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Abstract. Error detection, localization and correction are time-
intensive tasks in software development, but crucial to deliver function-
ally correct products. Thus, automated approaches to these tasks have
been intensively studied for standard software systems. For model-based
software systems, the situation is different. While error detection is still
well-studied, error localization and correction is a less-studied domain.
In this paper, we examine error localization and correction for models of
service compositions. Based on formal definitions of error and correction
in this context, we show that the classical approach of error localization
and correction, i.e. first determining a set of suspicious statements and
then proposing changes to these statements, is ineffective in our context.
In fact, it lessens the chance to succeed in finding a correction at all.

In this paper, we introduce correction proposal as a novel approach on
error correction in service compositions integrating error localization and
correction in one combined step. In addition, we provide an algorithm to
compute such correction proposals automatically.

1 Introduction

In modern software development, Service-Oriented Architectures (SOA) empha-
size the construction of software out of existing services to facilitate the con-
struction of large software system. Such software systems then consist of ser-
vice calls, which are assembled to contribute to a specific task, using standard
operators from workflow construction like sequential composition, decisions and
repetitions. A very important assumption in the SOA setting is that all infor-
mation, which is available about a single service, is its interface, i.e. its input
and output variables and its pre- and postcondition. SOA favor a model-based
development because at design time, only a model of the service composition
under construction is developed.

Debugging, i.e. the detection, localization and correction of faults, is one of
the most important tasks to deliver functionally correct products. While these
tasks are well-studied for standard software systems (and especially imperative
programs), the situation is different for models of service compositions.
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Models of software in general typically abstract from details of the final
systems, which facilitates error detection in terms of verification, leading to the
existence of a broad range of verification approaches for models of software (and
of services), e.g. [10,11,22].

In contrast, error localization becomes more difficult for models of service
compositions, because most standard approaches for standard software systems
cannot be applied to models of software. The reason is that almost all error
localization techniques for standard software rely on the availability of a larger
number of test cases or the ability to executed the system under consideration at
will. Techniques like Delta Debugging [5,25–27], Tarantula [13], Pinpoint [3] and
AMPLE [7] inspect test cases and compare, for instance, how often a statement
is executed in a failing and how often in a successful test cases. Slicing [17,24,28]
and trace formula approaches to error localization [4,9,14–16,19], which encode
single executions of the programs, examine dependence information between
single statements to find errors. Unfortunately, models of software usually fail
to provide a larger number of test cases and – being models and not software –
cannot be executed arbitrarily. For a detailed discussion, see [18].

Similarly, for standard software, several effective error correction approaches
exist (see [20] for a detailed survey). However, most of them make assumption
about their domain of application not valid for models of software, and service
compositions in particular (cf. Section 2).

Providing effective error localization and correction methods for models of
service composition remains an open challenge. In this paper, we provide a novel
and formally rigorous approach that combines the computation of error local-
ization and correction in one step. As we will argue, the standard approach to
error localization and correction, i.e. the computation of suspicious statements,
followed by attempts to correct the errors within these statements, appears to
be unrewarding for models of service composition in general.

Organization of the Paper. We present our definition of service compositions
in 2. In 3, we formally define error localization and correction. Our automated
approach to the computation of corrections is presented in Sect. 4. Section 5
discusses why both error localization and correction need to be combined into a
single step for service compositions. We conclude the paper with discussion and
future work in Sect. 6.

2 Services and Service Compositions

In this section, we introduce service compositions and their formal semantics.
Service compositions consist of single services assembled together to finally
assure a given postcondition for the outputs. While we still use standard concepts
of workflow modeling like sequential composition, decisions and repetitions, we
use a textual representation inspired by service effect specifications (SEFFs) [2]
to denote service compositions. Various other graphical and structural notations,
for instance, WS-BPEL [21], exist.
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In the following, we associate each service and service composition with a
domain D = (TD,PD,RD), which consists of a set TD of types, a set PD of
predicates and a set RD of rules to reason within the domain. In our context,
predicates are functions p :

⊗
i∈I Ti → B where B = {true, false}, I is a finite

index set and Ti denotes a type for all i ∈ I. The set PD of a domain must
always satisfy

⋃
p∈PD

useT (p) ⊆ TD, where useT (p) denotes the set {Ti | i ∈ I}
of all types occurring in the specification of predicate p.

Service providers offer services in a service market. A service market SM(D)
on a domain D is a set of services, which operate in D.

