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Abstract. The Parikh image of a word abstracts from the order of its
letters. Parikh’s famous theorem states that the set of Parikh images of a
context-free string language forms a semilinear set that can be effectively
computed from its grammar. In this paper we study the computation
of Parikh images for graph grammars defined by contextual hyperedge
replacement (CHR). Our motivation is to generate efficient predictive
top-down (PTD) parsers for a subclass of CHR grammars. We illustrate
this by describing the subtask that identifies the nodes of the input graph
that parsing starts with.

1 Introduction

The Parikh image of a word abstracts from the positions of letters in the word,
by just counting how often these letters occur. Parikh’s theorem states that the
set of Parikh images of a context-free string language forms a semilinear set
that can be effectively computed from its grammar [12]. Another way to put
this is to say that, if the order of symbols in strings is disregarded, in effect
turning every string into a multiset of symbols, then the context-free languages
are effectively equal to the regular ones. This theorem is useful for studying
properties of languages, e.g., for proving that some language is not context-free.

In this paper we study the computation of Parikh images for contextual
hyperedge replacement (CHR) grammars. Our motivation is the automated gen-
eration of efficient parsers for these grammars. In [4], we have devised predictive
top-down (PTD) parsers for a class of CHR grammars,1 a technique similar to
top-down LL(1) string parsing. The complexity of PTD parsing is quadratic in
general and linear in many practical cases, whereas that of general HR pars-
ing (and thus of CHR parsing as well) is known to be NP-complete. Parikh
images are the heart of the PTD parser generation, as they are used to make
rule selection deterministic: imagine that the parser is in a situation where it has
to expand a nonterminal hyperedge labelled A that is attached to a node v of

1 Due to space restrictions, that paper describes only the HR case.
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the input graph, and there are two rules p, p′ with the left-hand side A. Assume
further that we have determined the semilinear sets U, V of terminal edge labels
that derivations starting with p or p′ can attach to v, and that these sets are
disjoint. Then the parser can decide whether to apply p or p′ by inspecting the
part of the input still to be generated, and by checking whether the multiset of
labels of edges actually attached to v belongs to U or to V .

Unfortunately, the exact computation of the required Parikh images is com-
putationally far too expensive. Even more importantly, the resulting semilinear
expressions become so huge that they cannot be handled in a reasonably efficient
manner. Thus, one cannot hope to solve the problem by more efficient algorithms.
We therefore propose a procedure which computes an over-approximation of the
exact solution that is sufficiently close to the exact solution and sufficiently effi-
cient to be used for PTD parser generation. We illustrate its use by considering
the subtask of the parser generator that determines which nodes of the input
graph have to be matched when parsing starts.

The remainder of this paper is structured as follows. In Sect. 2, we recall
Parikh images, and discuss their exact computation for a given grammar. Since
this algorithm is too inefficient for grammars of the size occurring in practi-
cal applications, we devise procedures that over-approximate Parikh images, in
Sect. 3. That far, we discuss just the simple case of context-free string gram-
mars. In Sect. 4, we introduce CHR grammars, and explain how the start nodes
for PTD parsers of CHR grammars can be constructed with the help of the tech-
niques developed in the earlier sections. Finally we mention some related and
future work in Sect. 5.

2 Parikh Images and Grammar Graphs

Let Σ be a finite alphabet. We wish to count occurrences of terminal symbols
in strings over Σ, but disregard the order of the occurrences of symbols. Thus,
in effect, we want to work with finite multisets of elements of Σ rather than
with strings. Instead of the usual free monoid Σ∗ over Σ, we therefore consider
the free commutative monoid Σ� over Σ in which the monoid operator · is
commutative, i.e., a · b = b · a. In other words, · is the union of multisets. If no
confusion is likely to arise, we may drop the operator · in expressions, but the
reader should keep in mind that the order of the symbols a1, . . . , an in a1 · · · an

is irrelevant in this case, despite the string-like appearance of the expression.
Note that, as a special case of this notation, a denotes the singleton multiset
{a}. Finally, we define the partial ordering � on Σ� to be multiset inclusion,
i.e., u � v if v contains every symbol at least as many times as u does.

In the following, let Γ = 〈Σ,N , P, S〉 be a fixed context-free Chomsky gram-
mar with the sets Σ and N of terminal and nonterminal symbols, respectively,
Σ ∩N = ∅, P ⊆ N × (N ∪Σ)� the set of rules (or productions), and S ∈ N the
start symbol. Note that we interpret the right-hand sides of rules as elements of
(N ∪ Σ)� rather than as strings. Accordingly, the language L(Γ ) is a subset of
Σ�, namely the Parikh image of the traditional string language generated by Γ .
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In order to operate on languages L ⊆ Σ�, we make use of the so-called
counting semiring over such languages with the addition + of languages being
their union and multiplication · being the extension of multiset union · to lan-
guages of multisets, i.e., U · V = {u · v | u ∈ U, v ∈ V }. Thus, the additive and
multiplicative identities are the empty set and {ε}, respectively. Again, we write
ε instead of {ε}. Note that the counting semiring is isomorphic to the one on
sets of Parikh vectors counting occurrences of terminal symbols in words over
Σ. We define the Kleene operator � on languages L ⊆ Σ� as usual: L� is the
least set such that L� = ε + L · L�. Since the semiring is commutative as well
as idempotent, we have (K + L)� = K� · L� and (K · L�)� = ε + K · K� · L�.

