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Abstract. Parallel independence between transformation steps is a
basic and well-understood notion of the algebraic approaches to graph
transformation, and typically guarantees that the two steps can be
applied in any order obtaining the same resulting graph, up to isomor-
phism. The concept has been redefined for several algebraic approaches
as variations of a classical “algebraic” condition, requiring that each
matching morphism factorizes through the context graphs of the other
transformation step. However, looking at some classical papers on the
double-pushout approach, one finds that the original definition of paral-
lel independence was formulated in set-theoretical terms, requiring that
the intersection of the images of the two left-hand sides in the host graph
is contained in the intersection of the two interface graphs. The relation-
ship between this definition and the standard algebraic one is discussed
in this position paper, both in the case of left-linear and non-left-linear
rules.

1 Introduction and Background

Graph transformation (GT) is a well-developed computational model suited to
describe the evolution of systems. System states are represented by graphs, and
rules typically describe local changes of part of the state. One central topic in the
theory of GT has been the identification of conditions that guarantee that two
transformation steps from a given state are independent, and thus can be applied
in any order generating the same result. Interestingly, two transformation steps
commute (have the so-called diamond property) even if their matches overlap,
provided that they overlap only on items that are preserved by both.

In this short paper we start comparing two classical definitions of parallel
independence of transformation steps proposed for the Double-Pushout (DPO)
approach to graph transformation. Not surprisingly, we show that they are equiv-
alent for linear rules. But if rules are non-left-linear, as allowed for example in
the [Reversible] Sesqui-Pushout ([R]SqPO) approach where rules can specify
the cloning of items, they are not equivalent anymore: The equivalence can be
recovered by reinforcing one of the two definitions with an additional condition.

The reader is assumed to be familiar with the DPO approach and recent cate-
gorical development of its theory, including the definition and some properties of
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adhesive categories. We briefly recall in the rest of this introductory section a few
definitions (final pullback complement, DPO and (Reversible) Sesqui-Pushout
approaches).

In order to fix the terminology, let us recall the standard definition of Double-
Pushout transformation [13] in a generic category C.

Definition 1 (Double-Pushout transformation). A production ρ = (L l←
K

r→ R) is a span of arrows in C. Production ρ is left-linear if l is mono,
right-linear if r is mono, and linear if both l and r are monos. A match for a
production ρ in an object G is an arrow m : L → G. If the diagram in (1) can be
constructed in C, where both squares are pushouts, then we say that there is a
transformation step from G to H via (ρ,m), and we write G ⇒(ρ,m) H. In this
case we call the pair (ρ,m) a redex in G, and we call it (left-, right-) linear if so
is ρ. We write G ⇒ρ H if there is a match m for ρ in G such that G ⇒(ρ,m) H.

L

m

��

K
l�� r ��

n

��

R

p

��
G D

g�� h �� H

(1)

Therefore if (ρ,m) is a redex in G we know that ρ can be applied to match m
in G. In diagram (1), K is called the interface and D the context.

The definition of (Reversible) Sesqui-Pushout transformation [5,7] is very
similar to DPO transformation, the only difference being the properties that the
left and right squares of diagram (1) have to satisfy. We first recall the definition
of final pullback complement.

Definition 2 (final pullback complement). In diagram (2), K
n→ D

a→ G

is a final pullback complement of K
l→ L

m→ G if
1. the resulting square is a pullback, and
2. for each pullback G

m← L
d← K ′ e→

D′ f→ G and arrow K ′ h→ K such
that l◦h = d, there is a unique arrow
D′ g→ D such that a◦g = f and g◦e =
n ◦ h. (2)

Definition 3 ((Reversible) Sesqui-Pushout transformation). Under the
premises of Definition 1, we say that there is an SqPO transformation step from
G to H via (ρ,m) if the diagram in (1) can be constructed in C, where the left
square is a final pullback complement and the right square is a pushout. Similarly,
there is a Reversible SqPO transformation step from G to H via (ρ,m) if the
diagram in (1) can be constructed in C, where both the left and the right squares
are both final pullback complements and pushouts.
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2 Comparing Definitions of Parallel Independence: The
Left-Linear Case

The Local Church-Rosser Problem is presented in the following way in [6]:

Find a condition, called parallel independence, such that two alternative
direct derivations H1 ρ1⇐ G ⇒ρ2 H2 are parallel independent iff there are
direct derivations H1 ⇒ρ2 X and H2 ⇒ρ1 X such that G ⇒ρ1 H1 ⇒ρ2 X
and G ⇒ρ2 H2 ⇒ρ1 X are equivalent.