Definition 1 (Service Composition). Let D = (TD,PD,RD) be an abstract
domain. The set of all service compositions SC is given by the following grammar
in Backus-Naur-form:

SC � S1,S2 ::= [Skip]� | S1;S2 | [(T1 u1, . . . , Tn un) := S(v1, . . . , vm)]�

| while [B ]� do S1 od | if [B ]� then S1 else S2 fi;
where m,n ∈ N, B ∈ PD, � is a label, T1, . . . , Tn ∈ TD and S has m input and
n output variables.

In the following, def(SC) denotes the set of variables assigned to in a service
composition SC. Each statement st of a service composition has a special label �
in order to identify the statement. As in Definition 1, we write [st ]� if � is the
label of st . We assume that different statements have different labels and use
natural numbers as labels in the following. If a service composition SC is not in
this form, we can rename all occurring statements by traversing the control-flow
graph s.t. SC complies to this criterion.

Figure 1 shows a simple service composition example. The input to the ser-
vice composition is the painter painter and a painting painting . The aim of the
composition is to frame the painting and then, to sell the resulting image at
the highest price possible. As advertising is costly, we assume that the highest
price with an unknown artist is achieved only if the image is not advertised
at all. In contrast, if the artist is famous, the highest price is achieved if the
image is advertised before. The output of the service composition is the money
gained (M).

A service composition calls a service according to its specification, i.e. its
name, its input and output variables as well as its pre- and postconditions (also
called effects).1 While this information is not part of our syntax, we annotated
Fig. 1 accordingly for the convenience of the reader.

Formally, the domain of our example comprises the types Painting , Image,
Money , Gain and the predicates unknown, isGainOf and highest. In addition, we
assume the following rules to be known:

¬unknown(painter) ∧ isGainOf(I,painter,G)) ∧ price(M,I,G,painter) ⇒ highest(M,painter,I)

unknown(painter) ∧ ¬isGainOf(I,painter,G)) ∧ price(M,I,G,painter) ⇒ highest(M,painter,I)

1 In WSDL (https://www.w3.org/TR/wsdl), all four components together are called
IOPE.

https://www.w3.org/TR/wsdl
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Fig. 1. A Simple Service Composition

In its current state, however, the service composition is faulty. The condition
in the if-statement leads to a call of service advertise when the painter is not
well-known and not – as intended – when the painter is famous.

Definition 2 (Service). Let D = (TD,PD,RD) be a domain. A service spec-
ification (or short, service) consists of a name together with an interface. An
interface I over the domain D is a tuple I = (In,Out, pre, post) such that

– In, Out are sets of typed input and output variables such that In ∩ Out = ∅,
useT (In) ⊆ TD and useT (Out) ⊆ TD,

– and pre and post are logical formulas build over the predicates in D using
¬,∨,∧ and are called the pre- and postcondition of the service, respectively.
We have var(pre) ⊆ In and var(post) ⊆ In ∪ Out.

In addition, we assume that services do not modify their input variables, i.e. if
the precondition holds before a service call, then it also holds afterwards.

If a service S changes its inputs, we replace every call T x := S(xI
1, . . . , x

I
m)

with two assignments service x′
1, . . . , x

′
m := xI

1, . . . , x
I
m;T x := S′(x′

1, . . . , x
′
m)

such that the actual input variables are not changed.
We write OutS, InS, preS, postS for the components of a service S. In the following,
we say that a service with interface I1 = (In1,Out1, pre1, post1) refines a service
with interface I2 = (In2,Out2, pre2, post2), denoted by I1 � I2, if In1 ⊆ In2,
Out1 ⊇ Out2 and additionally, pre2 ⇒ pre1 and post1 ⇒ post2.

Remark 1. From a logical perspective, services are implications because they
do not modify their input variables, i.e. services guarantee that whenever the
precondition holds, the postcondition can be established for the output variables.

Remark 2. Note that Definition 2 can be generalized to service compositions
immediately, as from an abstract perspective, service compositions can be con-
sidered services themselves. For instance, the service composition in Fig. 1 has
the input variables painter and painting, the output variables M, the precondition
true and the postcondition highest(M,painter,I).
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sp(Skip, ϕ) = ϕ
sp(S1; S2, ϕ) = sp(S2, sp(S1, ϕ))

sp(if [B ] then S1 else S2 fi;, ϕ) = sp(S1,B ∧ ϕ) ∨ sp(S2, ¬B ∧ ϕ)

sp(while [B ] do S1 od, ϕ) = ϕ ∧ Inv [x̄/¯̂x] ∧ ¬B [x̄/¯̂x]

Fig. 2. Strongest Postcondition Semantics for Service Compositions

Strongest Postcondition Semantics. In this section, we define a partial-
correctness strongest postcondition semantics for service compositions [1,8]. Par-
tial correctness here refers to that we do not consider termination as correct-
ness criterion. W.l.o.g., we assume all service compositions to be in single static
assignment form (SSA)2.

