
Programming Communication with the User
in Multiplatform Spreadsheet Applications

Jerzy Sikora1, Jacek Sroka2, and Jerzy Tyszkiewicz2(B)

1 Institute of Archaeology, University of Lodz, �Lódź, Poland
jerzy.sikora@uni.lodz.pl

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{sroka,jty}@mimuw.edu.pl

Abstract. It is quite common that the same person uses many different
devices, depending on the situation: smartphones and tablets in the field,
laptops in the office, switching between operating systems and Web-based
applications. A spreadsheet user in this situation needs a multiplatform
spreadsheet, one which will work equally well on all types of devices. The
alternative of having many spreadsheets and copying data between them
is clearly inferior, because it is a well-known source of errors.

The topic we want to address in the present paper is programming the
interaction with the user in a multiplatform spreadsheet, using only the
core spreadsheet functionalities, which are implemented in the majority
of spreadsheet systems.

We report here on our experiences with creating the user interface
of a multiplatform spreadsheet application for archaeologists working in
the field.

1 Introduction

1.1 Early History

The initial challenge came from one of the authors of the present paper (J. Si.),
who needed a mobile application for Android, capable of storing stratigraphic
data collected during excavations, consisting of textual descriptions of archaeo-
logical contexts, and chronological earlier-than and later-than relations between
them. The data was intended to be transferred for further analysis to a standard,
Windows-based application (running under Wine on a Linux machine). So from
the very beginning the application was intended to be used in an environment
with at least two (or perhaps even three) operating systems involved. This is
nothing particular. Nowadays users routinely switch between devices, operating
systems, and between online and offline mode of work.

We decided to implement the archaeological application, later named Strati5,
as a multi-platform spreadsheet. The application was described from the user’s
point of view in [10]. We also published a short, nontechnical paper [9], advocat-
ing the general idea of rapid development of mobile multiplatform applications
in the form of spreadsheets with Strati5 as a working example.
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 356–371, 2016.
DOI: 10.1007/978-3-319-50230-4 27

Programming Communication with the User 357

1.2 Why a Spreadsheet?

In the paper [11] the other two of us (J. Sr. and J. Ty., with other co-
authors) made a claim, that spreadsheet formulas in fact constitute a platform-
independent programming language, even though there is no common formal
standard in this respect. Applications written in this language run on vir-
tual machines, which are spreadsheet management systems, like Microsoft Excel
(available for Windows desktop and phone, Mac, Android and iOS), Apache
OpenOffice and LibreOffice calc (available for Windows, Mac and Linux), WPS
Office spreadsheet (available for Windows desktop, Linux, iOS and Android),
and many other.1

When we had a chance to verify our belief in practice, we did so, treating the
archaeological application as a test, if spreadsheet technology can indeed serve
for multi-platform programming.

Next, using spreadsheet as an application saved us a lot of implementation
work. Programming the user interface is typically one of the most laborious
parts of each project. In our case, a vast majority of the user interface is always
provided directly by the spreadsheet system used. It is responsible for all func-
tionalities related to data navigation, typing, editing, undo, redo, file opening and
saving, etc. It also adapts the application to different screen sizes and resolutions,
mouse or touch as a pointing device, etc. Finally, it seems almost impossible to
find another technology which would make the very same code run on Android,
iOS, Windows, Linux and MacOS.

Having one application for all systems, we did not have to implement any
protocols to facilitate data transfer between different applications. Copying data
between spreadsheets is generally considered to be error-prone, so sharing the
same spreadsheet between devices and systems prevents many potential errors
and risks.

Last but not least, spreadsheet technology is very conservative and back-
ward compatibility has always been a major concern. Therefore, we expect our
application to remain fully functional for many years without any need of mod-
ifications, and even to get ported to new operating systems, should they appear
on the market—most likely without a single keystroke on our part.

1.3 Development History

After testing a few systems, WPS Office for Android was chosen as the optimal
one to start with and within a few days the first working version of Strati5 for
the tablet was available.

Tests took place during regular archaeological excavations in Ostrowite (Po-
merania, Poland) led by J. Si. A number of improvements resulted in a tool,
running on Android tablet (for collecting data in the field) and on Linux laptop

1 A Spreadsheet management system (or spreadsheet system) is a software used to
create, manage and execute individual spreadsheets. This distinction resembles the
relation between a database management system and individual databases.

358 J. Sikora et al.

at the base camp (for exporting the data to an external application). The whole
spreadsheet was routinely used and transferred between the devices, causing no
problems during many months of excavations. Strati5 proved to be reasonably
comfortable and intuitive in everyday operation.

