Our research not only complements but also deepens the
literature on international information transmission across emerging countries by
examining the impact of sovereign rating changes on the sovereign CDS.

The remaining part of this study is organized as follows. Sections 2 and 3 describe
the data and the cross-border estimation methodology, respectively. Section 4
presents our empirical results and discusses their interpretation and we end with
a brief conclusion in Sect. 5.

2 Data

We use two major datasets. One consists of daily sovereign CDS spreads, collected
from Datastream, for 45 emerging countries. We consider US dollar denominated,
senior tier and 5-year CDS quotes, since these contracts are the most liquid and
the largest of the segment of the emerging economies’ CDS market ([12] and [6],
among others). The sample comprises a wide period from January 1, 2004 to March
4, 2015, with 114,587 unbalanced panel observations for 2915 days. Our interest in
sovereign emerging markets is twofold. Firstly, since rating agencies usually assign
them the non-investment grade status, they are considered more likely to default.
However, they do not fall into default in classical terms due to the special nature of
their default risk.

The 45 emerging countries' have been classified into seven representative
portfolios (BRIC, CIVEST, Eastern Europe, Asia, Middle East Asia, America,
Africa).? Figure 1 illustrates the daily time evolution of the mean CDS spreads

'We retain all the emerging countries with available data in our sample period. Furthermore, we
exclude countries for which no S&P rating history is available.

2The first portfolio is the well-known BRIC portfolio, which is comprised by Brazil, China, India
and Russia. This is a sub-group of emerging countries with a remarkable strong development over
the recent years. Secondly, CIVEST portfolio is constituted by Colombia, Egypt, Indonesia, South
Africa, Turkey and Vietnam. These economies are considered very promising and they have been
called the new BRICs. The remaining five portfolios are formed by geographical zone. Eastern
Europe (portfolio that is made up of 9 countries), Asia (that contains 7 countries), Middle East
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Fig. 1 Emerging portfolios CDS spreads

through all the seven portfolios. CDS spreads differ substantially by country and
portfolio.> The mean of CDS spreads range from 130.06 bps for Eastern Europe
(with Czech Republic presenting the minimum mean of the sample) to 324.01
bps for America (with Argentina and Venezuela displaying the maximum means
of the sample). The sharp increase in the CDS premiums during 2008 is notable,
corresponding to the global financial crisis. After 2009 they strongly decrease, but
still exceed the values they had before the crisis.

Our second data set contains credit rating events that occur for all the emerging
countries considered and for the same period as the CDS data. We collect rating
announcement events from S&P’s Sovereign Rating and Country Transfer and
Convertibility Assessment Histories. Previous studies show that S&P rating changes
occur more frequently, are less predictable by markets, and antecedent those of other
rating agencies [10, 16]. In this study a credit rating event consists of a change in a
country’s actual rating, a change in its review for a rating change or its entrance onto
the watch-list for a possible rating change. Positive (negative) events are upgrades
(downgrades) of S&P’s credit ratings or revisions in the sovereign’s outlook, as well
as on the watch-list.

Table 1 displays the distribution of credit rating events per year (Panel A) and
per portfolio (Panel B). We observe a total of 373 credit rating announcements for
the 45 emerging countries in our sample, where positive and negative rating events

Asia (which encompasses 5 countries), America (that includes 11 countries), and Africa (which is
formed of 3 countries). Using CDS spreads portfolios rather than individual country CDS allows us
to achieve two objectives. On the one hand, to summarize the information content of the individual
CDS series eliminating possible idiosyncratic country effects and, on the other hand, to obtain
an average credit risk measure for each one of the portfolios that allow us to obtain a better
interpretation of the results [2].

3Descriptive statistics on the CDS data for each country and portfolio are not shown but available
upon request.
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Table 1 The distribution of sovereign credit rating events (CREs)

Upgrades Downgrades Total

Panel A: CREs per year

2004 26 2 30
2005 39 4 43
2006 30 7 37
2007 22 7 29
2008 12 39 51
2009 6 18 24
2010 18 7 25
2011 19 27 46
2012 8 24 32
2013 10 21 31
2014 6 11 17
2015 1 9 10
Panel B: CREs per portfolio

BRIC (P1) 29 10 39
CIVEST(P2) 29 26 55
Eastern Europe (P3) 45 53 98
Asia (P4) 24 22 46
Middle East Asia (P5) 16 16 32
America (P6) 51 32 83
Africa (P7) 3 17 20
Total 197 176 373

are slightly asymmetrical, with 199 upgrades in contrast to the 174 downgrades.*
This is also the case at the portfolio level for CIVEST, Asia and Middle East
Asia, which have almost the same number of upgrades as downgrades. In the other
four portfolios this relationship is asymmetrical. BRIC and America display more
positive credit rating events, in contrast to Eastern Europe and Africa that show more
negative credit rating events. Finally, until 2008, positive events clearly dominate
negative ones. However, during 2008, in the global financial crisis context, the
tendency changes and negative events become most numerous. In addition, 2008
is the year that has more rating events and, concretely, more negative ones. This
large number of downgrades in 2008 is directly related to the credit quality of the
countries, displayed as a rise in the CDS.

4A similar pattern is observed if we look at the type of event, with more positive credit rating
changes (110 versus 61) and positive outlooks (97 versus 84). The opposite is given in the credit
watch-list, which presents only downgrades (21). These results are not shown but are available
upon request.
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3 Methodology

We employ the standard event study methodology [8, 11, 14, 15], but we apply
it to test the cross-border effects. In particular, the cumulative abnormal returns
(CARs) of a country (portfolio) around the credit rating event date of a different
country (portfolio) will be tested. The aim is to investigate whether the credit
rating announcement in a given emerging country (portfolio) has any impact on
the sovereign CDS spreads of cross-border emerging economies.

More concretely, in a first analysis we will test the spillover effect on average
through all the countries and events considered in the sample, distinguishing
between rating upgrades and downgrades. That way, we will be able to analyse
whether the cross-border reaction of sovereign CDS is symmetric to the responses
of positive and negative rating news in a given country. Secondly, we will repeat
the previous analysis, employing in this case the seven representative portfolios
considered, in order to study the effect at the portfolio level. Afterwards, we will
study whether there is any portfolio that leads the spillover effect among portfolios,
with the purpose of isolating each transmitting portfolio. Finally, we will repeat the
same steps to analyse the relationships at the country level inside each portfolio.
We argue that it seems more likely to find significant spillovers among the countries
belonging to the same portfolio, since they are more likely to be seen as competitors.

The methodology follows a two-stage empirical procedure. The first step consists
of calculating at each day ¢ the abnormal return of each CDS series i by applying
the following formula:

AR;; = ACDS;; — Alndex CDS;

where ACDS}; represents the increment in the credit spread for country or portfolio
i at time ¢, and the Index CDS; is a benchmark that represents the market factor.
Following [12], this index is calculated as the average of all the CDS considered
in the analysis. Therefore, it consists in measuring the adjusted increment in the
CDS spread by taking away the increment in a benchmark CDS spread from the
absolute increment in the sovereign CDS spread for country or portfolio i to control
for changes in sovereign CDS emerging market conditions.

The second step consists of using the abnormal returns to calculate the CAR,
which is given by the following equation:

n
CARig ) = »_AR;

=n

where (11, 1;) is the window where we analyse whether the sovereign credit rating
event in a given emerging economy has any impact on the CDS spreads of cross-
border emerging economies. Following previous literature, we first consider a
window around the event date [—1, 1], where the credit event date is considered
the day zero. To analyse the spillover effects prior to and after the occurrence of
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the event, we consider the windows [—30, —2], [-60, —31] and [2, 30], [31, 60],
respectively. To test the absence of effects we use the standard ¢-test following [3].°

A significant prior-effect suggests that before the event occurs in a given country
(portfolio), the sovereign CDS of the others incorporate the rating information. On
the other hand, a significant post-effect suggests that rating news in a particular
country (portfolio) contains new information that has a significant impact on the
sovereign CDSs of the other bordering countries (portfolios).

The use of positive and negative credit rating events separately allows us
to distinguish two types of effects among countries/portfolios: the competition
effect and the imitation effect. If downgrades in a given country/portfolio lead a
significant and negative (positive) CAR mean, this indicates a decrease (increase)
on average of sovereign CDS increments of the rest of the countries/portfolios,
which means an improvement (worsening) in their sovereign credit risk. Hence,
the investors see the rest of the countries/portfolios as non-substitute (substitute)
assets, and thus there exists a competitive (imitation) effect. Similarly, if upgrades
in a given country/portfolio lead a significant and negative (positive) CAR mean,
this indicates an improvement (worsening) in the sovereign credit risk of the rest of
the countries/portfolios. Hence, the investors see them as substitute (non-substitute)
assets, and therefore an imitation (competitive) effect exists.

If we assume that given a rating announcement in a given country/portfolio, the
rest of the emerging economies are competitors, we expect that changes in the credit
quality would have an impact on refinancing conditions of cross-border economies.
More specifically, we expect that competitors benefit (suffer) from downgrades
(upgrades) in terms of decreasing (increasing) sovereign credit risk. This signifies a
competitive effect for both negative and positive events, which will be reflected in a
negative and positive significant CAR, respectively.

4 Results

First of all we analyse the possible spillover effect on average through all the
countries and all the events considered in the sample. We observe that there are
not significant values in any of the cases. Certainly, there is a notable heterogeneity
among the 45 emerging countries considered, hence the absence of cross-over
effects between credit rating events and sovereign CDS is not surprising when
considering these markets all together, which does not mean that there are not effects
among some countries.®

3 As a robustness test we use the non-parametric Wilcoxon signed-rank test. Overall, we observe
more significant cross-border spillover effects, but the general conclusions hold. The results are
not shown, but are available upon request.

The results are not shown due to their non-significance, but they are available upon request.
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Table 2 Credit rating events cross-border effect on emerging sovereign CDS at the portfolio level

Post-effect Around-effect Prior-effect

[31,60]  [2,30] [~1.1] [—30, —2] [—60, —31]
Panel A: Downgrades
Average —3.87* —4.26%*
Eastern Europe —4.26%*
Asia —6.51* —3.89** —9.12**
America —11.61%**
Panel B: Upgrades
Average —2.13**
America —2.42%*

In view of the results it seems more convenient to carry out the study in terms
of portfolios. The purpose is to isolate each transmitting portfolio and investigate
whether its events have on average spillover effects on the remaining portfolios,
the latter considered all together. We repeat the significance test considering the
seven CDS spreads emerging portfolios previously constructed. Table 2 exhibits the
results for downgrades (Panel A) and upgrades (Panel B).” As we expected, at the
portfolio level we do find significant spillover effects on average among portfolios.
It is notable that significant values (on average) are observed exclusively prior to
the rating announcement. The negative CAR values for downgrades and upgrades
indicate that non-event portfolios benefit in terms of an improvement in sovereign
credit risk. There is an asymmetric response to negative and positive events, with a
competitive and imitation effect, respectively.

Next, we study the spillover effects of the rating announcements in a given
portfolio on the rest, to examine if any portfolio leads the prior-effect previously
found in terms of average, or if there are also other effects depending on the analysed
portfolio. In short, the results in Table 2 show that emerging portfolios benefit
from sovereign downgrades, in Eastern Europe, Asia and America (prior, post or
around the event depending on the portfolio), and upgrades in America (prior to the
event). Thus, there is evidence of an asymmetric spillover effect of sovereign credit
announcements, with a competition (imitation) effect of downgrades (upgrades)
among portfolios. It means that, all the emerging portfolios responds on average
positively to credit deteriorations in Eastern Europe, Asia and America portfolios,
whereas credit improvements in America also affect positively to the rest of
emerging areas. It is noticeable the greater cross-border impact of downgrades,
which are not associated (at least at portfolio level) to a negative spillover. This

"Henceforth tables present the credit rating events prior, around and post effect on average
through all the portfolios and all the events, and from each portfolio to the rest of the portfolios,
distinguishing between positive and negative events. The average CAR are shown. The tables only
report the windows that are significant, using the standard ¢-test at the 10%(*), at the 5% (**) or
1% (*%5),
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finding differ from those of [10] and [4] who report that negative events are
associated with a significant increase in bond spreads. We attribute the discrepancy
to institutional and liquidity differences between CDS and bond markets and to the
sample period. Besides, it is quite reasonable to find different spillover relationships
between portfolios and between countries.

Finally, we measure the cross-border effect of sovereign rating announcements
inside each portfolio at the country level. We argue that it seems more likely to find
significant spillovers among the countries belonging to the same portfolio, since
they are more likely to be seen as competitors. Thus, we perform an intra-portfolio
analysis. Table 3 presents the results.

In general, for negative rating events we observe the same pattern as we
found at portfolio level. Downgrades in certain event country cause a decrease
in CDS spreads of the others non-event countries included in the same portfolio
(negative and significant CAR). As a result, a competition effect is found for rating
downgrades. At international industry level, [17] found the same positive spillover
between rating changes and the CDS market. This effect is mostly observed around
and prior the event occurs. Our analysis allows us to identify which countries inside
each portfolios are the leaders in the spillover transmission process regarding this
competition effect associated to downgrades. These are the cases of Russia (BRIC
portfolio), Egypt and Vietnam (CIVEST portfolio), Pakistan and to a lesser extent
Kazakhstan (Asia portfolio), Bahrain and Lebanon (Middle East portfolio) and
Ghana (Africa portfolio). The case of the American portfolio is slightly different.
Argentina and Venezuela are the only two cases among the eleven American
countries presenting a competitive effect due to downgrades. However, the effect is
not clear, because it changes depending on the window. In addition to that, there are
also some other countries showing the opposite effect (an imitation effect) related
to downgrades. The case of Philippines is worth mentioning. The positive CAR
indicates negative spillovers that should be closely monitored, since downgrades in
Philippines imply a credit deterioration of non-event Asian countries.

Related to upgrades, there are some important results. First, effects in upgrades
are less significant than effects in downgrades, since the latter are more frequent and
have more impact. Second, despite upgrades displayed an imitation effect between
portfolios, at country level we find clear evidence of significant competitive effect
due to upgrades. Thus, competitors suffer from upgrades in terms of credit risk.
Non-event countries response negatively to positive events in the event countries
included in the same portfolio. This finding reflects how international and local
contagion (the portfolio versus the intra-portfolio analysis) are due to different
spillovers and effects. Moreover, as in the downgrades results, prior and around
effects are predominant in the intra-portfolio analysis. Third, the results enables
us to identify the transmitters of this competitive effect related to upgrades.
Brazil and China (BRIC portfolio), Egypt (CIVEST portfolio), Lithuania (Eastern
Europe portfolio) Sri Lanka (Asia portfolio), Lebanon (Middle East portfolio) and
Argentina (American portfolio). Credit enhancements in these countries worsen the
credit risk of cross-border economies that belong to the same region.
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Table 3 Credit rating events cross-border effect on emerging sovereign CDS inside each portfolio

at the country level

Post-effect

[31, 60] [2,30]
Panel A: Downgrades
BRIC-Average
Russia
CIVEST-Average
Egypt
Vietnam 8.18**
Asia-Average
Kazakhstan —20.34**
Pakistan —48.32%**
Philippines
Middle East Asia-Average 2.97**
Bahrain 3.69*
Lebanon —12.89*
America-Average
Argentina 18.39™**
Venezuela
Africa-Average
Ghana —21.61*
Panel B: Upgrades
BRIC-Average
Brazil
China
CIVEST-Average
Egypt 14.47**
Eastern Europe-Average
Lithuania
Asia-Average
Pakistan
Sri Lanka
Middle East Asia-Average
Lebanon
America-Average
Argentina

Around-effect
[—L1]

—9.56*

—2.11**

—33.28%**
10.16***
—5.07**
—1.84**
—11.33*
6.34**

16.63**

1.17*
2.13**

1.44**

Prior-effect
[=30,-2]

—15.90*
—4.52*
—7.21**

—57.19**
1.82%**
—5.60%**
—9.07***

—41.31%%*

—62.81***
—66.58***

4.97*

8.38**

—22.99**

6.28*
22.50**

[—60, —31]

—50.44%%*

—83.89***
—8.24***
—4.25*

—43.25%**
9.02%**

21.61%**

6.00**

49.48**

13.93*

To sum up, our findings provide evidence of asymmetric market reaction around
sovereign credit announcements at the portfolio level, in which competitors gain
advantage in terms of decreasing their sovereign credit risk from upgrades and
downgrades in the event portfolio. This means an imitation (competition) effect for
upgrades (downgrades). The market reaction is more pronounced among countries
within the same portfolio. Overall, the results reveal that both downgrades and
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upgrades have a competition effect on non-event countries. Thus, competitors
benefit (suffer) from downgrades (upgrades) when they belong to the same portfolio.
Accordingly, rating announcements contain information that is both country-
specific and market-wide. Setting aside the particular case of upgrades in the
portfolio analysis, rating announcements are generally related to a competition
effect, supporting the results of [17] for international corporate CDSs. Furthermore,
the asymmetry in the results related to positive and negative events are also notable
since the latter are more frequent and have more impact.®

5 Conclusions

We study the cross-border spillover impact of sovereign credit rating announce-
ments on the sovereign CDS using an extensive sample of emerging economies
and covering a large period from 2004 to 2015. Traditionally, the literature has
focused on the analysis of the reaction on the country in which the event occurs.
However, we argue that this study is incomplete, because it does not reveal how
much of the rating announcement’s information is country-specific and how much
is market-wide. Cross-border analysis allows us to investigate if non-event emerging
economies (seen as competitors) benefit or not from the sovereign rating event in a
given country.

Our empirical analysis show that, at the portfolio level, both positive and negative
rating events positively affect non-event portfolios in terms of decreasing their
sovereign credit risk. This implies an imitation (competition) effect for upgrades
(downgrades). Nevertheless, among countries within the same portfolio the market
reaction is more pronounced. As we expected, rating events are generally related
to a competition effect (which supports the results of [17]). In this way, sovereign
credit risk of non-events countries within the same portfolio benefit (suffer) from
downgrades (upgrades). In this way, we have found sufficient evidence of cross-
over effects to support the importance of studying not only the impact of credit
rating events on the event country, but also on the non-event cross-border economies
through a spillover analysis.

These findings may have practical applications. Investors could evaluate industry
models and hedge against the effect of future credit rating announcements in one
country on the non-event bordering economies. This information is crucial in order
to appropriately construct portfolios sensitive to sovereign credit risk. Moreover,
it permits the identification of the competition effect produced by negative and
positive rating events in cross-border emerging economies. Additionally, given the

8This result is consistent with previous related literature ([1, 7, 10], among others). By contrast,
[12] find that upgrades are more likely to spill over to the emerging economies. At this point,
it is important to take into account that they results are obtained with a more limited number of
countries, an smaller sample period and a different methodology.
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importance and the growth in the CDS market, which is considered a reasonable
proxy for credit risk, these results may also be helpful for future regulators
when implementing new capital adequacy frameworks for individual countries and
portfolios in the sovereign credit risk market.
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A Generalised Linear Model Approach
to Predict the Result of Research Evaluation

Antonella Basso and Giacomo di Tollo

Abstract Peer review is still used as the main tool for research evaluation, but
its costly and time-consuming nature triggers a debate about the necessity to
use, alternatively or jointly with it, bibliometric indicators. In this contribution
we introduce an approach based on generalised linear models that jointly uses
former peer-review and bibliometric indicators to predict the outcome of UK’s
Research Excellence Framework (REF) 2014. We use the outcomes of the Research
Assessment Exercise (RAE) 2008 as peer-review indicators and the departmental /-
indices for the period 2008-2014 as bibliometric indicators. The results show that
a joint use of bibliometric and peer-review indicators can be an effective tool to
predict the research evaluation made by REF.

1 Introduction

Peer-review is often considered as the most reliable tool to evaluate the research
output: it relies on experts assessments, and it is based on independent examination
performed by scholars [2, 8]. Though it presents some drawbacks [4], it has
extensively been used by national agencies to assess the research performed by
Universities. Every country has its own rules to provide this assessment, but they
mostly rely on peer-review. Hence, the overall process takes several months in
order to produce the eventual assessment, and the period between two consecutive
assessments is significant.

The assessment can be aimed either to compute a score, which is a single number
s that represents an overall measure of the quality of the group [11], or to assign
Universities (or departments) a rating class [7].
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In both cases, scholars have started to investigate whether faster automated
scientometric or bibliometric analysis may be used to replace or to predict peer-
review based evaluations [15]: a timely prediction could lead universities to better
allocate their resources and to develop operational strategies in order to improve
their results. However, there is evidence against using bibliometrics as stand-
alone indicators for several reasons: they come from different databases, and their
use may lead to different results when comparing researchers in different areas;
furthermore citations accumulate too slowly to be used in a short-term research
assessment [5, 9, 10]. Hence, some scholars have suggested to use bibliometrics
jointly with peer-review [6, 8] in order to perform research evaluation: Mrygold
et al. [11] show that bibliometrics may be used as a proxy for peer-review
analysis, but not as a measure of research quality. In later works, they find a
significant correlation between the departmental /-indices and the outcome of the
2008 Research Assessment Exercise (RAE) in the UK, and propose the A-index
as a predictor for the outcome in the next research assessment [12]. However,
this approach failed to anticipate the outcome of the 2014 Research Excellence
Framework (REF) [13].

In our work we try to predict the outcome of the next national research
assessment exercise by using an automated approach that resorts to bibliometric
indicators and the output of the previous national research assessment. We apply
our approach to the Higher Education System in the United Kingdom, aiming to
predict the Research Excellence Framework (REF) 2014, i.e., the score computed by
the HEFCE (Higher Education Funding Council for England) and the rating class
for each department. As previous assessment indicators, we use the outcome of the
previous research assessment; as for bibliometric indicators we use the departmental
h-indices (a departmental /#-index of n means that n papers, authored by staff from a
given department, and in a given subject area, were cited n times or more in a given
time period).

With regard to the automated approach, we use a Generalised Linear Model
(GLM), that could be useful since GLMs represent an extension of ordinary linear
regression models which introduces a link function to create a relationship between
a linear prediction and the model output.

The paper is organised as follows: Sect. 2 introduces GLMs; Sect. 3 presents the
models proposed to predict the results of the research evaluation in UK; Sect.4
details the experimental phase to fit the model, that will be used in Sect. 5 to predict
the outcome of the next research assessment. Section 6 concludes the paper.

2 Two Generalised Linear Models for Research Evaluation

Generalised Linear Models [14] are a class of regression models in which the vari-
able of interest y is assumed to follow a member of the exponential family of prob-
ability distributions (Gaussian, inverse Gaussian, Poisson, Gamma, Binomial .. .),
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i.e., a distribution whose density function can be reconducted to

y0 —b(0)

£0:0.9) = exp( o

+ ey, ¢))

where 0 is the canonical parameter and ¢ is the scale parameter.

GLMs relate the parameter 6 to a set of predictors by defining a differentiable
one-to-one link function g(u) that transforms the mean of the response variable
u = E(y) into the linear combination of predictors n = ), Bix;. In this way we
allow a linear model to be related to the response variable.

For example, in the Gamma family the random component that specifies the
conditional distribution of the variable of interest follows a Gamma distribution,
that can be expressed in exponential form as follows:

S —(—1 —_
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In this case the link function is given by g(1) = ! so that n = !. The resulting

model will be referred to as the Gamma model in what follows.

In the Gaussian family, instead, the random component that specifies the
conditional distribution of the variable of interest follows a Gaussian distribution
with mean u and variance o2, with density function

" 2

- 1
fOi1.4) = exp (y - 21n<27m2))

In this case the link function is given by g(1) = u and thus n = w. Please notice
that in this formulation, that will be referred to as the Gaussian model in what
follows, the GLM corresponds to the standard linear model, which can therefore
be considered as a special case of GLMs.

The Gamma distributions are well-suited when dealing with strictly positive
continuously distributed data; furthermore, differently from other distributions, they
are easier to interpret [1]. On the other hand, the Gaussian distributions are well-
known and widespread, and their use is well suited for dealing with unbounded real
values.

In this contribution we use GLMs to study the relationship between the predictors
and the score computed by HEFCE, the mean rating class and the mode of the rating
class. Both in the case of the score and in that of the mean rating class we deal with
bounded continuous random variables; the mode of the rating class, instead, is a
bounded integer random variable (see Sect. 3).
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3 Using GLMs to Predict the Results of REF Evaluation

The research assessment procedures devised to allocate public research funds in the
UK divide academic disciplines into units of assessment (UoAs: sociology, biology
etc.). Universities are invited to submit research outputs produced on these UoAs to
be evaluated by expert panels: every institution has to submit four outputs for each
staff member, that have to be evaluated w.r.t. originality, significance and rigour.
Panel experts assess department’s submissions by assigning each research product
to one out of five rating class (4*, 3%, 2*, 1* and Unclassified, in decreasing order
of relevance), and quantifying the percent value that falls into each rating class.
Starting from these percent values, HEFCE computes a score for each university by
averaging out these percent values. This is made by using a formula that has been
modified over time. For the REF outcomes (2014) the formula used was

SREF = P4 REF + ;p?),REF (H
where p;rap (i € {1...4}) denotes the percent value of the outputs attributed to
the rating class i*. In order to compare the results obtained in the 2008 and 2014
evaluation exercises, we have applied Eq. (1) not only to the results (percent values)
of the REF 2014 exercise but also to the results of the RAE 2008 evaluation exercise,
thus obtaining two comparable scores, denoted by sgar and sger, respectively. Along
with the results from RAE and REF, for the period taken into account we have
considered the departmental s-index of the universities and HEIs in the sample.

Our goal is to define an appropriate relationship between the set of predictors
(h-indices, p; g, and sgag) and:

* the rating class cggr to which a department/university belongs to;
e the score sggr.

As for the rating class, we either assign every department to the class showing
the maximum output research percentage (referred to as crgpmode [31), Or we
consider the mean value of the rating class which is obtained by computing the
weighted average of the class (referred to as cgrer mean), With the weights given by
the percentage of research outputs in each class.

In order to reduce the number of predictors, necessary when using small-samples,
we remark that empirical investigations led some authors to report that departmental
h-indices tend to follow a linearly increasing trend over time [12]. Hence, we have
computed the mean yearly h-index variation over the time period considered, i.e.
Ah = hzo“‘ghzo‘”‘ , and we have focused on it as a predictor to be used in conjunction
with the initial h-value (hy003) (experiments with the final h-value hy914 led to the
same results).

As for the p; rag values, in order to avoid multicollinearity in the data we have
removed the Unclassified and 1%, classes from the predictors set: as a matter of
fact, not only the percent values in the 5 classes sum to 100 for all HEIs, but also
in most cases the Unclassified class has a zero percent value. Furthermore, when
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predicting sger wWe have removed the 2%, . class, too, since Eq. (1) takes into account
only the classes 4., and 3%, in the computation of sge.

In a nutshell, for predicting cgrermode and CREFmean We use the following
predictors: h-2008, Ah, p4 raE, P3.rAEs P2.RAE- The linear predictor 7 is defined as

Nie = o+ Broooshaoosi + BanAhi+ Bux, Parae + B3y, P3rae + Bog, P2rae.  (2)

For predicting sger we use the following predictors: -2008, Ah, pa rag, P3.RAE,
and the linear predictor 7 is defined as:

Nis = & + Broooshooosi + BanAhi + Bax, Parae + B3x, P3rak. 3)

These predictors are used to estimate a GLM. The resulting model is then applied
to predict Sger, CREF.mode a0 CREF mean- We have tested several GLMs in order to
determine which one is the most suitable for the problem at hand. In Sect.4 we
report the outcomes obtained with the models that produced the best results: the
Gamma model, and the Gaussian model.

The other distributions tried show sometimes good results on specific instances
but lack generality: this is the case for the ordinal logistic distribution, that is well
suited for predicting the rating class, but needs non null values in at least three
classes for the dependent variable (and this is not the case in some instances), and
the binomial GLM with the logit link function, which considers only two possible
values for the dependent variable (and this occurs in some instances but is far from
being the general case). On the contrary, the models we have chosen are apt to be
applied to a wide range of instances and generally provide a good performance. The
results of the experiments performed by using these models will be presented in the
next sections.

4 An Empirical Investigation on REF Data

We have run experiments on four UoAs which were included in the list of UoAs
for both RAE and REF: biology, sociology, chemistry and physics.! The data are
publicly available. To this aim we have applied the two GLM models proposed in
the previous section.

For the computations we have used the R package glm, that allows the user to
estimate the aforementioned models with the most common link functions. From
an operational point of view, the estimations were computed on a cluster with AMD
Opteron 2216 dual core CPUs running at 2.4 GHz with 2 x 1 MB L2 cache and 4 GB
of RAM under Cluster Rocks distribution built on CentOS 5.3 Linux. The average
execution time was comprised between 2 and 3 s for each run.

'HEIs with missing values have been removed from the data set.
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In what follows, we discuss the experiments performed to estimate the GLMs
presented in Sect. 3; these models will be used in Sect. 5 to make some predictions
for the next REF, that will be held in 2020.

First of all, we have estimated the GLM models presented in Sect. 3 on the data
considered.

As for sggr, it represents the score assigned to each HEI, hence no further pre-
processing is necessary. As for cggr, instead, it represents the rating class, and we
have performed some experiments with two different definitions that can be used to
obtain its value:

 the mean rating class crgr mean, Obtained by computing the weighted average of
the class with the weights given by the percentage of research outputs in each
class: 3 ipgppiger;

* the sample mode crer moqe Of the percent distribution of the research outputs in
the rating classes 4f.r, 3kpr> 2rers 1res 1-€. the class showing the maximum

research percentage [3]; it will be referred to as crer mode-

In Table 1 we report the results of the parameter estimation for the models
obtained for the score sggr, while Tables 2 and 3 display the results of the
parameter estimation for the models obtained for the rating class crermeqn and
CREF.mode> Tespectively. For each model, Tables 1, 2, and 3 report the parameter
estimates obtained, along with their p-values, and three statistics useful to assess
the regression significance: R?, the p-value of the F-test of the regression (the
probability to obtain a value for the F statistic greater than the F-value of the
model, under the null hypothesis that the regression model is not significant), and the
Akaike Information Criterion (referred to as AIC: a measure for choosing between
competing statistical models by assessing the information lost in the model).