In addition, we assume loops to be annotated with invariants. We consider
this assumption practically feasible. Even if not every loop is annotated with
an invariant by its developer in practice, various existing automated invariant
generation methods can be applied to overcome this (e.g. [12]).
Strongest postconditions for service compositions and for programs mainly differ
in the treatment of service calls. The postcondition of a service does not uniquely
determine the values of outputs. Due to SSA form, services never change values
of variables (especially not the inputs of the service), but only make assign-
ments to previously unused, fresh variables. Therefore, all properties, which
hold before a certain statement, also hold afterwards. Note that in a service
call (u1, . . . , un) := S(v1, . . . , vm), the inputs and outputs are thus disjoint, i.e.,
{u1, . . . , un} ∩ {v1, . . . , vm} = ∅. In the following, we write x̄ = (x1, . . . , xn) for
a tuple of variables. The sp-semantics of service calls is

sp(ū := S(v̄), ϕ) = ϕ ∧ postS(v̄, ū).

Strongest postcondition definitions for the remaining cases can be found in Fig. 2.
Please note that we abstract the loop by its invariant and therefore, only know
that the invariant holds at the end of the loop and the loop predicate does
not. Due to variable renaming in SSA form, we need to rename the variables
occurring in the invariant and in the predicate of the loop to the variable names
introduced by the transformation to SSA form (variable names of join-nodes).
For branches, it suffices to treat join-nodes as special service calls, which assign
the correct value to variables occurring in both branches.

3 Errors and Corrections

In this section, we discuss all three steps of debugging of service compositions.
First, we shortly present how to detect errors in service compositions using
verification. Second, we formally define the types of errors, which we consider
here. Finally, we define corrections for service compositions.
2 Using [6], SSA form can be established for all service compositions.
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Please note that we still only consider services compositions in SSA form.
Services are in general well-tested pieces of code, thus, we assume that single
services are correct, i.e. services used in a service compositions always correctly
implement their interface. Moreover, we assume that all loops are annotated
with loop invariants capturing the complete loop behavior. In Sect. 4, we shortly
discuss how to correct faulty loops.

Correct Service Compositions. Service compositions are specified using interfaces
(cf. Definition 2), where pre- and postconditions describe the expected behavior
in terms of predicates over input and output variables. Intuitively, a service
composition is correct if the output satisfies the postcondition whenever the
input meets the precondition. Formally, we say that a service composition is
correct, if it can be proven (for instance, using the approach in [23]), that the
service compositions complies to its interface. Otherwise, we call the service
composition faulty. If we apply [23] to our example (Fig. 1), we see that the
service composition fails to establish the precondition of the service sellAtPrice.

Error and Correction. We restrict ourselves to the localization and correction
of errors, which can be detected as follows:

1. the correctness requirement is not met, i.e., when started in a state satisfying
preSC we might reach a state outside postSC,

2. the execution of a service composition blocks at some service call because the
precondition of the service is not satisfied, and

3. during an execution a loop is reached but the loop invariant does not hold.

In Definiton 3, the first case corresponds to a global error, whereas the sec-
ond and the third case are subsumed by local errors. The first type of error
mainly occurs if the service composition does not make enough progress towards
the postcondition, whereas the second type of error is mainly caused by calling
the wrong service, which invalidates the precondition of the next service or the
invariant of a succeeding loop.

Definition 3 (Error). Let SC be a service composition, � one of its labels,
and (pre, post) the requirement on SC. An error in SC occurs at � if one of the
following conditions hold:

1. � = �⊥ and sp(SC, pre) �⇒ post (a global error),
2. � /∈ {�⊥, ��} and � is not inside an if or while statement, and sp(SC→�, pre) �⇒

pre� (a local error).

Please note that pre� denotes the precondition of a statement �. If the state-
ment is a service call S, it holds pre� = preS. We use the invariant of a loop as
its precondition and for all remaining cases, the precondition is true.

Our example has a local error as it fails to establish the precondition of the
service at label 4.
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A correction serves as a replacement of a part of the service composition.
Therefore, a correction consists of two labels, which specify the part the correc-
tion might eventually replace and an interface, which specifies the service, which
should be inserted between the two labels.

