
Views on UML Interactions as Spreadsheet
Queries

Martin Gogolla1 and Antonio Vallecillo2(B)

1 University of Bremen, Bremen, Germany
gogolla@informatik.uni-bremen.de
2 University of Malaga, Malaga, Spain

av@lcc.uma.es

Abstract. This paper explores the use of table-based representation for
artifacts occurring in model-driven development as opposed to graph-
based representation. As an example for table-based representation of
models, we explain how views on object interaction that are traditionally
represented as UML sequence or communication diagrams can be realized
by spreadsheet queries.

1 Introduction

Models in Model-Based Engineering (MBE) are graph structures and as such
they are typically expressed using graph-based representations; e.g., class and
object diagrams are represented as nodes and edges in a graph. This sort of
representation permits a natural, faithful and comprehensive description of the
models and of their views, and its operation by theories and tools. However,
graph-based descriptions of large systems can become cumbersome and diffi-
cult to understand, query and analyze by human users due to their size and
complexity [4,8].

The modelling world has few connections to the spreadsheet world, despite
the fact that spreadsheets provide a widely used description technique. Spread-
sheets are able to represent complex information in a clearly structured way in
tabular form. Together with relational databases, now they probably constitute
the most used way of presenting and manipulating information.

This paper explores the use of table-based representation for artifacts occur-
ring in MBE, as opposed to their traditional graph-based representation. As an
example, we show how object interaction diagrams that are traditionally rep-
resented as UML sequence or communication diagrams [9,12], can be naturally
expressed in tabular form; and how views on such models can be easily realized
by spreadsheet queries. In principle, the table-based representation we show here
can be used for all other UML-like models as well, hence facilitating the creation of
views and their representation in a more appropriate manner for many purposes.

2 Preliminaries

The context of our work is the UML tool USE (Uml-based Specification Envi-
ronment) [5] that allows the developer to describe (a) system structure with a
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 394–400, 2016.
DOI: 10.1007/978-3-319-50230-4 30



Views on UML Interactions as Spreadsheet Queries 395

class diagram incorporating OCL (Object Constraint Language) invariants and
(b) system behavior with OCL contracts, UML state machines and operation
implementations in the language SOIL (Simple Ocl-like Imperative Language)

Fig. 1. Example interaction as UML communication diagram.



396 M. Gogolla and A. Vallecillo

Fig. 2. Example interactions as spreadsheet.

that combines OCL expressions with control flow. Models can be executed by
means of scenarios that can be documented with UML sequence and commu-
nication diagrams. These two diagrams are the UML form of showing object
interactions.

Our running example is a simple variant of a toll collecting system for trucks
moving on a road layout described in more detail in [5]. Figure 1 shows (a) the
class diagram, (b) a communication diagram for a scenario with 15 major mes-
sages involving three towns (Hamburg hh, Berlin b, Munich m) connected by
roads and one travelling truck as well as (c) an object diagram reflecting the
system state after one particular message (number 12). Messages possess sub-
messages indicated by structured numbers, e.g., 12.1, 12.2, 12.2.1, 12.2.2, 12.2.3.

The challenge for us was: how can we achieve a comfortable view mechanism
on complex interactions consisting of message exchanges among objects? Differ-
ent views may want to filter the interactions along different aspects like message
kind (e.g., creating or destroying objects or inserting or deleting links), message
order (through the numbering system) or involved object types.

3 Representing Interactions in Spreadsheets

We now want to explain how the graphically displayed message exchanges from
the communication diagram in Fig. 1 can be given in table-based form. Figure 2
shows (part of) the object interactions in a spreadsheet. The columns describe



Views on UML Interactions as Spreadsheet Queries 397

Fig. 3. Example query on interaction as spreadsheet query.

(1) the structured message number, (2) the message in instantiated form, (3) the
message in generic form, (4) the message kind, (5) a flat message number,
and (6) the message call depth. The distinction between columns (2) and (3)
can be explained best by message 12.2.3 having flat number 34: the generic
form shows the SOIL statement from the “move” implementation “self.debt :=

self.debt+1” whereas the instantiated form shows concrete, substituted values
“self.debt := 2”. The table-based representation contains even more details than
Fig. 1, as attribute initializations and operation result values are shown. Every
present information on messages is stated in the table. Apart from the depicted
attributes, the table could contain further information, such as the sender and
receiver of each message.

4 Views on Interactions as Spreadsheet Queries

Let us now turn to the question how complex interactions as present in Fig. 2
can be viewed and filtered for particular purposes. The developer will not be
interested in all messages with all details, but will like to see only messages rel-
evant in a particular context. For example, the developer might want to achieve
a rough overview on the creation of the road layout and the operation calls in
the later part of the scenario.

The spreadsheet query in the upper, grey-shaded part of Fig. 3 serves this
purpose. The result of the query is stated in the lower part.

Thus, by expressing spreadsheet queries that can be formulated in the spread-
sheet itself and that can use present constants and simple, but effective operators,
the developer is able to interactively formulate requirements on the desired view
and to satisfy the current information needs.