Parikh’s Theorem [12] states that the commutative language L(Γ ) generated
by Γ is semilinear, i.e., there are finitely many finite languages A1, . . . , An ⊆ Σ�

and B1, . . . , Bn ⊆ Σ� such that L(Γ ) = A1B
�
1 + · · · + AnB�

n . The languages
A1, B1, . . . , An, Bn can be effectively computed, e.g., using a generalization of
Newton’s method [5] but, as explained in the introduction, complexity issues
prevent us from using this fact for PTD parser generation. Instead, we devise a
procedure that over-approximates the exact Parikh image.

The idea underlying the procedure is to consider all possible derivation trees
of Γ and to count the occurrences of terminal symbols in their leaves. We over-
approximate the set of derivation trees, thus computing a semilinear set that
contains the Parikh image of Γ but is sufficiently close to the exact solution.

A graph over our fixed context-free grammar Γ has a set Ġ of nodes. Each
node v ∈ Ġ is labelled with �(v) ∈ P ∪ N ∪ Σ, i.e., either a rule, a nonterminal,
or a terminal symbol of Γ . Instead of explicitly representing edges, each node
v ∈ Ġ is assigned a multiset children(v) ∈ Ġ� of children nodes. A tree over
Γ is just a graph over Γ that satisfies the usual requirements for trees. As a
shorthand notation for a tree t we write α(t1, . . . tn) if t has a root node v with
label α = �(v) and children(v) = v1 · · · vn such that vi is the root node of the
direct subtree ti, for i ∈ [n],2 or just α if v is a leaf.

The set D(α) of derivation trees of Γ with root label α ∈ Σ ∪ N ∪ P is
inductively defined. If α ∈ Σ, the tree consists only of the root as its only node.
If α ∈ N , the tree has a single direct subtree, being a derivation tree whose root
is labeled with a rule applicable to α. If α is a rule in P , for each occurrence of
a symbol in its right-hand side there is a subtree that is a derivation tree with
that symbol as its root label. Formally,

D(α) =

⎧
⎨

⎩

{α} if α ∈ Σ
{α(t) | ∃p = (α, r) ∈ P : t ∈ D(p)} if α ∈ N
{α(t1, . . . , tn) | ∀i ∈ [n] : ti ∈ D(ai)} if α = (A, a1 · · · an) ∈ P.

We now define the Parikh image Ψ(t) of a derivation tree t as the multiset of the
terminal labels of its leaf nodes and the Parikh image ψ(α) of every α ∈ Σ∪N ∪P
as the set of Parikh images of all derivation trees with root label α:

2 [n] denotes the set {1, . . . , n}.
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Ψ(t) =
{

a if t = a and a ∈ Σ
Ψ(t1) · . . . · Ψ(tn) if t = α(t1, . . . , tn) and α ∈ N ∪ P

ψ(α) = {Ψ(t) | t ∈ D(α)}.

By this, ψ(S) is obviously L(Γ ).
In order to approximate the set of all derivation trees, we encode the rules

of Γ in a graph GΓ over Γ , called grammar graph of Γ : GΓ has Σ ∪ N ∪ P
as its node set, and each node is labelled with itself, �(v) = v for each node v.
The multiset of children of a nonterminal node A consists of just the rules with
left-hand side A (in any order), while the multiset of children of a rule node is
simply the right-hand side of that rule, and the multiset of children of a terminal
node is the empty multiset ε:

children(v) =

⎧
⎪⎪⎨

⎪⎪⎩

p1 · · · pn if v ∈ N and p1 · · · pn is the multiset of all rules
with left-hand side v

a1 · · · an if v = (A, a1 · · · an) ∈ P
ε if v ∈ Σ

Clearly, for all α ∈ Σ∪N ∪P the derivation trees with root α can be read off GΓ

by starting at the node α and recursively selecting one of its children if α ∈ N
(thus choosing a rule for α) or all of them if α ∈ P (thus building sub-derivations
that correspond to the nonterminals in the right-hand side of α).

Our aim is to compute L(Γ ) = ψ(S) by counting terminal leaves of the
derivation trees with root S. Recall that the strongly connected components
(SCCs) of the grammar graph are just the maximal subgraphs in which every
node can be reached from every other node on a directed path. Thus, nodes
belonging to the same cycle are in the same SCC. We identify an SCC with the
set C of its nodes. The problem of counting terminal leaves of complete derivation
trees can thus be broken down into the simpler problem of considering each SCC
of the grammar graph separately, solving the problem for the (possibly infinite)
set of all partial derivation trees that can be “read off” this individual SCC, and
combining these solutions to obtain one for the derivation trees of Γ .