Definition 4 (Correction). Let SC be a service composition. A correc-
tion cor for SC is a triple (�, ū := S(v̄), �′)) such that SC can be divided
into SC→�

;SC′;SC�′ . Applying cor to SC (by replacing SC′) yields cor(SC) =
SC→�; ū := S(v̄);SC�′ .

The key difference between imperative programs and service compositions w.r.t.
error correction is now the fact that not all services we like to use in a correction
are available in the service market. It is essential to note that markets cannot
and do not offer every possible service operating in the domain. Hence, we call
a correction realizable in a service market SM(D) if every service S occurring in
the correction, is contained in SM(D). Error localization for service compositions
can thus only propose corrections, which afterwards needs to be checked for their
realizability.

4 Correction Proposals

In this section, we present an automatic approach to compute corrections for ser-
vice compositions. The aim is to provide small correction proposals first. Small
here refers to the number of statements, which are replaced by the correction.
Nonetheless, the easiest correction of a faulty service composition with require-
ment (pre, post) is to replace the entire composition by a single service call of a
service S with preS = pre and postS = post. Quite likely this is not a realizable
correction (since otherwise one would not have bothered to construct the service
composition at first hand).

Corrections for Global Errors. We assume service compositions to be in SSA
form. Thus, we have at most one assignment to every output variable of the
service composition. Most likely, this output is determined at the end of the
service composition (otherwise, the statements behind that can be discarded
because they do not affect the output anymore). Hence, we start the correction
of global errors, i.e. when the service composition in its entirety has failed to
establish the postcondition, at the end of the service composition.

The key to the correction of global errors is to determine the functionally
missing in the current service composition. We specify the missing part in terms
of so-called bridges.

Definition 5 (Bridge). A bridge between two logic formulas ϕ and ψ is a
formula ρ such that ϕ ∧ ρ ⇒ ψ holds. The set of bridges between ϕ and ψ is
defined as ψ \ ϕ := {ρ | ρ is a bridge between ϕ and ψ}.
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As an example: ϕ := p(x), ψ := p(x) ∧ q(z). Then ψ \ ϕ contains for instance
false, q(z) and ψ. We use the notation \ here since a bridge can easily be com-
puted as set difference when both ϕ and ψ are given as conjunctions (sets) of
literals – as for our strongest postconditions. As the sp-semantics does not intro-
duce quantifiers, it is sufficient to consider propositional logic formulae ϕ and ψ.

Proposition 1. For arbitrary formulae ϕ and ψ, it holds that ψ \ ϕ is infinite.

Proof. The set always contains false as ϕ ∧ false ≡ false and false implies
everything. The set is non-finite as false can be expressed with infinitely many
formulae.

While there always exists a bridge, there does not necessarily exist a service,
which has the bridge as postcondition. Thus, the corrections which we propose
below, might not be realizable.

Computing Corrections for Global Errors. Corrections for global errors need to
range from some label � of the service composition (not contained in a branch or
a loop) to the end of the service composition denoted by �⊥. Thus, we need to
construct a bridge between the strongest postcondition, which can be guaranteed
at � and the postcondition post.

The correction from � to �⊥ thus proposed to add a service call using the
service Scor of the following form (o1, . . . , ol) := Scor(x1, . . . , xk) where

– {o1, . . . , ol} = Out \ (def(SC→�) ∪ InSC),
– {x1, . . . , xk} = def(SC→�) ∪ InSC,
– preScor

:= sp(SC→�, pre) and
– postScor

:= ρ

and ρ ∈ post \ sp(SC→�, pre). The bridge, which we take here, needs to be
chosen such that var(ρ) ⊆ {o1, . . . , ol, x1, . . . , xk}. One candidate is post itself. It
is, however, preferable to use smaller (in terms of variables used) ρ’s since this
increases the chances of proposing a realizable correction. We do not need to
rename the variables of the service calls as the service Scor takes the variables
defined so far as inputs and must provide all output variables of the service
composition.

Theorem 1. Let SC be a service composition with requirement (pre, post) and
let SC have a global error (and no local errors). Let � �= �⊥ be a label of SC. Then,
the correction (�, ū := S(v̄), �⊥), where S � Scor, is a refinement of ō := Scor(x̄)
as given above, corrects the error.