By observing Tables 1, 2, and 3, we may note that our approach shows quite good
performances, with a good significance of the estimated models, though in several
cases the estimates of some parameters show little significance and the R? statistics
varies considerably according to the sample considered.

With regard to the specific form of the GLM model, a comparison of the results
of the Gamma and Gaussian models does not allow to determine which is the best
model conclusively, since neither of the two models always offers the best results:
this can be seen by analysing the three statistics reported. At first, we remark that
AIC values are highly (negatively) correlated with R? over sger and CREF mean> and
by observing these two measures we remark that in some cases the best estimation
is given by the Gamma model, in other cases it is given by the Gaussian model.
Howeyver, the overall results seem to indicate that the Gamma model is more robust
than the Gaussian model, since by observing the p-value of the F-test we remark
that the estimated models of Tables 1, 2, and 3 are highly significant in all cases for
the Gamma model (the p-value of the F statistics is always lower than 0.001 but in
one case, in which it is anyway lower than 0.01) while in some cases (5 out of 24)
they are not significant at a 5% level for the Gaussian model.
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Fig. 1 Results of the experiments with the Gamma model: values of sger, CREF.means and CREF mode
vs their fitted values for the UoA Biology. (a) UoA Biology: sger vs fitted sger. (b) UoA Biology:
CREF ,mean VS fitted CREF ,mean - (C) UoA BlOZOgy CREF ,mode VS fitted CREF ,mode

The adequate goodness of fit of the models is confirmed by the plot of the actual
versus the fitted values; Fig. 1 shows the actual versus the fitted values obtained with
the Gamma model for sger (a), CREF mean (D), and crer mode (€), for the UoA Biology
(the graphs of the other UoAs are similar).

5 Predicting the Results of Next REF

In this section we use the models estimated in Sect. 4 to predict the outcome of the
next REF, that will be held in 2020. The basic idea is to use p;ger (i € {1...4})
instead of p; gag (i € {1...4}) and h-2014 instead of ~-2008, by weighting them in
the model with the values of the parameters estimated in Sect. 4.

However, since some of the variables used in the estimated models refer to a
future period of time (2014-2020), we have to determine an estimate for their
(future) value.
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Moreover, some pre-processing operations are necessary to take into account
the fact that the h-index is cumulative, hence it follows an increasing trend over
time [12]. This means that if the same HEI shows a #-2014 value bigger than that of
h-2008, this is only partly attributable to the research carried out in the last 6 years.
If it is not properly taken into account, this effect could lead to incoherent results
when these data are used to predict the next research evaluation outcome.

This issue does not affect the variable Ah: since A-indices on average generally
follow an increasing linear trend over time [12], we may use the same value of Ah
used to estimate the model also as a prediction of the variable over the next period,
without introducing a bias in the results. Clearly, this corresponds to assume that
the number and the quality of the research outputs in the next 6-year period will
be analogous to those of the previous 6 years. As for p; rer, they are expressed in
percent values, hence their use in place of p; rar appears to be justified, too.

On the other hand, if we want to use the value of 4-2014 in our models in place
of the value of £-2008, we need a way to neutralise the average cumulative effect
of time. There could be different ways to obtain this effect; we chose to subtract
the average increase observed in the 6-year period 2008-2014 (the average being
computed over all the HEIs of the UoA under examination) to the value of 4-2014.
Hence, we subtract the quantity 6 - Ah, where Ah represents the mean value of Ah,
to h-2014; the resulting normalised variable will be denoted by 4*-2014:

e = haota — 6+ Ah.

In a nutshell, in order to predict the results of the assessment of the next 2020
REF we have applied both the Gamma and the Gaussian models estimated in the
previous section with the following input variables: h*-2014, Ah, and p;rer (i €
{1...4}).

Although it is difficult to assess the significance of such a prediction, it is
interesting to compare the results provided by the different models. To this aim,
in Table 4 we report the results of a correlation analysis that we have performed for
SREF> CREF,mean ANd CREF mode DEtween:

1. the actual REF 2014 values and the REF 2020 values predicted with the Gamma
model (labelled with the “hat” symbol);

2. the actual REF 2014 values and the REF 2020 values predicted with the Gaussian
model (labelled with the “hat” symbol);

3. the REF 2020 predictions obtained with the Gamma and the Gaussian models.

The correlations reported in Table 4 are measured by the Pearson correlation
coefficient (denoted by p) for sger and by the rank-based Spearman correlation
coefficient (denoted by ry) for crer mean a0d CREF mode- Moreover, the rank correlation
between crer mean aNd CREF mode 18 also reported.

We may notice the high correlation values between vaEF,gamma and §REp,gam, i.e.
the estimates obtained for sggr with the Gamma and Gaussian model, for 3 out of
4 UoAs, showing that the two models often lead to highly correlated predictions.
A similar remark can be made also for the prediction of crer mode and CREF mean
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Table 4 Correlation analysis of the predictions obtained with the models proposed

Biology Chemistry Physics Sociology

P (SREF» SREF, gamma) 0.87 —0.58 0.29 0.21
p(sREp/‘?REp,gam) 0.95 —0.72 0.28 0.80
p(§REF,gan1W1aa 3REF,gauss) 0.84 0.96 0.99 0.17
75 (CREF mean CREF mean—gamma) 0.89 —0.51 0.14 0.79
75 (CREF mean» CREF mean—gauss) 0.90 —0.51 0.14 0.76
75 (CREF mean—gammas CREF mean—gauss) 1 1 0.99 0.99
s (CREF.mode EREF,made—gamma) 0.33 —0.41 —0.01 —0.07
75 (CREF mode» CREF mode—gauss) 0.34 0.58 0.01 —0.06
75 (CREF mode—gammas CREF mode—gauss) 0.99 —0.14 0.98 0.91
s (CREF mode » CREF.mean) 0.32 0.50 —0.01 —0.05

obtained with the two models. On the contrary, the rank correlation between the
two ways to define the ranking class, rs(CREF modes CREF mean), 15 Very low, denoting
that the information contained in the two aggregated variables is different. Hence, it
makes little sense to compare the mean and mode results.

As for the correlation between the actual REF 2014 values and the REF 2020
predicted values, their value varies very much between the UoAs; in many cases,
however, the predictions of the score (sggr) seem a little closer to the actual 2014
values than those of the ranking class, suggesting that it may be easier for the HEIs
to change their relative rating class over consecutive exercises, rather than change
substantially their relative score. Assessing the ranking class by the mean reduces
this phenomenon, but no clear conclusions can be drawn.

6 Concluding Remarks

The costly and time-consuming nature of peer-review procedures for research
evaluation has led to an ongoing debate about the use of bibliometric indicators,
either as alternative procedures or as complementary tools. Evaluations based
on bibliometrics indicators are thought to be possible alternative candidates, but
they also present shortcomings such as different citation magnitude over various
disciplines, self-citing, bias, and technical errors related to data retrieval.

In this paper we have proposed a quantitative approach based on generalised
linear models to predict the result of the national Research Excellence Framework
(REF) in the UK.

We have used as predictors both a bibliometric indicator and the result of the
previous national assessment procedure (RAE), performing experiments to predict
both the overall score assigned to a university/department and its rating class.
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The results show that generalised linear models provide a flexible tool that can be
used in order to combine the information contained in both peer-review procedures
and bibliometric analysis for predicting the outcomes of the research assessment.

Future activities, aimed to improve the model, include a deeper investigation of
the dynamics of the departmental h-index. The idea, left for future research, is to
try to model the dynamics of the departmental /-index in order to improve both the
explanatory power of the model and its predictions.

Furthermore, it might be interesting to see if this model can be used also to
investigate and predict the results of the research evaluation carried out in countries
different from the UK. For example, the results of the Italian eValuation of the
Quality of Research VOR 2011-2014 have recently been made public, and it can
be interesting to see if a similar model applies also to Italy.
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Projecting Dynamic Life Tables Using Data
Cloning

Andrés Benchimol, Irene Albarran, Juan Miguel Marin,
and Pablo Alonso-Gonzalez

Abstract In this paper we introduce a hierarchical Lee-Carter model (LC) specifi-
cation to forecast the death rates of a set of demographically related countries. We
assume that the latent mortality factor of LC is common for all of them, given the
linkage among them. On the other hand, hierarchical modeling is usually conducted
by Bayesian approach, which has the disadvantage that assumptions on the prior
distributions are needed, which are not usually known or obtainable, introducing
thus subjectivity in the model when setting these prior distributions. An option to
overcome this limitation is provided by Data Cloning, a novel technique raised
in the Ecology field that allows approximating maximum likelihood estimates in
hierarchical settings. Even though this technique works with MCMC algorithms,
it constitutes a frequentist approach, and the results are invariant to the prior
distributions. Finally, we apply the methodology to a set of linked countries, getting
a very satisfactory forecasting, concluding that it can be used in both private
insurance companies and public pensions systems in order to forecast mortality and
mitigate longevity risk.

1 Introduction

Actuaries in life insurance business usually work with life tables in order to compute
death and survival probabilities for pricing, calculating annuities, pension benefits
and reserves.

During the second part of the twentieth century, life actuaries faced the situation
that the average lifetime of annuitants had been systematically above what it had
been expected according to these life tables.

This underestimation of survival probabilities has implied great losses for the
insurance industry, since companies were forced to allocate more capital to sustain
their annuity business. Therefore, it is crucial to rightly calibrate projected life
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tables. Otherwise the consequences are transferred to the financial statements of
the insurance companies, which result in lower profits, losses or even bankruptcy.

Thus, a projected life table must account for the improvement in mortality in
order to prevent from adverse effects on reserves and profitability, and therefore to
look after insurance companies solvency in the long run. This situation is what is
known as longevity risk.

The paper is structured as follows. Section 2 briefly summarizes the Lee-Carter
model and introduces a Bayesian approach to it. Section 3 introduces data cloning, a
novel methodology to approximate maximum likelihood estimators in hierarchical
structures. Section 4 explains the validation of the estimation procedure of our
proposed hierarchical Lee-Carter model with data cloning. Section 5 shows the
application of our model to real data. Finally, Sect. 6 presents some conclusions.

2 Bayesian Approach to LC Model

Lee and Carter [4] proposed a model (LC from now on) to forecast mortality as
a function of a time-varying index. This paper was the seminal work for further
developments in the estimation of future mortality, such as [1, 3, 7] and [8]. The LC
model can be expressed as:

log [m,(t)] = o + Baks + &, (1)

where o, ’s parameters describe the pattern of the average mortality at each age,
while f,’s parameters describe deviations from this average pattern when «; varies.
Both sets of parameters are independent of time. The variable, k,, is an unobservable
index. It is a time series that describes the change in the level of mortality over time.
Finally, &,,, the error term, denotes random deviations unexplained by the model,
and it is assumed to have mean 0 and constant variance 2.

This section introduces a Bayesian methodology for making inferences about the
parameters of a LC model for a set of related populations by means of a hierarchical
Bayesian model. Originally, the Bayesian approach of the LC model applied to one
population was studied by Pedroza [8] who analysed U.S. mortality data.

Hierarchical modeling is used when information about observational units is
available on different levels. The hierarchical form of analysis and organization is
quite useful regarding multi-parameter problems (see [2]). This paper is concerned
to a case that considers several populations with some social-economic characteris-
tics in common. For this reason, the parameters of the LC model can be treated as
connected in some way, implying that the dependence among them can be reflected
with a joint probability model.
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Letbej = 1....,J populations, in such a way that m () is the central death
rate for an age x at time ¢ and population j, such that the corresponding LC model
can be expressed as:

log [m ()] = &l + BV, + &1},
K =Kki—1 + 60 + w,,

where e} ~ N (O; 082(7)) and &, ~ N (0;02).

As usual, we observe m(’) (1) whereas k; is unobserved. The goal is to estimate the

set of parameters oc,(c’ ), ) and k; and use them to forecast the central death rates at

each age for each generation in each population.

We assume proper prior distributions with a hierarchical structure. We consider
normal distributions for oc(’ ) parameters and Dirichlet distributions for ,3;(/ ) ones in
order to include the restriction > B, = 1, we assume inverse-gamma distributions
for variances as it is a conjugate distribution in a normal model, allowing to deal with
most of real cases about prior information regarding the parameters of the model.

In particular, we assume as prior distributions for the parameters (for j =

L)

a? ~ N, 627y, BY ~ Dirichlet(1, 1, ..., 1), 02¥ ~ InvGamma(y,, y»),
k1 ~ N(0, 62), 6 ~ N(0, 100) and 02 ~ InvGamma(l, 1). )

And the hyperprior distributions for the hyperparameters:

pnd ~ N0, 10), 629 ~ InvGamma(l, 1),
y1 ~ Gamma(l, 1) and y, ~ Gamma(l, 1).

On the other hand, the likelihood function for this model is:

log [m(J) (t)] _ Ol)(;j) _ )(cj)Kr

2
' J n o 1
L(m;”(r);@):]"[]"[]"[ 0 P 0 :
gl el

og

where @ = (oz,(c’), D kel p,,(cj) o2V 20 g, w,yl,yz) forj=1,...,Jand x =
1,..., 0.
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The joint posterior distribution for all the parameters is obtained by multiplying
the likelihood function by the corresponding prior distributions (2). In general, the
full set of conditional distributions is required to implement an MCMC algorithm.
Then, the conditional posterior distributions of each parameter is easily obtained
from the joint posterior distribution, considering only the proportional terms to each
parameter.

3 The Data Cloning Methodology

The data cloning method is a simulation technique to compute maximum likelihood
estimates of parameters along with their asymptotic variances, by using a MCMC
methodology (see [5] and [6]). It uses the simplicity of Monte Carlo algorithms
to calculate maximum likelihood estimations in models whose complexity make
necessary the use of high-dimensional integration to obtain them. The methodology
is based on the basic idea of repeating an experiment several times conditioned to
obtain always the same data.

Let us denote log[m,(¢)] as y, for (¢ = 1,...,n) in such a way that y =
15+ --,¥n). In @ MCMC procedure, once data y has been observed, the samples
from the posterior distribution 7(®|y) are generated. This posterior distribution is
proportional to the product of the likelihood function L(@|y) and a given proper
prior distribution 7 (@). Then, in data cloning, samples are generated from the
posterior distribution, 78 (@|y), that is proportional to the Kth power of the
likelihood, [L(®|y)]*, multiplied by a proper prior distribution, 77(®).

The expression [L(O|y)] is the likelihood for K copies of the original data and,
for K large enough, 78 (@ |y) converges to a multivariate normal distribution with
mean equal to the maximum likelihood estimates of the parameters, and covariance
matrix equal to 1/K times the inverse of the Fisher information matrix for the
maximum likelihood estimates (see [5]).

Once the samples have been obtained with a MCMC procedure, sample means
are computed based on the posterior distributions of the parameters. They provide
an approximation of the maximum likelihood estimates of the parameters. As a
summary, the data cloning algorithm follows the next steps:

Step 1: Create K-cloned data set y®) = (y,y,...,y), where the observed data
vector is repeated K times.

Step 2: Using an MCMC algorithm, generate random numbers from the posterior
distribution that is based on a prior 7(@) and the cloned data vector yX) =
(y.y,.-.,y), where the K copies of y are assumed to be independent of each
other. In practice, any proper prior distribution can be used.
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Step 3: Compute the sample mean and variances of each of the individual
values of the vector of parameters @ (for M iterations of the MCMC algorithm)
generated from the marginal posterior distribution. The maximum likelihood
estimates of @ and the approximate variances of the maximum likelihood
estimates are those referred to the posterior mean values and to K times the
posterior variances respectively.

The algorithm has been programmed using the package dclone [10] from the R
project (R Core Team. R Foundation for Statistical Computing (2012)). The optimal
number of clones has been established considering some statistics computed in the
package dclone [10], such as the maximum eigenvalue of the posterior covariance
matrix, the minimum squared error and the squared error (see [6]).

4 Validating the Estimation Procedure

Before applying the procedure to real data, we check it by means of a validation
study. The validation has been done by simulating an array of log-central death
rates, assuming 4 populations, 41 consecutive ages and 50 consecutive calendar
years each.

In order to simulate data we took as a starting point the estimated parameters for
male French data taken from the Human Mortality Database (see www.mortality.
org) for ages between 60 and 100, and for calendar years between 1960 and 2009,
including both ends in both cases. The estimation was undertaken by the standard
frequentist procedure based on the singular value decomposition raised by Lee and
Carter [4] using R.

For population 1, we generated each parameter a)(cl) as the respective French @,
parameter plus a random component following a N(iu = 0; 0 = 0.001) distribution.
For populations 2, 3 and 4, oz)(/) parameters were generated taking 95%, 90%,
and 105% of French &, parameters, plus a random component following N(u =
0;0 = 0.002). N(u = 0;0 = 0.003) and N(u = 0;0 = 0.004) distributions,
respectively. Regarding ,355” parameters for each population, they were simulated
by four vectors of dimension 41, each of them following a Dirichlet distribution
with all its parameters equal to 1, in order to fulfill the constraint ), = 1.

On the other hand, regarding the mortality index «;, adjusting for France
estimates, parameters were assumed to be as kg = —11.2075, 6 = —0.5728 and
63) = 5. Thus, k; was fixed as a vector of 50 values from ¢ = 1960 up to t = 2009,
where each k; was a random value generated from a normal distribution with mean

Ki—1 + 0 and variance 62.


www.mortality.org
www.mortality.org
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Finally, the data set of log-central death rates log [m)(cj) (t)] (four matrices of

dimensions 50x41, one for each population) was simulated by means of four normal

distributions with means oz,(cj ) + ,B,(C‘i) k; and variances of o 0.0010, 03(2) = 0.0015,

03(3) = 0.0020 and 03(4) = 0.0025, respectively.

We used the package dclone [10] from the R project [9] in order to program the
algorithm. We checked the optimal number of clones by means of some statistics
computed in the package dclone [10], such as the maximum eigenvalue of the
posterior variance, the minimum squared error and the squared error (see [6]). There
were not relevant improvements in their values when the number of clones was
larger than 5, and therefore we worked with 5 clones to estimate the parameters.
Besides, we used the same prior distributions as in Sect. 2.

Then, the parameters of this hierarchical model were estimated applying our
algorithm with the data cloning technique, on the same simulated data set 100 times,
generating thus 100 replicates, and the results were assessed.

Let us consider the Pearson’s coefficient of variation (CV) and the relative

mean squared error (RMSE) respectively as CV(é) = o0p/ |é| and RMSE(@) =
VEG - 071/101

We calculated both relative dispersion measures for the 8200 (50 calendar years
x 41 ages x 4 populations) estimators of the log-central death rates, log [%(/) (t)].

The mean CV for the whole sample was 0.048, and the mean RMSE was 0.047.
In the case of the CV, 154 out of 8200 were larger than 0.2. while in the case of
the RMSE, 171 out of 8200 were larger than this threshold (1.87% and 2.08% of the
sample, respectively). These results suggest that the procedure seems to be unbiased
and stable.

S Application to Real Data

The data cloning methodology has been applied to a set of European countries male
mortality data. We have taken the central death rates from France, Italy, Portugal
and Spain from the Human Mortality Database (see www.mortality.org).

We have selected a time span between years 1960 and 2009 and ages between
60 and 100 years old. These countries present a similar social development and
their populations enjoy parallel welfare states. More specifically, they show similar
standard demographic indices such as:

Life expectancy at birth (LEB).

— Life expectancy at age 65 (LE65)

Median age of the population (MAP)

Old-dependency ratio (ODR): it is the proportion between the number of people
over 65 years old and the number of people between 16 and 64 years old.


www.mortality.org
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Table 1 Demographic indices

LEB LE65 MAP ODR

Male Female Male Female Male Female General
France 78.7 85.4 19.1 23.4 38.2 41.2 27.5
Italy 79.8 84.8 18.5 22.1 43.0 45.6 32.7
Portugal 77.3 83.6 17.6 21.3 37.6 41.9 29.4
Spain 79.5 85.8 18.7 22.8 40.1 42.9 26.3

Source: Eurostat 2012, 2013

The corresponding values of these indices for years 2012-2013 for each country
are shown in Table 1.

In order to validate the predictive performance of the model, the data set was
split into two groups: the first one (training sample) includes data from 1960 to
1999, whereas the second one (validation sample) includes data from 2000 to 2009.

We complete the analysis of the hierarchical model by applying the data cloning
technique. We have programmed the algorithm using package dclone [10] from
the R project [9]. We check what is the optimal number of clones, regarding some
statistics computed in the package dclone [10], such as the maximum eigenvalue
of the posterior variance, the minimum squared error and the squared error (see [6]).
There are not relevant improvements in their values when the number of clones is
larger than 5, therefore we use this number of clones to analyse the data. We have
used the same prior distributions as in Sect. 2.

Mean and standard deviation of parameters were estimated for the training
sample using 5 clones after 50,000 iterations of the MCMC algorithm.

Using the estimations of al?. ,3)(/) for each age x and each country, along with

the forecasted values «, the log-central death rates log [m)(cj ) (t)] were estimated for
the period 2000-2009.

The 95% prediction intervals for the predicted values, based on the Wald
approximation, and the actual values of the log-central death rates are shown in
Tables 2, 3, 4, and 5 for France, Italy, Portugal and Spain, respectively, for ages x =
60, 70, 80, 90 and 100, and for a prediction horizon t = 2000, ..., 2009. Notice that
all intervals include the actual values of the log-central death rates.
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Fig. 1 France

Finally, once the predictive capability of the proposed model and methodology
has been validated, we may consider projecting mortality for a long time horizon,
e.g. for the following 50 years. In Figs. 1, 2, 3, and 4, projected mortality surfaces for
France, Italy, Portugal and Spain, respectively, are shown for the following 50 years.
In the right hand side of each figure, the observed central death rates m,(cj) (7) are
represented by the height of the surface for t = 1960, ...,2009, while in the right
hand side, the projected central death rates for t = 2010, .. ., 2059 are represented.
Each change of color in the surfaces shows a change in tenth of the death rates.
Notice that a substantial improvement in mortality rates is expected for the four

populations.
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Fig. 2 Italy

6 Conclusions

We have introduced a hierarchical Lee-Carter specification to forecast the death
rates of a set of demographically linked countries. This hierarchical scheme is based
on the assumption of a common and latent mortality factor. This proposal is useful to
estimate the parameters of the model because it allows actuaries to take advantage
of the whole set of information, this is, the forecasts of a particular country are
based not only on its death rates but also in those of the rest of the considered linked
countries.

Bayesian methodology is the usual way to deal with hierarchical models.
However, this approach has the limitation that it is necessary to determine the
prior distributions for all parameters and hyperparameters of the model. Thus,
data cloning provides a tool to overcome the previous limitation and it permits to
approximate maximum likelihood estimates. In this approach, the role of the prior
distributions is indifferent, since the results are invariant to these prior distributions.
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Fig. 3 Portugal

So far, Data Cloning has been applied to the Ecology field and recently in
Finance, and it is the first time that this methodology is used in the Actuarial field,
to the best of our knowledge.

The set of information includes the central death rates of France, Italy, Portugal
and Spain. In order to check the validity of the forecasts, the sample has been
split into two sets. The first one is devoted to estimate the parameters, whereas
the second one is used to contrast the accuracy of the results. It was shown that
the model is able to rightly predict the central death rates in all cases, using 95%
approximated prediction intervals. This model can be directly applied to annuities
business and/or public pension systems, to obtain accurate death rates forecastings,
mitigating longevity risk.

Future research will involve the implementation of this methodology to other
kind of models used to forecast death rates, such as Cairns-Blake-Dowd (CBD)
stochastic mortality models, or those based on P-splines.
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Fig. 4 Spain
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Markov Switching GARCH Models: Filtering,
Approximations and Duality

Monica Billio and Maddalena Cavicchioli

Abstract This paper is devoted to show duality in the estimation of Markov
Switching (MS) GARCH processes. It is well-known that MS GARCH models
suffer of path dependence which makes the estimation step unfeasible with usual
Maximum Likelihood procedure. However, by rewriting the model in a suitable
state space representation, we are able to give a unique framework to reconcile the
estimation obtained by filtering procedure with that coming from some auxiliary
models proposed in the literature. Estimation on short-term interest rates shows the
feasibility of the proposed approach.

1 Introduction

Time varying volatility is one of the main property of many financial time series.
Moreover, describing and, where possible, forecasting volatility is a key aspect in
financial economics and econometrics. A popular class of models which describe
time-varying volatility are Generalized Autoregressive Conditional Heteroschedas-
ticity (GARCH) models. GARCH models [8, 21, 22] describe the variance as a
linear function of the squares of past observations, so that one type of shock alone
drives both the series itself and its volatility. One potential source of misspecification
derives from the fact that structural forms of conditional means and variances are
relatively inflexible and held fixed throughout the sample period. In this sense, they
are called single-regime models since a single structure for the conditional mean and
variance is assumed.
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To allow more flexibility, the assumption of a single regime could be relaxed in
favour of a regime-switching model. The coefficients of this model are different in
each regime to account for the possibility that the economic mechanism generating
the financial series undergoes a finite number of changes over the sample period.
These coefficients are unknown and must be estimated, and, although the regimes
are never observed, probabilistic statements can be made about the relative likeli-
hood of their occurrence, conditional on an information set. A well-known problem
to face when dealing with the estimation of Markov Switching (MS) GARCH
models is the path dependence. Cai [9] and Hamilton and Susmel [16] have argued
that MS GARCH models are essentially intractable and impossible to estimate since
the conditional variance depends on the entire path history of the data. That is, the
distribution at time ¢, conditional on the current state and on available information,
is directly dependent on the current state but also indirectly dependent on all past
states due to the path dependence inherent in MS GARCH models. This is because
the conditional variance at time ¢ depends upon the conditional variance at time #—1,
which depends upon the regime at time # — 1 and on the conditional variance at time
t — 2, and so on. Hence, the conditional variance at time ¢ depends on the entire
sequence of regimes up to time ¢.

Some methods are proposed in the literature to overcome the problem of
path dependence present in MS GARCH. The trick is mainly found in adopting
different specifications of the original MS GARCH model. Some authors propose
Quasi Maximum Likelihood (QML) procedures of a model which allows similar
effects of the original one. Models which elude in this way the path dependence
problem are proposed by Gray [14], Dueker [10] and Klaassen [18], among others,
and are known as collapsing procedures. Gray [14] proposes a model in which
path dependence is removed by aggregating the conditional variances from the
regimes at each step. This aggregated conditional variance (conditional on available
information, but aggregated over the regimes) is then all that is required to compute
the conditional variance at the next step. The same starting idea is used in [10],
with a slightly different approach. The author extends the information set including
also current information on the considered series. Furthermore, Klaassen [18] puts
further this idea. Particularly, when integrating out the unobserved regimes, all the
available information is used, whereas [14] uses only part of it. Another method to
deal with MS GARCH models has been proposed by Haas et al. [15] for which the
variance is disaggregated in independent processes; this is a simple generalization of
the GARCH process to a multi-regime setting. Furthermore, Bayesian approaches
based on Markov Chain Monte Carlo Gibbs technique for estimating MS GARCH
can be found in [3, 4, 17] or [7]. Other works based on both Monte Carlo methods
combined with expectation-maximization algorithm and importance sampling to
evaluate Maximum Likelihood (ML) estimators are conducted by Augustyniak [1]
and Billio et al. [5, 6]. Finally, a recent paper by Augustyniak et al. [2] proposes
estimation of MS GARCH models with a deterministic particle filter.

The contribution of our paper is to give a unique framework to reconcile MS
GARCH estimation obtained by the above auxiliary models from one side, and a
filtering algorithm from the other. This relationship provides the missing link to
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justify the validity of approximations in estimating MS GARCH models. The use
of filtering is a flexible approach and it allows the estimation of a broad class of
models that can be put in a switching state space form. However, to make the filter
operable, at each iteration we need to collapse M? posteriors (where M is the number
of switching regimes) in M of it, employing an approximation as suggested by Kim
[19]. Then, QML estimation of the model recovers the unknown parameters. Our
algorithm is readily programmable and with a very limited computational cost. An
empirical application shows the feasibility of this approach.

The paper is structured as follows. Section 2 introduces the MS GARCH model
of interest and reviews the main auxiliary models proposed in the literature to
overpass the path dependence problem. In Sect.3 we present a filtering algorithm
for MS GARCH models which serves to prove our duality results. In Sect.4
we compare estimation of the parameters using different approximations in the
proposed filters for financial data. Section 5 concludes. Finally, derivations of some
formulae are given in the Appendix.

2 Markov Switching GARCH and Its Auxiliary Models

Let ¢, be the observed univariate time series variable (as for instance, returns on
a financial asset) centered on its mean. The univariate MS GARCH(1,1) model is
defined as

€ = at(lpt—l , St)“t

1

02 (W—1,8) = w5, + o562, + By,02, (W2, 51-1) M
where u, ~ IID(0, 1), w;, > 0, ay,, B5, = 0. The state s, is a discrete, unobserved
variable following a first order Markov chain with M regimes and (time invariant)
transition probabilities 7; = p(s; = j|s,—1 = i), where Zfil m; = 1, for every
i = 1,...,M. We assume that (s;) is independent of (i,). For necessary and
sufficient stationarity conditions related with MS GARCH(p, ¢) models, we refer to
[11], Theorems 1 and 2. Consistency of maximum likelihood estimates, [? structure
and inference for univariate MS GARCH models have been investigated by Francq
etal. [11, 12] and Bauwens et al. [3]. Here the common approach to eliminate path
dependence is to replace the lagged conditional variance derived from the original
MS GARCH model with a proxy. Various authors have proposed different auxiliary
models which differ only by the content of the information used to define such a
proxy. In general, different auxiliary models can be obtained by approximating the
conditional variance of process in (1) with

O-tz(lllt_], Sr) = Wy, + O, (SP)etZ_l + ﬁs, (SP)Utz_l- (2)
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In the literature there are different specifications (in short, SP) of e | and
(5P )(rf_l which in turn define different approximations of the original process. These
collapsing procedures are illustrated below. First, we introduce some concepts and
notations: p(s; = j|¥—1) = pj,— are prediction probabilities; p(s; = j|¥;) =
Py are filtered probabilities and from these we can compute augmented filtered
probabilities as
p(si1 =lsy =j, %) = 7 Pia—tie-1 = Pit—1|t1—1-
Pjt—1

Here ¥, denotes the information set of observations available up to time ¢ — 1. Note
that the filtering algorithm computes py,—1, = p(s;|s;i—1, ¥;) in terms of py—; 1
and the conditional density of €, which depends on the current regime s, and all past
regimes, i.e, f(€sy, .. ., s, ¥—1). Computation details are shown in Appendix Al.