We now define how to read off trees from C. These trees are called the
component trees of C. For this, let us call a node v a successor of an SCC C if
v is a child of a node u ∈ C but v �∈ C. We denote the set of all successors of C
by succ C. Note that successors can be terminals, nonterminals, as well as rules.
The set treesC(v) of all component trees that can be read off an SCC C starting
at v ∈ C ∪ succ C is defined as follows:

treesC(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{v} if v ∈ Σ ∩ C or v ∈ succ C
{v(t) | t ∈ treesC(vi) for some i ∈ [k]}

if v ∈ N ∩ C and children(v) = v1 · · · vk

{v(t1, . . . , tk) | ti ∈ treesC(vi) for each i ∈ [k]}
if v ∈ P ∩ C and children(v) = v1 · · · vk

A derivation tree t can be composed from component trees t1, t2 if t1 has a
leaf v with the same label as the root r of t2, i.e., �(v) = �(r) = u ∈ C2 ∩ succ C1

for SCCs C1, C2. Then t is obtained from t1 and t2 by merging v and r.
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Fig. 1. Grammar graph of the
grammar in Example 1 with
indicated strongly connected
components.

Fig. 2. Derivation tree of a2b5.

Example 1. As an example we consider the grammar with Σ = {a, b},
N = {S,A,B, T}, and rules p1 = 〈S, TT 〉, p2 = 〈T,AS〉, p3 = 〈T,B〉, p4 =
〈A, aa〉, p5 = 〈B, bB〉, p6 = 〈B, b〉. Figure 1 shows its grammar graph with indi-
cated strongly connected components and Fig. 2 shows a derivation tree of a2b5.
The derivation tree is made up of (copies of) the following nine component
trees: t1 ∈ treesC1(b), t2 ∈ treesC2(p6), t3,1, t3,2 ∈ treesC3(B), t4 ∈ treesC4(p3),
t5 ∈ treesC5(a), t6 ∈ treesC6(p4), t7 ∈ treesC7(A), and t8 ∈ treesC8(S). ♦

The procedure for computing Parikh images (and approximated Parikh
images later) of derivation trees runs in three basic steps:

1. The SCCs of the grammar graph are computed.
2. A DAG of SCCs is obtained by contracting each SCC to a single node.
3. This DAG is evaluated in a bottom-up fashion, processing each SCC in turn

as described in the following.

The processing of a SCC results in a Parikh image ψ(v) associated with each node
v of the SCC. Let C be the next SCC to be processed, assuming that all SCCs
containing children of C have already been processed. We determine ψ(v) for
each v ∈ C. If v is terminal then C = {v} and ψ(v) is a singleton. Hence, the case
of v ∈ Σ∩C does not need to be considered anymore below. For v ∈ (N ∪P )∩C,
we can determine ψ(v) by collecting the Parikh images of all component trees
of C, letting the successor nodes of C act as terminal symbols. Clearly, this
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component-specific Parikh image of a component tree t ∈ treesC(v) is

ΨC(t) =
{

a if t = a ∈ succ C
ΨC(t1) · . . . · ΨC(tk) if t = α(t1, . . . , tk) and α ∈ (N ∪ P ) ∩ C.

The set of component-specific Parikh images of a node v ∈ C is then defined as

ψC(v) = {ΨC(t) | t ∈ treesC(v)}.

The actual Parikh image ψ(v) for a node v ∈ C can then be obtained from ψC(v)
by substituting each occurrence of any node u ∈ succ C by ψ(u), which has been
determined previously.

One can compute ψC(v) by interpreting the subgraph induced by C ∪ succ C
as a system of equations to be solved. Nodes in succ C are constants representing
given Parikh images (that have been determined previously in the bottom-up
process). Each node v ∈ (N ∪ P ) ∩ C with its children v1, . . . , vk stands for a
variable defined by an equation. If v is a rule, the equation is v = v1 · . . . · vk,
otherwise it is v = v1 + · · · + vk.

Example 2. The system of equations for SCC C3 of the grammar graph shown
in Fig. 1 is

B = p5 + p6 p5 = bB.

It has the solution B = p6b
�, p5 = p6bb

�. The system of equations for C8 is

S = p1 p1 = TT T = p2 + p3 p2 = AS

with the solution S = p1 = p3p3(Ap3)�, T = p3(Ap3)�, p2 = Ap3p3(Ap3)�. ♦
Such a system of equations is called linear if there are no products (by ·)

of more than one variable, i.e., if no rule node in C has more than one child
in C (e.g., C3 in the example above). Therefore we call such an SCC linear, too.
Each linear system of equations corresponds to a finite automaton and can be
algebraically solved using Brzozowski’s method [1]. If it is non-linear, i.e., if there
is a term involving a product of two variables (e.g., C8 in the example above),
one can solve it using a generalization of Newton’s method [5].

3 Approximating Parikh Images

Let us call a tree repetitive if there are two distinct but equally labeled nodes on
a path from the root to a leaf, and non-repetitive otherwise. We now show how
to compute approximated Parikh images ψ′(v) instead of ψ(v) by computing
ψ′

C(v) as an approximation of ψC(v) according to (1) when SCC C is processed:

ψ′
C(v) = AC(v) · (repC)� (1)

where

AC(v) = {ΨC(t) | t ∈ treesC(v) and t is non-repetitive} (2)

repC =

⎧
⎨

⎩

∅ if |C| = 1
(succ C)\P if |C| > 1 and C is linear
succ C if |C| > 1 and C is not linear

(3)
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Table 1. Approximated Parikh images for the grammar graph in Fig. 1.