Then we decided to offer the application to other users, making it as indepen-
dent of the operating system as possible. Achieving this goal required a number
of changes and appeared to be an interesting programming experience.

In the present paper we discuss the technical issues of programming the
interaction with the user in a spreadsheet intended to be transferred between
many platforms. We hope that this knowledge and developed know-how will
be useful in other cases. Requests for help in porting existing spreadsheets into
mobile environments already show up at MrExcel.com, a very active spreadsheet-
related forum, as witnessed by recent posts [1,3,7,8]. We expect that this demand
will grow. There have been a few papers which deal with the usability of mobile
spreadsheets [2,4,5], but they all discuss spreadsheet management systems rather
than individual spreadsheets, so we are probably pioneers in this respect.

As a by-product of our technical developments, in Sect. 3.2 we describe a
simple design pattern, which can be used to control location of cyclic references
in all types of Excel: desktop, mobile and online.

2 The Overall Structure of the Interface – Strati5

In this section we describe the spatial organization of the interface and spread-
sheet functionalities necessary to implement it. Our working example is Strati5.

2.1 Fundamental Requirements

The requirement was to develop a mobile application, capable of storing strati-
graphic data, consisting of archaeological contexts with textual descriptions, a
set of chronological earlier-than and later-than relations between the contexts,
which are edges of a directed acyclic graph of interest to archaeologists, called
Harris matrix. Later we added groups, i.e., named sets of contexts, to the data
model. We identified the following main requirements:

A. Entry and storage of the data, with estimated growth rate of at most 20
records a day and average of 200 records per month.

B. Warn about/prevent duplicated context id.
C. Warn about/prevent cycles in the relations between contexts.
D. Warn about/prevent using undefined contexts in the relations.
E. Warn about/prevent duplicate group id.
F. Warn about/prevent assigning contexts to undefined groups.
G. Operating on a mobile devices and laptops, with strong preference toward

network-independent operation.
H. Automatic or semi-automatic data export in a format accepted by Strat-

ify [6], a popular free desktop application for maintaining and processing
stratigraphic data.

www.MrExcel.com

Programming Communication with the User 359

I. Low resource consumption, to enable smooth operation on a tablet and pre-
vent draining the battery, assuming load from item A above.

As it can be recognized, most of the above items were related to data vali-
dation. While analyzing the methods to implement them, we came up with the
conclusion, that it was impossible to support all popular spreadsheet
systems.

Instead, we decided to work toward a more realistic goal of supporting
sufficiently many spreadsheet systems to offer our tool on all major
operating systems, and to cover a few most important spreadsheet sys-
tems: Microsoft Excel for Windows desktop and Mac, LibreOffice and Apache
OpenOffice for Windows, Linux and Mac, and Google sheets.

2.2 Structure of the Interface

After some consideration, we decided that the key services we needed from the
spreadsheet systems were:

– Reporting emergence of cyclic references (required for reporting cyclic rela-
tions between contexts);

– Support for array formulas;
– Support for “freeze panes” (i.e., making the top row(s) and/or the leftmost

column(s) always visible on the screen);
– Support for data validation by a list of allowed values;
– Support for conditional formatting.

They were needed for a very schematic idea of the interface, shown on Fig. 1.
It was based on the freeze panes function applied to a few rows and columns.

Fig. 1. Schematic structure of the user interface. The gray top row(s) and leftmost
column(s) are frozen panes.

360 J. Sikora et al.

Referring to the colors on the figure, the roles of the particular areas are as
follows:

– The dark gray area in the top left corner is always present on the screen. It
can display messages about spreadsheet’s global state, by formulas producing
texts of messages and conditional formatting indicating their presence.

– The medium gray area on the top edge consists of cells which are visible
whenever any fragment of their column is visible. They can be used to display
column-related messages.

– The medium gray area on the left edge consists of cells which are visible
whenever any fragment of their row is visible. They can be used to display
row-related messages.

– The light gray area are individual cells and the functions used in them are
most likely data validations and perhaps conditional formatting.

Eventually, the following operating systems and spreadsheet systems passed
tests of compliance with the above requirements:2

Windows Excel, LibreOffice, OpenOffice, WPS Office
MacOS X Excel, LibreOffice, OpenOffice, WPS Office
Linux LibreOffice, OpenOffice, WPS Office
Android WPS Office
iOS WPS Office
Windows mobile MS Office
All systems Google sheets.