Deliberately we leave this statement at a pretty informal level, avoiding to define
formally the notion of equivalence of derivation sequence: For the interested
reader, several kinds of such equivalences are discussed in [4] and in Sect. 3.5 of
[6], the most relevant of which are based on the classical shift equivalence [14].
Also, for the sake of simplicity, we do not consider the related notion of sequential
independence of two consecutive transformation steps.

Relevant for the present discussion is the observation that the above state-
ment fixes a standard pattern for addressing the Local Church-Rosser Problem
in the various approaches to algebraic graph transformation: first, a definition
of parallel independence for transformation steps has to be provided, next a
Local Church-Rosser Theorem proves that given two parallel independent trans-
formation steps from a given graph, they can be applied in both orders obtain-
ing the same result (up to isomorphism). Disregarding the proofs of the Local
Church-Rosser Theorems, in the following we aim at relating and comparing a
few definitions of parallel independence.

In [9], a standard reference for the DPO approach, two definitions of parallel
independence are presented. The first one is stated in a set-theoretical way for
the category Graph of graphs and graph homomorphism, and for linear pro-
ductions. It says that two linear redexes are parallel independent if they satisfy
Condition 1.

Condition 1 (preservation of intersection of matches). In category
Graph, (ρ1,m1) and (ρ2,m2) are two redexes in a graph G, as in diagram (3).
The intersection of matches m1 and m2 in G is preserved along the interfaces,
that is,

m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2))

or equivalently, since the reverse inclusion always holds,

m1(L1) ∩ m2(L2) = m1(l1(K1)) ∩ m2(l2(K2)).
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R1

p1

��

K1
��r1�� �� l1 ��

n1

��

L1

m1

���
��

��
��

��
L2

m2

����
��
��
��
�

K2
��l2�� �� r2 ��

n2

��

R2

p2

��
H1 D1

h1

��
g1

�� G D2g2
��

h2

�� H2

(3)

This definition conveys the precise intuition that two redexes are independent
if each preserves the items needed by the other; therefore the match in G of, say,
ρ1 is still available in the result of the transformation step G ⇒(ρ2,m2) H2.

Immediately after, a different characterization is presented: two linear redexes
are parallel independent if they satisfy Condition 2.

Condition 2 (factorization of matches). In a category C, (ρ1,m1) and
(ρ2,m2) are two redexes in an object G, as in diagram (4). The matches m1 and
m2 factorize through the context, that is, there exist arrows m1d : L1 → D2 and
m2d : L2 → D1 such that g2 ◦ m1d = m1 and g1 ◦ m2d = m2.

R1

p1

��

K1
��r1�� �� l1 ��

n1

��

L1

m1

���
��

��
��

��
m1d

��

� � � � � � 	 
 � �  � �

L2

m2

����
��
��
��
�

m2d

��

�������������

K2
��l2�� �� r2 ��

n2

��

R2

p2

��
H1 D1

h1

��
g1

�� G D2g2
��

h2

�� H2

(4)

The equivalence of Conditions 1 and 2 for linear redexes and for the category
of graphs is proved for example in [8] and in Fact 3.18 of [10], by exploiting
specific properties of pushouts in Graph. The motivation for introducing Con-
dition 2 is pragmatical: it is easier to use in the proof of the Local Church-Rosser
Theorem, heavily based on diagrammatic constructions.1

In subsequent developments of the DPO approach to categories different from
graphs (including High Level Replacement (HLR) systems first [11] and DPO
transformation in adhesive categories next [15]), Condition 2 has always be taken
as the reference definition of parallel independence. But it is obvious that Con-
dition 2 is not a direct translation in categorical terms of the set-theoretical
Condition 1, as the authors of [11] implicitly state when they write “For HLR-
systems it is easier to define independence directly by conditions 1 and 2 above
(i.e. Condition 2), because this avoids to require general pullback constructions
generalizing intersections”. Indeed, a direct categorical formulation of Condi-
tion 1 would read as follows.

1 The definitions of parallel independence based on Conditions 1 or 2 date back to
the mid seventies of last century. Besides of [8] they also appear in [12]. In [17]
parallel independence is defined set-theoretically (see diagram (3)) as m1(L1) ⊆
g2(D2) ∧ m2(L2) ⊆ g1(D1), a variant of Condition 2.
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Condition 3 (preservation of pullback of matches). In a category C,
(ρ1,m1) and (ρ2,m2) are two redexes in an object G. The pullback of the matches
m1 and m2 in G is preserved along the interfaces, that is, in diagram (5), where
both squares are pullbacks, the mediating arrow i : K1×GK2 → L1×GL2 is an
isomorphism.