2a. Gray’s Model The first attempt to eliminate the path dependence is proposed by
Gray [14]. He approximates the original model by replacing the lagged conditional
variance o2, with a proxy (©a?2 | as follows:

@02 | = Elo2 (Y2, 5-1)|¥2]
M M
2 . . 2
= Zar—l(wt—%sr—l =1) p(si—1 = i[¥—) = Z Dol 1ia Piamili—
i=1 i=1
3
where, according to the model, rz - , turns out to be a function of ¥;_, and

s,—1 = i. Note that the model originally proposed by Gray is not centered as in our
case, but this can always be assumed without loss of generality.

2b. Dueker’s Model In the previous approximation, the information coming from
€,—1 is not used. Dueker [10] proposes to change the conditioning scheme including
€,—1 while assuming that O' ~, is a function of ¥;_, and s,—>. Hence

(D)Gtz—l = E[Utz—i(q/t—z,st—Z)W’t—l]

S

= ZUr 1(‘1’r—255r 2 =k) p(s2 =k|¥1) = Z ©) Uk, 1|t—2 Pki=2|1—1

k=1
“)
so that (P52 1 18 a function of ¥, and s> = k, and py,—|—1 is one-period
ahead smoothed probability which, shifting one period, can be computed as

i pj,
]tt—

2c. Simplified Klaassen’s Model The approximation proposed by Klaassen [18] is
similar to that from [10] but it assumes that o2 -, is a function of ¥, and s;—;. So it
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results computationally simpler. In fact, we have

Ro2 | = E[07 | (Wi 50-1)|¥i—1]

M M
= ZO—TZ—I(WI—szt—l =10) p(sim1 = i|¥—1) = Z 6K )O-Lt 1|2 Pig—1]t—1-

i=1 i=1
%)

Then from the considered model, (SK)atz results to be a function of ¥,_, and

) —1]t—2
S—1 = 1.

2d. Klaassen’s Model Finally, Klaassen [18] generalizes the previous auxiliary
model including in the conditioning set the information also coming from the current
regime s;. So 02| turns out to be approximated as

(K)Urz—l = E[Jz_l(llfr_z,s,_l)|l1/,_1,s, =jl

_Zot 12,501 = i) p(s— 1 =ilss =, ¥ 1)_2( L, 1)—2 Pii—1t—1

i=1 i=1
(6)
where p;;_i;;,— is the augmented filtered probability as defined above. Conse-

quently, here (K)crr 12 becomes a function of ¥,_, and s,—1 = i.

3 Filtering and Duality

In order to develop a theory of linear filtering for MS GARCH models, we need to
link the model with some state space representations. Here we propose a state space
representation and write the associated ﬁlter Consider the model as in (1). For every
s; = jand s,—; = i, let us define 5: = cr .+ v, Wherea = o 2(@,_y, s = j) and

v = jr(ut — 1). Then (v,) is zero mean serlally uncorrelated. However, (v;) is not
independent over time since it does not have a constant variance in time (i.e., it is
not a homoskedastic process). Now we have

€ =0, TV =w+ae |+ :Bjai,t—l + v = toe + Bile —vi—1)+v;

where wj, o and B; are the elements obtained by replacing s; by j in wy,, o, and B,
respectively. So we can write a new representation of model (1) as

(1 -8L)e? = w; + (1 — BL)v, (N

where §; = a; + B forj = 1,..., M. Now, setting B, = (et2 v,)', we get

P =0+ (6 —.3;)( 1)+vr—w]+(5 — B)Bi—1 + v,
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foreveryj = 1,..., M. In order to simplify notations, let us define

8s, —Bs 1 10}
=&, H=( F, = 7% P = s = ).
Y= 0. F={y o) =) *=\y

Then, for every s;, we obtain the following switching state space representation:

: = HB;
{ Y ®)

B, = ps, + Fy,Bi—1 + G,

Representation (8) is similar but different to the switching dynamic model of [19]
and [20]. The state vector B; is called the state (of the system) at time #; in line with
[13, p. 576], it can be partially unobservable as it is in this case. In fact, it includes
the squared observed returns. Then, conditional on s5,_; = i and s, = j, we obtain
the following filter:

Prediction
B§|ltj—)1 =MW+ FiBi—llt—l
ng;ﬁl = FiPi—lh—lF; + GG,U&,’
mil ==y =w—HB |
fr(|;i)1 = Hpiiii;\r—lH/
Updating
B = B0, + K,
PP = P2, -k,
where afj = var(v|¥,—1,s; = j) and K,(i‘j) = PE(;?IH/ [f,(\;i)l]_l is the Kalman gain

Initial Conditions

) .
By, = (Lh—F) 'y = ((1 86) w,)
(1=8)""(1 =258 + B})
1
1
1

veo(P)) = op(ls — F; ® F)) ™' vec(GG) = o,

p(so = i) = m;(steady-state probability).
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Explicit derivation of the above filtering procedure is detailed in Appendix A2.

Here Y,—; = {y—1,...,y1} is the information set up to time t — 1, B;It =

E(B;|Y;—1,5,—1 = i) is an inference on B, based on Y,_| given s, = i Bfll;’)l
E(B|Y,—1,8; = j,s,~1 = i) is an inference on B, based on Y,_i, given s, = j

and s,_, = i; P! is the mean squared error matrix of B! conditional on

t—1]t—1 t—1]t—1
Si—1 = P(| 11— is the mean squared error matrix of B\

tlt—1
Si—1 = I} ni‘f) | is the conditional forecast error of y, based on information up to time

t—1,givens, = jand s, = i and-f;(\t‘])l

error n tIJ ) Each iteration of the Kalman Filter produces an M-fold increase in the

number of cases to consider. It is necessary to introduce some approximations to
make the filter operable. The key is to collapse the (M x M) posteriors B and

1|t

conditional on s; = j and

is the conditional variance of forecast

Pill;’) into M posteriors B’ and P/ - Hence, we mimic the approximation proposed
by Kim and Nelson [20] and Kim [19] applied to this state space representation (see
Appendix A3). Let B’r‘ . be the expectation based not only on ¥, but also conditional
on the random variable s, taking on the value j. Then the approximation results to be

t\t ZP: i~ By ©)]

To justify the use of this approximation, note that the Kalman filter would give
the conditional expectation if, conditional on ¥,_; and on s, = j, 5,1 = i, the
distribution of B, is normal. However, the distribution of B;, conditional on ¥,_1,
s; = jand s,—; = i, is a mixture of normal for + > 2. Hence, Kim proposes an
approximation in which the exponential Gaussian mixture is collapsed down to M
Gaussians at each step. This is a natural proxy for such a process. Having such a
convenient switching state space form associated to the initial MS GARCH, gives us
the possibility to reconcile in a unique framework the estimation through linear filter
or via auxiliary models. Duality exists when we modify the approximation described
in (9) with different conditioning sets. The existence of this relationship between the
approximated filter and collapsing procedures gives a theoretical ground in using
the latter approaches. In fact, these approximated models of the MS GARCH were
historically given based only on intuitive arguments. Now, from the measurement
equation in (8) and using (9), we have

y{\,_l = E(yils: = Jj, Yi—1) = HE(Bi|s; = j, Yi-1)

M

M
= Hzpi,t—l\z,t—l Bi‘l;]_)l = Zpi,t—llt,z—l Yff,j_)l
i=1

i=1
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and
i1 = EQimilse =, Yim1) = E(07 [Yim1, 80 = )

M

_ 2 _ , 2

=0 —1—1 = § :Pt,t—l\t,t—l Oij—1)—2-
i=1

In particular, if the conditional variance is not a function of s, = j, we get

Vi—1|t—1 = E(€,2_1|Y,_1) = E(O'TZ_I|Y,_1)

> ZM ) (10)
=0 1—1 = Dig—1li—1 O 11—

i=1

which coincides with ®¢2 | in Formula (6). Here ®)o2 | is only a function of
s;—1 = i. Thus the approximation of the filter is dual to the one used as auxiliary
model in [18]. This also means that if we change the conditioning scheme in (10), we
obtain other auxiliary models. In fact, if we assume probabilities to be only function
of s;,—; = i and if still O'rz_ | 1s a function of s;—;, we have the simplified Klaassen
model. This gives the expression in (5), in fact:

M
SK) -2 SK) .2
( )at—l = ¢ )ai,t—l\r—z Pii—1]—1 -
i=1
Moreover, if we assume instead that o2, is a function of s,—, = k and also
considering prediction probabilities of s, = k, we get the auxiliary model
proposed by Dueker [10]:

M
D)2 (D) 52
0,1 = O i—1]—2 Pk.r=2]r—1

i=1

which is Eq. (4). Finally, if we consider the conditioning set up to Y,—, rather than
Y;—1, we obtain

M
62 _ 6) 52 )
0 = Oi1—11—2 Pit—1]t=2
i=1

which is Eq. (3) and corresponds to Gray’s model. Hence, if we slightly change
the conditioning set, we can obtain different specifications of the auxiliary models,
moving from the state space form in (8). The usefulness of linking the filter to
the four approximations is not only theoretical but also practical, providing a
relatively easy method to conduct estimation. In particular, we have showed a
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direct connection between the filter and Klaassen collapsing procedure. However,
an exercise to empirically prove the accuracy of the approximations can be found
in [23], where it has been empirically established that Klaassen model is the most
effective one in generating consistent estimates for the path-dependent MS GARCH
models.

4 An Application on US Treasury Bill Rates

We consider 1-month US Treasury bill rates obtained from FRED for the period
January 1970 through April 1994 as in [14]. Figure 1 plots the data in level and in
first difference. It is immediate the dramatic increase in interest rates that occurred
during the Fed experiment and the OPEC oil crisis, which leads us to consider a 2-
regime model. Then we fit a 2-state MS GARCH model as in (1) with both changes
in regimes in the intercept term and in the persistence parameters of the volatility
process. The values of the estimation are reported in Table 1 where estimated
values along with robust standard errors are reported. In particular, the model
estimated by filtering mimic with Kim and Nelson’s (KN) approximation is labelled
with Approximation 1 and it is dual to Klaassen (K). Note that Approximation 2
reproduces the auxiliary model of Gray (G) and values are in fact very close (see [ 14,
Table 3, p. 44]). Finally, Approximation 3 and 4 are respectively dual to Dueker (D)
and the simplified Klaassen (SK) models. The high-volatility regime is characterized
by more sensitivity to recent shocks (&, > ¢&;) and less persistence (,32 < ,31)
than the low-volatility regime. Within each regime, the GARCH processes are
stationary (&; + ,BA,- < 1) and the parameter estimates suggest that the regimes
are very persistent, so the source of volatility persistence will be important. In

18 3
16 2
14 1
12 0
10 -1
8 -2
6 -3
4 -4
2 L L L n — L L L s
1970 1975 1980 1985 1990 1995 1970 1975 1980 1985 1990 1995
date

Fig. 1 The left panel contains a time series plot of 1-month US Treasury bill rates (in annualized
percentage term). The sample period is from January 1970 to April 1994; a total of 1267
observations. First differences of the series are shown in the right panel. The data are obtained
from FRED database
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regime probability

0 . . . .
1970 1975 1980 1985 1990 1995
date

Fig. 2 The panel shows MS GARCH smoothed probabilities of being in the high-volatility
regime. Parameter estimates are based on a dataset of 1-month Treasury Bill rates, reported in
annualized percentage terms. The sample period is from January 1970 to April 1994; a total of
1267 observations. The data are obtained from FRED database

general, the four approximations are not very dissimilar to the others and the
filtering algorithm has a very limited computational cost. Figure 2 plots smoothed
probabilities Pr(s, = 1|¥r) which are of interest to determine if and when the
regime switching occurs. The plot of smoothed probabilities manages to identify
crises periods that affected market indices. In particular, we could recognize three
periods of high-variance. The first (1973-1975) corresponds to the OPEC oil crisis.
The second is shorter and corresponds to the Fed experiment (1979—-1983). The third
is a short period around 1987, after the stock market crash.

5 Conclusions

We deal with estimation of Markov Switching GARCH models. It is well-known
that these models suffer of path-dependence, i.e., dependence of the entire path
history of the data which makes Maximum Likelihood procedures unfeasible
to apply. Therefore, we introduce filtering procedures based on approximated
algorithms for switching state space representations. We show duality results in the
estimation by approximated filtering method and auxiliary models proposed in the
literature. Our filtering algorithm is readily programmable and with a very limited
computational cost. An application on financial data shows the feasibility of the
proposed approach.
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Appendix

Al We show that p,,—; , = p(s;|s;—1, ¥;) can be expressed in terms of p,—; ,—; and
the conditional density of €, which depends on the current regime s, and the past
regimes, i.e, f(€sy, ..., s, ¥—1). In fact,

Pilt—11 = p(silsi—1, ) = p(silst, ..., 81, ) = p(selsi, ..., 81, €, Y1)
— f(€[|slv <oy 8t ll/[—l)p(sf|slv ey St—1, l‘III‘—I)
f(el‘lsla e asl‘—la Wt—l)
_ f(€t|51, cee s Sty Wt—l)P(StLVt—l, qjt—l) _ f(€t|slv ceey Sty lIlt—l)Pr\r—l,r—l
f(éflsls cee s St—1, ll/[—l) f(éflsls cee s St—1, ll/[—l)

where f (€51, ..., 8-1,¥—1) = ZQ;I=1 flelst, ...y, Wim)p(SelSi—1, Wi—1)
M
= ZS,=1 flelst, ... s, lIlt—l)Ptlt—l,t—l-

A2 We present explicit derivation of the filter for MS GARCH as given in Sect. 3.
The prediction step is obtained as follows

B | = EB|W—1.5 = j.si1 = i) = E(is, + FyBi + Gui|¥_1.5, = j.5—1 = i)

=i+ FEB—1|¥Y—1,8 =J,81—1 =10) = W + Ieri_1|;_1~

In particular, we have B, — Bi"r"_)l ls=j = Fj(Bi—1 — Bi_”r_l) + Gv,. Then

Py = E[B,— By (B, — By ) [Wimy.s, =josiy = ]
= E[(Fi(Bi—1 — Bi_y,_)) + Gu)(Fi(Bioy — BL_,,_ ) + Gv) W15, = j.si—1 = ]
= FE[(Bioi — B, _)Bi—1 — BI_,_ ) [¥i—1.5—1 = i|F, + GE(}|s, = )G
= FP._,,_F, + GG o},

and

7)5;,]11 =MW —y,(f;’ll =y —EQ|¥—1.8 = j.si—1 =) =y, — E(HB/|¥i—1, 5, = j.51—1 = i)

=y, — HEB|W—1, s, = j,5i—1 = i) = y, — HB'

tl—1°

Hence, 775\1;]—)1 | 1.si=jsi1=i = H(B — B ) + v, and

tlt—1

A2 = ELG D2 Wi, 50 = sy = )

= E[(H(B, — B} ))(H(B, — B} ) W1, = jusiy = i)

— HE[(B, — B ) (B, — B W5 = sy = i = HPY H

tle—177
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Furthermore, the updating step is derived as follows. Define Z; = B; and Z, =
nﬁf;ﬁl = —yi";’_)l. Then py = E[Z||¥1.5 = josi1 = 1] = Bi";’_)l, Mo =

E[Zg|lI/,_1,sr :j, S—1 = l] = 0, 211 = P(i‘j) and 222 :ft(iJ) We have

tlt—1 lt—1"

Ty = cov(Z1.2) = E[(B,— By )0\ W5, = s = ]

E[(B, - B} )(B, — B, H =3,

tlt—

1) H|\W 1,8, =j,51 =1 = P;\Z;I—)l

i) _

tlt

B 4 pi) g [ft(i‘D ]_lni‘it"zl. Further, we have Xjj, = X1 — X120 X}, X541, hence

tlt—1 tlt—1 [t—1
plid = pi) _ K,('*’)HP?T"_)I, where K = Pill;ng/ [fr(‘;f)l]_l is the Kalman gain.

tlt tlt—1 |

A3 Here we derive the approximation on the line of [20] applied to model in (8),
which is Eq. (9):

Thus Zi|z,.w,_, s,=j.si_1=i 1S given by 1o = i1 + Z12X5,' (Zo — o), that is, B

M p(iy) ; : . .
B iz B,\ITJ p(si—1 = i,5, = j|¥1) _ %p(st_l =i,5 =jlY) i)
i p(se = jlYy) p(se = jlYr) i

i=1

M M
ZP(St—l =ils, =j,Y) Bi‘l;]) = ZPi,r—l\r,r Bi‘l;])-

i=1 i=1
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A Network Approach to Risk Theory
and Portfolio Selection

Roy Cerqueti and Claudio Lupi

Abstract In the context of portfolio theory, the evaluation of risk is of paramount
relevance. In this respect, the connections among the risky assets of the portfolio
should be carefully explored. This paper elaborates on this topic. We define a
portfolio through a network, whose nodes are the assets composing it. The weights
on the nodes and the arcs represent the share of capital invested on the assets and
the dependence among them, respectively. The risk profile of the portfolio will be
given through a suitably defined risk measure on the portfolio-network. The standard
Markowitz theory will be rewritten in this particular setting. Surprisingly, we will
note that the resulting decision problem is not consistent with an adapted version of
the axiomatization of the standard expected utility theory.

1 Introduction

Since its inception in [7], portfolio theory has attracted the academic debate
not only for its potential applications, but also for the space left for theoretical
improvements. The original model is grounded on several restrictive assumptions
such as uniperiodal setting, Gaussian returns, risks measured by variances and
expected returns represented by historical means, absence of transaction costs and
of default risks. In the following years, Markowitz’s framework has been extended
under several respects. One of the most notable improvements of the original
formulation can be found in [9, 10], where continuous time has been introduced, and
in [12], where the model has been extended by introducing a multiperiodal setting.
Among recent extensions, it is interesting for this paper to mention [5], that provides
the reinterpretation of the mean-variance model in the context of semi-copulas; [11]
adopts a topological perspective for highlighting the relationship between portfolio
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and Euclidean distance in the Markowitz model; [2, 3] present a mixed discrete-
continuous time mean-variance model in the presence of infrequently traded assets.
An extensive survey on 60 years of research on the mean-variance model has been
outlined by its pioneer (see [8]).

In this paper we further proceed along this research path and provide an extension
of the Markowitz model by including in the model formulation the structure of the
connections among the assets. For this purpose, we move from [4] and identify
portfolios with networks, whose nodes are the assets.!

Furthermore, we discuss the consistency of the Markowitz theory with the axiom-
atization of the expected utility. We adopt the theoretical framework developed
in [4], and argue that the goodness of a risk-minimization criterion for ordering
preferences should be not necessarily in accord to expected utility. In so doing, we
are exactly in line with the philosophical proposal of [1], who show that commonly
used risk acceptance criteria do not agree with expected utility.

The original contributions of the paper are the following: first, we present a novel
formulation of a classical portfolio problem in the language of networks, hence
including explicitly the connections among the risky assets; second, we adopt a
recent axiomatization of the expected utility theory in the language of the networks
(see [4]) and show that there exists a parametrization of the mean-variance utility
function which is not consistent with such a parametrization.

In general, we feel in line with [6], who discuss risk minimization problems by
explicitly modelling also the topological and the stochastic dependence structure of
the involved decision variables. In particular, to the best of our knowledge, this is
the first attempt to model Markowitz theory in the language of networks.

The rest of the paper is organized as follows: the next section introduces the
portfolios we deal with. Section 3 outlines the concept of risk measure, along
with a needed equivalence relation over the set of portfolios. Section 4 contains
the reinterpretation of Markowitz’s mean-variance utility theory in our specific
setting, and the analysis of the consistency of the associated preference criterion
with expected utility. The last section offers some concluding remarks. To be as
self-contained as possible, we have reformulated the expected utility axiomatization
presented in [4] in our framework. Such a reformulation is contained in the
Appendix.

2 The Set of Portfolios

We propose here a very general setting of a portfolio model: such a general setting
will then be adapted to the Markowitz model.

First, we introduce a probability space (£2,.%#,P) for all the random variables
used in this paper. These random variables are collected in the set 7.

IFor a survey on networks, see [13, 14].
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Fig. 1 Network
representation of a four-asset
portfolio. The size of each
node is proportional to p;; the
length (8;—;) of each arc is
inversely proportional to the
dependence among the assets;
v j)=1Vi#j

Portfolios are assumed to be formed by n assets, whose random returns are the
elements of a subset . of .27 as follows:

S ={X1.Xp.....X,} C . (1)

The set . is identified as the set of the nodes (vertices) of a weighted oriented
graph (see Fig. 1).
Weights of nodes and arcs are formalized as follows:

* we define a function p : . — R such that p(X;) = p; represents the weight of
X;, foreachj=1,2,...,mn;
* we introduce a binary variable which certifies the existence of an arc:

v(i,j) = 1, if there exists the oriented arc connecting i and j,
J 0, otherwise;
foreachi,j=1,2,...,n;
* we introduce a real number §;,; € R representing the weight of the oriented arc
from X; to X;, foreach i,j = 1,2,...,n,i #j.
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A portfolio & is then formalized by the knowledge of its nodes and of functions p’s,
v’s and §’s, so that:

= (7. p.v.9), 2

where p = {p; } =12, 20 V= W0 f)}w 12..nand 8 = {Si—ﬂ'}i.j:l,z ..... n
The space of the portfohos is then given by

= {(Y,p, v,8) € 2(t) x R x {0, 111" x RWF} ,

where & (%) is the usual notation for the set of the parts of .

The presence of the shares of capital invested in the assets of . is implicitly
included in the definition of the weights p’s and §’s. We will see this in details while
discussing the Markowitz model.

3 Risk Measure of Portfolio

In order to define risk measures, we need to introduce the concept of equivalence of
portfolios. Indeed, as we will see, a consistent risk measure should assign the same
value to portfolios with some specific characteristics.

We adopt the framework of [4], here adapted to our specific context.

Definition 1 Consider two portfolios
Ty = (Y(k),p(k), v(k),(S(k)) eP, k=1,2.

We say that portfolio i is equivalent to portfolio m,—i.e.: | = m,—when one of

the following conditions is satisfied:
@) (ZW,p0 pD §50) = (FO p@ @ 52,
(i) if 1 = v®)(,j) # v*)(i,j) = 0, then 852; = 0, for each i,j indices of the
nodes of ) and k;, k, = 1,2 with k| # k,, all other things being equal;
(iii) if X; € #*)\ S8 then p; *) = 0 and Sfﬁ; 81(2 = 0, for each i index

of the nodes in .#%) U Y(k” and ki, k, = 1,2 with k; # ks, all other things
being equal.

Definition 1 has a very relevant interpretation. In fact, once a portfolio & is
selected, then it is possible to create another portfolio T which is equivalent to 7.
To do this, one can add other assets, labeled with ji,...,j;. Any new asset must
be associated to null weights, so that p; = 0 and §;—,; = §;»; = 0, for each
J = Jji,...,jx and for each i-th node of 7. The equivalence is then of paramount
relevance, because it allows us to consider homogeneous portfolios sharing the
same set of nodes. Furthermore, under the condition of imposing some further null



A Network Approach to Risk Theory and Portfolio Selection 77

weights, it is also not restrictive to assume that all the couples of assets of the
portfolio are associated to two oriented arcs. Indeed, it is equivalent to consider
v(i,j) = O or, alternatively, v(i,j) = 1 and §;; = 6;; = 0.

In order to deal with the elements of the set P, we need to introduce the operators
allowing to combine portfolios. In particular, the following definitions formalize the
direct sum of two portfolios and the product of a portfolio for a scalar.

Definition 2 Consider 71, 7w, € P such that m; = (S®, p® v® §®) for k =
1, 2. The direct sum of 7 and 7, is

T=mn ®n,eP, 3)

where 7 = (Y, p,v,6) with .¥ = M U 2D and, for each i,j=1,...,n,itis
1 2 1 2 . .. ..
pi=p 0 Sy = B0+ 82 and v, j) = max{vV G, )), V@@ )}

Definition 3 Consider & = (%, p,v,§) € P and a scalar « € R.

The product scalar-network « - & is a new network m, = (Y , p(‘"), v, 8(“)) such
that p;a) =« - pjand 8}21» =« §ij, foreachi,j=1,...,n
The topological structure of the set P—endowed with the binary operator ¢&—
assures that the set of portfolios is quite rich. We refer to [4] for an extensive analysis
of this aspect.

We maintain the definition of risk measure of a portfolio as general as possible.
Definition 4 A risk measure of a portfolio is a function i : P — R such that:

e If my = my, then u(m) = u(m,);
*  provides a total order <X, over the set P as follows:

b S 2 if and only if w(my) < u(my),

foreach r,m, € P,
e u(my) < p(mw,) means that  is less risky—in the sense of <, —than m,.

In [4] the interested reader can find a detailed discussion of this type of risk
measures, along with some examples in the general context of networks. Moreover,
the quoted paper contains also the analysis of the consistency of this kind of
risk measures with respect to a reformulation of the expected utility theory: for
completeness, we offer in the Appendix a brief account of the main results.

It is important to note that the risk measures of a portfolio could be viewed as
equivalence classes rather than single elements. This aspect will be of remarkable
relevance in the discussion of our variant of the Markowitz model and the
consistency of the associated preference order with the expected utility axioms (see
the next section). Thus, we here present a concept of equivalence for risk measures
of portfolios, in agreement with the general scheme proposed in [4]:
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Definition 5 Consider two risk measures of portfolios i : P — R, with k = 1, 2.
W1 is equivalent to pp,—and we indicate ;1 = p,—if and only if

wi(my) < pi(ma) ifand onlyif  wa(mwy) < pa(ma),

foreach m, m, € P.

Notice that the equivalence instituted by Definition 5 involves how portfolios
are ranked by the risk measure, and not how they are objectively evaluated.
Substantially, equivalence is associated to the order of the portfolios, even in
presence of very different scales of evaluation.

4 Rewriting the Markowitz Model

This section is devoted to the proposal of a rewriting of the standard Markowitz
model. The aim is twofold: first, we pursue the scope of applying the network
theoretical framework presented above to the classical portfolio theory; second,
we show that risk measures of portfolios in Markowitz theory could also be not
consistent with the expected utility axiomatization. More than this, we show that
two equivalent measures could behave differently in this respect. Such a finding
suggests a substantial independence of the family of risk acceptance criteria with
the axiomatization of Von Neumann and Morgerstern.

Suppose that the shares of capital invested on X, Xy, ..., X, are x{,x2, ..., X,
respectively.

The general formulation of the optimal portfolio problem is:

where 1 is the risk measures of portfolios. See below for two proposals for L.

4.1 First Model

Moving from the definition of portfolios provided in Sect. 2, we identify the weights
associated to Markowitz’s mean-variance utility case.
The weights of the (oriented) arcs are given by:

8imj = 8jmi = xiC X0 X;],  Vij=1.....n i#}]
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where C is the covariance operator. If i = j, then

8jj = % \/V [Xi].
The binary variables are redundant, in the sense that v(i,j) = 1 for each i,j =
" ‘1.31‘1;1:£i0ns p’s are given by expected values of the returns of the assets weighted
for the related shares of the portfolio, so that:
pj:ijE[Xj], Vi=1,...,n
The mean-variance utility can be written as (is equivalent to) i : P — R such that:

pim) == pi+a- 1> v 8]’ +2 > vl )i ¢ - @)
j=1

=1 i<j

4.2 Second Model

In this case, the weights of the (oriented) arcs are given by:
8isj = j—>i=xixj(C[Xi7Xj]a Vij=1,....n, i #],
where C is the covariance operator. If i = j, then
8j—j = fo RIE

As in the previous case, v(i,j) = 1 foreachi,j=1,...,n.

Functions p’s are given by expected values of the returns of the assets weighted
for the related shares of the portfolio, so that:

pj:ijE[Xj], Vi=1,...,n
The mean-variance utility can be written as (is equivalent to) i : P — R such that:
n

pa(m) == gt a- 1> v )8 +2Y v )img - )
j=1

j=1 i<j
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4.3 Some Results

It is easy to check that the following proposition is true:

Proposition 1 The risk measures of portfolios ju1 and i, are equivalent.

Observe that the preference order induced by (t; : P — R in (4) is not consistent
with the expected utility theory. This is true by Cerqueti and Lupi [4, Proposition 3],
since  is nonlinear with respect to 6;_,; and depends also on p;.

On the contrary, a simple computation gives that u, : P — R in (5) is consistent
with the expected utility axiomatization.

5 Conclusions

In this paper we present a rewriting of the classical mean-variance portfolio theory
in the context of networks. With this aim, we have proposed a definition of the
set of portfolios in the context of networks. The operators acting on such a set
have been introduced, to allow the analysis of the portfolio theory in this specific
context. Moreover, we have developed two portfolio models and created a suitable
risk measure on portfolios. One of the considered risk measure is not consistent with
the expected utility axiomatization, as reinterpreted by Cerqueti and Lupi [4]. This
outcome is in line with a recent strand of literature (see [1, 4]), and suggests further
developments to classify in this respect the main risk measures used in portfolio
theory.

Appendix: A Reformulation of the Expected utility
Axiomatization

Cerqueti and Lupi [4] offer a reformulation of the standard expected utility
axiomatization as proposed, e.g., by Abrahamsen and Aven [1]. In this Appendix
we collect for completeness the expected utility axioms expressed in terms of
networks—which are now our portfolios—as proposed in [4, Section 4].

