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Abstract. Future Internet builds upon three key pillars – namely, Inter-
net of Things, Internet of Services, and Internet of Contents – and is con-
sidered as a worldwide execution environment that interconnects myriad
heterogeneous entities over time, supports information dissemination,
enables the emergence of promising application domains, and stimulate
new business and research opportunities. In this paper we analyse the
challenges towards the actualisation of the Future Internet. We argue
that the mobile nature inherent to modern communications and inter-
actions requires a radical shift towards new computing paradigms that
fully reflect the network-based perspective of the emerging environment.
Indeed, we position the adoption of a Pure Edge Computing platform
that offers designing and programming abstractions to specify, imple-
ment and operate Future Internet applications.

1 Introduction

The evolution of the Internet has radically changed our life: while initially sim-
ply used to exchange data between selected hosts, today the Internet is essential
for the provision of daily-life software resources (e.g., data, and services) dis-
tributed all over the world. Future Internet (FI) builds upon three key pillars –
namely, Internet of Things, Internet of Services, and Internet of Contents – and
is formed by real world things connecting to one another, which are all around
us, everywhere and anytime, and can be discovered, composed and consumed
as needed [20]. Indeed, FI can be considered as a worldwide execution environ-
ment, where a large open-ended collection of heterogeneous resources dynam-
ically interact with each other, to provide users with rich functionalities, e.g.,
real thing consumption, service provisioning, and content sharing [10].

FI enables the emergence of appealing and promising application domains,
stimulating new business and research opportunities. In these settings, software
vendors are no longer considered as independent units, where all software is
built in-house. Rather, they will be networked and depend on each other ser-
vices. Indeed, vendors will be part of a software ecosystem: “A set of actors
functioning as a unit and interacting with a shared market for software and ser-
vices, together with the relationships among them” [17]. These characteristics
should be underpinned by a common technological platform, which facilitates
the development of FI applications through the provision of proper designing
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 458–469, 2016.
DOI: 10.1007/978-3-319-50230-4 36



Pure Edge Computing Platform for the Future Internet 459

and programming abstractions for (i) uniformly representing things, services and
contents, and (ii) deploying, discovering, composing, and consuming them at run
time [16]. To this end, nowadays technological platforms leverage on computing
paradigms that employ the so called everything-as-a-service (XaaS) abstraction –
i.e., cloud and fog computing. Cloud computing [1] platforms heavily rely on dis-
tributed processing and available bandwidth from the peripheral devices to the
(centralised) backend server: most data is sent to the cloud to be processed, leav-
ing edge devices as simple portals into the cloud. Even though this architecture
works well today, it fails when considering FI, where myriads of mobile devices
interact each other by exchanging micro-data. To this end, fog computing [6]
promotes a decentralised approach, where the edge devices play a key role to
achieve geographical distribution, location awareness, real-time interactions and
data streaming. However, device mobility is not fully supported and edge devices
are still considered to be simple portals to reach the real infrastructure.

The high mobile nature inherent to modern communications and interactions
requires a radical shift towards architectures that fully reflect the network-based
perspective of the FI. Specifically, network-based systems rely on the explicit
distribution of resources, which interact by means of (asynchronous) message
passing. Indeed, network-based systems differ from distributed systems in the
fact that the involved networked resources are independent and autonomous,
rather than considered as integral part of a conceptually monolithic system [25].
To this end, we position in this paper the adoption of a Pure Edge Computing
platform that offers designing and programming abstractions to specify, imple-
ment and operate FI applications. Moreover, we discuss a set of key challenges
towards its actualisation, namely: discovery, composition and communities.

This paper is organised as follows. Section 2 introduces a motivating scenario.
Section 3 discusses the requirements for a FI technological platform, and analyses
existing solutions. Section 4 illustrates the Pure Edge Computing platform and
discusses key challenges, and Sect. 5 sketches our perspectives for future work.