K1×GK2

��
πK
2

��

πK
1

��

		

i
�

�



�
�

K2

l2
��

L1×GL2

πL
2 ��

πL
1

��

��
L2

m2

��
K1 l1 �� L1 m1 �� G

(5)

Therefore Condition 3 is another candidate for a definition of parallel inde-
pendence, provided that the reference category C has the needed pullbacks. To
my knowledge, the equivalence of Conditions 2 and 3 was not discussed in the lit-
erature. Let us show that the two conditions are indeed equivalent for left-linear
productions, and assuming that category C is adhesive.

Proposition 1 (matches extend iff their pullback is preserved). Let
C be an adhesive category. Then for left-linear redexes Conditions 2 and 3 are
equivalent.

Proof. Condition 2 implies Condition 3. Suppose that two left-linear
redexes (ρ1,m1) and (ρ2,m2) satisfy Condition 2 and consider diagram (6). We
show that the large square is a pullback, from which L1×GL2

∼= K1×GK2 follows
(and thus Condition 3). Therefore given an object X with arrows f : X → L2

and g : X → L1 such that m2 ◦ f = m1 ◦ g, we have to show that there exists a
unique arrow h : X → K1×GK2 such that l2 ◦ πK

2 ◦ h = f and l1 ◦ πK
1 ◦ h = g.

X

f





fg

��
gf

��
g

��

h

�
�

�

�
�

�

K1×GK2 πK
2

��

πK
1

��

1©

K2 l2 ��

n2

��

2©

k2

��

L2

m2d

��
m2

��

K1

l1

��

n1
��

3©
k1

��

D1

g1

��
L1 m1d

��

m1

��D2 g2
�� G

4©

(6)
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Existence. Square 2© + 4© is a pushout by construction, and by adhesivity it
is also a pullback, because l2 is mono by hypothesis. Since X

f→ L2
m2→ G =

X
m1d◦g−→ D2

g2→ G and 2©+ 4© is a pullback, there is a unique arrow fg : X → K2

such that l2 ◦ fg = f and n2 ◦ fg = m1d ◦ g. For symmetric reasons, since also
3© + 4© is a pullback there is a unique arrow gf : X → K1 such that l1 ◦ gf = g
and n1 ◦ gf = m2d ◦ f .

Next observe that by definition K1
πK
1← K1×G K2

πK
2→ K2 is the pullback of

K1
k1→ G

k2← K2, where k1 and k2 are the diagonals of squares 3©+ 4© and 2©+ 4©,
respectively. Thus since we have k2 ◦ fg = m2 ◦ l2 ◦ fg = m2 ◦ f = m1 ◦ g =
m1 ◦ l1 ◦ gf = k1 ◦ gf , we deduce that there is a unique arrow h : X → K1×GK2

such that πK
2 ◦ h = fg and πK

1 ◦ h = gf , and thus we obtain l2 ◦ πK
2 ◦ h = f and

l1 ◦ πK
1 ◦ h = g, as desired.

Uniqueness. Suppose that there are arrows h1, h2 : X → K1×GK2 such that
l2◦πK

2 ◦h1 = f = l2◦πK
2 ◦h2 and l1◦πK

1 ◦h1 = g = l1◦πK
1 ◦h2. Since l1 and l2 are

mono, we obtain πK
2 ◦h1 = πK

2 ◦h2 and πK
1 ◦h1 = πK

1 ◦h2. Then h1 = h2 follows
because K1×GK2 is a pullback object, and k1 ◦ πK

1 ◦ hi = m1 ◦ l1 ◦ πK
1 ◦ hi =

m1 ◦ g = m2 ◦ f = m2 ◦ l2 ◦ πK
2 ◦ hi = k2 ◦ πK

2 ◦ hi, for i ∈ {1, 2}.

Condition 3 implies Condition 2. Vice versa, assume that (ρ1,m1) and
(ρ2,m2) satisfy Condition 3. By Proposition 12 of [5] since l2 : K2 � L2 is
mono and C is adhesive, , is a final pullback complement of

. Thus in diagram (7) the left square is a final pullback com-
plement, the outer square is a pullback by definition, and the upper triangle
commutes by (5). By the universal property of final pullback complements there
is a unique arrow m1d : L1 → D2 making the right square and the bottom trian-
gle commute. Therefore we have g2 ◦ m1d = m1, and by a symmetric argument
there exists an arrow m2d : L2 → D1 such that g1 ◦ m2d = m2. Thus the two
redexes satisfy Condition 2.