1. Weak order—Preferences are: (1) complete, i.e. the decider can state whether
two portfolios are equivalent or whether one is preferred to the other; (2) tran-
sitive, i.e. given three portfolios w1, m,, w3, if m is preferred to m, and &, is
preferred to &3, then & is preferred to Ns; (3) reflexive, i.e. the decision-maker
is indifferent between two equivalent portfolios.

2. Continuity—Given three different portfolios i |, 75, 3 such that 5 is preferred
to 1, and 7, is preferred to 73, then there exists a number p € (0, 1] such that
the decider is indifferent between the compounded portfoliop -, @ (1 —p) - 3
and m,.
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3. Preference increasing with probabilities (and with connections and weights)—
Consider (1) = {X(l) Xy} and .7® = {X(z) X»}, WhereX(l) X(z) X, € &/ and
X;l) >p1 X; ), where >¢p; denotes stochastic dominance of order 1.

Moreover, consider two portfolios w;, = (%, p® v, 8W), for k = 1,2,
such that:

Py =Py

A 6
8, > 82, fori=1,j=2; ©)
81(21 81(2/, otherwise.

Then the decision maker prefers portfolio 7 to 5.

4. Compound portfolios—Fix n € N. Consider n portfolios mr; = (7%, p®,
v® §M), for k = 1,2,...,n, and a compound portfolio =* having the n
portfolios as nodes as follows:

= ({my, wa,..., ), P, 07, 8%).

Furthermore, define® e Pas @ = (? 0,7, S) , where

7 — Oy(k)7
k=1

two transformations ¢ and v can be identified such that:

p=¢ (0 M. p?. ... p");
{8 =y (5* s §@ _’5(;1)) @)

and, for each (i,j) € .7®) x 7% we have

v(i,j) = 1if k; # k; and v*(N;,N;) = 1;
3(i,j) = 1if k; = k; = k and v¥ (i, j) = 1;
v(i,j) = 0 otherwise.

Then, two transformations ¢ and v as in (7) exist such that T and m* are
equivalent for the preference order.

5. Independence—Consider two portfolios mr; = (7%, p® v® §®) for k =
1,2. Assume that . = {Xil), X and 7@ = {Xiz), XY with
Xi(l) # sz) foreachi = 1,...,n. Suppose that X%l) >spi1 Xiz) and suppose also
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that 7, is preferred to x,. Let us now consider two portfolios 1, T, defined as
follows:

. (5/7<k>,p<k>,v,8<’<)) . k=12,
where .7 = {X;l),Xél),...,Xn} and .¥? = {X;z),Xéz),...,Xn}, being

S(1 52
X§ ) >sD1 X§ ).
Then 7, is preferred to 5.

References

10.

11.

12.

13.
14.

. Abrahamsen, E.B., Aven, T.: On the consistency of risk acceptance criteria with normative

theories for decision-making. Reliab. Eng. Syst. Saf. 93(12), 1906-1910 (2008)

. Castellano, R., Cerqueti, R.: Optimal consumption/investment problem with light stocks: a

mixed continuous-discrete time approach. Appl. Math. Comput. 218(12), 6887-6898 (2012)

. Castellano, R., Cerqueti, R.: Mean-variance portfolio selection in presence of infrequently

traded stocks. Eur. J. Oper. Res. 234(2), 442449 (2014)

. Cerqueti, R., Lupi, C.: Risk measures on networks and expected utility. Reliab. Eng. Syst. Saf.

155, 1-8 (2016)

. Cerqueti, R., Spizzichino, F.: Extension of dependence properties to semi-copulas and applica-

tions to the mean-variance model. Fuzzy Sets Syst. 220, 99-108 (2013)

. Leippold, M., Trojani, F., Vanini, P.: A geometric approach to multiperiod mean variance

optimization of assets and liabilities. J. Econ. Dyn. Control. 28(6), 1079-1113 (2004)

. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77-91 (1952)
. Markowitz, H.: Mean-variance approximations to expected utility. Eur. J. Oper. Res. 234(2),

346-355 (2014)

. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev.

Econ. Stat. 51, 247-257 (1969)

Merton, R.C.: Optimal consumption and portfolio rules in a continuous time model. J. Econ.
Theory 3, 373-413 (1971)

Rambaud, S.C., Perez, J.G., Sanchez Granero, M.A., Trinidad Segovia, J.E.: Markowitz’s
model with Euclidean vector spaces. Eur. J. Oper. Res. 196, 1245-1248 (2009)

Samuelson, P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ.
Stat. 51, 239-246 (1969)

Scott J.: Social Network Analysis, 3rd edn. Sage, London (2013)

Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge (1994)



An Evolutionary Approach to Improve a Simple
Trading System

Marco Corazza, Francesca Parpinel, and Claudio Pizzi

Abstract In this paper we consider a simple trading system (TS) based on a set of
Technical Analysis (TA) indicators. Their peculiarity is the dependence on the time-
window widths used to calculate them. To attempt to improve the performances
of the TS, we optimize these parameters (that is the time-window widths) by the
Particle Swarm Optimization (PSO), which is a metaheuristic used to solve global
optimization problems. The use of PSO is necessary since the involved optimization
problem is nonlinear, nondifferentiable and integer: in summary, it is complex.
In such a case, the use of exact solution methods would be excessively time-
consuming, in particular for practical purposes. The proposed TS is tested using the
daily closing prices from January 2, 2001, to June 30, 2016, of eight Italian stocks
of different economic sectors. As benchmark, we consider the same TS but with
standard time-window lengths. Irrespective of their signs, both in-sample and out-
of-sample performances achieved by the TS with optimized parameters are better
than those achieved by the benchmark, highlighting that parameter optimization can
play an important role in TA-based TSs.

1 Introduction

The massive amount of data available in the financial markets, also free download-
able, allows us to strategically process and to convert them into useful information
about the future trend of the prices of one or more assets.

Hu et al. [5] identify three different analysis methods: technical, fundamental
and blending. The main aim of Technical Analysis (TA) is to compute technical
indicators using the time series of stock prices and volumes and, starting from these
indicators, to generate a Buy, Hold or Sell (BHS) signal [8]. On the other hand,
Fundamental Analysis generates trading rules when the stock is undervalued or
overvalued with respect to its fundamental value. The last analysis, the Blending
one, combines both of them.
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As underlined by Wu et al. [11], to elaborate a set of profitable trading rules
we have to forecast the direction of the asset prices, so an effective information
extraction is needed.

In this work, we consider the formulation of a trading system (TS) from the
perspective of TA, so that the analysis of the patterns of price and/or of volume
sequences can enables us to generate trading rules [3]. The literature on TA
has proposed several indicators, to each of which is associated a trading rule
generating BHS signal. The indicators, and consequently the signals generated,
depend on some parameters, the most important of which is the time-window
width. Thus, the selection of the time-window width is crucial. According to the
latest state of our knowledge, there is not an estimation methodology for these
parameters, furthermore the rule of thumb used by many practitioners appears to us
inappropriate and risky. The BHS signals generated by an indicator results in profits
or losses. So, we need a procedure to select the time-window widths in a such way
to maximize the profit or to minimize the losses. According to this, we look for an
optimization algorithm allowing the estimation of the time-window widths.

Several Authors, [1, 5, 9, 12], present interesting applications of evolutionary
optimization approaches implemented in the trading framework. For instance, the
Ant Colony Optimization (ACO), as well as Particle Swarm Optimization (PSO),
that maximizes/minimizes a fitness function by mimicking the behaviour of a group
of insects or animals. Moreover, designing a TS based on several indicators, we
have to consider possible conflicting BHS signals, so we have also to tackle the
issue of combining these signals. It follows that there are two aspects to face when
we examine this problem. On one hand we have to determine the parameter values
(that is the time-window widths), on the other we have to combine the different
signals in a single one.

In this paper we focus on the first problem, since the combination of the signals
can be solved considering the simple unweighted sum of each signal. In particular,
in this paper we propose a TS based on four indicators: two momentum indicators,
typically used for trend detection, such as the Exponential Moving Average (EMA)
and the Bollinger Bands (BB), and two oscillator indicators such as the Relative
Strength Index (RSI) and the Moving Average Convergence/Divergence (MACD).
All these indices depend on the time-window widths that we can specify using the
swarm intelligence approach.

The paper is organized as follows. The next section will introduce the methodol-
ogy we will use. In Sect. 3 we will show some in-sample and out-of-sample results
of the implemented methodology. In the last section we will give some final remarks.

2 Methodology

As we said in the previous section, effective TA tools settings are crucial to
reach good performance by a TS. Nevertheless, the evidence is that many trading
practitioners follow a rule of thumb, meaning that parameters have a default. For
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example, several financial web-sites, like for instance finance.yahoo.com or,
in an Italian context, borsaitaliana.it, provide indicators and oscillators
with identical or very similar settings. In order to improve the performances of
TA indicators, we propose a more objective method to optimize their parameter
settings. In particular, we use a metaheuristic known as Particle Swarm Optimization
(PSO) to estimate the best time-window widths. The use of this solver is justified by
the complexity of the involved optimization problem for which the exact solution
methods could be extremely time-consuming for practical purposes.

In the next subsection we will describe the adopted TS. Then, we will introduce
the optimization problem. At last, in Sect. 2.3, the PSO and its specific implementa-
tion will be presented in the considered context.

2.1 A SimpleTS

As previously highlighted, we propose a combination of four classical and widely
used indicators, two momentum indicators and two oscillators, to define our T'S. The
main aim of this work is to verify if using PSO allow us to improve the performance
in terms of rate of return with respect to the same TS with default settings of the
indicators. The involved TA indicators are: Exponential Moving Average (EMA),
Bollinger Bands (BB), Moving Average Convergence/Divergence (MACD), and
Relative Strength Index (RSI). For the description of such indicators we refer to [7].

For each indicator we define a decisional rule that provides a trading signal. More
precisely the signal may be: “—1”, namely “Sell or stay short in the market”; “0”,
namely “Stay out from the market”; “+1”, namely “Buy or stay long in the market”.
The four trading signals are then aggregated in order to obtain a single signal. As
far as the four decisional rules are concerned, let us specify as trading period the
discrete time interval t = 1, ..., T > 1, and let us assume that at time ¢ = 1 each of
the four trading signals is equal to 0. From t = 2 to ¢t = T, the four decisional rules
are:

* the one based on EMA, with EMA;(-) a fast EMA and EMA,(-) a slow EMA:

—1if EMAs(1) < EMAs(t) NEMA;(t — 1) > EMA(t — 1)
signalgya(t) = § +1if EMAs(t) > EMA(t) AN EMA;(t — 1) < EMA(t — 1);

signalgya(t — 1) otherwise
¢ the one based on RSI:

—1if RSI(f) > 70 ARSI(t— 1) < 70
signalgsi(t) = 3 +1if RSI(r) < 30 A RSI(t — 1) > 30;

signalgs;(t — 1) otherwise
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 the one based on MACD, where DL(-) and SL(:) are respectively the so-called
differential line and signal line:

—1if DL(t) < SLg(t) ADL(t — 1) > SLy(t — 1)
signalMACD(t) =4 +1if DL(l‘) > SLy(f) A DL(l‘ — 1) < SLgy(t—1);

signalyacp(t — 1) otherwise

¢ the one based on BB, where P(-) is the price of the considered financial asset,
BBy (-) and BBy (-) are respectively the lower band and the upper band:

—1if P(t) < BBy(t) AP(t—1) > BBy(t—1)
signalgp(t) = { +1if P(f) > BB (t) AP(t—1) < BB (t— 1).

signalpp(t — 1) otherwise

We must keep in mind that any decisional rule will depends on the values of
the indicators which, in their turn, will depends on a given parametrization. In the
following, we will denote by w the vector of the following parameters: wy and w; are
the time-window widths related to the fast EMA and to the slow EMA, respectively;
wgsr 1s the time-window width related to RSI; wyacp.1» Wmacp2 and wy are the
three time-window widths related to MACD; w;g and wyp are the two time-window
widths related to BB.

To define only one operational trading signal, we propose to aggregate the trading
signals in the following way:

signal(t) = sign(signalpya(t) + signalgs;(t) + signalyacp(t) + signalgg(t)),

where sign(-) is the signum function.

Note that if three or four out of four decisional rules give the same trading signal
then the single operational trading signal is equal to it. Moreover, it is easy to
prove that if two decisional rules provide the same trading signal and the other two
decisional rules provide different trading signals, also between them, then the single
operational trading signal is equal to the one of the two former decisional rules.

2.2 The Optimization Problem

In this paper we measure the performance of a TS in a quite simple way, although
there are other ways to do this. An intuitive measure is the net capital at the end of
the trading period, C(T'), where “net” means that we explicitly take into accounts of
the transaction costs. In detail, let § be the transaction costs expressed in percentage;
we define the net rate of return, e(), obtained by the TS from 7 — 1 to ¢, as follows:

P(t)

e(t) = signal(t — 1) In (P(t— 3

) — 8 |signal(t) — signal(t —1)|,t =2,...,T,
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and, fixing C(1), the equity line produced by the TS is:
CH=Ct—D[1+e®],t=2,...,T.
At this stage, we can formulate the constrained optimization problem as:

max C(T)
w

WEMA; < WEMA, : (1
S.t. Wy < WyrACD,1 < WMACD,2

WEMA;» WEMA, » WRST> Wsi> WMACD.1» WyacD.2> W € NT

This constrained maximization problem is “complex” because the objective function
C(-) is nonlinear a non differentiable, moreover it is formulated in terms of variables
that must assume integer values. So, as underlined above, we need to use as a solver
a metaheuristic like PSO.

2.3 Particle Swarm Optimization

PSO is an iterative metaheuristic for the solution of global unconstrained continuous
optimization problems [6, 10], that may be adapted for solving also constrained
ones. The basic idea of PSO is to mimic the social behaviour of swarm of bees
or of flocks of birds cooperating for searching for food. For this purpose, each
particle, or member, of the swarm moves in the search area. The direction and
the velocity of the movement depend on its best position reached so far, and on
the exchanges of information with the neighboring particles in the swarm. The
behaviour of each particle allows to the whole swarm to converge towards the
best global position. From a mathematical point of view, the paradigm of a flying
swarm may be formulated as follows: given an optimization problem, each particle
of the swarm represents a possible solution; its starting position x} and starting
velocity v} are randomly assigned, so determining its initial direction and velocity
of movement.

Let us consider the global unconstrained optimization problem minyepa f(X),
where f : R? > R is the objective function. Suppose to solve it using PSO and
considering M particles. At the k-th iteration of the algorithm, three vectors are
associated to the j-th particle, withj = 1,...,M:

+ the position X]’.‘ € RY;
+ the velocity V;( € R4,
* the best position visited so far p; € R
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Moreover, pbest; = f(p;) is the value of the objective function in position p;, while
P and gbest are respectively the best position reached by the swarm and the value
of the objective function in such a position.

The steps of the algorithm are the following:

1. Randomly assign the starting position x’i and the starting velocity Vji forj =
I,....M.

2. Set pbest; = +ooforj=1,...,M, set gbest = +o00, and set k = 1.

3. Evaluatef(xj’.‘) forj=1,...,M.

4. Iff(xj’.‘) < pbest; then set p; = xj’.‘ and pbest; :f(xj’.‘) forj=1,....M.

5. Iff(x}) < gbest then set p, = x; and gbest; = f(x}) forj = 1,..., M.

6. Update position and velocity of the j-th particle forj = 1,..., M as:
Vj.“H = Wk—HVf + Uy, ® (pj — X;() + Uy, ® (pg — X;() 2
Xt = x4 vt A3)

where Uy,, Uy, € R and their components are uniformly randomly distributed
in [0, ¢1] and [0, ¢,] respectively, and denoting ® the component-wise product.
7. If a convergence criterion is not satisfied then set k = k 4+ 1 and go to step 3.

The values of ¢, and ¢, strongly affect the strength of the attractive forces towards
the personal and the swarm best positions explored so far by the particles. Thus,
in order to get the convergence of the swarm, they have to be set carefully in
accordance with the value of the inertia weight w*. The parameter w* generally
decreases linearly with the number of steps, as:

Winin — W,
k 'min 'max
W= Wiax + K k

where K is usually the maximum number of iterations allowed. The values for w;,,
and w,,;, are typically 0.9 and 0.4.

We previously said that our optimization problem is a constrained integer one
and, for this reason, we have to adapt the standard PSO algorithm to deal with these
peculiarities.

As concern the presence of integer variables, we apply the approach suggested
in [7] and <K [elach particle of the swarm [is] truncated to the closest integer, after
the determination of its new position [by (3)]> [7, p. 1584]. As pointed out in
[7]1 K[tlhe truncation of real values to integers seems not to affect significantly
the performance of the method, as the experimental results indicate. Moreover,
PSO outperforms the [Branch and Bound] technique for most test problems> [7,
p. 1583]. So, with this approach we can manage the constraints WEMA» WEMA> WRSI»
Wsi, WMACD.1>, WuacD 2, WeB € N * of our optimization problem.
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As regards the other constraints, different strategies are proposed in literature.
In this paper we use PSO as a tool for the solution of unconstrained optimization
problems according to its original aim, so we have to reformulated our problem
into an unconstrained one. To this purpose, we use an approach described in [4]
and recently applied in the financial context [2]. Such an approach uses a nondiffer-
entiable £ penalty function to reformulated our problem into an unconstrained one
and is known as exact penalty method. The term “exact” refers to the correspondence
between the minimizers of the original constrained problem and the minimizers of
the unconstrained (penalized) one.

Let € be the penalty parameter, then the reformulated version of our optimization
problem is:

1
max C(T) — [maX{O, WEMA; — WEMA, § + max{0, wy @
w €

_WMACD,I} + max{O, WMACD,1 — WMACD,Z}]-

A correct choice of the value of the penalty parameter ensures the correspondence
between the solutions of the original constrained problem and of the reformulated
unconstrained one. Note that in the (4), the constraints WEMAss WEMA,> WRSI> Wsls
WymACD.1> WmacD2, W € N * do not appear as they are taken into account by the
truncation of real values described above.

3 Applications

As stated above, in this paper we want to study the performances of a simple TS
based on indicators coming from TA, finding the optimal values of the time-window
widths associated to such indicators by using PSO.

To assess the actual improvement of the applied procedure, we have carried out
both an in-sample and an out-of-sample analysis. In particular, we have determined
the optimized parameter values of the considered TS solving the optimization
problem (4) by the version of the PSO described in Sect. 2.3.

We have considered time series of eight stocks in the period from January 2,
2001 to June 30, 2016 (3932 prices). More specifically, we have tested the TS
on the following stocks: BUZZI UNICEM S.p.A. (BU), ENEL S.p.A. (EE), ENI
S.p.A. (EI), Generali S.p.A. (GE), INTESA SANPAOLO S.p.A. (IS), LUXOTTICA
GROUP S.p.A. (LG), STMICROELECTRONICS S.p.A. (ST) and TELECOM
ITALIA S.p.A. (TT). We have choosen the stocks considering their importance in the
Italian stock market. In fact, all of them are components of the Italian stock index
FTSE MIB and they represent some meaningful sectors of the Italian economy.
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We have performed the in-sample analysis in the period going from June 2, 2001
to June 30,2016 (3880 prices'), whereas the out-of-sample analysis has been carried
out in the period from November 1, 2011 to June 30, 2016 (1180 prices), using
the period from January 2, 2001 to October 31, 2011 (2752 prices) to evaluate the
optimal values of the time-window widths.

All the applications have used § = 0.15% (percentage transaction cost currently
applied by several Italian brokerage companies) and C(1) = 100.

As regards the PSO algorithm, we have used the following setting: M = 10
as number of particles; K = 100 as maximum number of iterations; ¢; = ¢, =
1.49618 as coefficients; € = 0.0001 as penalty parameter. The first two values have
been determined by a trial-and error procedure, the last three values are commonly
suggested in the literature. Considering that the methodology proposed in Sect. 2.3
is stochastic in reason of the random initialization (of both position and velocity
of the particles) and of the random disturbance in the updating equation of the
velocity (see step 6 of the algorithm presented in Sect.2.3), we have applied 100
times our methodology to each stock, then we have calculated the mean values and
other statistics.

As far as the TS with standard setting is concerned, following the relevant
professional literature, we have used the following values for the parameters:
wema, = 12, wema, = 26, wrsr = 26, wg = 9, wuacp1 = 12, wuacpa = 26
and WBp = 26.

3.1 In-Sample Analysis

The in-sample performances achieved by the two TSs (with default and optimized
settings) for the eight stocks are presented in Table 1. More specifically, in column
2 we report the annualized rate of return performed by the TS with standard setting
(r); in columns 3 and 4 we respectively report the average annualized rate of
return performed by the TS with optimized parameter values (r) and the associated
standard deviation (s,); column 5 shows the 95% confidence interval calculated
using r and s, ([, -]9s%.); in columns 6 and 7 we have the minimum of 7 (s ) and the
maximum of r (rmax), respectively, over the 100 applications of our methodology;
in column 8 and 9 we respectively report the average percentages of times in which,
during the trading period, the value of the equity line produced by the TS with
optimized parameter values has been greater than, and not less than, the value of the
equity line produced by the TS with standard setting (% > and % >).

I'The first 52 prices need to calculate the starting values of indicators.
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Table 1 In-sample performances achieved by the various TSs

Stock r r Sy [, *]o5%.r Finin Fmax % > % >

BU —2.86% 16.25% 4.26% [7.89%,24.60%] 1.14% 23.75% 90.18% 91.66%
EE —17.12% 4.31% 2.60% [—0.79%,9.41%) —3.17% 9.75% 87.89% 89.30%
EI —16.77% 0.46% 2.84% [—5.11%,6.034%] —9.20% 10.63% 98.66% 99.98%
GE —4.92% 9.00% 3.03% [3.07%, 14.93%] 0.00% 13.65% 95.90% 97.72%
1S —9.69% 18.08% 6.79% [4.77%,31.38%] 0.00% 33.47% 93.16% 94.71%
LG —5.88% 13.20% 3.04% [7.24%,19.15%] 0.00% 17.30% 74.97% 76.43%
ST —1.00% 16.01% 5.99% [4.26%,27.76%] —1.52% 24.49% 95.24% 96.63%
TI —9.56% 10.75% 4.88% [1.19%,20.30%)] —3.29% 18.51% 98.11% 99.59%

We point out that all the annualized rates of return achieved by the TS with
standard setting are negative, whereas all the average annualized rates of return
performed by the TS with optimized parameter values are far greater than the
former ones and are all positive. It indicates that also in the case of simple TA-based
TS, like the one considered in this paper, the parameters optimization can play an
important role. Then, no average annualized rate of return achieved by the TS with
standard setting belongs to the 95% confidence interval calculated using r and s,.
This indicates that, for all the investigated stocks, r is statistically different from r at
the 5% significance level. Moreover, note also that, with the only exception of the
stock asset ST, all s are lower than the corresponding rin (7min$ are in column 6),
which means that the worst results obtained with optimized parameters is generally
better than those obtained with standard settings.

All the previous remarks concern with the performances achieved by the various
TSs in the final time instant # = T of the trading period, that is June 30, 2016. But
the results in column 8 and 9 well put in evidence that for very large part of the
trading period (never lower than 74.97%) the TSs with optimized parameter values
perform better than the TS with standard setting.

As example, in Fig. 1 we show the in-sample performance related to the stock
asset TL. In particular, on the top, the closing price time series is shown; in the
second panel, the operational trading signal is reported; on the bottom, the time
series of the gross equity line produced by the TS with optimized parameter values
(dotted curve), of the net equity line produced by the same TS (bold curve), and of
the net equity line produced by the TS with standard setting (continuous curve) are
shown.

3.2 Out-of-Sample Analysis

In Table 2 we present the out-of-sample performances attained by the various TSs.
Its columns are the same of those of Table 1.
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Table 2 Out-of-sample performances achieved by the various TSs

Stock r r Sy [+, *Jos%.r Fmin Fimax % > % >

BU —27.07% —9.27% 9.34% [—27.57%,9.04%) —34.87% 10.93% 79.65% 79.75%
EE —21.11% —7.85% 8.68% [—24.86%,9.16%) —28.57% 8.12% 81.92% 82.02%
EI —19.04% —8.89% 9.70% [—27.90%,10.12%] —31.89% 14.74% 86.23% 86.31%
GE —9.99% —931% 6.10% [—21.27%,2.65%] —27.86% 4.90% 28.12% 28.21%
1S —18.67% —7.36% 11.88% [—30.65%,15.93%] —25.63% 29.91% 54.89% 55.00%
LG —13.89% —3.04% 9.82% [—22.29%,16.20%] —31.91% 18.10% 59.49% 59.57%
ST —21.18% —16.92% 9.38% [—35.30%,1.47%)] —39.35% 1.60% 70.08% 70.17%
TI —1523% —12.14% 8.24% [—28.28%,4.00%) —32.02% 1.21% 86.41% 86.50%

Similarly to what highlighted by the in-sample analysis, even in the out-of-
sample one all the annualized rates of return achieved by the TS with standard
setting (column 2) are negative and all the average annualized rates of return
performed by the TS with optimized parameter values (column 3) are greater than
the former. But conversely, now all rs are negative. It indicates that the parameter
optimization play a positive role also in the out-of-sample applications, although
its importance is significantly diminished with respect to the in-sample ones. As
a further confirmation of such an importance reduction, note that now all the
annualized rates of return achieved by the TS with standard setting (column 2)
belong to the 95% confidence intervals calculated using » and s, (column 5), and
that each r is greater than the corresponding 7min (¥mins are in column 6). This may
suggest that in the out-of-sample applications the standard setting does not appear
so far from the optimal setting.

We recall that all the previous remarks concern with the performances obtained
by the various TSs in the final time instant t = T, that is June 30, 2016. But the
results in column 8 and 9 point out that, with the only exception of the stock asset
GE, for large part of the trading period the TSs with optimized parameter values
perform better than the TS with standard setting.

As example, in Fig.2 we show the out-of-sample performances related to the
stock asset TI. Its panels are the same of those of Fig. 1.

4 Conclusions

In this paper we have considered a simple TS based on four indicators, two
momentum and two oscillators, coming from TA. Instead of using a rule of thumb
to select the time-window widths, we have proposed to apply an adapted version of
PSO in order to determine the optimal values of these parameters. The results we
have obtained, summarized in Table 1 for the in-sample analysis and in Table 2 for
the out-of-sample analysis, show that parameter optimization can play an important
role as the results of our proposal, expressed in terms of annualized rate of return,
are always better than the classical TA-based ones.
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Another advantage of the procedure is that the parameter setting may vary

according to the stock, so avoiding the use of the same parameter values in possible
different contexts.

Our future goals are: to check the proposed technique with different price time

series coming from other financial markets; to improve our methodology in order
to anticipate the market signals using observational data; to generalize the proposed
procedure in order to generate trading rule.
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Provisions for Outstanding Claims with
Distance-Based Generalized Linear Models

Teresa Costa and Eva Boj

Abstract In previous works we developed the formulas of the prediction error in
generalized linear model (GLM) for the future payments by calendar years assuming
the logarithmic link and the parametric family of error distributions named power
family. In the particular case of assuming (overdispersed) Poisson and logarithmic
link the GLM gives the same provision estimations as those of the Chain-Ladder
deterministic method. Now, we are studying the possibility to use distance-based
generalized linear models (DB-GLM) to solve the problem of claim reserving in
the same way as GLM is used in this context. DB-GLM can be fitted by using the
function dbglm of the dbstats package for R. In this study we calculate the
prediction error associated to the accident years future payments and total payment,
and also to the calendar years future payments using DB-GLM in the general case of
the power families of error distributions and link functions. We make an application
with the well known run-off triangle of Taylor and Ashe.

1 Introduction

In this paper we propose the use of DB-GLM to solve the claim reserving problem
in the context of Solvency II (Directive 2009/138/EC of the European Parliament
and of the Council on the taking-up and pursuit of the business of Insurance and
Reinsurance).

In Solvency II it is indicated that the best estimate of technical provisions must
be calculated taking account of the time value of money, that is, the expected present
value of the future payments. The payments by calendar years allow us to work in a
financial environment because each amount is situated in the corresponding future
calendar year.

The paper is organized as follows. In Sect.2 we describe the DB-GLM model
and we show the expression of the prediction error for DB-GLM in the general
parametric families of error distributions and link functions named power families.
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In Sect.3 we develop the expressions of the prediction error for the total future
payment, for the accident years future payments and for the calendar years future
payments. In Sect. 4 we illustrate calculations with the well known data set of Taylor
and Ashe. In Sect. 5 we present the main conclusions.

2 Distance-Based Generalized Linear Model

The DB-GLM, defined in [7], extends the ordinary GLM allowing information on
predictors to be entered as interdistances between observation pairs instead of as
individual coordinates. The estimation process of a DB-GLM is schematically as
follows: a Euclidean configuration, X,,, is obtained by a metric multidimensional
scaling-like procedure, then the linear predictor of the underlying GLM is a linear
combination of the resulting Euclidean coordinates, latent variables in the model.

Let 2 = (£2, ..., £2,) be a population of n individuals; let Y : (¥, ..., Yn)T be
the random response variable, and (yi, . .. ,yn)T be the observed response variable
of size n x 1;let (wy,... ,wn)T be a priori weights of individuals of size n x 1 with
w; € (0, 1); let (Fl, ... ,F,,) be the set of p observed mixed predictors; and let A be
an n X n matrix, whose entries are the squared distances 82 (.Qi, .Qj). For the sake of
expediency, henceforth we will refer to A as the ‘distance matrix’.

The distance matrix A is calculated from the observed predictors by means of a
distance function with the Euclidean property. It contains predictor’s information
and it is the only information entered in the model in the predictor’s space .
Therefore, distance-based prediction can be applied to mixed (qualitative and
quantitative) explanatory variables or when the regressor is of functional type.

In DB-GLM we assume that the response distribution is in an exponential
dispersion family, as in any GLM. Besides, the relation between the linear predictor,
n, and the expected response, i, is given by a link function: u = g(1n). We calculate

the inner products matrix G,, = — ;JW -A-J,, where J,, = I—1-w' is the w-centering
matrix. A DB-GLM consists of random variables (Y71, ..., Yn)T whose expectation,
(T ,u,,)T, transformed by the link function and w-centered, is a vector in the

column space of G,,. This space coincides with the column space of any Euclidean
configuration X,, of A, by definition any matrix such that G,, = X, - X‘z .