2 Motivating Scenario

This section introduces Lost Child, a Future Internet scenario that serves as
running example to illustrate the proposed approach. Lost Child extends the
scenario presented in [22] and points out a number of concepts that are central
to elicit the requirements of the Future Internet platform:

A five year old child who is attending a parade in Manhattan with his parents
goes missing among all the people, and his parents only notice he is missing
after some time. A police officer, once advised, sends out an alert to all entities
within a two kilometre radius, requesting them to share all photographs they
have taken in the parade during the past hour containing people with a red shirt.
After the request a community of entities participating to the search emerge.
Many smartphones are able to filter and send the images that match the officer
description to a final endpoint, while others despite having relevant informations
may be incapable to execute the task due to some missing functionality (e.g.
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computer vision capabilities to process, analyse, and understand images) or to
a low battery level. However, these devices are able to participate to the search
by offloading the computation to near devices able to carry out the service on
their behalf. Given the importance of the task, also the smart traffic cameras in
the area collaborate to the search sending relevant informations, while personal
computer in the surrounding houses grant their infrastructure as an offloading
point for other devices to carry out complex computations. With John’s parents,
the police officer searches through the relevant photographs received on his phone.
After looking through some pictures, they are able to spot John in one of the
images, which they identify to be taken at a nearby location. Soon, the parents
are reunited with their child.

Functional requirements for Lost Child are specified as follows:

R0: Devices may enter/leave the network dynamically, since a key aspect is the
prominent role of mobile devices as rich sensors and service providers.

R1: Devices self-organise into emerging communities with a common goal.
R2: Devices within the community opportunistically make transient use of the

shared infrastructure (e.g., storage, network, memory, processing power).
R3: Devices within the community opportunistically interact each other by pro-

viding/consuming services of interest.
R4: Devices within the community opportunistically interact each other by shar-

ing data of interest enriched with contextual information.
R5: Devices within the community opportunistically interact each other by pro-

viding/consuming things of interest (e.g., camera, gps, sensors, etc.).

3 XaaS Platforms for the Future Internet

Best practices suggest to develop complex applications by exploiting the abstrac-
tions offered by an underling platform. A platform is an extensible software
system that provides a set of core functionalities shared by applications that
interoperate with it, and the interfaces through which they interoperate [3].

Choosing the platform is quite critical, because it affects the resulting applica-
tion architecture and behaviour. In fact, each specific platform imposes architec-
tural/behavioural constraints, and has architectural/behavioural properties that
might be well-suited for some situations and ill-suited for others [13]. Indeed, a
platform that induces a wrong architecture/behaviour might prevent the appli-
cation from achieving certain properties of interest.

To this extent, a platform for the FI should provide designing and program-
ming abstractions for (i) uniformly representing things, services and contents,
and (ii) deploying, discovering, composing, and consuming them at run time.
Further, the platform should be confronted with the following set of properties:

Scalability: to accommodate a high number of networked services/devices; it
is a key property to satisfy R0 and R1.

Interoperability: to enable the composition of services that are heterogeneous
in many dimensions, e.g., location, functionalities and data; it is a key prop-
erty to satisfy R3–R5.
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Mobility: to natively support service location and relocation; it is a key prop-
erty to satisfy R0–R5.

Adaptability: to react to the changing environment and keep requirements
fulfilled; it is a key property to satisfy R0 and R1.

Dependability: to support sensitive cross-domain requirements, e.g., perfor-
mance, and security; it is a key property to satisfy R2–R5.

Nowadays platforms promote the adoption of computing paradigms that
employ the so called everything-as-a-service (XaaS) abstraction to uniformly rep-
resent heterogeneous resources irrespectively of their specific nature (i.e., thing,
service, and content). Although these platforms leverage on the same abstraction,
they differ with respect to the architectural decomposition of internal function-
alities, namely: presentation logic, application logic, data access logic and data
storage. The position of these four elements identifies the specific architectural
style employed by the different computing platforms. Table 1 classifies them with
reference to the set of properties analysed within next sections.

Table 1. Cloud, Fog and Pure Edge Computing properties

3.1 Cloud Computing

Cloud Computing (CC) [1] rapidly changed the landscape of information tech-
nology. CC platforms heavily rely on distributed processing and available band-
width from the peripheral devices to the central backed server. As showed in
Fig. 1(a), all functional elements reside on the server side and most of the data
is sent to the central server to be processed, leaving peripheral devices as simple
portals into the cloud.