In order to compare this approach with similar queries on the UML meta-
model, Fig. 4 shows the fragment on the UML metamodel that deals with Interac-
tions. As we can see, every message requires the specification of several instances
of class MessageEnd and of separate objects in case of arguments. For example,
Fig. 5 shows how only one of the 41 messages in the Interaction is represented as
an instance of the UML metamodel, namely the “enter(hh)” message. This illus-
trates the complexity required for navigating through these kinds of instances
for expressing queries that can be easily specified in a spreadsheet.



398 M. Gogolla and A. Vallecillo

Fig. 4. UML interaction metamodel (from [9]).

Fig. 5. Send message event as an instance of the UML metamodel (from [5]).

5 Conclusion

So far, most efforts for connecting the spreadsheet and Model-Based Engineering
worlds have focused on representing spreadsheets as models [10] in order to make
use of MBE concepts, mechanisms and tools to improve the specification, devel-
opment, debugging, maintenance, and evolution of spreadsheets—see, e.g., [1,2]
and many of the SEMS workshop series papers [6,7].

In this paper we have discussed an example that aims at showing the benefits
of using a tabular representation of a model as opposed to its graph-based rep-
resentation. In fact, models of non-trivial systems can become very complicated
and their representation as spreadsheets can be quite simple and straightforward.



Views on UML Interactions as Spreadsheet Queries 399

In this manner queries can be formulated in a natural and user-oriented way, too.
Furthermore, we can use all the powerful operations provided by spreadsheets to
implement some operations on the views, or even make use of advanced features
for querying spreadsheets [3]. We could also keep them in sync, so that certain
changes in the views (the spreadsheets) are propagated to the models, updating
them accordingly.

Of course, each notation is more apt for particular goals, and probably the
best approach consists of combining table- and graph-based representations,
using one or the other depending on the kind of user querying the model [11],
and on the operation we want to perform on the model. In the USE context
we already count on graph- and table-based representations for object diagrams
and interactions. Counting on spreadsheet-based representation of other aspects,
such as complete object diagram evolution, would be desirable too.

Acknowledgements. This work is funded by Spanish Research Project TIN2014-
52034-R and by Universidad de Málaga (Campus de Excelencia Internacional
Andalućıa Tech).

References

1. Bals, J., Christ, F., Engels, G., Erwig, M.: ClassSheets - model-based, object-
oriented design of spreadsheet applications. J. Object Technol. 6(9), 383–398 (2007)

2. Cunha, J., Fernandes, J., Mendes, J., Pereira, R., Saraiva, J.: MDSheet: model-
driven spreadsheets. In: Proceedings of SEMS 2014, vol. 1209, pp. 31–33. CEUR
(2014)

3. Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.: Embedding model-
driven spreadsheet queries in spreadsheet systems. In: Proceedings of VL/HCC
2014, pp. 151–154. IEEE Computer Society (2014)

4. Gelman, A.: Why tables are really much better than graphs. J. Comput. Graph.
Stat. 20(1), 3–7 (2011)

5. Gogolla, M., Hamann, L., Hilken, F., Sedlmeier, M.: Modeling Behavior with inter-
action diagrams in a UML and OCL tool. In: Roubtsova, E., McNeile, A., Kindler,
E., Gerth, C. (eds.) Behavior Modeling – Foundations and Applications. LNCS,
vol. 6368, pp. 31–58. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21912-7 2

6. Hermans, F., Paige, R.F., Sestof, P. (eds.): Proceedings of 1st International Work-
shop Software Engineering Methods in Spreadsheets (SEMS 2014). CEUR Pro-
ceedings, vol. 1209 (2014). http://ceur-ws.org/Vol-1209/

7. Hermans, F., Paige, R.F., Sestof, P. (eds.): Proceedings of 2nd International Work-
shop Software Engineering Methods in Spreadsheets (SEMS 2015). CEUR Proceed-
ings, vol. 1355 (2015). http://ceur-ws.org/Vol-1355/

8. Kosslyn, S.M.: Understanding charts and graphs. Appl. Cogn. Psychol. 3(3), 185–
225 (2006)

9. Object Management Group: Unified Modeling Language (UML) Specification, ver-
sion 2.5. OMG Document formal, 01 March 2015

10. Paige, R.F., Kolovos, D., Matragkas, N.: Spreadsheets are models too. In: Proceed-
ings of SEMS 2014. CEUR, vol. 1209, pp. 9–10 (2014)

http://dx.doi.org/10.1007/978-3-319-21912-7_2
http://ceur-ws.org/Vol-1209/
http://ceur-ws.org/Vol-1355/


400 M. Gogolla and A. Vallecillo

11. Sobreira, P., Tchounikine, P.: CSCL scripts: interoperating table and graph repre-
sentations. In: Proceedings of CSCL 2013, pp. 165–168 (2013)

12. Wendland, M.-F., Schneider, M., Haugen, Ø.: Evolution of the UML interactions
metamodel. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 405–421. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41533-3 25

http://dx.doi.org/10.1007/978-3-642-41533-3_25
http://dx.doi.org/10.1007/978-3-642-41533-3_25

	Views on UML Interactions as Spreadsheet Queries
	1 Introduction
	2 Preliminaries
	3 Representing Interactions in Spreadsheets
	4 Views on Interactions as Spreadsheet Queries
	5 Conclusion
	References