DB-GLM contains GLM as a particular case: if we start from a w-centered matrix
X,, of continuous predictors and we define A as the matrix of squared Euclidean
% distances between rows of X,,, then X,, is trivially a Euclidean configuration of
X, hence hat matrix, response and predictions with DB-GLM and ordinary GLM
are the same. DB-GLM can be fitted using the dbglm function of the dbstats
package for R (see [5]).
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2.1 Prediction Error

Assume a DB-GLM and the power family for the variance function:

V() = i, (M
fori = 1,...,n. Mean and variance of the random response variable are then:
Elyi] = i,

Var[yi] = (@/w) V (i) = (9/wi) Mf,

where ¢ is the dispersion parameter and w; are a priori weights of the data. Particular
cases in this family are: Poisson distribution when & = 1; Gamma distribution when
& = 2; and Inverse Gaussian distribution when & = 3.

Throughout this section we follow formulations from [11]. We define the mean
squared error (MSE) of prediction as:

E [(yi - ﬂi)z] : (2

To estimate the MSE for the original data, i = 1,...,n, we only need to compare
the original response values, y;, with the corresponding fitted values, f;, for
i = 1,...,n. But we are interested in calculating the prediction error for a new
observation: i = n + 1 (see [6] e.g.). Prediction error, by definition, is the square
root of the MSE. For new observations, when the observed predictor values do not
coincide with those of the original sample we need an estimated MSE.

The MSE of prediction can be approximated by the sum of two components, the
process variance and the estimation variance:

E[(i= )] = Var[y] + var[ ). 3)

Using the delta method we can derive that:

2

oL
# Var [ni],

Var [1;] =~ '377'

and then, the MSE in (2) can be approximated as:

IHi

2
5 Var [n;] . (@)
ni

E[(vi— )] = @/wo i + ‘
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Finally, the expression of the prediction error is given by the square root of the
MSE (4):

i |?
\/E [(yi—ﬂi)z] = \/ (@/wi) 145 + ‘ aﬂ Var [n:]. ®)
n

1

Consider the power family of link functions as in formula (2.10) of [13]:

A
ui, A #0,
;= )= ! 6
=g {bﬂmxkzo ©
The particular expressions of prediction error (5) are:
o If uf =
V@ w) uf + 220 var )
o Iflogu; = n:
V@ i + uvarin. ™)

To estimate the scale parameter¢3 from the sample data we can use the mean of the
Pearson residuals ¢ .

An alternative way to obtain the MSE (3) is to estimate Var [{i;] by bootstrap. We
propose to use the resampling technique of pairs bootstrap in which each bootstrap
sample consists of n response-predictor pairs from the original data (see, e.g., [9]).
This technique is adequate for distance-based models as is shown in [4] where an
F-test was defined for the DB-LM, and in [8] where a Wald test was defined for
influence coefficients in DB-GLM.

We can estimate the predictive distribution of fi;, called ,&ﬁ"’”’ . Then the esti-
mation variance, the second component of formula (3), can be approximated by
the variance of the predictive distribution: Var [ﬂf"”’]. And finally the bootstrap
estimation of prediction error is:

\/(qu/wi) ,ll,s + Var [p2o]. (8)

3 Claim Reserving

Consider a portfolio of risks and assume that each claim is settled either in the
accident year or in the following k development years. Consider a family of random

variables {Cij}iJe{Ol iy where ¢;; is the amount of claim losses of accident year
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i which is paid with a delay of j years and hence in development year j and in
calendar year i+j. Assume that the incremental losses c;; are observable for calendar
years i + j < k and that they are collected in a run-off triangle, where the rows
correspond to the accident years, the columns to the development years and the
against-diagonals to the calendar years.

The future payments for the different accident years i = 1,...,k are obtained
by adding the predicted future incremental losses in the corresponding row of the
square:

k
FPi= > & 9)

The total future payment is calculated by adding all the predicted future incremental
losses in the bottom-right part of the run-off triangle:

k k
FP=>" Y & (10)

And the future payments for the different calendar years t = k + 1,...,2k are
obtained by adding the incremental losses that were made in the future calendar
years, i.e., the values of the same against-diagonal #:

k

FP = )" &y (11)

j=1—k

It is well known that several often used methods to complete a run-off triangle
can be described by a GLM: the Chain-Ladder method, the arithmetic and geometric
separation methods and the de Vylder’s least squares method. In particular, the
classic Chain-Ladder deterministic method (see [17]) can be derived from a GLM
by assuming over-dispersed Poisson distribution, the logarithmic link function and
by including the dummies corresponding to the accident and development years
in the linear predictor, with prior weights equal to one (see, e.g., [3, 10, 11] and
[12]). In that case, the provision estimations coincide with both methods, the classic
Chain-Ladder and the GLM. For this reason GLM can be considered a stochastic
Chain-Ladder method of claim reserving. In this paper we propose the use of DB-
GLM. Because DB-GLM contains ordinary GLM as a particular instance when we
assume the Euclidean /> metric between factors, DB-GLM generalizes the same
claim reserving methods as those generalized by GLM.

In this study, we develop the formulas of the prediction error for DB-GLM when
we assume the power family of distributions (1) and the power family of links (6).
For these families the Chain-Ladder method is reproduced when we choose £ = 1
and A = 0 and we use the Euclidean /> metric. To illustrate computations, in the
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next section we assume £ = 1 and £ = 2, the Poisson and the Gamma distributions
asin [3, 10, 11] and [12].

Applying (4), and assuming the logarithmic link as in (7), the MSEs for the future
payments by accident years, fori = 1, ..., k are:

_\2
E|(rr-P) | = 3 oudeulvorinin,
J=

i+j>k (12)
= ¥ duit ¥ @dVarlng]+2 X i Cov [0y i)
=1k j=1,.k j1J2 1,..k
i+j>k i+j>k Jr>ji
i+ >k Jitja>k
The MSE for the total future payment is:
2
E[(FP FP):|g > g+ 1 Var o) p
ij=1,...s
iij>k
= Y dup+ X M,,Var [n3] +2 > Hirjy Minj, CoV [y, iy |
ij=1,...k ij=1,..., 1111 Jdaga=1,....k
i+j>k i+j>k i1 +ji>kiz+jp>k
i1j17#i2j2
(13)

And the MSEs for the future payments by calendar years, fort = k+ 1,..., 2k are:

_—\2
E[(FP,—FPI) } = X ¢>u,,+u, Var [ni] ju.

ij=L..
z+/t
= > oui+ )3 u,,Var[m/] 2 X Bap i Cov [ i .
ij=1,.k ij=1.., i1 j12=1,...k
i+j=t itj=t ij17#i)

i1 +ji=ti+jp=t

(14)

The bootstrap estimations (8) of the prediction error for the future payments by
accident years (9), PEP°! (FP)) fori=1,...,k, are:

PEbooI‘ (FP,) ~ Z é\)Péi + Var I:fp\ib"()f:l_ (15)
i+j>k

The bootstrap estimation of the prediction error for the total future payment (10),
PE" (FP), is:

PE" (FP) ~ Z $res + Var [FP"””’] (16)
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And the bootstrap estimations of the prediction errors for the future payments by
calendar years (11), PEP(FP)) fort =k + 1,...,2k, are:

PEbooI‘(FPt) ~ Z quéi + Var I:ﬁf«wot:l- (17)

ij=1...k
i+j=t

4 Numerical Example

In Table 1 we show the triangle of Taylor and Ashe (see [16]) with incremental
losses to illustrate the calculus of the best estimate of provisions (without risk
margin). This dataset is used in many texts on claim reserving as are [1-3, 10, 11, 14]
and [15] to illustrate the use of the GLM and other techniques.

In Tables 2 and 3 we show the estimations of the future incremental losses for
the Poisson, §¢ = 1, and the Gamma, § = 2, distributions of the power family (1).
We assume the logarithmic link, A = 0 in the power family of links (6), and the />
metric between accident and development factors.

Table 1 Run-off triangle of [16] with 55 incremental losses

0 1 2 3 4 5 6 7 8 9
357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
352,118 884,021 933,894 1,183,289 445,745 320,996 52,7804 266,172 425,046
290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

443,160 693,190 991,983 769,488 504,851 470,639

396,132 937,085 847,498 805,037 705,960

440,832 847,361 1,131,398 1,063,269

359,480 1,061,648 1,443,370

376,686 986,608

344,014

O 0 N O kAW = O

Table 2 Fitted values with DB-GLM assuming the over-dispersed Poisson distribution, the
logarithmic link and the /> metric for the run-off triangle of Table 1
1 2 3 4 5 6 7 8 9
1 94,634
2 375,833 93,678
3 247,190 370,179 92,268
4 334,148 226,674 339,456 84,611
5 383,287 351,548 238,477 357,132 89,016
6 605,548 414,501 389,349 264,121 395,534 98,588
7 1,310,258 725,788 508,792 466,660 316,566 474,073 118,164
8 1,018,834 1,089,616 603,569 423,113 388,076 263,257 394,241 98,266
9 856,804 897,410 959,756 531,636 372,687 348,126 231,182 347,255 86,555
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Table 3 Fitted values with DB-GLM assuming the Gamma distribution, the logarithmic link and
the /2 metric for the run-off triangle of Table 1
1 2 3 4 5 6 7 8 9
1 93,316
2 356,295 90,212
3 214,335 316,641 80,172
4 339,733 228,765 337,960 85,569
5 418,059 354,459 238,681 352,609 89,278
6 613,160 452,559 383,710 258,379 381,708 96,646
7 1,225,659 684,190 504,985 428,160 288,310 425,926 107,842
8 982,882 1,049,906 586,081 432,573 366,765 246,968 364,851 92,378
9 853,417 873,269 932,819 520,720 384,331 325,862 219,426 324,162 82,076

If we put by rows in cij the data of Table 1, the instructions with the function
dbglm of the dbstats package for R to fit the distance-based models are:

R> n <- length(cij)

R> k <- trunc(sgrt(2+n))

R> 1 <- rep(l:k, k:1); i <- as.factor (i)

R> j <- sequence(k:1); j <- as.factor(j)

R> dbglm.Poisson <- dbglm(cij ~ i + j, family = quasipoisson,
metric = "euclidean", method = "rel.gvar", rel.gvar = 1)

R> dbglm.Gamma <- dbglm(cij ~ i + j, family = Gamma(link =
"log"), metric = "euclidean", method = "rel.gvar",
rel.gvar = 1)

In Tables 4 and 5 we show the future payments by calendar years, the prediction
errors and the coefficients of variation for the Poisson and Gamma models in the

Table 4 Future payments by calendar years, prediction errors and coefficients of variation for DB-
GLM assuming over-dispersed Poisson and Gamma distributions, the logarithmic link and the 1
metric, using the formula (14) for the run-off triangle of Table 1

Prediction  Coefficient Prediction  Coefficient
Calendar Payment error of variation Payment error of variation
year (Poisson) (Poisson) (Poisson) (Gamma) (Gamma) (Gamma)
10 5,226,536 747,370 14.30% 5,096,855 847,282  16.62%
11 4,179,394 710,144 16.99% 4,050,002 749,550  18.51%
12 3,131,668 644,140 20.57% 3,064,408 628,141  20.50%
13 2,127,272 479,126 22.52% 12,078,011 431,886  20.78%
14 1,561,879 404,968 25.93% 1,510,393 345,881  22.90%
15 1,177,744 364,295 30.93% 1,095,403 292,256  26.68%
16 744,287 294,425 39.56% 692,118 220,058  31.79%
17 445,521 250,987 56.34% 416,540 181,227  43.51%
18 86,555 108,269  125.09% 82,076 47,918.1 58.38%

Total 18,680,856 2,945,659 15.77% 18,085,805 2,702,710  14.94%
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Table 5 Future mean payments by calendar years, prediction errors and coefficients of variation
for DB-GLM assuming over-dispersed Poisson and Gamma distributions, the logarithmic link and
the /> metric, using pairs bootstrap with size 1000 to estimate (17) for the run-off triangle of Table 1

Mean Prediction  Coefficient Mean Prediction  Coefficient
Calendar payment error of variation —payment error of variation
year (Poisson) (Poisson) (Poisson) (Gamma) (Gamma) (Gamma)
10 5,322,048 651,320 12.46% 5,237,837 760,410 14.92%
11 4,277,227 595,875 14.25% 4,185,515 659,058 16.27%
12 3,250,817 522,637 16.68% 3,199,644 547,190 17.86%
13 2,240,502 436,147 20.50% 2,211,180 407,490 19.61%
14 1,671,934 374,469 23.97% 1,641,125 338,333 22.40%
15 1,273,321 327,034 27.76% 1,229,713 290,089 26.48%
16 861,295 276,203 37.10% 829,033 238,753 34.50%
17 543,109 217,778 48.88% 534,532 190,842 45.82%
18 174,216 144,268  166.67% 179,832 132,739  161.73%
Total 19,554,135 2,231,054 11.94% 19,248,389 2,270,695 12.55%

Table 6 Present values of the future payments by calendar years for DB-GLM assuming over-
dispersed Poisson and Gamma distributions, the logarithmic link and the /> metric, assuming the
risk free curves that must be used at 31-01-2016 and published in the web of EIOPA, for the run-off
triangle of Table 1

Calendar Deferral Term Payment Payment

year (in years) structure (Poisson) (Gamma)

10 1 0.036% 5,226,536 5,096,855
11 2 0.015% 4,179,394 4,050,002
12 3 0.067% 3,131,668 3,064,408
13 4 0.155% 2,127,272 2,078,011
14 5 0.267% 1,561,879 1,510,393
15 6 0.389% 1,177,744 1,095,403
16 7 0.514% 744,287 692,118
17 8 0.641% 445,521 416,540
18 9 0.760% 86,555 82,076
Present value 18,556,354 17,967,985

case of using the asymptotic formulation of (14) and in the case of estimating by
bootstrapping the estimation variance as in formula (17).

In Table 6 we calculate the present value of the future payments by calendar
years for the Poisson and Gamma models using the risk free curves at 31-
01-2016 of https://eiopa.europa.eu/regulation-supervision/insurance/solvency-
ii-technical-information/risk-free-interest-rate-term-structures. The risk free
interest rates correspond to annual zero-coupon spot rates. In particular, for
the calculations of the present values in the paper we choose the basic
risk free curves with volatility adjustment for the euro, included in the file
EIOPA_RFR_20160131_Term_Structures.xlsx.


https://eiopa.europa.eu/regulation-supervision/insurance/ solvency-ii-technical-information/risk-free-interest-rate -term-structures
https://eiopa.europa.eu/regulation-supervision/insurance/ solvency-ii-technical-information/risk-free-interest-rate -term-structures
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Table 7 Standard deviation, VaR775 and VaRyg 5 of the predictive distributions of the future pay-
ments by calendar years for DB-GLM assuming over-dispersed Poisson and Gamma distributions,
the logarithmic link and the I? metric, using pairs bootstrap with size 1000, for the run-off triangle
of Table 1

Calendar  Std Deyv. VaR775 VaRgg 5 Std Dev. VaR775 VaRgg 5

year (Poisson) (Poisson) (Poisson) (Gamma) (Gamma) (Gamma)
10 656,450 5,838,751 7,154,049 389,687 5,524,047 6,323,486
11 619,952 4,681,521 6,154,360 369,609 4,457,042 5,350,769
12 531,939 3,629,494 4,734,649 332,197 3,435,365 4,230,436
13 447,469 2,577,467 3,576,893 278,398 2,418,214 2,963,346
14 386,091 1,946,250 2,788,398 244,434 1,817,224 2,337,500
15 333,985 1,525,439 2,262,122 215,448 1,396,467 1,815,355
16 285,609 1,052,027 1,683,507 191,483 1,011,477 1,280,757
17 230,971 736,419 1,209,831 156,331 706,661 880,765
18 153,242 263,007 631,216 130,036 344,003 425,190

In Table 7 we include the standard deviation of the predictive distributions of the
future payments by calendar years, and the value at risk (VaR) for the confidence
levels 77.5% and 99.5% for DB-GLM assuming over-dispersed Poisson and Gamma
distributions, the logarithmic link and the /> metric, using pairs bootstrap with size
1000. We use a sample size of 1000 for the bootstrap because the coefficients of
variation have four decimals of precision (a sample size of 500 is enough for two
decimals).

5 Conclusions

We propose the use of DB-GLM as a methodology to solve the problem of claim
reserving. To complete the tool we design a bootstrapping pairs procedure which
allows us to estimate the predictive distribution of the future payments for reserving.

DB-GLM has GLM as a particular case when we use the Euclidean 2 metric,
i.e., we obtain the same provision estimations. As it is well known, the Chain-
Ladder classic method is reproduced when we assume (over-dispersed) Poisson
distribution and logarithmic link function. Then, DB-GLM can be considered a
stochastic Chain-Ladder method.

In this study we show the formulas of the prediction errors for the accident years
future payments, (12) and (15), for the total future payment, (13) and (16), and
for the calendar years future payments, (14) and (17), when we assume the power
family of distributions (1) and the power family of links (6) in DB-GLM.

It is of relevance to calculate provisions taking into account the Solvency II
Directive. We apply an interest term structure published by EIOPA. It is of interest
to estimate the predictive distributions of the best estimates of the future payments
by calendar years if we want to calculate the reserve risk in the own risk & solvency
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assessment, ORSA, and to estimate the undertaking specific parameters, USP, of the
company.

We illustrate the distance-based method of claim reserving with the run-off
triangle of Taylor and Ashe used in many actuarial papers. We assume in DB-GLM
the Poisson, £ = 1, and the Gamma, £ = 2, distributions of the power family (1),
the logarithmic link, A = 0 of the power family of links (6), and the Euclidean
metric between accident and development factors. We use the function dbglm of
the dbstats package for R to fit the distance-based models.

Acknowledgements Work supported by the Spanish Ministerio de Educacién y Ciencia, grant
MTM2014-56535-R.

References

1. Boj, E., Costa, T.: Claim reserving: calendar year reserves for the GLM. In: Guillén, M., et al.
(eds.) Current Topics on Risk Analysis: ICRA6 and RISK2015 Conference. Cuadernos de la
Fundaciéon MAPFRE, vol. 205, pp. 169-177. Fundacién MAPFRE, Madrid (2015)

2. Boj, E., Costa, T.: Claim reserving using distance-based generalized linear models. In: Cao,
R., Gonzalez-Manteiga, W., Romo, J. (eds.) Nonparametric Statistics. Springer Proceedings in
Mathematics & Statistics, vol. 175, pp. 135-148. Springer, Cham (2016)

3. Boj, E., Costa, T.: Provisions for claims outstanding, incurred but not reported, with generalized
linear models: prediction error formulation by calendar years. Cuadernos de Gestién 17(2),
157-174 (2017)

4. Boj, E., Claramunt, M.M., Fortiana, J.: Selection of predictors in distance-based regression.
Commun. Stat. Theory Methods 36, 87-98 (2007)

5. Boj, E., Caballé, A., Delicado, P., Fortiana, J.: dbstats: distance-based statistics (dbstats). R
Package Version 1.4 (2014). http://CRAN.R-project.org/package=dbstats

6. Boj, E., Costa, T., Fortiana, J.: Prediction error in distance-based generalized linear models.
Presented in the Conference of the International Federation of Classification Societies,
IFCS2015, Bologna, Italy (2015)

7. Boj, E., Delicado, P., Fortiana, J., Esteve A., Caballé, A.: Global and local distance-based
generalized linear models. TEST 25, 170-195 (2015)

8. Boj, E., Costa, T., Fortiana, J., Esteve, A.: Assessing the importance of risk factors in distance-
based generalized linear models. Methodol. Comput. Appl. Probab. 17, 951-962 (2015)

9. Efron, B., Tibshirani, J.: An Introduction to the Bootstrap. Chapman and Hall, New York
(1998)

10. England, P.D.: Addendum to ‘Analytic and bootstrap estimates of prediction errors in claim
reserving’. Insur. Math. Econ. 31, 461-466 (2002)

11. England, P.D., Verrall, R.J.: Analytic and bootstrap estimates of prediction errors in claims
reserving. Insur. Math. Econ. 25, 281-293 (1999)

12. England, P.D., Verrall, R.J.: Predictive distributions of outstanding liabilities in general
insurance. Ann. Actuarial Sci. 1(2), 221-270 (2006)

13. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, London
(1989)

14. Renshaw, A.E.: Chain ladder and interactive modelling (claims reserving and GLIM). J. Inst.
Actuaries 116(3), 559-587 (1989)


http://CRAN.R-project.org/package=dbstats

108 T. Costa and E. Boj

15. Renshaw, A.E.: On the second moment properties and the implementation of certain GLIM
based stochastic claims reserving models. Actuarial Research Paper 65. Department of
Actuarial Science and Statistics, City University, London (1994)

16. Taylor, G., Ashe, FR.: Second moments of estimates of outstanding claims. J. Econ. Bus. 23,
37-61 (1983)

17. van Eeghen, J., Greup, E.K., Nijssen, J.A.: Loss Reserving Methods. Surveys of Actuarial
Studies, vol. 1. National Nederlanden, Rotterdam (1981)



Profitability vs. Attractiveness Within
a Performance Analysis of a Life Annuity
Business

Emilia Di Lorenzo, Albina Orlando, and Marilena Sibillo

Abstract Combining insurer’s profitability with products’ attractiveness in terms
of marketing competitiveness is a critical issue within the risk/profit management of
an insurance business. In particular life insurance products are characterized by the
presence of financial and demographic risk sources, whose combined effect requires
suitable management strategies. This paper deals with the impact of the load factor
on life annuity portfolio performance from the insurers point of view. The aim is
to build a performance indicator that clearly points out the role of the load factor
in the performance making, giving to it a central role in the company management
strategy. Such index is characterized by a simple mathematical structure and fits to
the purpose: in fact it provides clear indications to the manager about the influence
of the load factor on the performance of the life annuity business line.

1 Life Annuity Portfolios and Profitability Indexes:
A Tangled Issue

Life insurance business is moving towards contractual models increasingly tailor-
made following the purpose of paying attention to both the contracting parties’
characteristics and taking into account the dynamics of the financial and the
demographic contexts in which the inflows and the outflows are going to be valued.
The management activity is continuously engaged in monitoring the business
performances and in controlling that the risks impacting on them have been correctly

E. Di Lorenzo

Department of Economic and Statistical Sciences, University of Naples Federico II — Via Cinthia,
Complesso Monte Sant’ Angelo, 80126 Naples, Italy

e-mail: diloremi @unina.it

A. Orlando
National Research Council — Via P. Castellino, 80128 Naples, Italy
e-mail: A.Orlando @iac.cnr.it

M. Sibillo (<)

Department of Economics and Statistics, University of Salerno — Campus Universitario, 84084
Fisciano (SA), Italy

e-mail: msibillo@unisa.it

© Springer International Publishing AG 2017 109
M. Corazza et al. (eds.), Mathematical and Statistical Methods for Actuarial
Sciences and Finance, https://doi.org/10.1007/978-3-319-50234-2_9


mailto:diloremi@unina.it
mailto:A.Orlando@iac.cnr.it
mailto:msibillo@unisa.it
https://doi.org/10.1007/978-3-319-50234-2_9

110 E. Di Lorenzo et al.

managed. The valuation of the insurance product performance at the issue time holds
a meaningful task: it contains several information of exploratory and guiding nature.
As long ago as 2007, Easton and Harris [8] stated that company’s performance
and its efficiency are well described by the profitability ratios, referred both to
the company as a whole and to a specific business line as life annuities. The
topic is deepened in (1), in which the performance of pension plans is studied.
Understanding the concept of profitability and exploring the efficient way for
representing it by means of a synthetic index, is a significant topic; the management
can make use of efficient indicators for internal control aims and for communicating
outside (to the policyholders and the stakeholders) the health of the company or of
a specific portfolio, in other words if and how they give rise to value and profits.
Staying in the case of life annuity business, mainly saving products, profitability has
to be valued in the long-term perspective, as it is implicit in the contract structure,
and concerning the specific risks impacting on the product under consideration. As
clearly explained by Swiss Re 2012 [13], the high number of years during which the
policy remains in force in the portfolio and the high number of payments in and out
of the portfolio, make the performance valuation very difficult.

The present analysis is based on the actuarial control of the payments [1], [2]
valued on assumptions about the future. The length of the future to take into account
in the valuations is the aspect making definitely different the performance measures
used in the non life sector, mainly short-term pointed, and the life sector, with a
long-term perspective. These different perspectives make complex the performance
valuations at a group level. De Mey [6] reasons on the meaning of the performance
measures in life and non-life insurance and concludes that an integration between
Economic Value Added (EVA) and market-consistent embedded value (MCEV)
seems to be the best way to manage the performance measure of an insurance
company. Kraus [11] highlights the two most popular performance metrics within
the two sections: EVA and risk-adjusted return on capital (RAROC) for non-life and
MCEYV for life and proposes a unified approach for measuring the performance of
the company as a whole.

The analysis we present is framed specifically in the life annuity portfolios
and in their performance valuation, aiming at getting actuarial quantities easy to
calculate and concise enough to produce indices clearly interpretable and readily
communicable, as introduced by Coppola et al. in [3] and [4]. In this sense, one of
the most expressive first indices proposed in life annuities performance analysis can
be found in [10], then regained in [5]: it is the Funding Ratio, defined as the ratio
between the market value of assets and liabilities, projected from the issue time O
with stochastic assumptions for the main risk drivers, and valued at a certain time t.
It can usefully be interpreted as the amount of assets for each unit of liability, and,
in this sense, it is a useful solvency measure. Still assuming stochastic hypotheses
for financial and demographic variables, in [7] the Authors propose profitability
indices for variable life annuity portfolio founded on the surplus value, explained
as the difference between retrospective gain and prospective loss. In particular
they introduce actuarial restyled versions for two popular profitability indexes and
discuss their behavior as function of the time of valuation.
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This paper deepens the topic considering the influence of the loading factors
on the life annuity portfolio performance. This aspect is crucial in the correct
assessment of the equilibrium between insurer and insured and impacts on the
appeal of the life annuities as well as pension annuities contracts with the potential
insureds. The issue is already treated in [9]. Here Friedman and Warshawsky study
the annuity prices in the United States, deepening the differences between the fair
value of the contracts and their loaded prices. Interesting tables show the impact of
the load factors on the will of subscribe them and set if the values are or are not
actuarially fair. In [12] it is shown that the load factor can be considered among the
main factors explaining the lack of participation in the voluntary annuity market.
The analysis is performed from the insureds point of view; the Author obtains the
threshold load factor for defined levels of financial wealth at retirement, setting
the limit beyond which the potential insured will consider disadvantageous the life
annuity contract, deciding to remain outside the market.

Moving the lens to the business strategy, the paper we present deals with the
impact from the insurers point of view. The aim is to build a performance indicator
that clearly points out the role of the load factor in the performance making, giving
to it a central role in the company management strategy. The new index we propose
is characterized by a simple mathematical structure that at the same time is able to
transfer clear indications to the manager about the influence of the load factor on
the performance of the life annuity business line.

In Sect. 2 financial quantities and formulas are presented. The performance ratio
expressed as function of the load factor is introduced and its behavior is studied. In
Sect. 3 an empirical application is presented. The stochastic scenario on which the
results have been obtained is outlined and several numerical results are collected
in tables referred to a specific life annuity contract at different times of valuations.
Section 4 also concludes the paper with some final observations.

2 The Impact of the Load Factors on the Life Annuity
Business Performance

Let us consider a portfolio of homogeneous deferred life annuities, where each
policy is issued to each of Ny lives aged x, with constant installment R payable
at the end of each year while (x) survives and 7 the deferment period.

The insured pays periodic constant premiums P, during all the deferment period,
with load factor 6.

Aim of the paper is to structure an index able to synthesize the portfolio
performance as function of the load factors. The index we propose is based on §,,
the portfolio surplus at time ¢ and on A,, the unconstrained assets at the same time.
The portfolio surplus is given by the difference between the accumulated value of
past premiums collected net of past benefits paid and the discounted value of future
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obligations net of future premiums. The unconstrained assets are the revenues net
of the residual debt. The mathematical expressions are respectively the following:

Si =Y Ni((P+ PO)Ljcr — Rl )v(t.j) M

J

A=Y Ni(P+ PO)v(t.j) = Y Ni(Rljs; — (P + PO)L;)v(t.)) 2)

J=<t j>t

v(t,j) being the stochastic value at time ¢ of one monetary unit at time j and N; the
number of survivors at time j, belonging to the initial cohort of Ny lives at time 0. It
is straightforward to verify that the difference between A, and S, gives the value in ¢
of the residual insurer’s obligations:

A= Sy =R Nscv(t.)) ®

J=t

The influence of the load factors on the life annuity portfolio performance is a
crucial issue. Within this context, the ratio ' provides interesting suggestions
concerning the correct assessment of the equ1l1br1um between insurer and insured,
as well as the appeal of life annuity contracts with the potential insureds. Such a
ratio is a measure of the financial health of the portfolio, quantified by the portfolio
surplus, measured per unit of unconstrained assets. The ratio can be expressed by
means of the following formula:

St _ 1 RY < Nilj>cv(1.)) _ @
A[ A[
R ngtNileU(t’j)

Y i< Ni(P + POYLcov(t.j) + Yo, Ni((P + POy — R1 )(2.))

We assume that during the portfolio life the stochastic demographic and financial

variables are independent and that their descriptions are assumed at the issue time.
. . () E[S]
The performance ratio we introduce, is &, () = E[[A’] ,

Ratio (LPR therein):

is the Loading Performance

@y _ 4 B2 < EINJEu (2, ))]
o=l K,(6) + H,(0)
with

K,(0) =) EINI(P + PO)1E[v(,))]

J=t
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and
H,(0) = Y E[NJ((P + P0)1jc; — R1;2)E[v(t. )]
>t
It holds:
Jim v0) =1 5

This means that when the load factor tends to infinity, the whole of the free assets
flows into the surplus of the insurer and discloses for him the most desirable, even if
unreasonable, situation. The more the LPR is close to 1, that is the more free assets
converges with the surplus of the business at that time, the best the performance of
the product.