v SCC type repC non-repetitive trees AC(v) ψ′
C(v) ψ′(v) ψ′′(v)

b C1 elem. ∅ {b} b b b b

p6 C2 elem. ∅ {p6(b)} b b b b

B C3 linear {b} {B(p6)} p6 p6b� bb� bb�

p3 C4 elem. ∅ {p3(B)} B B bb� bb�

a C5 elem. ∅ {a} a a a a

p4 C6 elem. ∅ {p4(a, a)} aa aa aa aa

A C7 elem. ∅ {A(p4)} p4 p4 aa aa

S C8 non-lin. {A, p3} {S(p1(T (p3), T (p3)))} p3p3 p3p3A�p�
3 bb(aa)�b� bba�b�

Example 3. Table 1 summarizes the results when applying the procedure of com-
puting the approximated Parikh images for the grammar in Example 1. The table
shows in each row a node v of the grammar graph in Fig. 1, its SCC C and the
type of C where linear SCCs are distinguished from non-linear and elementary
ones, the latter being those with |C| = 1. Set repC of the SCC and the set of
all non-repetitive component trees with root label v follow. The three remaining
entries are the sets AC(v), ψ′

C(v), and ψ′(v), written as algebraic terms. ψ′(v) is
obtained from ψ′

C(v) by substituting each occurrence of any node u ∈ succ C by
ψ′(u), which has been determined previously. (The last column will be explained
in Example 4 below.)

Note that the computed approximated Parikh image is ψ′(S) = bb(aa)�b� =
{a2ibj | i � 0 ∧ j � 2} whereas the exact set, as one can see, is ψ(S) =
bb(aab)�b� = {a2ibi+j | i � 0 ∧ j � 2}, i.e., ψ′(S) = ψ(S) + aa(aa)�(aab)�. ♦

We now examine how precise the approximation is. It is immediately clear
that ψC(v) = ψ′

C(v) if C is elementary, i.e., |C| = 1. We now show that the
exact component-specific Parikh images are subsets of their approximations
(Lemma 1). But the approximation does not contain elements completely unre-
lated to the exact solution; instead, each approximated element can be extended
to one contained in the exact Parikh image (Lemma 2).

Lemma 1. ψC(v) ⊆ ψ′
C(v) for each SCC C and v ∈ C.

Proof. We presume an arbitrary SCC C, node v ∈ C, and tree t ∈ treesC(v),
and show that ΨC(t) ∈ AC(v) · (rep C)�. The proof is by induction on the size
of t. Thus, assume that ΨC(t′) ∈ AC(v) · (rep C)� for all t′ ∈ treesC(v) such that
t′ is smaller than t. We distinguish three cases.

Case 1 (t is non-repetitive). The proposition follows from ΨC(t) ∈ AC(v).

Case 2 (t is repetitive and C is linear). As t is repetitive, there are two nodes
v1 and v2 on a path in t such that �(v1) = �(v2). This decomposes t into three
trees t1, t2, t3 as shown in Fig. 3. By the linearity of C all leaves of t2 except v2
are in (succ C)\P = repC, which means that ΨC(t2) ∈ (rep C)�. Moreover, the
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Fig. 3. Construction for Lemma 1 Fig. 4. Construction for Lemma 2

tree t′ obtained from t1 and t3 by identifying v1 and v2 is in treesC(v) and is
smaller than t. Hence, the induction hypothesis yields

ΨC(t) = ΨC(t′) · ΨC(t2) ∈ AC(v) · (repC)� · (repC)� = AC(v) · (repC)�.

Case 3 (t is repetitive and C is not linear). Decompose t as in the previous case.
Again, ΨC(t2) ∈ (repC)�, this time because all leaves of t2 except v2 are in
succ C = repC. Consequently, the same argument as above applies. ��

Lemma 2. For each SCC C, v ∈ C, and α ∈ ψ′
C(v), there are ′α, α′ ∈ ψC(v)

such that ′α � α � α′.

Proof. We presume an arbitrary SCC C, node v ∈ C, and α ∈ ψ′
C(v). By (1)

and (2), there is a non-repetitive tree t̃ ∈ treesC(v) and a β ∈ (repC)� such that
α = ΨC(t̃) · β and, therefore, ΨC(t̃) � α. In other words, ′α � α for ′α = ΨC(t̃).
It remains to be shown that there is a tree t ∈ treesC(v) such that α � ΨC(t).
We distinguish the three cases in Eq. (3) above.

Case 1 (|C| = 1). In this case α ∈ AC(v), and thus α = ΨC(t) for a tree
t ∈ treesC(v).

Case 2 (|C| > 1 and C is linear). C is strongly connected, i.e., C has a cycle
containing each node in C. By following this cycle once, starting at v, one creates
a tree t′ with both the root and a leaf labelled by v, and such that each node
v ∈ repC occurs as the label of at least one node. For each i � 0, construct ti ∈
treesC(v) from t̃ and i isomorphic copies of t′ as shown in Fig. 4. By choosing i to
be the maximum multiplicity of elements in β, one obtains α = ΨC(t̃)·β � ΨC(ti)
because β ∈ (repC)� and repC � ΨC(t′).