3 Interaction with the User

In this section we point out the main issues we encountered while designing and
programming the way Strati5 interacts with the user.

First of all, we separated the spreadsheet into a number of worksheets. The
bulk of user interaction is performed on worksheet intended for data entry,3

whose structure is presented in Fig. 2 below and follows the schema from Fig. 1.
The headers of rows do not produce any messages, but contain the id of the
archaeological context being described in the row. Column headers are used to
display column-related messages. The descriptions of the contexts area contains
no validations, as it is intended for textual descriptions. The corresponding col-
umn headers are merely names of columns.

The requirements presented above determine, that the dominating activity
was to either block entries violating data integrity, or at least to warn the user
about them. The formulas of Strati5 we present below come from a variant with
200 contexts, at most 500 contexts and relations together, at most 12 relations
per context and at most 20 groups.
2 Some other combinations might be fully functional, too.
3 In fact, the remaining worksheets are almost never used in the field, and relatively

seldom at the base camp.

Programming Communication with the User 361

Fig. 2. The structure of the data entry worksheet of Strati5 (top). The colors follow
Fig. 1. There are no global state messages. The cells in the white areas undergo no
validation. Below Strati5 in Microsoft Excel under Windows 7 desktop (middle) and
in WPS Office under Android on a smartphone (bottom).

362 J. Sikora et al.

Requirements D and F can be very efficiently programmed using data val-
idation of type “List”, where the user has to choose the data element from a
list declared in the data validation form. This form of data validation is widely
supported by spreadsheet systems. On a majority of systems, the spreadsheet
displays a drop-down list of permitted values, from which the user can choose
the right one. It is particularly convenient on mobile devices, where typing is
much less comfortable and produces more typos than on machines with hard-
ware keyboards. Such lists are used in the ids of contexts earlier than the present
one and group id areas. The drop-down list can be potentially quite long, but
we did not decide to do anything about that.

Concerning requirements B and E, the only method to block a new data entry
in spreadsheets is to use data validation tools. Initially we intended to use them in
the context ids area. It is possible and not too difficult to write a custom formula
in the Excel data validation form, which will permit entering only a new context
id in a cell. However, data validation in Apache OpenOffice and LibreOffice does
not permit custom formulas. Worse still, upon reading an Excel-created file with
such a data validation, it is corrupted and produces a faulty data validation,
which permits duplicates, but blocks completely some entries. Consequently, we
submitted bug reports and had to choose another method to satisfy our need.

Being unable to block duplicates, we decided to indicate them instead, leav-
ing corrections to the user. There are two tools, which can be used for this
purpose: conditional formatting and formulas. The former can be used to mark
duplicates. However, Google sheets does not support marking duplicates, so the
only way was to enter a custom formula there. After the unpleasant experience
with formula-based data validation, we decided to use the header of context id
column cell to insert a single array formula, verifying if there were any dupli-
cates on the list below. It was written to yield a warning message if there are
duplicates, and the usual column header otherwise:

A1 {=IF(MAX(COUNTIF(A2:A200,A2:A200))>1,"DUPLICATE","Unit name")}
A single simple conditional formatting rule applied to this cell turns it red

when the warning is displayed, to increase its visibility. This form is sufficient,
because in archaeological practice, context ids are created, stored and almost
never changed. Consequently, if a new entry is a duplicate, it is clear that this
entry must be changed, not the other. Very recently an update of LibreOffice
introduced a faulty mechanism of array formula computation, which in our case
produces a constant duplicate warning. Therefore we decided to replace the array
formula by a formula-based conditional formatting in column A.

3.1 Reporting Emergence of Cyclic References

This was probably the source of the largest problem we had in the development
of Strati5. Our implementation of breadth-first-search (BFS) graph traversal
(presented for completeness in Appendix A) produces a cyclic reference between
spreadsheet cells as a manifestation of a cycle in the “earlier than” relation

Programming Communication with the User 363

created by the user. Therefore, we needed to notify the user of this event. Unfor-
tunately, the way spreadsheet management systems react on cyclic references is
very diverse. We have noted the following basic groups:

pop-up Displaying a pop-up window with an appropriate message. This
form is exhibited by Microsoft Excel for Windows desktop and Mac OS, WPS
Office for Windows and for Android. Additionally, the cells which are lying on
the cycle, as well as those which depend on them, are not recomputed.

error Evaluating the cells which are lying on the cycle to an error value.
This form is exhibited by OpenOffice, LibreOffice and Google sheets.

stop The cells on the cycle, as well as those which depend on them, are
not recomputed. This form is exhibited by Microsoft Excel for Windows Mobile,
Microsoft Excel Online, WPS Office for iOS.