Referring to Table 1, platforms based on a CC architecture are not good can-
didates for dealing with the FI, as the architectural style employed by CC is
client-server, and both physical and logical models are centralised. Scalability is
one of the key property of CC, and is usually managed by increasing/decreasing
at run time the number of servers. Client-side Mobility is partially supported
and latency between client and server is generally very high. On the other hand,
server-side mobility is not supported. Interoperability is often not supported,
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since two different CC platforms usually adopt different technologies (e.g. lan-
guages, and protocols). Dependability attributes like performance and reliability
are often guaranteed. Adaptability is usually provided by the platform developer;
however, the constraints imposed by this architectural pattern (e.g., mobility)
could limit the application of some feasible strategies. Finally, CC architectures
fail when considering myriads of devices that interact each other by exchanging
micro-data, which is incredibly latency sensitive. Referring to the Lost Child, CC
fails to provide the application with the required properties, and thus it prevents
the fulfilment of requirements R1, R3 and R5.

Fig. 1. Cloud vs. Fog vs. Pure Edge Computing

3.2 Fog Computing

Fog Computing (FC) [6] recently emerged as a platform that makes use of near-
user peripheral servers to provide storage and processing power where they are
needed. The FC platform employs a distributed computing infrastructure where
services can be handled either at the periphery of the network (e.g., by smart
routers) or at the central server. As showed in Fig. 1(b), the functional elements
are subdivided between the near-user fog servers and the central server.

Still referring to Table 1, FC platforms are also not good candidates for deal-
ing with the FI. In fact, the FC architecture is based on client-server style and,
while the physical model is distributed, the logical one is still centralised. Scala-
bility is partially supported by FC, since new peripheral-servers can be dynami-
cally added when new entities join the network. Client-side Mobility is supported
and latencies between client and server are usually very low. Also in this case,
server-side mobility is not supported, since FC nodes are fixed entities. Inter-
operability is often not supported, for the same reason of CC and, also here,
Adaptability strategies are limited. Dependability attributes like performance
and reliability are often guaranteed. Even though FC well addresses latencies
issue, it is not the appropriate architectural candidate for the FI platform. In
fact, server-side mobility is not supported and devices are still considered to be
simple portals to reach the real infrastructure. Indeed, FC paradigm still suffers
the client-server nature of the approach. Referring to the Lost Child, CC fails
to provide the application with the required properties, and thus it prevents the
fulfilment of requirements R1, R3, and R5.
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4 Pure Edge Computing Platform: Vision and Challenges

Edge Computing (EC) [24] pushes the frontier of computing applications, data,
and services away from centralised nodes to the logical extremes of the network.
EC is envisioned as a further extension of CC and FC, and aims at moving the
control and trust decision to the edges of the network, in order to allow for novel
human-centred applications [18].

Our vision is that FI must embrace the edge computing philosophy with the
adoption of a distributed computing platform unifying things, services, and con-
tents into XaaS. To this end, we position the design and development of a Pure
Edge Computing (PEC) platform to break the monolith and enable a self-scaling
mobile environment. PEC will employ a peer-to-peer (P2P) architecture, where
all functional elements reside on the edge devices, and no central server exists
(see Fig. 1(c)). Specifically, to improve dependability, PEC platform will adopt a
hierarchical and hybrid P2P architecture, which exploits CC/FC nodes to play
the role of super-peers and provide PEC nodes with supporting functionalities.

According to the P2P architecture employed by PEC, both the physical
and the logical model are network-based (see Table 1). Therefore, Scalability
is natively supported, as adding new clients to the network simultaneously adds
new computational resources to the computing environment. Both client-side
and server-side Mobility is supported and latencies between nodes are very low.
Interoperability is natively supported by the P2P architecture. Dependability
attributes (e.g., performance and reliability) and Adaptability are addressed,
although satisfying these requirements is challenging. Further, still referring to
Lost Child, PEC provides the application with the set of properties needed to
fulfil the functional requirements.

PEC platform seems to be promising, as it provides the set of key charac-
teristics required to deal with FI. Next sections discuss a set of key challenges
towards its actualisation, namely: discovery, composition and communities.