Case 3 (|C| > 1 and C is not linear). Let n be the maximum multiplicity of
elements in α, i.e., α � (succ C)n. By the non-linearity of C, there is a path
from v to a rule node r having two distinct nodes u, u′ ∈ C among its children.
But there is also a path from u′ back to v, which by iteration yields a path
starting at v and containing k occurrences of r, for any k. Moreover, again since
C is strongly connected, there are t1, . . . , tk ∈ treesC(u) (for a sufficiently large k)
such that every node in succC occurs in at least n of the ti. Putting these pieces
together, we obtain a tree t ∈ treesC(v) such that α � (succ C)n � ΨC(t). ��
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Fig. 5. Parikh images for the grammar in Examples 1–4

The following corollary is an immediate consequence of Lemmas 1 and 2:

Corollary 1. For each v ∈ Σ ∪ N ∪ P , the following holds:

– ψ(v) ⊆ ψ′(v)
– For each α ∈ ψ′(v), there are ′α, α′ ∈ ψ(v) such that ′α � α � α′.

In particular, each least element of ψ′(v) is also a least element in ψ(v).
Approximating ψ(v) by ψ′(v) has turned out to be still too inefficient when

used for generating parsers for CHR grammars. The most expensive operation
is to compute ψ′(v) from ψ′

C(v) by substituting ψ′(u) for each occurrence of any
node u ∈ succ C. This, however, becomes manageable when semilinear sets are
approximated by simple semilinear sets. We call a semilinear set M simple if
there are finitely many finite sets A1, . . . , An ⊆ Σ� and B1, . . . , Bn ⊆ Σ such
that M = A1B

�
1 + · · · + AnB�

n . (Note that, in contrast to general semilinear
sets, B1, . . . , Bn are now subsets of Σ rather than of Σ�.)

Our approximation of Parikh images using simple semilinear sets now works
exactly as before, except for an additional simplification step that lets us compute
simple semilinear sets ψ′′(v) instead of ψ′(v): first, in ψ′

C(v), substitute each
occurrence of any node u ∈ succ C by the recursively computed ψ′′(u). Since
· distributes over +, we can write the resulting expression in the form A1C1 +
· · ·+AnCn, where the Ai are products not containing � and the Ci are products
and sums of expressions of the form E�. Finally, ψ′′(v) = A1B

�
1 + · · · AnB�

n ,
where Bi = {a ∈ Σ | aoccurs inCi}. One can now verify that Lemmas 1, 2, and
Corollary 1 still hold if ψ′ is replaced by ψ′′.

Example 4. The last column in Table 1 above summarizes the results when
applying the procedure of computing the Parikh images for the grammar in
Example 1 approximated by simple semilinear sets.

Note that the approximated Parikh image of the generated language is now
ψ′′(S) = bba�b� = {aibj | i � 0 ∧ j � 2} = ψ′(S) + abb(aa)�b�, where
ψ′(S) = bb(aa)�b� and ψ(S) = bb(aab)�b� (see Example 3). Figure 5 shows
elements of the Parikh images in the (a, b) plane. ♦
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4 Application to Deterministic Graph Parsing

In order to illustrate how the approximation of Parikh images can be used to
generate predictive top-down (PTD) graph parsers, we recall contextual hyper-
graph replacement (CHR) as far as it is needed to understand the example. (See
[3,4] for details of CHR grammars and PTD parsing, resp.)

We consider a ranked labeling alphabet Σ that comes with an arity function
arity : Σ → N. A hypergraph G = 〈Ġ, Ḡ, attG, �G〉 over Σ (graph, for short)
consists of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short)
respectively, a function attG : Ḡ → Ġ∗ that attaches sequences of nodes to edges,
and a labeling function �G : Ḡ → Σ so that |attG(e)| = arity(�G(e)) for every
edge e ∈ Ḡ. The set of all graphs over Σ is denoted by GΣ . For a graph G and
an edge e ∈ Ḡ, we denote by G − e the graph obtained by removing e from G.

For graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ preserving labels and attachments: �H ◦
m̄ = �G, and attH ◦ m̄ = ṁ∗ ◦ attG; m is injective if both ṁ and m̄ are injective.

We consider edges labeled with a distinguished subset X ⊆ Σ as nontermi-
nals. A contextual rule (rule, for short) L :: = R consists of graphs L and R
over Σ such that (1) the left-hand side L contains exactly one edge x, which is
required to be a nonterminal (i.e., L̄ = {x} with �̄L(x) ∈ X) and (2) the right-
hand side R is a supergraph of L − x. Nodes in L that are not attached to x
are the contextual nodes of L (and of r); r is context-free if it has no contextual
nodes.

Let r be a contextual rule as above, and consider some graph G. If there
is an injective morphism m : L → G, the replacement of m(x) by R (via m) is
given as the graph H obtained from the disjoint union of G − m(x) and R by
identifying every node v ∈ L̇ with m(v). We then write G ⇒r H.

Let R be a finite set of contextual rules. We write G ⇒R H if G ⇒r H for
some rule r ∈ R, and denote the transitive-reflexive closure of ⇒R by ⇒∗

R.
A contextual hyperedge-replacement graph grammar (CHR grammar, for

short) is a triple Γ = 〈Σ,R, Z〉 consisting of a finite labeling alphabet Σ, a
finite set R of contextual rules, and a start graph Z ∈ GΣ consisting of a sin-
gle nonterminal without any attached nodes. The language of terminal graphs
generated by Γ is given by L(Γ ) = {G ∈ GΣ\X | Z ⇒∗

R G}.
Below, following [4], we denote graphs as multisets of literals a(v1, . . . , vk).

Such a literal represents an edge that carries a k-ary label a ∈ Σ and connects
nodes v1, . . . , vk. An isolated node x (such as a context node) is represented by
the literal (x).