L2

m2

��

K2��
l2��

n2

��

L1×GL2πk
2 ◦i−1��

πL
1

��

πL
2

��

G D2g2
�� L1

m1d
��� � � � � � �

m1

��

(7)

3 The Non-linear Case

The theory of the DPO approach was developed only for left-linear rules, because
the construction of the pushout complement of arrows l and m in the left square
of (1) is not uniquely determined if l is not mono, even in well-behaved situa-
tions like adhesive categories. In more recent times, the Sesqui-Pushout approach
provided a conservative extension of the DPO one, allowing to handle in a deter-
ministic way also non-left-linear rules. In fact as recalled in Definition 3 the left
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square of a transformation step in this case is a final pullback complement of
arrows l and m, which (if it exists) is unique up to isomorphisms because it
is characterized by a universal property. A definition of parallel independence
for SqPO transformation for linear productions only has been proposed in [5]
by using Condition 2 and assuming adhesivity (and existence of final pullback
complements, required for SqPO transformation). Thus by Proposition 1 we now
know that Condition 3 would have been equivalent.

More interestingly, in the framework of Reversible SqPO the authors of [7]
have considered the Local Church-Rosser Problem for non-linear rules. We con-
sider here only the case of possibly non-left-linear, but right-linear rules, i.e. we
assume that morphism r : K → R is mono. In this case, the definition of [7] can
be rephrased as follows: two right-linear redexes are parallel independent if they
satisfy both Conditions 2 and 4.

Condition 4 (reflection of matches). In a category C, (ρ1,m1) and (ρ2,m2)
are two redexes in an object G, as in diagram (4), which satisfy Condition 2. They
are reflected identically along the context, that is, the two squares in diagram (8)
are pullbacks.

L1
�� idL1

m1

��

L1

m1d

��

��

G D2g2��

L2 idL2
��

m2d

��

��
L2

m2

��
D1 g1 �� G

(8)

Essentially, as observed in [7], if productions are non-left-linear, the commu-
tativity requirements for arrows m1d and m2d of Condition 2 are not sufficient
and have to be reinforced with the pullback requirements of Condition 4.2 The
same condition is also implied by the definition of parallel independence pro-
posed in [16] in the more general framework of rewriting in categories of spans,
where the required pullbacks arise from span composition.

A simple example can clarify this situation. Let ρ1 = (L1 ← K1 → R1) and
ρ2 = (L2 ← K2 → R2) be the productions depicted in the following figure, where
ρ1 adds a second loop to a preserved node with a loop, while ρ2 duplicates the

2 The conditions for parallel independence for non-linear rules in the context of
RSqPO, presented in [7], are even stronger. First, besides Condition 2, making refer-
ence to diagram (4) it is required that (ρ2, h1 ◦m2d) and (ρ1, h2 ◦m1d) are (RSqPO-)
redexes. Furthermore, and more interestingly for the present discussion, since pro-
ductions can also be non-right-linear, besides Condition 4 it is also required that the
squares in (9) are pullbacks.

L1 idL1
��

m1d

��

��
L1

h2◦m1d

��
D2 h2 �� H2

L2
�� idL2

h1◦m2d

��

L2

m2d

��

��

H1 D1h1��

(9)

.
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node but not the incident loop. Both can be applied using SqPO transformation
to the same graph G made of a node with a loop. There are (unique) morphisms
L1 → D2 and L2 → D1 satisfying Condition 2, but the two transformation
steps do not enjoy the diamond property, and thus should not be considered as
parallel independent. In fact, applying ρ1 to H2 one gets a graph with two nodes,
one of which has two loops and the other none. Instead applying ρ2 to H1 one
gets a graph with two nodes, one with two loops and the other with one loop.

It is easy to show that the depicted redexes do not satisfy neither Condition 3
nor 4. In fact, we show that in the case of non-left-linear productions, Condition 3
is equivalent to the conjunction of Conditions 2 and 4. The last part of the
proof exploits results to appear in [3], and requires an additional condition on
category C, namely that it has a partial maps classifier (or equivalently, since
C is assumed to have final pullback complements, a subobject classifier). We
refer to [1] for the definition of partial maps classifiers and the relationship with
subobject classifiers, and to [2] for their use in the AGREE approach to graph
transformation.

Proposition 2 (matches factorize and are reflected identically iff their
pullback is preserved). Let C be an adhesive category with final pullback com-
plements and with a sub-object classifier. Then the conjunction of Conditions 2
and 4 is equivalent to Condition 3 for SqPO and RSqPO transformation.