On the other hand, we have:

. (x) _
lim v (6) = ©6)

R EINI Bl )] = RS BN cE[v ()]
ZjE[IVj]Plj<tE[v(tvj)] —R Zj>tE[1vj]1j>rE[v(tvj)]

On the basis of the equity principle, the premium calculations and the valuation
process are performed using the same financial and demographic bases. From
formula 6 we can write:

lim v9@) =0
Summarizing:
o< <1
and the higher the LPR, the better life product performance. This is confirmed by

the constant value 1 the LPR assumes during the deferment period, in which only
inflows come true.

3 Numerical Examples

In this section, referring to a specific pension annuity portfolio, we develop an
application for getting some evidence of the behaviour of the performance index
¥ and reflect upon i ical implicati

| pon its practical implications.
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The contract we are taking into account is characterized by a deferment period of
10 years, during which the insurer only perceives premiums and accumulates them.
During this time interval no payment has be done yet: the insurer picks up inflows
due to the premium payments made by the insureds, no outflow has ate away the
funding amount he is building up and these circumstances involve that this is the
most healthy period for the insurer.

The situation is perfectly photographed by the index LPR, constantly taking value
1, pointing out the extremely profitable situation the insurer would get if the contract
would end exactly during this period.

The LPR index produces a sort of snapshot of the financial situation of the
business line in the specific time in which the valuation is done and marks, broadly
speaking, the financial status if the portfolio or the single contract (the index is
independent on the number of contracts) would be excluded within the deferment.
An eventual discharge of the contract within 10 years would be mostly profitable
for the insurer. Due to this reason, the index LPR takes sense strictly during the
decumulation/annuitization period, that is after the deferment.

We study the LPR in the case of a portfolio of deferred lifelong life annuities,
with deferment period ¢ = 10, each one issued on a person aged x. Within
this application, the constant premiums, paid during all the deferment period,
are calculated by means of the technical rate 0.02 and the Italian male survival
probabilities inferred from the Lee-Carter model.

The stochastic interest rate environment consists of a CIR process, for which we
assume—by way of an example—the long term mean, the volatility and the drift
equal to 0.025, 0.0062 and 0.02962, respectively.

Recalling what above observed, the tables are referred to times of valuations
belonging to the annuitization period; in our example 7 > 10.

In Tables 1, 2 and 3 we report the values of lI/,(X) () at the valuation times t =
15,20, 30, as function of 6 = 0.05h, with h = 0, 1, ..., 6, considering the ages 40,
45, 50, 60.

We observe an increasing behaviour of lI/,(X) (0), when 0 increases and, in general,
higher values of lI/,(x)(G) for simultaneous higher values of ages at issue and 6.
For a fixed value of 6, l1/,()6)(9) increases with the ages at issue, by virtue of the
smaller time duration where the insurer’s obligations come true. When the valuation
time increases, ceteris paribus, lII,(X) (0) decreases and the weight of the installments
already carried out is increasingly heavy.

Table 1 ¥ (9), age from §  x=40 x=45 x=50 x=060

40t 60, 1 = 15, loading 0 00053 0047 0.1412 0.1758

factor from 0 to 0.30
0.05 0.1369 02060 02922 0.3285
0.10 02377 03217 0.3980 0.4335
0.15 03177 0.4080 0.4763 0.5101
020 03821 04748 0.5366 0.5684
025 04356 05281 0.5844 0.6144
030 05805 05715 0.6233 0.6514
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Table 2 ¥, (6), age from 9  x=40 x=45 x=50 x=60

40 to 60, ¢ = 20, loading 0 00043 00395 0.1187 0.148

factor from O to 0.30
0.05 00695 0.1492 02119 0.2398
0.10 0.1369 02258 02872 0.3171
0.15 0.1952 02897 03494 0.3801
020 02461 03439 04016 0.4324
025 02909 03904 0.4460 0.4767
030 03307 0.4307 04843 0.5145

Table 3 ¥ (9), age from §  x=40 x=45 x=50 x=60

40to 60, r = 30, loading 0 00032 00433 00979 0.1222

factor from 0 to 0.30
0.05 00561 0.1012 0.1564 0.1831
0.10 0.0247 0.1524 02078 0.2361
0.15 0.0706 0.1981 02532 0.2826
020 0.1125 02392 02938 0.3238
025 0.1507 02762 0.3301 0.3605
030 0.1875 03098 0.3630 0.3935

The ratio W,(x) (8) always decreases when t increases (fixing the age and the load
value). The best financial situation of the insurer happens when he collects and this
is photographed by l1/,(’()(9) = 1 during the deferment. The more the insurer pays,
the worse the product performance. The ratio increases with x (fixing the load factor
and the time of valuation), and this can easily be explained observing that, being in
all likelihood (thanks to the longevity) the same the number of collected premiums,
the number of payments most likely decreases. Of course the ratio increases with 6,
for each age at issue and time of valuation.

The corresponding Figs. 1, 2 and 3 clearly mark the afore explained behaviour
of the LPR and highlight its trend in relation to possible couples of values of the
insureds’ age and load factors.

Even more explicitly, in Figs. 1, 2 and 3 we can observe the trends followed by
the index LPR when age and load factor vary, in the three illustrative cases chosen
for developing the preceding numerical application.

The figures refer respectively to the valuation times ¢+ = 15, 20 and 30. Among
these three cases, the best financial status, pointed out by high values of LPR,
happens when ¢+ = 15, the age at issue is 60 and of course theta is 0.30. This
suggests that the future benefit payments are well counterbalanced by the almost
certain premium payments of a 60 years old contractor, in particular if the time of
valuation is close to the end of the deferment period. The more the contract lives
beyond the end of the deferment period, the less the product performance, fixing
all the other variables. Moreover, the more the time of valuation is far from the
issue time, the stronger the increasing trend of the index with the age at issue is, in
particular for high values of the load factor.
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W(6)

Age
Fig. 1 LPR(15)

Fig. 2 LPR(20)
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0 40 Age

Fig. 3 LPR(30)

4 Conclusions

To conclude, the index we propose constitutes a meaningful quantification of a life
annuity performance reaction to the load factor change. We developed the analysis
in the forward perspective with respect of the issue time, considering the insurers
purpose of analysing the product performance at the moment of its launching.
The study can be managed year by year updating the stochastic financial and
demographic scenarios by the opportune re-calibration of the processes involved
in the calculus.

The ratio we introduce, the Loading Performance Ratio (LPR), therefore mea-
sures the level of surplus on assets, depending on premium load, time horizon,
age of the insured. It provides guidance about the rating of the insurance business
framed within the market conditions, which take into account also the product
attractiveness, in term of costs for the insured.
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Uncertainty in Historical Value-at-Risk:
An Alternative Quantile-Based Risk Measure

Dominique Guégan, Bertrand Hassani, and Kehan Li

Abstract The financial industry has extensively used quantile-based risk measures
relying on the Value-at-Risk (VaR). They need to be estimated from relevant
historical data sets. Consequently, they contain uncertainty due to the finiteness
of observations in practice. We propose an alternative quantile-based risk measure
(the Spectrum Stress VaR) to capture the uncertainty in the historical VaR approach.
This one provides flexibility to the risk manager to implement prudential regulatory
framework. It can be a VaR based stressed risk measure. In the end we propose a
stress testing application for it.

1 Introduction

The financial industry has extensively used quantile-based risk measures based on
the Value-at-Risk (VaR). In statistical terms, the VaR is a quantile reserve, often
using the pth (p € [0, 1]) percentile of the loss distribution. Typically, the VaR
is not known with certainty and needs to be estimated from sample estimators of
relevant observations. Bignozzi and Tsanakas [6] point out that the observations are
often very small creating statistical errors, which means that the values of sample
estimators can diverge substantially from the true values. Jorion [11] calls it the risk
in Value-at-Risk itself. Pérignon and Smith [13] find that historical VaR is the most

D. Guégan
University Paris 1 Panthéon -Sorbonne, LabEx ReFi, IPAG, Paris, France

Department of Economics, Ca’Foscari University of Venezia, Venezia, Italy
e-mail: dguegan @univ-paris1.fr

K. Li (24)

Université Paris 1 Panthéon-Sorbonne, CES UMR 8174, 106 bd I’Hopital 75013, Labex ReFi,
Paris, France

e-mail: Kehan.Li@malix.univ-paris1.fr

B. Hassani

Grupo Santander and Université Paris 1 Panthéon-Sorbonne, CES UMR 8174, Labex ReFi, Paris,
France

e-mail: bertrand.hassani @malix.univ-paris1.fr

© Springer International Publishing AG 2017 119
M. Corazza et al. (eds.), Mathematical and Statistical Methods for Actuarial
Sciences and Finance, https://doi.org/10.1007/978-3-319-50234-2_10


mailto:dguegan@univ-paris1.fr
mailto:Kehan.Li@malix.univ-paris1.fr
mailto:bertrand.hassani@malix.univ-paris1.fr
https://doi.org/10.1007/978-3-319-50234-2_10

120 D. Guégan et al.

popular VaR method, as 73% of the banks report their VaR estimation methodologies
using historical VaR.

Our paper proposes an alternative risk measure based on the historical VaR.
A confidence interval (CI) is considered to integrate the uncertainty contained in
the historical VaR. It is a tail risk measure at multiple confidence levels (Alexander
et al. [2]). It provides the flexibility to the risk manager to implement a prudential
regulatory framework (Basel Committee on Banking Supervision (BCBS) [3] and
Acharya [1]). Additionally, it can be a VaR based stressed risk measure relying on a
continuous 12-month period of significant financial stress following the requirement
of the Basel Committee (BCBS [5]). We propose a stress testing application of this
risk measure.

There are several pertinent articles which investigate the use of stressed VaR.
For instance, Santos et al. [16] develop an approach to identify optimal portfolios
with minimum regulatory capital based on a formula that involves both VaR and
stressed VaR. Colletaz et al. [8] provides a method to validate estimates of various
measures of downside risk including stressed VaR. Alexander et al. [2] find that
minimum regulatory capital based on both VaR and stressed VaR is ineffective in
preventing banks from taking substantive tail risk in their trading books without
capital requirement penalties. However, it is important to point out that these
stressed VaR implications do not integrate the model uncertainty. Furthermore, they
only use single confidence level p when they build their stressed VaR. It leads to
ignoring the information contained the tail.

Some papers have discussed the confidence interval of the VaR. For example,
Pritsker [14] computes a nonparametric CI to evaluate the accuracy of different VaR
approaches. Christoffersen and Gongalves [7] assess the precision of VaR forecast
by using bootstrap prediction intervals. Jorion [11] provides the asymptotic standard
error and confidence bands for a sample quantile, assuming the loss distribution is
known. All these approaches mainly use their CI (provided by asymptotic result or
bootstrap) as a complementary tool to assess the quality of the VaR. In our work
we consider another approach to building the CI (we do not assume that the loss
distribution is known and we do not use simulation). We use an asymptotic result and
a parametric approach. We focus on a fat-tailed distribution' to capture historical
stress information, in order to build a stressed risk measure. Finally we use the
lower (or upper) bound of CI directly as one boundary of our risk measure.

This paper is organised as follows. Section 2 describes our risk measure.
Section 3 proposes a stress testing application for the risk measure. Section 4
concludes.

UA fat-tailed distribution has the property that exhibits large kurtosis or has power law decay in the
tail of the distribution.
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2 The Spectrum Stress VaR Measure

Consider a random variable (r.v.) X (for example the return of a portfolio, the return
of arisk factor or an operational loss), with a cdf Fyg (fp is the associated probability
density function (pdf) and @ are the parameters). Let Xi, ..., X, be the information
set of X with length n. We assume they are independent and identically distributed
(i.i.d).?> We sort them and obtain X(j) < ... < X(,. Given 0 < p < 1, we define
the hVaR as Xy, where m = np if np is an integer and m = [np] + 1 otherwise.’
Rao [15] provides an asymptotic normality (AN) approximation for the distribution
of X(m) .

Theorem 1 (Asymptotic Normality Approximation (Rao [15])) Assume Fy is
continuous and differentiable and fy is strictly positive at F 0_1 (p), then

V(X — Fg' (p)) >@ NO.V), as n— oo (1)

T N — p(1-p) —1
where — () means convergence in distribution, V = Jo(Fr (p)n” N(F, (p),V)

represents the Gaussian distribution with mean F 0_1 (p) and variance V.

Notice that expression (1) depends on the values of Fyy and fy, which are unknown
in most cases. Therefore density estimation is necessary. One possible way is to use
the Siddiqui-Bloch-Gastwirth estimator, whose construction crucially depends on
the choice of a smoothing parameter (see Hall and Sheather [10]). Instead of using
such nonparametric estimator which suffers from difficulty of smoothing parameter
choice, we ﬁAt a panel of distributions using X1, ..., X, to compute the estimators of
0, denoted . Then F; and f; are the estimators of Fp and fp. By plugging F and
[ in expression (1), we provide a corollary of Theorem 1.

Corollary 1 (Plug-in AN Approximation) Assume Fy and fy are continuous
functions with respect to (w.r.t) 0, and 0 is an asymptotically consistent estimator
of 0.* Then we have

Vn(Xm — F(;_I(P)) — @) N(0, V), as n— oo (2)

p(1=p)
Uy (D2’
The proof is presented in Appendix. Given confidence level 0 < ¢ < 1,° we build a
confidence interval CI, ;, around X(,,) from Corollary 1:

where V =

X € [F,;_l(p)—zlgq Vv, F3(p) + 2154 \/\7] 3)

20r if they are not, we assume that we can transform them to an i.i.d set by filtering.

3[x] denotes the largest integer less than or equal to x.

4 Asymptotically consistent estimator means 6 —p) 0, where —>(p) represents convergence in
probability.

3p is the confidence level of historical VaR and g is the confidence level of its confidence interval.
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where

p(1 —=p)

V=
s (F5 (p)Pn

“)

and z14, is the l;”] th quantile of standard Gaussian distribution. According to the
expreséion (3), Cl, , depends on n, f3, p and gq.

In practice for a sequence p; < p2 < ... < py, given {q;}i=1.._x, We compute the
sequences {Fa_l(pi)} and CI, 4, fori = 1,..., k. We define an area delineated by

F 6—1 (p:) and the lower (or upper) bound of CI,, ,, fori =1, ..., k. We call this area
the Spectrum Stress VaR measure (SSVaR). Figure 1 provides a graph of the SSVaR.
The lower (green) and upper (red) curves correspond to the boundaries of CI,, ;, for
{pi} and {q;}, i = 1,...,k. The black curve in the middle is associated with the
sequence of {{Fé_l(pi)} fori = 1,...,k. The black shadow area is the SSVaR.

In Fig. I, we observe that when the confidence level p increases, for example
from 95% or 99% (traditional confidence levels proposed by the Basel committee)
to 99.9%, the wideness of bounds of the SSVaR increases also. It means that the
historical VaR estimates with extreme confidence levels may contain more uncer-
tainty than those estimates with ordinary confidence levels. Thus, it is necessary to
use the SSVaR to quantify potentially large violations of the extreme historical VaR

o) =
Extent of the S5VaR at from the
58th percentile

o -

x
‘g o -
]
G DA TN DI T TA0 TAN]

I q

l'}l -5

@

T T
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Fig. 1 The lower (green) and upper (red) curves correspond to the boundaries of CI,,, ,, for {p;}
and {q;},i = 1,..., k. The black curve in the middle is associated to the sequence of {{F ofl (p)}
fori = 1,..., k. The black shadow area is the SSVaR. When the values of ¢; change, SSVaR can
shift to the grey area
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estimates. These outliers are crucial because they concern the large moves in the
financial market. It is also important to point out that when the risk manager has to
work within the prudential regulatory framework, he can choose higher g; so that
the SSVaR can shift to the grey area. Also, he can shift the SSVaR to the grey area
by choosing a fat-tailed f . In fact a fat-tailed f can take more stress information from
a period of significant financial turmoil than a thin tail fit. Consequently the SSVaR
is a stressed risk measure in essence.

3 A Stress Testing Application of the SSVaR

During a recent crisis, some investors have suffered considerable losses due to
extreme events. Consequently there has been a growing literature on stress testing.
In particular, banks that use the VaR approach must have in place a rigorous stress
testing program (BCBS [4]). In response, we propose a SSVaR measure applicable
to stress testing. The result of the stress testing is also a criterion to choosing a
reasonablef to build the SSVaR, which we can use first as an alert indicator.

To explain our purpose, we consider a fictive financial institution. This one holds
a Chinese market portfolio (that is, the same stock components and weights as the
Shanghai Stock Exchange Composite Index (SHCOMP)). We compute the SSVaR
using the daily return of SHCOMP from 29/06,/2007 to 20/06,/2008 (it contains
246 points and we call it £2,). The historical VaR of §2; are computed. For the stress
testing, we compute the empirical quantiles on the daily return of SHCOMP from
01/12/2014 to 09/11/2015 (it contains 241 points and we call it £2,). Table 1
provides the empirical statistics of the data sets. It shows that these two data sets
are left skewed and leptokurtic (Kurtosis > 3). The distributions which characterise
these two data sets need to have these properties. In the following we build SSVaR
using 2, with Gaussian distribution as a benchmark and Normal-inverse Gaussian
distribution (NIG, Godin [9]). We provide the estimates of Gaussian and NIG
distributions for £2; in Table 2.

Table 1 Empirical statistics of SHCOMP daily returns from 29/06/2007 to 20/06/2008 (§2;)
and from 01/12/2014 to 09/11/2015 (£2,)

Mean Variance Skewness Kurtosis
2 (n = 246) —0.0017 0.0007 —0.3796 3.7876
2, (n = 241) 0.0010 0.0007 —1.0509 5.0698
Taple 2 We provifie the o B " §
estimates of Gaussian and G X 0.0017 0.027
NIG distributions for £2; in aussian =, :

Table 2 NIG 90.63 —25.74 0.016 0.058

5The data sets are downloaded from Bloomberg.
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To take into account the left tail market risk, we use 0.01 < p; < 0.1 and fixed
g = 0.95. The stress testing exercise is following: we build the SSVaR for £2; using
Gaussian distribution and NIG distribution, in order to quantify the uncertainty of
the historical VaR. We use the historical VaR estimates of §2; and the empirical
quantiles of £2, to check the robustness of the SSVaR. The results are provided in
Fig.2: on the left graph the dashed (blue and green) lines are the upper and lower
bounds of the SSVaR corresponding to the Gaussian distribution. On the right graph
the dashed (blue and green) lines are the upper and lower bounds of the SSVaR
corresponding to the NIG distribution. In these two graphs, the solid (red) lines are
the historical VaR and the solid-dot (brown) lines are the empirical quantiles for £2,.

The left graph of Fig. 2 suggests that the SSVaR based on a Gaussian distribution
underestimates the risk computed using 2| and §2,, because the left part of the
historical VaR and the empirical quantiles are outside the SSVaR. The right graph
of Fig. 2 shows that the SSVaR built using a NIG distribution, enables the risk to
be controlled more efficiently since they are almost within the SSVaR. Additionally,
ignoring the uncertainty in the historical VaR (that is, using the empirical quantiles
directly as the risk measure) underestimates the risk computed using £2,, because
the left part of the empirical quantiles is lower than the historical VaR.

SSVaR based on Gaussian SSVaR based on NIG
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Fig. 2 We use 0.01 < p; < 0.1 and fixed ¢ = 0.95 and build the SSVaR for §2; using Gaussian
distribution (mean —0.0017 and variance 0.0007) and NIG (with tail parameter equalling 90.63,
skewness parameter equalling —25.73, location parameter equalling 0.0155 and scale parameter
equalling 0.058). In this figure, on the left graph the dashed (blue and green) lines are the upper
and lower bounds of the SSVaR corresponding to the Gaussian distribution. On the right graph the
dashed (blue and green) lines are the upper and lower bounds of the SSVaR corresponding to the
NIG distribution. In these two graphs, the solid (red) lines are the historical VaR and the solid-dot
(brown) lines are the empirical quantiles for §2,
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SSVaR based on Gaussian SSVaR based on NIG
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Fig. 3 We use 0.01 < p; < 0.1 and fixed ¢ = 0.99 and build the SSVaR for §2; using Gaussian
distribution (mean —0.0017 and variance 0.0007) and NIG (with tail parameter equalling 90.63,
skewness parameter equalling —25.73, location parameter equalling 0.0155 and scale parameter
equalling 0.058). In Fig.2, on the left graph the dashed (blue and green) lines are the upper and
lower bounds of the SSVaR corresponding to the Gaussian distribution. On the right graph the
dashed (blue and green) lines are the upper and lower bounds of the SSVaR corresponding to the
NIG distribution. In these two graphs, the solid (red) lines are the historical VaR and the solid-dot
(brown) lines are the empirical quantiles for £2,

For robustness, we change g from 0.95 to 0.99, and perform the same stress
testing exercise in Fig.2 again. The results are provided in Fig. 3: we observe that
in the left graph, for 0.05 < p < 0.01, the empirical quantiles of §2, are below the
lower bound of the SSVaR. It means that the SSVaR based on the Gaussian fit still
underestimates the risks, even if we increase the g to be prudential. However, in the
right graph, the empirical quantiles of §2, are totally above the lower bound of the
SSVaR. That means for these data, 0.99 may be an appropriate value of g to obtain a
robust SSVaR. In practice, the SSVaR is an improvement risk measure of historical
VaR. The risk manager can use it directly to allocate capital reserve to the risk of
measurement uncertainty. Additionally, it can be a stressed and tail risk measure
providing flexibility to the risk manager to work within the prudential regulatory
framework.
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4 Conclusion

In this article, we propose an alternative quantile-based risk measure SSVaR, to
integrate the uncertainty from the historical VaR. Additionally, it is a tail risk
measure. In addition it provides flexibility to the risk manager to implement the
prudential regulatory framework. It can be a VaR based stressed risk measure.

Additionally, we propose a stress testing application for the SSVaR, by illustrat-
ing the magnitude of the exceptions based on the empirical quantile of two data sets
from SHCOMP. The results suggest that ignoring the uncertainty in the historical
VaR underestimates risks. Also, we observe that when the data sets are skewed and
leptokurtic, risk manager needs to fit a skewed and leptokurtic distribution to build
SSVaR. It helps control the risk efficiently.

As the purpose of a forthcoming paper, some improvements to this approach
could be done. Indeed, the expression (1) relies on the assumption of independence
for Xi,...,X, (Rao [15]). Nevertheless, we can extend the results in the case of
a—mixing (Leadbetter et al. [12]) data sets. Also, the SSVaR can be used directly for
the operational risks which are mainly independent. For other risks we can calibrate
dynamics on Xi, ..., X,, like X, = f(X,—1) + € where ¢, is a white noise. Then we
build the SSVaR using the residuals {e,}, and the time series modelling can be used
to introduce dynamics within the SSVaR.

Appendix

In appendix, first we provide the proof of Corollary 1. Second, we present some
well-known facts about the NIG distribution.

Proof of Corollary 1

At first, we introduce the Slutsky’s theorem

Theorem 2 (Slutsky’s Theorem) Let {X,}, {Y,} be sequences of rv., If {X,}
converges in distribution (—a)) to a rv. X and {Y,,} converges in probability (— ()
to a constant c, then

XnYn —>(d) cX (5)
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Proof To prove Corollary 1, we begin with
Xow =F5'(P) _ X — F5'(p) . Fg'(p) = F;'(p)
VA A VA
_ \/VX(m) ~Fy'(p) Fy'(p) = F3'(p)
V.o Vv
_ TiEF(P) Xy — F7 () N Fy'(p) = F;'(p)
Jo(Fg'(p) NAY Vv

(6)

Since convergence in probability is preserved under continuous transformations,
from § —(p) 6 we have

Fy'(p) = F;'(p) > 0 0
fa(F(;_l)(P) —fo(Fg'(p) = 0 ®)
From Theorem 1 we know that X(’”)_j‘:_/l(p ) — @ N(0, 1), then

Xy = F3'(p)

vV

—@ N0, 1) )

NIG Distribution

The Normal Inverse Gaussian (NIG) distribution is a member of the wider class of
generalized hyperbolic distributions. It is well-known fact that the returns of most
financial portfolios have fat tails and the actual kurtosis is higher than 3. The NIG
distribution can be fat-tailed and asymmetrical. Therefore, it allows to take into
account the fat-tailed and asymmetrical properties of the financial data sets. The
density of the NIG distribution is given by:

, ad Ki(ay/8% + (x — u)?
nig(x;, B.8, 1) = exp(§y/a® — B+ B(x—p)) V8- w? (10)

7 V8 4 (x — )2
where x, u € N, 0 <5 and 0 <| B |< «. « is the tail parameter; B is the asymmetry
parameter; p is the location parameter; 6 is the scale parameter.
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Modeling Variance Risk Premium

Kossi Gnameho, Juho Kanniainen, and Ye Yue

Abstract The bias between the expected realized variance under the historical
measure and the risk neutral probability introduces the concept of the variance risk
premium (VRP). Our work introduced a probabilistic modeling of the VRP via a
parametric class of stochastic volatility models which incorporates the nonlinear
class.

1 Introduction

Modeling the variance or volatility of asset prices has been a paramount topic
for asset pricing and risk management. The family of Generalized Autoregressive
Conditional Heteroskedasticity (GARCH, for short) times series models (see e.g.
Engle [8], Nelson [12], Chorro et al. [4]) are popular to estimate and forecast the
volatility or variance. Additionally, derivative products written on realized variance
have become increasingly popular (e.g. variance swap, VIX options). As the
volatility is latent, investors are interested to seek a proper model for asset variance
in both physical and risk neutral worlds. Furthermore, the premium of variance is
crucial for investors to make trading decisions and manage the variance risk. Many
empirical studies have demonstrated that the cornerstone premise for studying VRP
is that return variance is stochastic. This paper develops a probabilistic modeling of
the VRP in a particular class of parametric stochastic volatility models. The general
definition of the variance risk premium at the time instance ¢ with an horizon T is
given by VRP! = E(RV,r|-#) — E*(RV,7|-#,), 0 < t < T. The quantity RV, r
represents the realized variance over the period [z, T] of a determined risky asset S*.
The existent literature provides strong evidence that many popular affine variance
models are empirically outperformed by non-affine models. Our framework deals
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with this important class of non-affine continuous time diffusions of the spot-
variance process. We give a general backward stochastic representation of the VRP
via some basis notion of Malliavin Calculus and provide two applications.

1.1 Notations and Assumptions

All activity occurs on a filtered probability space (§2,.%,P,F) where .# = Zr.
The filtration F = (%;)o<;<7 denotes a complete natural filtration generated by a
one-dimensional Brownian motion W and T a finite horizon.

* All the equalities and the inequalities between random variables are understood
in almost sure sense unless explicitly stated otherwise.

» [P is the objective or the historical probability measure and P* denotes the risk
neutral measure according to the literature of pricing derivatives.

e The operator E,[.] := E[.’ﬁ,] denotes the time-¢ conditional expectation and D
denotes the “Malliavin derivative” operator (cf. Ocone [14]) associated with the
measure P with respect to the one-dimensional Brownian motion W. The same
definition is applied to the conditional operator E* and the Malliavin derivative
operator D* associated with the equivalent measure P* with respect to another
one-dimensional Brownian motion W*. The constant r denotes the daily interest
rate. The risk-free rate is the minimum an investor will require if the investment
doesn’t carry any risk.

e Unless explicitly stated otherwise, ($*,V) denotes a couple of continuous
stochastic processes. $* describes the dynamic of an risky underlying asset and
V its instantaneous variance. The real value x denotes the initial value of S*.

2 Estimation of the Variance Risk Premium

Variance Swap is a forward contract on realized variance. It is commonly used by
companies or investors to trade a future realized variance of a given underlying asset
or an index return. With the maturity time 7', the payoff of the variance swap contract
over the period [z, T] is given by (V,7 — K)N, where:

* N denotes the notional amount associated to the variance swap contract,
* K is a constant parameter called the fixed leg of the contract,
* V,ris the realized annualized variance of the underlying asset over [, T].

The realized annualized variance of the underlying asset can be evaluated in discrete
or continuous time framework. In the case of discrete time evaluation, we build an
uniform partition 7 of the interval [¢, T] defined as follows: t < t; < ... <t, =T,
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A = tiy1 — t; with i € {0,1,..,m — 1}. The common definition of the discrete
realized annualized variance VfT over the period [z, T], is given by

m—1 2 2
Cl‘ S['

Vd — 1 i+1 ,
T Z(n( st

i=0

where C; is the annualized factor, S;‘,, is the ith observation of the price of S*. The
continuous version of the realized annualized variance is considered as the limit
in probability of the discrete version. From the fact the net present value at the
initialization of the variance swap contract is zero, the fair conditional variance
strike K; 7 := E* (V,,T‘ﬁ,). For the sake of clarity, we consider a continuous -path
diffusion of the underlying asset S* where its realized variance over the period [0, 7]
is given by the annualized integrated variance. Following Demeterfi et al. [5] or Carr
et al. [3], the fair variance strike of the variance swap contract is the value which
makes the contract net present value equal to zero. This value is equal to:

2 /00 0,(k,T)

K1 =
T—t k2B,

dk, where (1)

« B!? .7 18 the time-7 price of a Bond paying one dollar at the maturity 7,

. 0,(/< T) is the time-t price of OTM (out of the money) vanilla options prices
with characteristics (k, T'). The parameters k is the associated strike and 7 is the
maturity date of the OTM contracts.

By decomposing the term O;(k, T) in (2), the expression of K; 7 becomes

2 Fir 1 o] 1
Kir= T—t/o kzP,(k, T)dk+/F 2 Ci(k,T)dk, where 2)

1T

* F,r is the future value contracted at ¢ with maturity 7 of the underlying asset,
e P(k,T) is the price at t of an OTM European put option and C,(k, T) is the time-¢
price of an OTM European call option with characteristics (k, T') as above.

The natural estimator IA(,,T of the fair variance strike K; 7 can be defined as

. 2 1
ko=~ Z kZP,(k,,T)Ak+ > (2 Cilkis YAk, where 3)

T
k,er ki€Kc !