Example 5 (Flowcharts). A flowchart graph represents the control flow of a
program, where nodes (circles) represent program states that are connected
by edges representing decisions (diamonds), activities (rectangles), and gotos
(thick arrows). An example is the graph in Fig. 6 which, if represented by
means of edge literals as introduced above, would be denoted textually as
dec(a, b, c) goto(b, d) act(c, d). (Recall that this should be read as a multiset
of literals, despite its string-like appearance.)
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Fig. 6. A flowchart graph.

Now consider the rules

S()
i

:: = D(x) D(x)
a

:: = act(x, y) D(y) D(x)
h

:: = (x)

D(x)
b

:: = dec(x, y, z) D(y) D(z) D(x) (y)
g

:: = goto(x, y)

The context-free rules i, a, b, h generate flow trees of decisions and activities;
the contextual rule, g, inserts gotos to a program state generated elsewhere.
Note that these rules can generate unstructured “Spaghetti code”; this cannot
be achieved by context-free rules alone.

The flowchart in Fig. 6 is generated as follows:

S() ⇒i D(a)
⇒b dec(a, b, c) D(b) D(c)
⇒a dec(a, b, c) D(b) act(c, d) D(d)
⇒h dec(a, b, c) D(b) act(c, d)
⇒g dec(a, b, c) goto(b, d) act(c, d)

Note that the derivation using rule h does not produce an isolated node d.
Therefore, literal (d) is omitted. ♦

One obvious task a graph parser must be able to perform is to identify the
nodes at which the processing starts, i.e., which nodes correspond to those in
the right-hand side of the initial rule applied. For PTD parsing some (or all) of
these nodes – they are called start nodes in the following – must be determined
in a syntactically correct graph by their neighborhood, i.e., their incident edges.
We now describe how this can be done using approximated Parikh images.

Let us introduce the notion of neighborhoods first. Given a graph H and any
node v (not necessarily of H), the neighborhood of v in H is obtained by merging
all nodes except v into one. When H is represented by literals, this neighborhood
graph [H]v is obtained by replacing each occurrence of v in a literal by a unique
new node •, and all other nodes by a “don’t care” node ◦. Isolated nodes are
removed, i.e., only edge literals are kept.

It is important to note that the set of literals a(v1, . . . , vk) that appear in
[H]v (for a given CHR grammar) is finite, because a is taken from the finite set
of terminal edge labels and v1, . . . , vk ∈ {•, ◦}. Thus we can view the set of these
literals as a complex but finite alphabet Δ, and every [H]v as an element of Δ�.
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Hence every set of such graphs [H]v becomes a commutative language over Δ,
which allows us to apply the results of Sects. 2 and 3 to these languages.

Example 6. The neighborhood of node d in the graph H shown in Fig. 6 is [H]d =
dec(◦, ◦, ◦) goto(◦, •) act(◦, •). It represents the fact that d has just one incoming
goto edge and one incoming act edge, and there is just one dec edge which is not
incident with d. ♦

Given a syntactically correct graph H, we want to determine for each v ∈ Ḣ,
by just considering its neighborhood, which rule p = (L :: = R) has generated
v in the derivation Z ⇒∗ H. If p generates not just a single node, we also want
to know which node u ∈ Ṙ\L̇ actually corresponds to v. This can sometimes be
done by computing, for each rule p = (L :: = R) and node u ∈ Ṙ\L̇,

nh(p, u) = {[H]v ∈ Δ� | H is terminal, Z ⇒∗ G ⇒p G′ ⇒∗ H,

v ∈ Ḣ, and v is the image of u created in G ⇒p G′}.

The set nh(p, u) contains all possible neighborhoods of copies v of u created by
applying p in a derivation of a syntactically correct graph.

The parser can identify node v ∈ Ḣ as a start node corresponding to a
node u in start rule p if [H]v ∈ nh(p, u), but [H]v /∈ nh(p′, u′) for each (p′, u′) �=
(p, u). The parser can identify the corresponding start node of every syntactically
correct graph if nh(p, u) ∩ nh(p′, u′) = ∅ for each (p′, u′) �= (p, u).

In order to compute neighborhoods, we use the fact that each CHR derivation
corresponds to a derivation of neighborhoods. To see this, let [p]u, for any CHR
rule p = (L :: = R) and for any node u (not necessarily in L̇∪Ṙ), be the context-
free rule [L]u :: = [R]u over Δ. It is clear that [p]u is context-free because [L]u
is a single literal, and that, for all graphs G,G′ with G ⇒p G′ and each node
v, there is a node x and a multiset α of literals such that [G]v = α[L]x and
[G′]v = α[R]x, i.e., a context-free derivation [G]v ⇒[p]x [G′]v.

Define sets of mapped rules P ◦ = {[p]x | p = (L :: = R) ∈ R and x /∈ Ṙ} and
P • = {[p]x | p = (L :: = R) ∈ R and x ∈ L̇}. Thus, P ◦ consists of all rules not
containing • at all and P • consists of those containing • in both the left-hand
side and right-hand side (except for contextual rules where a contextual node x
is mapped to •, as in this case [p]x contains • only in its right-hand side).