4.1 XaaS Discovery

FI applications should dynamically aggregate services of interest, and be able
to adapt to the evolving situation in which they operate, such as the physical
environment and the computational entities populating it or the device on which
the service runs. The challenges related to XaaS Discovery concern the ability
of discovering, understanding, selecting, and correlating services of interest.

Discovering XaaS of interest in an open-ended world asks for mechanisms
to semantically describe both functional and extra-functional properties of the
services, and to reason about them and their actual context. The adoption
of Semantic Web (SW) technologies enhances the discoverability of devices by
enriching their descriptions with machine-interpretable semantics [5]. However,
having semantic models and ontologies alone is not sufficient to achieve inter-
operability. In fact, ontologies developed by different parties are not guaranteed
to be compatible with each other. Indeed, due to the inherent high degree of
dynamism characterising FI, having a well established a-priori semantics is not
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Fig. 2. Peer-to-peer XaaS discovery

possible in practice. Rather semantics should “emerge” from online negotiations
among involved parties [9]. However, accuracy of the matching is frequently not
satisfying and significant amount of human effort is still needed. Someone advo-
cates to adopt the Linked Data principle [23]. Linking to existing knowledge
rather than creating repetitive one helps to facilitate navigation, discovery and
more importantly, interoperability.

Considering the high dynamic nature of the FI and the large number of enti-
ties participating into the system, developing an efficient and scalable discovery
mechanism is challenging. To this end, the platform should employ fully decen-
tralised techniques to discover and select XaaS of interest [11,14]. On the one
hand, fully decentralised service discovery mechanisms on unstructured networks
provides for scalability and self healing proprieties, at the expenses of a large
communication overhead. On the other hand, discovery mechanisms based on
structured networks have low communication overhead over the network, but
they fail when dealing with dynamic systems.

The CAP theorem [15] states that it is impossible for a distributed computer
system to simultaneously provide all three of the following guarantees: Con-
sistency, Availability and network Partitions. Since obtaining strong consistency
guarantees in extremely distributed and dynamic systems is not only difficult but
often unnecessary, we envision a discovery mechanism based on eventual consis-
tency model [26], which guarantees availability and network partitions. Our idea
is to build a service discovery tool relying on distributed AP-based P2P tech-
nologies that use techniques like epidemic gossip. Referring to Fig. 2, to avoid
large communication overhead a distributed service registry could be managed
by the superpeer nodes of the system (see dark nodes in Fig. 2). Superpeer nodes
would provide registration and lookup functionalities to the nodes they manage
while, interacting with other superpeer nodes, they would carry out the distrib-
uted lookup task. In fact, instead of attempting to coordinate a large amount



Pure Edge Computing Platform for the Future Internet 465

of components to enable service discovery, the problem can be reduced to coor-
dinating superpeer nodes. This semi-structured approach unites the benefit of
both the structured and unstructured approach since scalability and self-healing
properties would be fully accommodated with a low communication overhead
over the network.

4.2 XaaS Composition

Service composition allows for dynamically building complex applications by
aggregating a large number of simple, distributed and heterogeneous services.
Composing XaaS requires a paradigm shift from software services to real
world services, and from application-centred services to user-centred services
that demands for situation-aware composition techniques [12]. The composi-
tion process in the FI must deal with the uncertainty and complexity of the
environment, as well as with other important factors, such as device mobility,
battery management and context informations. Because of the high number of
dimensions to consider simultaneously, the service composition is challenging,
and finding the optimal solution is often computationally infeasible.

The PEC platform should exploit enhanced algorithms able to learn from the
dynamic environment and determine optimal service compositions accordingly.
Indeed, machine-learning based selection algorithms should be able to under-
stand the context and self-adapt their behaviour according to both the user
needs and the execution environment [8].

Once the composition process ends, the composite services are coordinated
either by means of choreography or orchestration. Even though choreogra-
phies always provide a global view, and allow for parallel execution of ser-
vices, resource-constrained devices might not support choreography engines [12].
On the other hand, orchestrations significantly reduce network traffic and

Fig. 3. Asyncronous message passing and data-flow model example
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communication complexity between nodes. The platform should employ an inte-
grated and automated run-time support for both orchestrations and choreogra-
phies [2].