* K is the strip of strikes associated with the European OTM call options where
the strikes varies from F; 7 to infinity with a fixed maturity date 7,

» Kp is the strip of strikes associated with the European OTM put options where
the strikes varies from zero F; r with a fixed maturity date T,

* Ak is a constant mesh associated to the discretization of the interval [0, col.
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Without loss of generality in the above decompositions, we have assumed that the
risk free rate is zero. From the relation (2), we can approach the price of a variance
swap contract with standard European contracts where the strip of strikes varies
from zero to infinity. Due to the lack of data on some markets, the application of the
formula (2) could introduce a large bias in the estimation of the variance swap rate
according to the Euler approximation above.

3 Modeling of the Variance Risk Premium

We provide two important results which are one of the cornerstones of our
probabilistic modeling. The basic theory of risk management in pricing models
assumes in general a martingale condition under the risk neutral measure. In this
section, we will recall the martingale representation theorem and show further
its connection with the VRP in continuous time framework via the Clark-Ocone
formula.

Theorem 1 We consider the previous filtered probability space (2,.%,P,F). For
every square integrable martingale (M;)o<;<7 in the Brownian filtration F, there
exists a progressively measurable process H € 2 (R) such that

t
M, =M, + / Hdw;.
0

Corollary 1 Considering the same filtered probability space, we can represent
every square integrable martingale (M,)o<,<r in the Brownian filtration by

t
M, = My + / E(D,M;|F,)dW;. )
0

The proof of Corollary 1 can be found in Nunno et al. [6]. The representation (4)
is a useful tool in mathematical finance. For instance it can be used to find
hedging portfolios strategy and to compute some trading parameters. The previous
two results are very important for the rest of our work regarding the backward
representation of the VRP. Under the historical probability P, we assume that the
variance process of the underlying asset S* is described by an It6 process. We specify
the dynamic of the instantaneous variance process (V;)o</<r as

dv, = B(V)dt + o(V)dW,, 0<t<T,

4)

Vo =v9>0, where B(x) =b(kx)—ax and a #O0.
In derivatives market, from Harrison and Kreps [9], the existence of an equivalent
martingale measure IP* guarantees the absence of arbitrage among a broad class of
admissible trading strategy. In our work, we assume the existence of a unique risk
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neutral probability P* under which the risk neutral dynamics of V is assumed to be
driven by another standard Brownian motion W*;

dv, = B*(Vyydt + o*(V)dw*:  0<it<T, )
(6)

V():U()>O,

where 8*(x) = b*(x) —a*x and a* # 0. We assume that the solutions of (5) and (6)
exist and are unique. We assume the following general assumptions:

(H1) : b,b*0, 0™ are continuously differentiable almost elsewhere and Lipschitz.
(H) § (H2) : the variance process V admits a unique Malliavin derivative.

(H3) : there exists ky, K5 > 0 such that k, < o2(x) + [0*()()]2 <K,.

The assumption (H1) can be relaxed in some particular case of stochastic volatility
model. The hypothesis (H3) ensures the non-degeneracy property of the volatility.
For a purpose of clarity, the dynamic of the underlying asset § is constrained in such
way that, its realized variance RV, 7 over the period [0, 7], is given by the annualized

1 T
integrated variance RV, 7 = T / V.du.
t

3.1 Backward Representation

As highlighted in the introduction, the probabilistic estimation of the VRP is useful
due to the problem of lack of data often occurred in many markets. The next section
is devoted to provide a backward representation variance risk premium under some
regularity conditions of the coefficients of variance process.

3.1.1 Model-Free Modeling

Before describing our probabilistic modeling, we provide below a linear representa-
tion of the variance risk premium where the realized variance RV, 7 is given by the
annualized integrated variance of S*. We remark that this representation of variance
risk premium is linear in the drift term and similar to the representation of the
Brownian bridge in the literature.

1
Lemma 1 We have dVRP! = - tVRP[Tdt —ZdB,, 0<t<TandVRP] =0,

where Z; = Tl_[ ( yi ) and B, = (x//; ) The processes y and y* are defined by
t

t

T T
Vi = —E[ DE( / Vids)| and v =E[D;E!( / V,ds)].
0 0
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Proof We first prove that the terminal condition of the variance risk premium is zero
and show in the second step the backward representation. The limit

1 t+h t+h
lim VRP;*‘” = lim (]E (/ V,dr‘ﬁ,) —E* (/ V,dr‘ﬁ«‘,)) =0.
h—0 =0 h : ‘

The backward representation is a direct consequence of Corollary 1. By noticing

T t T
that / V.du — / V.du = / V.du, we obtain the following representation
0 0 !

T T
(T—1VRP] =E ( / Vudu|9}) —-E* ( / Vudu|9}) : (7)
0 0

T
The process M defined by M; = E (/ Vudu|<%) ,0 <t < T, is a martingale
0

T
under P. Correspondingly, M, = E* ( / Vuduiﬁﬂ) is also a martingale under the
0

measure P*. The result of the lemma is then a direct consequence of the Corollary 1.
O

3.1.2 Forward Modeling

Considering the dynamics (5) and (6), we provide below a backward representation
variance risk premium dynamic in our class of stochastic volatility models.

Proposition 1 Under the assumptions (H), the variance risk premium (VRPT)
admits the following stochastic backward representation

1 T T
VRPT = *E, | DS[E, (V) ] )aw, — E*( D*[E* (V)] )dW*
! aa*(T—t)[/,a ‘(‘[l‘( T)]) A [as(s[,(r)]) x]
1 T 1 T
*(V)dW>* — / V,)dW, — B B |
*arg | O = gy [ o=
VRP;ZO, and te€]0,T), where

T T
o(T - DB, = / E, ( / Dsb(vu)du)dws, Bry =0,
t

T T
a*(T_ t)B;[ = / E: (/ D:b*(vu)du) dW:, B;:,T = 0
t N

Proof By symmetry, we will detail the proof only for the objective term under the
probability measure . We decompose the variance risk premium as follows

T T
(T—1VRP] =E (/ Vudu|<%) -E* (/ Vudu|%) : ®)
0

0
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T T T
From Eq. (5), we know that V; —vy = / b(Vy)dt—a / Vidt + / o(V,)dw,. By
0 0

0
taking the conditional expectation with respect to .%;

T
aE ([ Vids
0

By the rule of Chasles applied to the Lebesgue and the stochastic integral,

T t T
ak ( / Vsds‘ﬁ,) = vy + / b(V,)du +E ( / b(vu)du|y,)
0 0 t

t
—E (Vr| ) + / o (V,)dW,.
0

T T
32,) =v+E ([ b(V,,)du|9,) —E(Vr|#) +E (/ a(Vu)qu|§,) )
0 0

Taking the Malliavin derivative of both side of the above equality and applying the
chain rule result (see Nualart [13]) to the stochastic integral term, we obtain

T t T
aD,E ( / Vsds|ﬁ,) - / Dyb(V,)du + Dy ( / b(vu)du\y,)
0 s t

, ©)
=D, (E(Vr]71)) + o (Vo) + / o (V)DVudW,.

Taking the conditional expectation with respect to .%; and Fubini’s theorem,
T
aE (DJM,|9}) =E ( / Dsb(Vu)du|ﬁ}) — E[DE (V7| .7) | Z] + o(Vy)

From Corollary 1, we can finally represent the martingale (M,)o</<r as

T 1 T T
Mt = /0 tht — a [ I:Ey ([ Ds‘b(vu)dl/l) — ]EY[DY]E (VT|<9ZL‘)] —+ O‘(Vv)i| dWY

Correspondingly, we obtain the similar representation in the filtration generated by
the Brownian motion (W;")o<,<r for the process (M, )o<;<r under the measure P*.

T 1 T T
M = fo V,dt — ” / [ﬂ«:j (/ D:‘b*(Vu)du) —EX[DIE (Vr|Z)] + U*(Vx)] wr.
t s

Plugging the previous two equations in the equality (7), the result follows.

In some cases, the expression of the variance risk premium can be simplified by eval-
uating the Malliavin derivative arising in the backward representation. For instance,
in the affine case of stochastic volatility model, the backward representation of the
variance risk premium representation becomes very simple and easy to compute.
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Corollary 2 (Affine Case) We assume that B(x) = . —ax and B*(x) = u* —a*x,
the variance risk premium (VRPT) admits the following backward representation.
Fort €[0,T],

1 T T
VRP! = —aI=0F (D,V,) dW, — / V)dW,
1= ([ @ [Cowaaw

1 o T (10)
: [ emoms vy aws - [ oz voaw:
a*(T -1 \J; C B :
VRPL =0

Proof The proof is a direct consequence of Proposition 1. We first remark that

(Br.)o<i<T and (B;,)OS,ST defined in Proposition 1 are identically zero. It is known
T T
that under the probability measure P, V;y — Vo = uT —a / V.dt + / o (Vy)dW,.

0 0
Conditionally to %, the deterministic function  — E (Vt|3ﬂ) follows

d
4 E (Vi|Z) = u—aE (V,|.Z)),

Vs the initial condition.

Solving the above linear ordinary differential equation, we obtain E (VT|37,) =
" + (V; = ")exp(—a(T — 1)). Taking the Malliavin derivative of both side of the
above equality, D;[E (VT|<3Z,) = exp(—a(T — t))D,V,. We obtain a similar equality
under the risk neutral probability P*, DY E* (VT|<3Z,) = exp(—a*(T —1))D;V,. The
last two results and Proposition 1 conclude.

4 Applications: Affine Case and Non-affine Case

Often used in pricing model, several stochastic volatility models are based on
an affine structure. In this section, we will apply the results of Sect.3.1 to two
cases of stochastic volatility models: an affine and a non-affine case. Heston in
[10] introduces a two factor stochastic volatility model where the first component
describes the fluctuation of the underlying asset $* and the second component
describes its instantaneous variance process V. The variance process V follows a
Cox-Ingersoll-Ross (CIR) process. Under the objective probability P,

t t
Sf=x+,u/ S§ds+/ JVSaw!,  0<:i<T, (11)
0 0

t t
v,=v0+/ K(@—Vx)ds+/ o/ VidW?,  0<i<T, (12)
0 0



Modeling Variance Risk Premium 137

where v, k, 6,0 > 0 and u a constant drift coefficient that represents the expected
rate of return of $*. The couple of processes (W}, Wrz) refo,7] denotes two correlated
standard Brownian motion where the correlation coefficient p € [—1,0]. Also
known as a Bessel square process, the existence and uniqueness of the solution of a
CIR process is not a direct consequence of the standard results because the square
root function is not Lipschitz. Under the risk neutral probability P*,

t t
Sf=x+/ rsgdu+/ VVistaw!” . 0<r<T, (13)
0 0
t t N
V, = v0+/ K*(Q*—Vu)du—i-/ o/VidW?,  0<i<T, (14)
0 0

where kx* =k + 1, 0* = K’fx' The couple of processes (W™, W2") denotes two

correlated standard Brownian motions where the correlation coefficient p € [—1, 0].

Proposition 2 Under the Feller condition 2k > 02, the variance risk premium
admits the following backward representation

T T
VRPT = g / FE(5) v/ VidW? — 7 / () VedW?,
T—1t), ST r—1), :
T oy L
VRP; =0, 0<t<T, where f;(t) == (exp { — po(T — t)} —1).
P

In order to prove the result of the above proposition, the following lemma provides
the differentiability result for the variance process.

Lemma 2 In one-dimensional setting and under the Feller condition 2k > o2,

i) ]P’(inf{t >0,V,=0} = oo) =1, for vy > 0.

ii) E(D,Vi| %) = 0™V, s<t<T.

where D denotes the Malliavin derivative with respect to the Brownian motion W2,

The result i) comes from Proposition 6.2.4 in Lamberton et al. [11]. The second
point ii) comes from Lemma 4.1 in Alos et al. [1].

Proof (Proposition 2) The result is direct consequence of Corollary 2. It will be
enough to compute the conditional expectation in Eq. (10) to obtain the result. It is
a direct consequence of the result ii) of Lemma 2.

Remark 1 By Ito6’s formula, we recover the classical linear term structure in the
Heston framework.
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Lemma 3 (Classical Result)

1 1
VRP,TzT tFT(K,G,T—t,Vt)—T_tFT(K*,G*,T—t,Vt), O§t<T(,15)

=0 where Fr(x,y,s,v):=— —s5)(v—y) +ys.
VRPT =0 where Fr( )= —f7 (T =5)(v—y)

Next, a second application that represents the variance risk premium under the non-
affine stochastic volatility model entitled 3/2 model is introduced. We suppose that
the couple (S, V) is now governed by the system

t t
Sf=x+,u/ S§ds+/ JVSaw!,  0=<i=T, (16)
0 0
t t
V= o+ / Wi — be(V)ds + / oVIAW:  0<i<T. (17)
0 0

where vg,x,0 > 0, b.(x) = ex’. The assumption € + éaz > 0 insures the strict
positiveness of the variance process. In Carr et al. [2], a risk neutral dynamic of the
variance process of the 3/2 model is derived under some plausible assumptions. As
in the Heston case, the 3/2 model preserves its structure. Therefore, we specify the
following risk-neutral dynamic of the couple (S, V),

t t
Sf=x+/ rSfds+/ VVSTW!, o=<r<T, (18)
0 0
t t x
V,=v0+/ n*Vx—bZ‘(Vs)ds+/ oV¥2dW?, 0<r<T, (19)
0 0

where €* = € —op, b*(x) = €*x2, the constant r denotes the daily interest rate and
n* denotes a constant risk neutral parameter. Due to the negative correlation between
the underlying asset and its instantaneous variance dynamic, the assumption €* +
;az > 0 hold true from the assumption € + ;az > 0 under the probability measure
P. The following proposition give a backward representation of the variance risk
premium (VRPT) in the framework of the 3/2 stochastic volatility model.

Proposition 3 Ife + ;az > 0, then the variance risk premium (VRPT) follows

VRP! = [(n —n)vr + n*E(vr) — nES (vr)}
* T —
n*(T —1) )

o ! 3/2 jyp2* o ! 3/2 jur2 _ pOT€ 0" €
b V2aw? + T V/2aw? — B71C + By <,
t t



Modeling Variance Risk Premium 139
with VRPL. = 0 and t € [0, T). Ban “ and B;?*G* are defined by
T
n(t—T)ByT = f H!(0.n.€)dW}, By} =0,
t
T 2 * >k
on*.e* T * % * .1 €
R I HCH RS VU
t

T 2y
T _ (s—u) u _
where  HT(x,y,2) = / S e Co = L Tenseres

1 3-3
F'U.(0) = Vv Coy(w) /0 92(1 - 9)‘ exp{ - Qexp(—yu)Cx.y(u)ve}dG.

Proof The result is a direct consequence of Proposition 1. The first term of the
dynamic of the variance risk premium is straight forward. The second term is more

t t
challenging to achieve. Under P, V, = vy + / nVy — eVSst + / an/def.
0 0
1 t t
By Itd’s formula I, = + / (e+0% — nl)ds — / Uli/def. By the Chain rule
Vo 0 0

T T
(See Nualart [13]), E; ( / Dst(V,)dt) =E, ( / b;(V,)DsV,dt) where b, (x) =

—ex?. By the Chain rule, we evaluate the Malliavin derivative of I,

T T
E, ( / D‘Ybe(Vt)dt) = 2¢[E, ( / VSDSI,dt).

With Fubini’s theorem and Theorem 2.2.2 in Nualart [13],

T T V3 Y,
E, ( / D‘Ybe(V,)dt) = 2¢o / ES( ’Y ’)dr,

Y, t 2 t
where Yt = exp{—n(t— s)} M; and M, = exp ( / \/V dw? — C; / Vudu). It
s 0

will be enough to compute the conditional expectatlon above to complete the proof.
Let us consider the probability Py, defined with the process M under the assumption
€+ éaz > 0. The corresponding Radon-Nikodym densities is given by:

dP 4 2 t
M; = M ., M= eXp(U / \/VudW,f _° / V.du).
dP |z 2 Jo 8 Jo
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T T

We have by change of measure, [ ( / DsbG(V,)dt) = 2¢0 / IEﬁ” (Vf’ ) dt, where
[EM is the expectation operator associated with the probability measure Py;. Under
the probability measure Py, the process I follows a CIR dynamic. We have

1 ! 1 ro
I, = +/(e+ az—nls)ds—/ ol dBY, 0<t<T.
Vo 0 2 0 ‘

where BM is a Brownian motion under IPy;. The process BY is defined by dBﬁ” =

1 1
dw? — ,0 Vi di. From Lemma 1.1.5 in Diop et al. [7], EY (V}) = 2 Fl, (L)

1 %3
where F;"y’z(v) =.Jv Cx,y(u)/0 92(1—9) exp { —0 exp(—yu)Cx,(u)v0 db.

From Proposition 1,

T T T
n(t—T)By" = / E, ( / D‘YbG(Vu)du) dw? = / H (0,1, €)dW?,
t s

t

T
with H (0,1,€) = / e”(s_”)F{‘;%6 (I,)du. We obtain the same structure result for
s

the risk neutral part B‘;’,'Z*’e* . Proposition 1 and the two previous equalities conclude.
The risk neutral part of (20) is obtained analogously.

5 Conclusion

A new approach to construct the variance risk premium is proposed in our work. We
derive this by modeling the variance process as a continuous semi-martingale. We
provide two applications: the first with the popular linear Heston stochastic model
and the second under the non-affine stochastic 3/2 model. One advantage is that our
approach incorporates many standard stochastic volatility models including non-
affine specifications. Our probabilistic modeling is essentially devoted to illiquid
markets and the result can also be applied to price and hedge many volatility
derivatives. It is well known that the times series in financial market are generally
discontinuous. A possible extension of this work is to take into account this jump
behavior in our modeling. Moreover the incompleteness of many markets generates
the non-existence of a unique risk neutral measure. This remark introduces also an
interesting problem to investigate in the future development of our work.
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Covered Call Writing and Framing:
A Cumulative Prospect Theory Approach

Martina Nardon and Paolo Pianca

Abstract The covered call writing, which entails selling a call option on one’s
underlying stock holdings, is perceived by investors as a strategy with limited risk. It
is a very popular strategy used by individual, professional and institutional investors.
Previous studies analyze behavioral aspects of the covered call strategy, indicating
that hedonic framing and risk aversion may explain the preference of such a strategy
with respect to other designs. In this contribution, following this line of research, we
extend the analysis and apply Cumulative Prospect Theory in its continuous version
to the evaluation of the covered call strategy and study the effects of alternative
framing.

1 Introduction

The covered call (CC) writing (or buy-write) is a popular strategy, used both by
experienced investors and non-professional traders who are not so familiar with
derivatives, but perceive the strategy as risk-reducing with respect to investing on a
single stock or a stocks’ portfolio. In May 2002 the CBOE released the Buy Write
Monthly Index, later called Buy Write Index (BXM), which tracks the performance
of a synthetic CC strategy on the S&P 500 Index (SPX). The methodology and
performance of the BXM are described by Whaley in [13]; the BXM is a passive
total return index formed with a long position on an S&P 500 portfolio and a
sequence of short positions on one-month at-the-money (or just out-of-the-money)
CCs on the S&P 500 Index. The BXM has become a benchmark for measuring the
performance of buy-write implementations.

The seller of the call option owns the underlying asset and her/his risk is limited,
but this is not sufficient to explain the success of such a strategy amongst investors,
or the preference for CC despite several alternative and less known strategies with
similar profit profiles, which register significantly lower trading volume. Using
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modern Prospect Theory’s arguments, we are able to analyze some aspects that
characterize the behavior and choices of the decision makers.

Shefrin and Statman [9] were the first to suggest hedonic framing [10] and
risk aversion in the domain of gains as main reasons for departure from standard
financial theory: writers of CC prefer this strategy to a stock-only position and are
loath to repurchase the call when this entails a realization of a loss, out-of-the money
calls are preferred to in-the-money calls in the strategy, fully covered positions
are preferred to partially covered ones, CC is preferred to alternative strategies.
Recently, Hoffmann and Fischer [5] test empirically all these hypothesis: 60.1%
of the respondents prefer the stock-only position with respect to the CC strategy
when the profits and losses are described graphically, whereas the CC preference
is 60.6% when the profits and losses are described by text; a fully covered position
is preferred to a partially CC in 69.7% of the cases; out-of-the-money calls are
preferred (87.4%) to in-the-money calls when forming the strategy; at-the-money
CCs are preferred (79.3%) to at-the-money naked puts. Such results highlight that
decision frames and also the way alternatives are presented to investors do influence
actual investment choices.

In this contribution, we extend the analysis of [9] based on a simple one-
period binomial model, by evaluating the CC strategy under cumulative prospect
theory [11] in a continuous framework [3], focusing in particular on the effects of
alternative framing of the results.

The remainder of the paper is organized as follows: Sect. 2 summarizes the main
concepts of prospect theory; Sect.3 introduces the notions of mental accounting
and hedonic framing; Sects. 4—7 describe the evaluation of the CC portfolio under
different frames; Sect. 8 concludes.

2 Prospect Theory

According to Prospect Theory (PT) risk attitude, loss aversion and probability
perception are described by two functions: a value function v and a weighting
function w. Outcomes are evaluated relative to a certain reference point instead of
in terms of final wealth. The shape of the value and weighting functions describe
actual investors behaviors. Function v is typically convex in the range of losses
(risk-seeking) and concave in the range of gains (risk aversion), it is steeper for
losses (loss aversion). Decision makers have also biased probability estimates: they
tend to underweight high probabilities and overweight low probabilities.

Let us denote with x;, for —m < i < 0 negative outcomes and for 0 < i < n
positive outcomes, with x; < x; for i < j. The prospect value is displayed as follows

V=) mvw). M

i=—m

with decision weights 7; and values v(x;) based on relative outcomes.
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Specific parametric forms have been suggested in the literature for the value
function. A function which is used in many empirical studies is

v =-A(—=x)’ x<0, @)
vt = x4 x>0,
with positive parameters that control risk attitude (0 < a < land 0 < b < 1)
and loss aversion (A > 1); v~ and vt denote the value function for losses and
gains, respectively. Function (2) has zero as reference point; it is concave for positive
outcomes and convex for negative outcomes, it is steeper for losses. Parameters
values equal to one imply risk and loss neutrality.
In Cumulative Prospect Theory (CPT) [11] decision weights r; are differences
in transformed cumulative probabilities of gains or losses. Formally:

W_(p—m i=—m
W™ (Z}=_mpj) —w (Z};l_mp,-) i=-m+1,....-1

= n n .
wt (Zj=ipj) —w? (Zj=i+1pj) i=0,....,n—1

w¥(pn) i=n,

3

with w™ for losses and wt for gains, respectively.

In financial applications, in particular in the evaluation of options, prospects may
involve a continuum of values; hence, Prospect Theory cannot be applied directly in
its original or cumulative versions. Davies and Satchell [3] provide the continuous
cumulative prospect value:

+o00

0
V= /_ FEO @ Wds [ Fe ot @ @

where ¢ = d’;;” ) is the derivative of the weighting function w with respect to the
probability variable, F is the cumulative distribution function and f is the probability
density function of the outcomes.

Prosect theory involves a probability weighting function which models proba-
bilistic risk behavior. A weighting function w is uniquely determined, it maps the
probability interval [0, 1] into [0, 1], and is strictly increasing, with w(0) = 0 and
w(1l) = 1. In this work we will assume continuity of w on [0, 1], even thought in the
literature discontinuous weighting functions are also considered. The curvature of
the weighting function is related to the risk attitude towards probabilities. Empirical
evidence suggests a particular shape of probability weighting functions: small
probabilities are overweighted w(p) > p, whereas individuals tend to underesti-
mate large probabilities w(p) < p. This turns out in a typical inverse-S shaped
weighting function: the function is initially concave (probabilistic risk-seeking) for
probabilities in the interval (0, p*), and convex (probabilistic risk aversion) in the
interval (p*, 1), for a certain value of p*. A linear weighting function describes
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probabilistic risk neutrality or objective sensitivity towards probabilities, which
characterizes Expected Utility. Empirical findings indicate that the intersection
between the weighting function and the 45° line, w(p) = p, is for p* in the interval
(0.3,0.4).

Different parametric forms for the weighting function with the above mentioned
features have been proposed in the literature, and their parameters have been
estimated in many empirical studies. In this work we applied, in particular, the
function suggested by [11]:

p)’

(p7 + (A =pN)" ©

w(p) =

where y is a positive constant (with some constraint in order to have an increasing
function), with w(0) = 0 and w(1) = 1. The parameter y captures the degree of
sensitivity toward changes in probabilities from impossibility (zero probability) to
certainty. When y < 1, one obtains the typical inverse-S shaped form; the lower the
parameter, the higher is the curvature of the function.

3 Hedonic Framing

Standard finance and, in particular, option pricing assume frame invariance, where
investors are indifferent among frames of cash flows, but many empirical studies
highlight that the framing of alternatives exerts a crucial effect on investment
choices. Moreover, investors might not be aware of the frames that affect their actual
decisions. Prospect theory posits that individuals evaluate outcomes with respect
to deviations from a reference point rather than with respect to net final wealth.
Decision frames are influenced by the way in which alternatives are presented
to investors. People may keep different mental accounts for different types of
outcomes. When combining these accounts to obtain overall result, typically they
do not simply sum up all monetary amounts, but intentionally use hedonic frame
(see Thaler [10]) such that the combination of the outcomes appears more favorable
and increases their utility.

Consider the simple case of two sure outcomes x and y, the hedonic optimizer
would combine the results according to the following rule:

V =max{v(x +y), v(x) + v(y)}. (6)

Outcomes are aggregated or segregated depending on what leads to the highest
possible prospect value: multiple gains are preferred to be segregated (narrow
framing) to enjoy the gains separately, losses are preferred to be integrated with
other losses (or large gains) in order to ease the pain of the loss. Considering mixed
outcomes, these would be integrated in order to cancel out losses when there is a
net gain or a small loss; in case of large losses and a small gain, they usually are



Covered Call Writing and Framing 147

segregated in order to preserve the silver lining. This is due to the shape of the
value function in PT, characterized by risk-seeking or risk aversion, diminishing
sensitivity and loss aversion. Loss aversion implies also that the impact of losses is
more important than that of gains of same amount.

An investment in a portfolio can be isolated (narrow framing) or integrated,
which reflects a broader decision frame of the investors (see [7]). Framing can be
intertemporal: gains and losses can be time segregated or aggregated, depending
on how the perception of the results is affected by the evaluation period. Invertors
are influenced by narrow framing and regret when they sell portfolio “winners”
and keep portfolio “losers”, in order to avoid the realization of a loss (disposition
effect), but they integrate outcomes through simultaneous trades when they sell a
loser together with a winner to reduce their regret (see [7]). When we consider a
financial option, the premium is cashed in advance with respect to the realization of
the payoff, hence these outcomes could be evaluated into separate mental accounts
or jointly. The option premium itself might be perceived as an income, cash that can
be used immediately for consumption (according to the life cycle theory [9]).

In the following sections we will evaluate the results of a CC portfolio under
alternative frames, analyzing the effects of the hedonic and time framing. Covered
calls are frequently promoted as “an investment strategy that can make you extra
money” (see the discussion in [9]) and proposed to the investors as the sum of three
possible sources of profit (three mental accounts): the call premium (considered as
an extra dividend), regular dividends, the capital gain on the stock (when the strategy
is formed with out-of-the-money calls, and in case of exercise).

4 Covered Call Writing versus Stock Only Position

In this and the following sections, we consider strategies which include options on
non-dividend paying assets for which early exercise is not convenient or possible
(American or European calls on single stock or indexes). We retain the usual
assumptions of frictionless markets; in particular, we do not consider the effects
of taxes and transaction costs, which may lead to different choices. We assume that
the dynamics of the underlying price process S is governed by a geometric Brownian
motion as in the model [1].

Shefrin and Statman [9] evaluate the CC strategy in a simple one-period binomial
model under PT in its original version [6]; they use only a value function, do
not consider probability weighting, and assume a zero risk-free interest rate r. We
extend the analysis and model the problem under continuous CPT.

Let So > 0 be the current stock price, it is the amount paid to buy one share
of stock at time t = 0; consider a time horizon of T years, the buyer of the stock
registers a profit if Sz > Spe'” (a loss otherwise).
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The prospect value of the stock-only position V* is displayed as

Soe'T
V= / U (FO)F v (x — Soe)dx
0

[T = P @t S,

S[)er‘l‘

@)

where f and F are the probability density function and cumulative probability
function of S7.

In the definition of the prospect value V*, we have assumed that the price S
could have been invested at the risk-free interest rate r. Under this hypothesis, a
risk-neutral investor (setting the parametersa = b = 1, A = 1, yT =y~ =1,
and taking risk-neutral dynamics for the process S) has a value V* equal to zero,
equivalent to the status quo.

Assume now an out-of-the-money' call option written on the same stock, with
strike price X (with X > Spe'’) and maturity 7. Let ¢ be the option premium
(computed with the Black-Scholes formula). The prospect value of a CC position,
when the option premium and the CC result are segregated into two mental accounts,
is given by

SOerT
vee =vt(cel) + / U (F(x)f(x)v™ (x — Soe'T)dx
0

X
+ U = F@)f(x)vt (x — Soe'T)dx (8)

So T

+ = YT —F@)Ff(x)vt (X — Soe'T)dx.
X

It is worth noting that in the first term in (8), we have assumed that the call premium
is not used for consumption, but invested at the risk-free interest rate (otherwise one
has to replace the term with v (c)).

Shefrin and Statman argue that “the PT expected value of the CC position
exceeds the PT value of the stock-only position for investors who are sufficiently
risk-averse in the domain of gains”. This hypothesis seems not be confirmed by
Hoffmann and Fischer [5], whereas the authors find strong evidence for framing
effects. de Groot and Dijkstra [4] argue that a PT investor with above average risk
aversion for gains prefers the CC.