Now, consider any CHR rule p = (Lp :: = Rp) and any node u ∈ Ṙp\L̇p.
Let G,G′ be graphs such that Z ⇒∗ G ⇒p G′ and v ∈ Ġ′ a node that has
been created in the last step, being the image of u ∈ Ṙ\L̇. Then this means
that there is a multiset α of literals, called a vicinity multiset of [Lp]u, such that
[Z]v ⇒∗

P ◦ [G]v = α[Lp]u. A neighborhood of v is obtained when G′ is derived
to a terminal graph H and [G′]v = α[Rp]u is derived in a corresponding way.
Clearly, for every terminal graph H with G′ ⇒∗ H, there are multisets α′, α′′

such that [G′]v = α[Rp]u ⇒∗
P ′ α′α′′ = [H]v with α ⇒∗

P ′ α′ and [Rp]u ⇒∗
P ′ α′′

using the set of rules P ′ = P ◦ ∪ P •. Note that the crucial middle step, which
uses the rule [p]u to create • is not covered by the rules in P ′.
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Example 7. The sets P ◦ and P • of context-free rules for the flowcharts rules
shown in Example 5 are

P ◦ =

⎧
⎪⎪⎨

⎪⎪⎩

S()
[i]◦
:: = D(◦)

D(◦)
[a]◦
:: = act(◦, ◦) D(◦) D(◦)

[b]◦
:: = dec(◦, ◦, ◦) D(◦) D(◦)

D(◦)
[g]◦
:: = goto(◦, ◦) D(◦)

[h]◦
:: = ε

⎫
⎪⎪⎬

⎪⎪⎭

P • =

⎧
⎪⎪⎨

⎪⎪⎩

D(•)
[a]x
:: = act(•, ◦) D(◦) D(•)

[b]x
:: = dec(•, ◦, ◦) D(◦) D(◦)

D(•)
[g]x
:: = goto(•, ◦) D(◦)

[g]y
:: = goto(◦, •)

D(•)
[h]x
:: = ε

⎫
⎪⎪⎬

⎪⎪⎭

Let us consider rule a and its generated node y in the example derivation shown
in Example 5. Rule a is applied to graph G = dec(a, b, c) D(b) D(c), resulting in
graph G′ = dec(a, b, c) D(b) act(c, d) D(d) and, after continuing the derivation,
in graph H = dec(a, b, c) goto(b, d) act(c, d), i.e., node y in rule a corresponds to
node d in G′ and also in H. The neighborhood of d in H, therefore, is derived
as follows:

S() ⇒[i]◦ D(◦)
⇒[b]◦ dec(◦, ◦, ◦) D(◦)

︸ ︷︷ ︸
α

D(◦)
︸ ︷︷ ︸
[La]y

⇒[a]y dec(◦, ◦, ◦) D(◦)
︸ ︷︷ ︸

α

act(◦, •) D(•)
︸ ︷︷ ︸

[Ra]y

⇒[h]x dec(◦, ◦, ◦) D(◦) act(◦, •)
⇒[g]y dec(◦, ◦, ◦) goto(◦, •)

︸ ︷︷ ︸
α′

act(◦, •)
︸ ︷︷ ︸

α′′

Note the correspondence of applied context-free rules and the CHR rules applied
in Example 5. Note also that the vicinity multiset α = dec(◦, ◦, ◦) D(◦) does not
contain •, but its derived multiset α′ = dec(◦, ◦, ◦) goto(◦, •) does. This is so
because rule g uses d as a context node in the CHR derivation. ♦

We now show that the set of all possible vicinity multisets α of [Lp]u is actu-
ally a context-free language. To see this, we consider the context-free derivation
sequence [Z]v ⇒∗

P ◦ [G]v = α[Lp]u. [Z]v and [Lp]u are nonterminal literals. There-
fore, there is a context-free derivation sequence A0 ⇒P ◦ α1A1 ⇒P ◦ α1α2A2 ⇒P ◦

· · · ⇒P ◦ α1 · · · αnAn with nonterminal literals A0, . . . , An and A0 = [Z]v as well
as An = [Lp]u, (Ai :: = αi+1Ai+1) ∈ P ◦ for each i, and α1 · · · αn ⇒∗

P ◦ α. We
introduce a new nonterminal symbol Av for each nonterminal literal A and define
the set P v of vicinity rules as

P v = {(Bv :: = γAv) | (A :: = γB) ∈ P ◦ and B is nonterminal} ∪ {[Z]v◦ :: = ε}.

Note once more that γB is a multiset, so B may be any nonterminal in the
right-hand side of A :: = γB. Intuitively, if a derivation tree t over P contains a
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nonterminal node u labelled by B, then P v allows to derive from B the “context”
of u in t, yielding the multiset that consists of all literals generated by t, except
for the subtree rooted at u.

One can now verify that the set of all vicinity multisets just consists of each
multiset α such that [Lp]vu ⇒∗

P ′′ α with P ′′ = P ◦ ∪ P v, and, therefore

nh(p, u) = {α | [Rp]u[Lp]vu ⇒∗
P s α and α contains terminal literals only}

where P s = P ◦ ∪ P • ∪ P v. The set of all neighborhoods can thus be computed
as the Parikh image of a new nonterminal symbol Su

p

nh(p, u) = ψ(Su
p )

using the set P s ∪ {Su
p :: = [Rp]u[Lp]vu} of rules.