Proof. Conditions 2 and 4 imply Condition 3. Suppose that two redexes
(ρ1,m1) and (ρ2,m2) satisfy Conditions 2 and 4. We proceed as in the proof of
Proposition 1 showing that the square of diagram (6) is a pullback.

Given an object X with arrows f : X → L2 and g : X → L1 such that
m2 ◦ f = m1 ◦ g, the existence of an arrow h : X → K1 ×G K2 such that
l2 ◦ πK

2 ◦ h = f and l1 ◦ πK
1 ◦ h = g can be shown as in the proof above,

considering that squares 2© + 4© and 3© + 4© are now pullbacks by construction,
since we consider [R]SqPO transformation. For the uniqueness part, since l1 and
l2 are not monic in general, we exploit Condition 4.

Thus, making still reference to diagram (6), suppose that there are arrows
h1, h2 : X → K1×GK2 such that l2 ◦πK

2 ◦h1 = f = l2 ◦πK
2 ◦h2 and l1 ◦πK

1 ◦h1 =
g = l1 ◦ πK

1 ◦ h2.
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(10)

Consider the cube in diagram (10): the bottom face is a pullback by Con-
dition 4, the front-left face is a pullback by construction, the back-right face is
trivially a pullback, and the front-right and back-left squares commute. There-
fore by pullback splitting also the top face is a pullback. By symmetry, also a
similar square with indexes 1 and 2 exchanged is a pullback. We exploit these
squares in diagram (11): since the outer squares commute by hypothesis, by the
pullback property we deduce that πK

2 ◦ h1 = πK
2 ◦ h2 and πK

1 ◦ h1 = πK
1 ◦ h2.

Then h1 = h2 follows by the same argument as in the proof of Proposition 1.

X

h1

  
 

�� 
  

h1



πK
1 ◦h2

��

K1×GK2 id ��

πK
1

��

K1×GK2

l1◦πK
1

��
K1 l1 �� L1

X

h1

  
 

�� 
  

h1



πK
2 ◦h2

��

K1×GK2 id ��

πK
2

��

K1×GK2

l2◦πK
2

��
K2 l2 �� L2

(11)

Condition 3 implies Conditions 2 and 4. The proof that Condition 3
implies Condition 2 is identical, and even more direct, than the corresponding
proof for Proposition 1, because the left square of diagram (7) is a final pullback
complement by construction.

For Condition 4, the fact that the squares in (8) are pullbacks is proved in
Lemma 1 of [3] by exploiting Condition 3 and an additional condition involv-
ing the partial maps classifier, and formulated for the more general framework
of AGREE transformation. The latter condition, instantiated to SqPO trans-
formation, requires that the left square of (12) is a pullback. But this follows
easily by the observation that the right square of (12) is a pullback thanks to
Condition 3, and that the partial maps classifier functor T : C → C preserves
pullbacks [1].

T (L1×GL2) T (πk
1 ◦i−1) ��

id

��

��
T (K1)

T (l1)

��
T (L1×GL2) T (πL

1 ) �� T (L1)

L1×GL2 πk
1 ◦i−1 ��

id

��

��
K1

l1
��

L1×GL2 πL
1

�� L1

(12)
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4 Conclusions

The goal of this position paper was to introduce a categorical definition of paral-
lel independence based on pullbacks, thus corresponding directly to the original
set-theoretical definition, and to study its relationship with the standard defini-
tion based on the possibility of factorizing the matches through the context. The
pullback-based definition works, without changes, also for productions allowing
the cloning of structures. Anyway since the two alternative definitions are equiv-
alent (under suitable assumptions on the relevant category), the choice of one
over the other looks mainly a matter of taste or of convenience. In this respect,
I find Condition 3 slightly more elegant than Condition 2 because it makes ref-
erence only to the productions and to the corresponding matches, and not to
the context graphs obtained by the application of the productions. But Condi-
tion 2 is certainly more convenient in proofs based on diagram constructions and
chasing.

Acknowledgments. The idea of spelling out the relationship between the standard
algebraic and the pullback-based definitions of parallel independence maturated during
stimulating discussions with Dominque Duval, Frédéric Prost, Rachid Echahed and
Leila Ribeiro, during the work on the AGREE approach to GT. Hans-Jörg Kreowski
provided me some references to the early literature on parallel independence. During
the workshop where this work was presented, Michael Löwe suggested several technical
improvements, including a new version of the last part of the proof of Proposition 2
that does not need partial maps classifiers: this will be presented in a forthcoming
report.
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