Proof. We have to prove that (�, ū := S(v̄), �⊥) is a correction, i.e. we have to
prove that the service composition

SC→�; ū := S(v̄);SC�⊥

satisfies the postcondition postSC for every input, which satisfies the
precondition.
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Formally, we thus need to show the following:

sp(SC→�; ū := S(v̄);SC�⊥ , preSC) ⇒ postSC.

(A) First, we show that there does not exist a local error in the corrected service
composition:
– SC→� does not contain a local error by assumption.
– The following holds:

sp(SC→�; ū := S(v̄);SC�⊥ , preSC)
= sp(ū := S(v̄);SC�⊥ , sp(SC→�, preSC))
= sp(SC�⊥ , sp(ū := S(v̄), sp(SC→�, preSC)))

By definition, preScor
:= sp(SC→�) and the service S refines Scor, i.e.

preScor
⇒ preS. Thus, it holds that sp(SC→�) ⇒ preS, and S is applica-

ble and does not block.
– SC�⊥ is the empty program and therefore, cannot contain a local error.

(B) Second, we prove that there does not exist a global error. The strongest
postcondition of the service call is given by

sp(ū := S(v̄), sp(SC→�, preSC)) = preS(x̄) ∧ postS(x̄, ō) ∧ sp(SC→�, preSC).

By definition, it holds that sp(SC, preSC)∧ postScor
⇒ postSC as the postcon-

dition of the service Scor is defined as a bridge between sp(SC, preSC) and
postSC. As S � Scor, it holds that postS ⇒ postScor

.
The service composition SC�⊥ denotes the empty program as �⊥ does not
correspond to any program label. Therefore, the following holds:

preS(x̄) ∧ postS(x̄, ō) ∧ sp(SC→�, preSC) ⇒ sp(SC→�, preSC) ∧ postScor(x̄, ō) ⇒ postSC.

Thus, the service composition SC→�; ū := S(v̄);SC�⊥ is correct wrt. the
sp-semantics and (�, ū := S(v̄), �⊥)) is indeed a correction. ��

The theorem does not consider realizability of the proposed correction. If the
pre- and postcondition of a service composition are incompatible or even false,
or the proposed service cannot be found in the market, the proposed correction
cannot be applied. Then, another proposal has to be computed and checked for
realizability.

Correction of Local Errors. A local error occurs when the precondition of a ser-
vice (or the invariant of a loop) is not established upon the call of the service
(start of the loop). Every local error can be rephrased as a global error in the
following way. If � is the location of the local error, we only consider the ser-
vice composition up to �, and use the precondition of � as postcondition of the
subcomposition.

Proposition 2. Let SC be a service composition with a local error at � and
requirement (pre, post). Then the following holds: SC has a local error at � iff
SC→� has a global error with respect to (pre, pre�).
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Hence, we can reuse the algorithm to compute correction proposals for global
errors also for local errors by simply modifying the considered service compo-
sition and pre- and postconditions. An alternative correction proposal for local
errors is (�, ū := S(v̄), �⊥), where the precondition of S is the strongest postcon-
dition of SC→� and the postcondition of S is the postcondition of SC.

We have already seen that our service composition has a local error at label 4.
As one correction, we propose to replace the block before 4 (the if-statement)
by a new service call. As input, it gets all the variables used so far, i.e., painter,
painting and I. As output variable, it gets G. Its precondition is isImage(I,painting)
and the postcondition is ¬unknown(painter) ⇒ isGainOf(I,painter,G). Thus, We
need to check whether this service is available in the service market and if yes, can
use it at the place of the if-statement. This correction also leads to an error-free
service composition as the strongest postcondition of cor(SC) wrt. pre together
with the rules of the ontology now imply the overall postcondition post.

Correction of Loops and Branches. We treat loops and branches as a single
block in the above approach and do not allow to correct errors, which occur
inside of loops and branches. Nevertheless, we can also correct errors in loops
and branches using the same approach as above.

Let while B do S1 od be a loop and Inv its invariant. We say that the loop has
a while-global error if sp(S1, Inv ∧B) �⇒ Inv . We then consider S1 as a complete
service composition with precondition Inv ∧B and postcondition Inv and apply
the correction proposal algorithm for global errors.

Similarly, we can correct local errors in loops and branches. We say a loop
while [B ]� do S1 od has a local error at label �′ if �′ ∈ L(S1) and

sp(S1→�′ , sp(SC→�, preSC) ∧ Inv ∧ B) �⇒ pre�′ .