Example 8. The set P v of vicinity rules for flowcharts (Example 5) is

P v =

{
S()v :: = ε D(◦)v

av

:: = act(◦, ◦) D(◦)v

D(◦)v
iv

:: = S()v D(◦)v
bv

:: = dec(◦, ◦, ◦) D(◦) D(◦)v

}

The only rules in Example 5 that generate any nodes are rules i, a, and b,
generating nodes x (rule i), y (rules a and b), and z (rule b). Therefore, we must
determine nh(i, x), nh(a, y), nh(b, y), and nh(b, z), which requires the additional
nonterminals Sx

i , Sy
a , Sy

b , and Sz
b together with the following rules:

Sx
i :: = D(•) S()v Sy

b :: = dec(◦, •, ◦) D(•) D(◦) D(◦)v

Sy
a :: = act(◦, •) D(•) D(◦)v Sz

b :: = dec(◦, ◦, •) D(◦) D(•) D(◦)v

The approximated Parikh images over-approximate the corresponding sets of
possible neighborhoods:

ψ′′(Sx
i ) = ε + goto(•, ◦) +

(
dec(•, ◦, ◦) + act(•, ◦)

) · U

ψ′′(Sy
a ) = act(◦, •) · Q

ψ′′(Sy
b ) = dec(◦, •, ◦) · Q

ψ′′(Sz
b ) = dec(◦, ◦, •) · Q

where

Q =
(
ε + goto(•, ◦) + dec(•, ◦, ◦) + act(•, ◦)

) · U

U = goto(◦, •)�dec(◦, ◦, ◦)�goto(◦, ◦)�act(◦, ◦)�

A careful look at these sets reveals that ψ′′(Sx
i )∩(

ψ′′(Sy
a )∪ψ′′(Sy

b )∪ψ′′(Sz
b )

)
= ∅,

i.e., the start node for parsing H is the unique node v ∈ Ḣ whose neighborhood
is contained in ψ′′(Sx

i ). It is the node which has no other incoming edges than
goto edges. ♦
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In general, an analysis such as the one above can easily be made automatically
once the simple semilinear sets have been computed, because expressions using
union and intersection of such sets can easily be checked for emptiness. If the
intersection is nonempty, PTD parsing is not possible, because the parser cannot
determine unique start nodes for every input graph.

The neighborhood of a node v contains a literal for each edge in the graph,
even for those edges that are not incident with v and, therefore, do not con-
tain • in their literals (e.g., act(◦, ◦) in Example 8). At the expense of loosing
some information, one can omit such literals from the neighborhood and use this
modified definition of neighborhoods instead. For the flowchart example, there-
fore, one can determine the start node of a graph as the node with the following
approximated set of (modified) neighborhoods, obtained from ψ′′(Sx

i ):

ε + dec(•, ◦, ◦)goto(◦, •)� + act(•, ◦)goto(◦, •)� + goto(•, ◦).

This simple semilinear set determines the start node as the node without any
incident edges (first subterm), as the node with a leaving act or dec edge, any
number of incoming goto edges, but no other edge (second and third subterm), or
as the node that has a leaving goto edge, but does not have any other incident
edge (fourth subterm).3 The parser can actually determine all start nodes in
linear time in the number of edges and nodes of the graph when using modified
neighborhoods and when storing graphs with adjacency lists. This is so because
the parser must check for each node whether it is one of the start nodes. To
this end it must visit each of the incident edges and compute the neighborhood
by counting the occurrences of literals. Using the resulting representation of the
multiset as a tuple of natural numbers, membership of the neighborhood in a
simple semilinear set can be checked in constant time. The proposition follows
from the fact that each edge is visited as often as indicated by its arity.

5 Conclusions

In this paper we have devised a procedure for approximating Parikh images, and
we have shown how this can be used to find the start nodes for PTD parsers of
CHR grammars; the procedure is also used for another property of PTD parsers,
called neighbor-determined rule choice in [4].

Semilinear sets are studied and applied in various fields such as complex-
ity and computational theory [9,11], formal verification [13], and program
analysis [5]. The membership problem for a fixed semilinear set is of lin-
ear time complexity [6], but the constants involved would become huge even
for small grammars. In fact, the uniform membership problem for semilinear

3 Note that a node with just a leaving goto edge can actually not be a starting node
although this is indicated by ψ′′(Sx

i ). The reason for this over-approximation is that
rule [g]x can be be applied to D(•) even if there is no additional node that could be
used as a context node, which is actually necessary for applying CHR rule g.
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sets is NP-complete [8] even if the sets are represented explicitly in the form
A1B

�
1 + · · · + AnB�

n . Furthermore, extracting this explicit form from a context-
free Chomsky grammar creates an exponential blow-up in itself. This makes
further simplifications mandatory. In practice, it seems that simple approxi-
mated Parikh images provide a reasonable compromise between generality and
computational efficiency (cf. the experimental evaluation reported in [4]).

Early work on parsing graphs has used little static analysis of grammars
[7,10], and the parser generator for positional grammars [2] defers many decisions
to parser execution time, and leaves the determination of start nodes to the users
of the parsers.

The results of this paper will not only allow us to give a precise definition of
the parser generation for CHR grammars; it will also be essential for our future
work on generating deterministic bottom-up parsers for CHR grammars, which
work analogously to LR(1) string parsers.
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