Network-based systems rely on the explicit distribution of resources, which
interact by means of (asynchronous) message passing. Employing asynchronous
interaction model between the participating nodes (see Fig. 3(a)) would decouple
them, and their communication flow, in both time – allowing concurrency – and
space – allowing distribution and mobility. To this extent, we position to build
the PEC platform on the asynchronous message-passing paradigm to provide
support for both orchestrations and choreographies. Indeed, a key requirement
for the PEC platform is the adoption of a coordination languages able to deal
with the asynchronous nature of FI [9]. As shown in Fig. 3(b), data-flow lan-
guages [19] structure applications as a directed graph of autonomous software
components that exchange data by asynchronous message passing. In the data-
flow paradigm the components do not “call” each other, rather they are activated
by the run-time system, and react according to the provided input (received
message). Once the output is available, the run-time system is in charge of mov-
ing data towards the proper destination. Data-flow applications are inherently
parallel. Exploiting the data-flow paradigm introduces a set of advantages in
the PEC platform: (1) concurrency and parallelism are natural and components
can be easily distributed across the network, (2) asynchronous message passing
is natural for coordinating independent and autonomous components, and (3)
applications are flexible and extensible since components can be hierarchically
composed to create more complex functionalities.

4.3 XaaS Communities

FI devices should be able self-organize into emerging communities with a com-
mon goal. The combination of devices with their XaaS “representatives” consti-
tutes de-facto a cyber-physical system. In the FI setting, which involves a large

Fig. 4. Dynamic management of XaaS communities
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number of entities, flat organizational structures are not appropriate. Therefore
some “structural thinking” is necessary, leading to the organization of such enti-
ties in “communities” or “societies” (“ecosystems”) of cyberphysical artifacts [7].

A large complex network is said to have community structures if nodes can
be grouped into (potentially overlapping) sets such that each set is densely con-
nected internally [21]. These connections can represent different type of asso-
ciations such as: social relations, physical proximity or groups of interest. The
vision is that FI devices will have integrated models of their knowledge (i.e.,
content), functionality (i.e., service) and infrastructure (i.e., things) available,
which can then be linked and exchanged in a peer-to-peer fashion to create
online social networks of collaborating devices. PEC platform for FI should pro-
vide proper mechanisms for allowing XaaS to self-organize into communities of
interest. Specifically, the platform should provide support for detecting, manag-
ing and reconfiguring service communities.

Referring to Fig. 4, our idea is to manage communities structures through
dynamic groups management. Communities can be build statically by the par-
ticipating applications but the platform must be able to adopt mechanisms of
communities identification. For example, similarly to techniques also used in the
social networks, an high number of interactions between nodes (see the dashed
arrows in Fig. 4) could imply the membership in a common group. To this end
we are investigating on the possibility to extend the A3 middleware [4] to deal
with community organizations through dynamic group management.

5 Future Work

FI can be considered as a worldwide execution environment, where a large open-
ended collection of heterogeneous resources dynamically interact with each other.

The high dynamic nature inherent to FI requires a radical shift towards new
computing paradigms able to fully reflect the network-based perspective of the
emerging environment.

To this end, we position the adoption of a PEC platform that offers proper
abstractions to specify, implement and operate FI applications. Specifically, the
PEC platform should provide (i) a XaaS abstraction for uniformly represent-
ing things, services and contents, and (ii) a set of mechanisms for deploying,
discovering, composing, aggregating and consuming XaaS at run time.

As consequence, a set of groundbreaking challenges make the development of
the PEC platform ambitious. To this extent, future work is towards the exploita-
tion of a rigorous and systematic model driven development process that, starting
from the deep investigation of the FI domain, will incrementally produce a set
of intermediate artifacts, which will be finalised into the actual implementation
of the PEC platform. This development process will exploit a logical two-phases
methodology: the first phase (P1) aims at producing a PEC platform able to
homogenise the underlying FI heterogeneity. Concurrently, as well as comple-
mentary, the second phase (P2) aims at providing software engineers with a
set of development tools enabling for the design, analysis, implementation and
validation of applications exploiting the PEC platform.
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