Analogously, we say that a branch if [B ]� then S1 else S2 fi; has a local error
at label �′ if either �′ ∈ L(S1) and sp(S1→�′ , sp(SC→�, preSC) ∧ B) �⇒ pre�′ or
�′ ∈ L(S2) and sp(S2→�′ , sp(SC→�, preSC) ∧ ¬B) �⇒ pre�′ . Also for local errors
in branches or loops, we first propose corrections in S1 and S2, respectively, by
considering both of them as single service composition and then, applying the
algorithm given above. Afterwards, we again treat loops and branches as single
blocks and try to replace them with new services.

5 Discussion

In this section, we discuss why existing error localization methods are not helpful
w.r.t. to error correction in service compositions. We start with the following
artificial service compositions, which illustrates that considering only a subset of
statements (i.e. only a set of suspicious statements) of the service composition
in fact lessens the chance to find a realizable correction.

B b := makeA(a);C c := makeB(b);D d := makeD(c)
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The requirement on this service composition is (pre, post) = (isA(a), isD(d)) using
the services makeA, which has precondition isA(a) and postcondition isB(b),
makeB, which has precondition isB(B) and postcondition isC(c) and makeD,
which has precondition ¬isC(c) and postcondition isD(d).

The local error (precondition of service makeD not met) can be corrected in
various ways, for example,

– it can be considered as a missing code problem – the service with precondition
isC(c) and postcondition ¬isC(c′) (whereas both the input and the output
variable have type C ) needs to be inserted or

– it can be solved by exchanging the service makeB with a service with the same
precondition, but the postcondition ¬isC(c) or

– it is also possible to replace both the service calls makeA and makeB by, for
example, services with precondition isA(a) and postcondition ¬isB(b) and pre-
condition ¬isB(b) and postcondition ¬isC(c), respectively.

This construction can be repeated arbitrarily often and we do not know, which
correction to prefer unless we know the available service markets, and thus, which
alternative services exist.

The previous example shows why errors in service compositions can be at
any places. The next example shows why reducing the set of statements does
not help with error localization. Assume that the requirement on the service
composition given below is (pre, post) = (isA(a), isD(d) ∧ isE(e)).

B b := makeA(a);F f := makeF(a);
C c := makeB(b);D d := makeNotC(c);E e := makeE(f)

The service makeE has the precondition isF(f) and the postcondition isE(e),
the service makeF has the precondition isA(a) and the postcondition isF(f) and
the service makeNotC has precondition isC(c) and the postcondition ¬isD(d).
The pre- and postcondition of all other services remain unchanged. For any
input, the service composition already guarantees isE(e), but not isD(d). Thus,
we could apply slicing to only correct the part of the service composition, which
is responsible for the error isD(d), i.e. we only correct the service composition
B b := makeA(a);C c := makeB(b);D d := makeNotC(c). Nevertheless, this may
obliterate the only existing correction. For example, the service composition
can be fixed with a service D d := makeNotC(f, c), which has the precondi-
tion isF(f)∧ isC(c) and the desired postcondition isD(d). As the variable f is not
in the slice, slicing cannot propose this correction.

6 Conclusion

In this paper, we addressed the problem of automated error localization and
correction for models of service compositions. We therefore needed to find a way
to overcome the lack of executability of single services, which makes most error
localization and correction methods for standard software inapplicable. Thus,
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we proposed correction proposals, which state where and how to modify existing
service compositions in terms of alternative services. Correction proposals can
be statically computed based on the strongest postcondition semantics of our
service compositions and thus, are completely independent from test cases or
executability. Hence, the computation of correction proposals is a good way to
the localization and correction of errors in model-driven design approaches in
general. Moreover, the computation of correction proposals can easily be gen-
eralized to every setting, which has a formal semantics in terms of strongest
postconditions. Hence, even automated correction of imperative programs might
benefit from our approach.

As future work, we want to practically evaluate the effectiveness of correc-
tion proposals for existing service markets w.r.t. to the existence of alternative
markets. Moreover, we want to examine whether existing approaches to error
localization and correction might be reused for more specific classes of errors (for
instance, errors caused by a missing negation in conditions of loops or branches).
Finally, we want to study the generalization of our approach to software systems.

References

1. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs:
Graduate Texts in Computer Science, 2nd edn. Springer, Heidelberg (1997)

2. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82, 3–22 (2009). Special Issue: Soft-
ware Performance - Modeling and Analysis

3. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., Pinpoint: problem
determination in large, dynamic internet services. In: International Conference on
Dependable Systems and Networks (2002)
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