"Here we take an out-of-the-money forward option; alternatively, the strategy can be built with
out-of-the-money options with X > Sj.
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The CC position (8) is preferred to the stock only position (7) if

vtce™) + = v = F@)f(x)vt (X — Soe'M)dx
X

€))

> " Y (1= F@)f(x) vt (x — Soe'T)dx .
X

Note that inequality (9) depends only on the value function in the domain of gains
(when applying function (2), it depends only on the value of the parameter a), and on
the weighting function w™. Considering a concave value function v™, one obtains
a higher value on the right hand side of (9) when the option premium is segregated
from the (positive) result of selling the stock at X > Spe’”. Numerical results confirm
a framing effects.

S Fully Covered versus Partially Covered Call Position

The CC strategy discussed in the previous section is a fully covered position, which
entails buying one share and selling one call option. Empirical evidence suggests
that most CC traded strategies are fully covered. Hoffmann and Fischer [5], in their
investigation, find significant preference for fully covered over partially covered
positions. Shefrin and Statman [9] compare in their one-period binomial model a
fully covered position with a partially covered one composed by 1.25 shares and
2.5 calls. Both positions have the same profit and loss profiles. The authors examine
the prospect values of two possible frames with identical cash flows, consisting of:
(1) a fully covered position of 1.25 shares and a short position of 1.25 (naked)
calls; (2) a stock only position of 1.25 shares and a short position of 2.5 (naked)
calls. They conclude that the prospect value in the first frame exceeds the one in the
second frame for investors who are highly risk-averse in the domain of gains and
highly risk-seeking in the domain of losses. Moreover, the fully covered position is
preferred to the partially covered one when the concavity and convexity of the value
function for gains and losses, respectively, are sufficiently pronounced.

We can generalize the analysis of [9] in a continuous setting, comparing the
following two frames:

1. a fully covered position of « B shares (with 0 < « < 1) and a short position of
(1 — @)B (naked) calls (8 > 0);
2. a stock only position of « B shares and a short position of 8 (naked) calls.

As limit cases, when &« = 0 we have a short position of 8 (naked) calls, and when
a = 1 the short position of j calls is fully covered.
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The prospect value in the first frame, when the option premium and the CC net
result are segregated into separate mental accounts, is given by

VPl = yvel(aB) + V(1 — a)B)

Soer’l‘
=vT(@pceT) + / v (F(x)f(x) v~ (aﬁ (x— Soe’T)) dx
0

X
o Y (1= F))f (0) v (B (x — Soe™)) dx

Sope”

+o0
+ Y (1= F)f(x) vt (B (X — Soe'™)) dx
X

(10)

+ot ((1 —a)p ce’T)
+o00

+ ; Yo (1= F@)f () v (1 —a)f (X —x))dx.

The last two terms in (10) represent the prospect value of the writer position of
(1 —a)B calls in the time segregated frame V*¢ (see the Appendix), when the option
premium received at time ¢+ = 0 is evaluated in a separate mental account. We
assume that the premium is reinvested at the risk free interest rate r.

Alternatively, the naked position could be evaluated in a time aggregated mental
account V“ (see the Appendix) as follows:

Vpccl — fo(aﬂ) + Vac((l - a)ﬁ),
where

Vel =a)p) =wh (FOO) v (1 —a)Bce)

R A Y R (I T St ) PO

+o00
+ /X v (1=Fx)f(x)v- ((1 —a)pB (ce’T - (x—X))) dx.

+ceT

Note also that the CC strategy in (10) is built with out-of-the money (forward)
calls; other assumptions are also possible and will be discussed in the next section.
The prospect value in the second frame is the sum of a stock only position of
af shares and a short position of 8 naked calls; when the option premium and the
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option payoff are segregated into separate mental accounts, one obtains

VI = Vi(ap) + V(B

Soe'”
= /0 Y (F)f(x) v~ (ot,B(x — SoerT)) dx

+o00

+ | vTA-F@)F@ vt (aflx—Soe'™)) dx

SO e'T
+o00

+vt (Bee) + V(1 —F@)fx) v (B(X—x)dx. (12)
X

The last two terms in (12) represent the prospect value of the writer position in the
time segregated frame; as an alternative, such a position can be evaluated in the time
aggregated case.

6 Covered Call Writing with Out-of-the-Money versus
In-the-Money Options

In the previous sections, CC strategy was formed with out-of-the-money options.
This is the way in which more often the strategy has been proposed to the investors,
in order to obtain a profit in case of exercise. Due to the shape of the value function
and hedonic framing, prospect investors will tend to segregate such a gain.

We consider a call option which is in-the-money forward with X < Spe’” (the
case X < Sy can be treated analogously). When S7 > X the option is exercised and
the profit and loss profile for the CC investor is: ce’” — (St — X) + (St — Soe'T),
assuming that both the call premium and the amount Sy could be invested at the risk
free rate.” By construction of the strategy, the difference X — Soe’” is negative. On
the other hand, when S7 < X the option is not exercised and the result of the long
position on the underlying, S7 — Spe'”, is negative as well. The CC strategy gives
rise to a profit only if the call premium is sufficiently higher than the loss on the
combined positions on the call and the underlying.

An investor who applies hedonic framing will segregate the call premium from
other losses in order to obtain a better prospect value and, when such a value is
negative, to preserve the silver lining. Formally we have:

yeemim — yF(ceT) + /X Y (F))f(x)v™ (x — Soe’")dx
0

+o00
+ U™ (1 = F()f (x)v™ (X — Spe'T)dx .
X

13)

2This hypothesis can be easily relaxed, considering as in [9] that the cashed premium could be
used for consumption or disregarding the effects of a non zero interest rate.
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Shefrin and Statman [9] compare two portfolios formed with stocks, short
positions in different proportions of out-of-the-money or in-the-money call options
and borrowed cash (when the strategy is formed with in-the-money options), in a
one-period binomial framework. In their particular example, both portfolios entail
the same initial cash outflow and the same gains or losses in the up and down states.
When comparing the prospect value of the two strategies, the authors conclude that
CC with out-of-the-money options is preferred when investors are sufficiently risk-
averse in the domain of gains and risk-seeking in the domain of losses.

In our analysis, we consider continuous variables, and the comparison of portfo-
lios with identical cash outflows and results is no longer possible. Nevertheless,
we observe that both the integrals in (13) result in a negative value, which has
to be compensated by the positive value of the call premium in order to obtain
a positive prospect value. This requires that the option is over-evaluated by the
prospect investors, in order to prefer the strategy to the status quo. It is difficult to
separate the different effects of framing, subjective evaluation of gains and losses,
and the over- and under-weighting of probabilities, which requires a large numerical
analysis which is not included in this contribution. Numerical experiments based on
Tversky and Kahneman [11] sentiment parameters yield negative prospect values.
In particular, when the parameter A, which models loss aversion in (2), departs
from the value 1, one obtains negative prospect values (excluding the effects of
the probability weighting function). When we include in the analysis the weighting
function, low probabilities of extreme events are overweighted and this may lead to
different decisions about the preferred frame.

7 Selling the Underlying Asset versus Buying Back
the Option

Shefrin and Statman [9] argue that a PT investor will not repurchase the call option
when it is likely to be exercised, because this would imply the realization of a loss.
They also explain that this happens when investors are sufficiently risk-averse in
the domain of gains. Hoffmann and Fischer [5] tested this hypothesis, finding no
statistical evidence for the preference of repurchasing the call or selling the stock.

We compare two different frames: first we consider an investor who segregates
the call premium from the combined result of the call and stock positions; second,
the investor separates the result of the call position from the gains or losses on the
stock. In both cases let us assume X > Spe’”, hence the CC strategy is formed with
out-of-the-money calls.
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In the first frame the prospect value V° is given as in (8), whereas the prospect
value of the CC strategy when the call is repurchased is:

yeer — W+(F(X))U+ (cerT)
X+ce'T
+ / VT (F(x)f (x)vT (cerT —(x —X)) dx
X

+o00
+ / Y~ (1= F)f(x)v~ (ce’T —(x—= X)) dx
X+ce'T

+ce”

Soe'T
[ e (s ax

+ +f° Y (1= F) v (x—Soe'™) dx. (14)

S[)erl'

In this case, the prospect value of the call position is given by the first three terms,
and the gains and losses on the stock are evaluated through the last two integrals.

If V" is lower than V¢ as defined in (8), the investor would prefer selling the
stock (hence realizing a gain), rather than repurchasing the option which entails
the realization of a loss. It is worth noting that the preference depends not only on
the shape of the value function in the region of gains, but also on the risk-seeking
behavior of the investor in the domain of losses, and his or her loss aversion.

In some numerical experiments, first neglecting the effects of the probability
weighting function (taking y* = y~ = 1), we found that due to the shape of the
value function the frame defined by (8) is preferred, yielding to a higher prospect
value, even with values of the parameters a and b close to unit. As in the comparisons
with other frames in the previous sections, the loss aversion parameter plays an
important role, because it enhances the negative valuation of losses. When also
the probability perception through the weighting function is considered, this can
lead to different results, due to the fact that low probabilities of extreme events are
overweighted.

8 Alternative Trading Strategies and Concluding Remarks

In this paper we have analyzed the effects of hedonic framing and PT on the
evaluation of one of the most popular trading strategies. The CC writing is perceived
as a strategy with limited risk, but this is not sufficient to explain its success amongst
investors, or the preference for CC with respect to alternative strategies with similar
profit profiles. For example, the CC profit and loss profile can be compared with that
of a naked put; [5] in their empirical study find that investors have a preference for
the first strategy.
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Under the CPT framework applied in this contribution, other structured financial
products can be evaluated (see [2]).

Numerical results (which are reported in a separate paper) suggest that different
frames may lead to different preference for alternative designs of the CC strategy.

Appendix: European Options Valuation

Versluis et al. [12] provide the prospect value of writing call options, considering
different intertemporal frames. The option premium represents a sure gain for the
writer, whereas the negative payoff is a potential loss; the writer may aggregate or
segregate such results in different ways. Nardon and Pianca [8] extend the model of
[12] to the case of put options, considering the problem both from the writer’s and
holder’s perspectives, and use alternative weighting functions.

Let S; be the price at time ¢ € [0, T of the underlying asset of a European option
with maturity 7. Let c be the call option premium with strike price X. At time ¢ = 0,
the option’s writer receives ¢ and can invest the premium at the risk-free rate r,
obtaining ce’”. At maturity, the amount S7 — X is paid to the holder if the option
expires in-the-money.

In the time segregated case the option premium is evaluated separately (through
the value function) from the option payoff. Considering zero as a reference point
(status quo), the prospect value of the writer’s position is

Ve =yt (cerT) + X+°° v (1=Fx)f(x)v (X —x) dx, (15)

with f and F being, respectively, the probability density function and the cumulative
distribution function of the future underlying price S7, and v is defined as in (2).
One equates V*¢ at zero and solves for the price c.

In the time aggregated frame, gains and losses are integrated in a unique mental
account, then one obtains the prospect value

Ve =wh (FX)) v (ce'™)
X+4ce'T + X T
T (x — d.
+ /X Y+ (F)f@vt (ce — (x—X)) dx (16)

+o00
+ / v (1=FX)f(x)v™ (ce’T — (x—X)) dx.
toeT

+cet

In this case, the option price evaluated by a PT investor is implicitly defined by the
equation V, = 0 and has to be determined numerically.
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Optimal Portfolio Selection for an Investor
with Asymmetric Attitude to Gains and Losses

Sergei Sidorov, Andrew Khomchenko, and Sergei Mironov

Abstract The description of Cumulative Prospect Theory (CPT) includes three
important parts: a value function over outcomes, v(-); a weighting function over
cumulative probabilities, w(-); CPT-utility as unconditional expectation of the value
function v under probability distortion w. In this paper we consider the problem of
choosing an CPT-investor’s portfolio in the case of complete market. The problem
of finding the optimal portfolio for CPT-investor is to maximize the unconditional
expectation of the value function v under probability distortion w over terminal
consumption, subject to budget constraint on initial wealth. We find the optimal
payoffs for CPT-investor for the classic Black-Scholes environment assuming that
there are a single lognormally distributed stock and a risk free bond. We compare
the optimal payoffs of CPT-investor with the optimal payoffs of the investor that
maximizes expected power utility over terminal payoffs, subject to budget constraint
on initial wealth.

1 Introduction

One of the classic problems of the portfolio investment theory is the following one:
to find an optimal portfolio for a given set of assets with the known prices and
distribution function of returns.

It is well-known [4] that in the case of the complete market and the absence of
arbitrage there is a unique positive discount factor m, such that the fair price of the
asset p = Ey(mx), where E, denotes the conditional expectation at the initial time
t = 0, and x is the flow of future payments.

Let x7 be the (random) price of the portfolio at time t = T, and w be the wealth
of the investor at time r = 0. Then the problem of finding the optimal portfolio can
be represented as follows:

Eo(u(xr)) — max, s.t. Eo(mxr) = w, (1
xr
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where Eo(u(xr)) is the expected value (at the time ¢ = 0) of utility u(x7), maxy,,,
means that the investor finds the optimal payoff in every state of nature at time 7', m
is a stochastic discount factor.

The classical theory of portfolio investment considers an investor with a concave
utility function. However, Tversky and Kahneman [10] provide examples and
demonstrations showing that under the conditions of laboratory experiments the
predictions of expected utility theory are regularly disturbed. Furthermore, a new
theory was proposed—the prospect theory which accounts for people’s behavior
in decision-making under risk in the experiments where the traditional theory of
expected utility failed.

Cumulative prospect theory (CPT) proposed in [17] is the further development
of prospect theory, the difference being that cumulative probabilities undergo
transformation, rather than the probabilities themselves. Current economic literature
views the cumulative prospect theory as one of the best models explaining the
behavior of the players, as well as the behavior of investors in the experiment and in
decision-making under risk.

The work [1] demonstrates that a number of decision making paradoxes can be
resolved with the help of the prospect theory, but it is not a ready-made model for
economic applications as the author notes. However, in the recent years we can
see growing interest in the issues lying in the intersection of prospect theory and
portfolio optimization theory.

It should be mentioned, that because of the computational burden connected to
the complexity of the numerical evaluation of the CPT-utility, there are not so many
research papers on the portfolio optimization problem under the framework of both
prospect theory [6, 11] and cumulative prospect theory [2, 3, 8, 9, 14, 15, 18]. Most
of the research is based on the supposition that testing data are normally allocated.
However, many asset allocation problems include non-normally distributed returns
as far as commodities generally have fat tails and are skewed [7].

Levy and Levy [11] attempt to find the portfolio with the highest prospect theory
utility among the other portfolios in the mean variance efficient frontier. Elaborating
on this idea, the work of Pirvu and Schulze [14] proves that an analytical solution of
the problem is mostly equivalent to maximising the CPT-utility function along the
mean-variance efficient frontier.

Among recent works we should mention the paper of Nardon and Pianca
[12], which evaluates European options within the continuous cumulative prospect
theory.

The paper [16] is based on the ideas of [3] and deals with the issue of finding
the optimal portfolio for an investor with asymmetric attitudes to gains and losses
described in Tversky and Kahneman’s prospect theory. It examined the portfolio
optimization problem for an investor who follows the assumptions of the prospect
theory and the cumulative prospect theory under conditions on the stochastic
behavior both of the portfolio price and the discount factor.

In this paper we consider the problem of choosing an CPT-investor’s portfolio in
the case of complete market. The problem of finding the optimal portfolio for CPT-
investor is to maximize the unconditional expectation of the value function v under
probability distortion w over terminal consumption, subject to budget constraint on
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initial wealth. In the beginning, we briefly present the summary of main ideas of
the cumulative prospect theory, and then we proceed to the problem of finding
the optimal payoffs for CPT-investor for the classic Black-Scholes environment
assuming that there is a single lognormally distributed stock and a risk free bond.
We compare the optimal payoffs of CPT-investor with the optimal payoffs of the
investor that maximizes expected power utility over terminal payoffs, subject to
budget constraint on initial wealth.

2 EU-, PT- and CPT- Investors
2.1 Expected Utility Theory

The most popular approach to the problem of portfolio choice under risk and
uncertainty is the expected utility hypothesis. For an introduction to utility theory,
see [5]. Von Neumann and Morgenstern [13] formulated the utility in terms of a
function. Let X is the set of all possible payoffs of a portfolio at time t = T, x
refers to the element of X, and let # : X — R denote a utility function such that
the value of u(x) is a measure of the decision maker’s preference derived from the
payoff x: x >y < u(x) > u(y), where x > y means the outcome x is preferred
at least as much as the outcome y. Thus, the relationship between wealth and the
utility of consuming this wealth is described by a utility function, u(-). Let f; (x) be
the probability density function of a random variable £.

Definition 1 The expected utility (EU) of a portfolio G is the expected value of the
utility functions of possible payoffs of the portfolio at time + = T weighted by the
corresponding probabilities:

U () = [ utfias

The expected utility hypothesis states that the individual (EU-investor) will make
decisions following the principle of maximizing the value of his expected utility.
The most exploited type of utility functions is the power utility function defined

by u(x) = "11:; , where y € (0, 1). Marginal utility is ’(x) = x~7 > 0 for all x > 0.
We have u”(x) = —yx~7~! < 0 for all x > 0.

2.2 Prospect Theory

Prospect theory (PT) has three essential distinctions from Expected Utility The-
ory:

¢ investor makes investment decisions based on deviation of his/her final wealth
from a reference point and not according to his/her final wealth, i.e. PT-investor
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concerned with deviation of his/her final wealth from a reference level, whereas
Expected Utility maximizing investor takes into account only the final value of
his/her wealth.

« utility function is S-shaped with turning point in the origin, i.e. investor reacts
asymmetrical towards gains and losses; moreover, he/she dislikes losses with a
factor of A > 1 as compared to his/hers liking of gains.

* investor evaluates gains and losses not according to the real probability dis-
tribution per ce but on the basis of the transformation of this real probability
distribution, so that investor’s estimates of probability are transformed in the way
that small probability (close to 0) is overvalued and high probability (close to 1)
is undervalued.

PT includes three important parts:

¢ a value function over outcomes, v(+);

* a weighting function over probabilities, w(-);

* PT-utility as unconditional expectation of the value function v under probability
distortion w.

Definition 2 The value function derives utility from gains and losses and is defined
as follows [17]:

o) = X, ifx >0, @)
—A(—x)?, ifx<O0.

Note that the value function is convex over losses if 0 < B8 < 1 and it is strictly
convex if 0 < B < 1. Moreover, the value function reflects loss aversion when
A > 1. It follows from the fact that individual investors are more sensitive to losses
than to gains. Kahneman and Tversky estimated the parameters of the value function
a = f = 0.88, L = 2.25 based on experiments with gamblers [10].

Definition 3 Let f:(x) be the probability density function of a random variable &.
The PT-probability weighting function w : [0, 1] — [0, 1] is defined by

(f: ()’

w () =
B0 = eyt + (1 —s0oy)

e 8= 3)

It is easy to verify that
. w:[0,1] — [0, 1] is differentiable on [0,1];
. w(0) =0,w(l) =1;
. if § > 0.28 then w is increasing on [0,1];
. if 8 = 1 then w(fz (x)) = f (x).

The function w (-) is well-defined when «, 8 are less than 2§. In the following we
will assume that 0.28 < § < 1 and o < 26, B < 26.

RIS S
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Definition 4 The PT-utility of a portfolio G with stochastic return £ is defined as
[10]

o0

tm@zf VWi ())dx, @

where f; (x) is the probability density function of €.

2.3 Cumulative Prospect Theory

We will consider the development of the prospect theory, Cumulative Prospect
Theory, published in 1992 [17]. The description of CPT includes three important
parts:

* avalue function over outcomes, v(-);

* a weighting function over cumulative probabilities, w(-);

e CPT-utility as unconditional expectation of the value function v under probability
distortion w.

Definition 5 Let F:(x) be cumulative distribution function (cdf) of a random
variable &. The probability weighting function w : [0, 1] — [0, 1] is defined by

(Fe()

Fe(x)) = s
Méu)(WWW+a—&@mW

&)

Definition 6 The CPT-utility of a gamble G with stochastic return £ is defined as
in [1]

0

wmm=/ MMM&@%A v@dw(l — Fe(x)). ©)

where F¢(x) is cumulative distribution function of &.
If we apply integration by part, then CPT-utility of G defined in (6) can be
rewritten as

0

wmwzl‘m—&@WMP/ w( Fe(0)dv (). ™)

3 Portfolio Optimization Problem

Let us consider the problem of choosing a CPT-investor’s portfolio in the case
of complete market. It is well-known [4] that given the absence of arbitrage
opportunities, there is a unique positive stochastic discount factor m, such that the
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fair price of asset p = E(mx) for any future payoff x, E is the conditional expectation
at the initial time ¢+ = 0. Let W denote the initial wealth (portfolio) of the investor
at time t = 0. Let x7 denote the payoff of the investor’s portfolio at time t = T.
Then the price of the portfolio at time ¢+ = 0 is p(xr) = E(mxr). The problem of
finding the optimal portfolio for PT- and CPT-investors can be written as

E®(w(xr — X)) —» max, s.t. E(mxr) = W, 8)

where X is a reference point, E“(-) denotes the transformed expected value of (-)
under the probability transformation w, defined in Definition 5 (for CPT-investor)
and in Definition 3 (for PT-investor), the maximization means to choose the optimal
payoff in every state of nature x7 at time 7.

The first order condition at the state x7 is v'(xy — X) = c,60m, where 6 is the
Lagrange multiplier and ¢, is the ratio of the real probability of the state x7 to

1. the transformed probability under the probability transformation w defined
by (5), for CPT-investor;

2. the transformed probability under the probability transformation o defined
by (3), for PT-investor.

In this paper we will assume that § = 1, i.e. transformation w is the identity
operator for both PT- and CPT- investors. Then ¢, = 1, E“(-) = E(-) and the first
order condition at the state xr is

V' (xr —X) = Om, )
where 0 is the Lagrange multiplier. The solution of the problem (8) is
xr=v" (6m) + X.
To solve Eq. (9) we need examine cases x7 € (—oo, X) and x7 € (X, 0co) separately.

1
1. Letxy > X. Then v(xy — X) = (x7 —X)% and x7 = (%)~ + X.
Using the budget constraint W, = E(mxy) we can find the Lagrange
multiplier 6:

Wo = E|:m ((Qm)wl +X):| - (e)al E(m'*F 1) + E(mX) =
o o

0 O(Ll 1 1 T
E(m'Te=1) + Xe™'T,

o
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and we get

Consequently,

xr = (Wo — Xe™'T) ) +X. (10)

E(ml-i-uL

Let us suppose that the portfolio, bond and discount factor follow the classic
Black-Scholes environment:

N
§ = i +od. (11)
dB
Y (12)
dA -
=~ g, (13)
A o

where S is the price of portfolio, A is discount factor, r is risk-free rate, with
initial conditions S(0) = Sy, A(0) = Ay, B(0) = By.
The solutions of (11)-(13) are

2
lnST=1nS0+(,u—02)T+a~/Te, (14)
I fp—r\2 n—=r
InAr =1InAg— (r+ ( ) T JTe, (15)
2 o o

where ¢ ~ N(0,1), and S is the price of the portfolio at + = 0. It follows
from (15) that

_Ar 1 /p—r\2 w—r
mr = A —exp|: (r+2< o ))T o \/T8:|

and we can obtain

sy =onl (15, ) (4 )] 0o
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Denote Ry = St/Sp. Then

l—«a o

— 1 1l /u—r\2 p-—r )
a—1 __ — —_ —
my —exp|: (r 2( ) o2 (r—o /2))T

1 pu—r
+ InRy|. (17
l1—a o2
Lety = ! ™" It follows from (10), (16), (17) that
xp = (Wo — Xe 1)l U+370"TRY | x (18)

2. Letxy < X. Then v(xy — X) = —A(X — x7)? and

Om /51—1
"T:X_(Aﬂ) '

Using the budget constraint Wy = E(mxy) we can find the Lagrange multiplier

0:
Om\ #o f \ A I+,
Wo——E|:m<X—(A’3) ):|——E(mX)—(A’3) E(m m1)+ =

1
B—1
Xe - ( 9 ) E(m'* o),

Ap
and we get
( 0 )ﬂll _ Xe T — W,

AB E(mH'ﬂlfl) .

Consequently,
pr
r=X—Xe T W) . (19)
E(mH_f‘_‘ )

We have

14,0 1 1 n—r\2
E(my * ):exp|:—(l+ﬂ_1)(r+2(l_ﬁ)( . ))T} (20)
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and

Letv = 1—1,3 “U_zr. It follows from (19)—(21) that

xr =X — (Xe =T — Wo)el! 2ol Ry, 22)

We have proved the following proposition.

Theorem 1 Let stock, bond and discount factor follow (11)—(13). If § = 1 then the
solution xt of the problem (8) is unique and defined by

X — (Xe™T — Wo)el=+2v0 TRy xp < X,
(Wo — Xe~T)eI=nC+odTRY | X o0 > X,

where Ry = S1/So, v = 1_1 “a_zr andy = lia “a_zr.
Equation (18) says that the optimal portfolio consists of two parts: the bond that
guarantees the payoff X at time ¢ = T, and the wealth (W, — Xe™'7) invested under

power utility maximization.

Corollary 1 If§ = 1 and X = Wye'" then the optimal portfolio is xp = Woe'™.

4 Comparison Analysis with EU-Investor

The cumulative prospect theory argues that the investor evaluates the expected
deviation of final value of wealth from the reference value X at the time moment
T and makes an investment decision on the basis of this assessment. Let 0 < p < 1.
For both PT-investor and CPT-investor we will assume that reference level of wealth
at the time moment ¢ = T is X = Wy(pe'” + (1 — p)Rr), i.e. X is the amount of
wealth the investor would have received on the date t = T after investing pW, with
the continuously compounding rate r and (1 — p) Wy in the stock. Then the deviation
from reference point X on the date + = T is equal to x7 — X (investor compares
the portfolio price x7 with X at the moment + = T and if x; > X, he/she considers
xr — X as a gain; in the case xy < X, investor thinks it to be a loss X — x7). The
following proposition is a simple corollary of Theorem 1 and describes the optimal
payoffs of CPT-investor with the reference point X = Wy(pe'” + (1 — p)R7).
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Corollary2 Let 0 < p < 1. If§ = 1 and X = Wo(pe'" + (1 — p)Ry) then the
return of the optimal portfolio R is

ie perT 4 (1 _ P)RT _ (1 _ p)(RTe T _ l)e(l—v)(r+1w72)TRu Rr > erT
pe'T + (1 —p)Rr + (1 — p)(1 — Rpe™'T)ell= V)(H'ZV”Z)TRY Rr <eT.

On the other hand, EU-investor maximizes expected utility over terminal con-
sumption E(u(xr)), subject to budget constraint on initial wealth Wy, x7 is the payoff
of his/her portfolio at terminal time 7"

Eo(u(xy)) — Ta?, s.t. Eo(mxy) =w, (23)
xT

where maxy,,; means that investor should find the optimal payoff in every state of
nature. Given the power utility

xl=¢

u(x) = _¢ (24)

the return on the optimal portfolio is R=m / E(ml_‘;’) (see [4]). It was shown in
[4] that if the stock, bond and discount factor follow (11)—(13) then the return of the
payoff of optimal portfolio is R = ¢(1=0C+20)7TRE where Ry = Sr/Sy denotes
the stock return, and { = | *".

Thus, the optimal payoff of EU-investor with power utility (24) is the power
function of the stock return. Figure 1 shows the optimal payoffs for EU-investor
using quite realistic © = 0.09, r = 0.01, 0 = 0.16 and for two different ¢ = 0.9
and ¢ = 8 (using two different values of parameter ¢ we would like to illustrate
two different types of risk aversion).

Moreover, Figs. 1 and 2 plot the optimal payoffs for CPT-investor with p = 0
and p = 0.5 respectively using the same values of u, r, o and for two different sets
of = 0.7, = 0.8 and @ = 0.1, B = 0.85. The first set of parameters is close to
the values obtained in [10].

If o and B are approaching to 1 then the optimal payoffs for CPT-investor with
p = 0 is converging to Ry, so the optimal strategy is to hold the stock.

For all 0 < a, B < 1 the payoff of CPT-investor is bigger than X = Wy (pe'” +
(1 = p)Ry) if 0 < Ry < €T, and is less than X otherwise. In other words, CPT-
investor accepts lower payoffs in the good states of nature (Ry > ') in order to get
slightly better payoffs in the bad states of nature on the left (Ry < e'T).

For both EU- and CPT-investors, the optimal payoffs are nonlinear. Figures 1
and 2 show that both types of investors buy a complex set of contingent claims and
they trade dynamically. To get the payoffs shown in Fig. 1, one could buy a set of
options. For example, the payoff of EU-investor with ¢ = 0.9 can be approximated
by buying a set of call options (or by holding the stock and writing put options). The
left side of the PT-investor’s payoffs can be replicated by writing call options (or by
holding the stock and buying put options).
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Fig. 1 The dependance of Ry
on R for EU- and CPT-
investors with p = 0 and
different parameters

Fig. 2 The dependance of Ry
on R for EU- and CPT-
investors and different
parameters, p = 0.5
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5 Conclusion and Future Work

In the classical portfolio theory, a portfolio is defined to be a set of assets with
weights, the sum of which is equal to 1 (the budget constraint) and the problem
is to find the weights of the specific assets in portfolio to maximize the expected
utility (rather than final payoff). Therefore, the next step in implementation of the
results of this paper is to find optimal portfolios based on characterizations of the
optimal payoffs. In the case of complete market Corollary 2 describes the number of
contingent claims to every state of nature at time T that the CPT-investor should buy.
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We remark that the transformation of the optimal payoffs into the trading strategy is
mainly a technical problem.

Our main assumption is that the market is complete. However, the real world
is different. It is well-known that if the market is not complete, then there are
(infinitely) many discount factors. Moreover, we should be sure that payoffs are
in the space of all available payoffs. Therefore, it should be noted that the problem
of extending in some way the results for complete market to the case of incomplete
ones can be addressed in future work.

This paper examines the one-period problem. Another problem we would like
to address is the problem of extending the results to dynamic setup with long-lived
investors and time-varying moments of assets returns. For example, it would be
interesting to find the solution of the optimal dynamic portfolio problem for PT-
investor in the lognormal iid setup with infinite horizon.
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