Systems exhibiting pop-up message notify the user themselves.
For error group we used the top row to display the message. The com-

mon header of the columns where the user was supposed to enter the ids of
later contexts were a single cell merged from several individual ones, whose
text was constructed by a formula of the form =IF(ISERROR(SUM(’Cycle
test’!I2:I500)),"Cycle detected!", "Earlier than"). The column I on
the worksheet Cycle test is the place where cyclic references, and consequently,
error values, emerge (see Appendix A). SUM function evaluates to an error if there
are any errors in the summation area, and to a number otherwise. The whole
formula thus produces the message, whose visibility is increased by conditional
formatting. This gave us a common solution for pop-up and error systems.

Supporting stop was very important for us, because all available spreadsheet
management systems for iOS and Windows Phone were of this type.

We divided the header into two cells. The first of them contains the formula
=IF(ISERROR(SUM(’Cycle test’!I2:I500)),"Cycle detected!",
"Earlier than relations"&SUM(’Cycle test’!H2:H500)),
while the other cell contains
="Earlier than relations"&SUM(’Cycle test’!H2:H500)).

Then conditional formatting is applied to both cells, turning them red if their
values differ.

The cells in the range ’Cycle test’!H2:H500 contain numbers related to
each tuple in the earlier-than relation such that any single change of the relations
causes a change of their sum. ’Cycle test’!I2:I500 contains distances of the
contexts from the sterile layer and is, as before, the place where cyclic references
emerge.

In systems with pop-up and error responses the new formulas work very
much as before. In systems with stop response, the two results are obviously
equal if there are no cyclic references. However, if the user adds to, or modifies a
tuple in the relation creating a cyclic reference, the system stops the evaluation
of some cells in the range ’Cycle test’!I2:I500. One of the header formulas
depends on this range, the other does not. The latter is computed normally
and its value changes. The former is not recomputed due to its dependence
on unevaluated cells. Crucially, after the recomputation is finished, conditional

364 J. Sikora et al.

Fig. 3. Strati5 in WPS Office under iOS (top) and in Excel Online (bottom), showing
a warning about cyclic references. They are stop systems, so the indication is the red
color of the header. The bottom screenshot shows the the second cell of the header,
with a different value in it, triggering the conditional formatting.

formatting is applied to all cells, irrespectively of their evaluation status and the
two cells become red and issue a visual warning to the user, although no text
message is produced.

Programming Communication with the User 365

3.2 By-Product: A Cycle Indicator

A by-product of the above mechanism is our construction of a universal detector
of cyclic references in Excel desktop and online.

Excel desktop reports the emergence of cyclic references by a pop-up window
and indicates one, more-or-less randomly selected cycle, among all that are cre-
ated. This gives access to one cycle at a time. If such references are not enabled,
but already present somewhere in the workbook, there will be no warning or
indication of the subsequently created ones. This is especially likely if formulas
with OFFSET or INDIRECT are used and edited, but INDEX function used in the
reference form can cause the same effect.

Excel online does not report emergence of cyclic references in any way and
have no error checking tool.

The design pattern described below allows the user to set up cycle warnings
for any number of cells. All of them are activated simultaneously and visually
indicate ones which lie on cycles or depend on such cells. The form presented here
works for cells which do not evaluate to error values, but this can be overcome
with minor modifications.

As a matter of example, let us assume that the range A1:A10 are the cells
suspect of becoming elements of cycles we want to monitor.

We set up a single reference cell, let it be

C1 =NOW()

The monitors are installed by formulas (we assume that the formula is entered
into the top cell of the range and copied down, with automatic modifications
introduced by the spreadsheet)

B1:B10 =IF(A1=A1,C1)

and conditional formatting rules applied to cells in B1:B10, so that they change
the formatting of cell Bi iff its value is smaller than the value of the reference C1.

Let us assume the user makes an edit, which might cause some of the cells
to become members of cycles themselves or to depend on cells which are now on
cycles. Then the following events happen:

– Some of the cells in A1:A10 are attempted to be recomputed. Ones which are
now on cycles are not recomputed and the recomputation of their dependents,
including those in B1:B10, is also blocked4.

– The formula in C1 is volatile, hence it is recomputed and its value increases.
– Formulas in B1:B10 depend on cell C1 whose value has changed, hence their

recomputation is attempted. It succeeds for Bi iff Ai is not on a cycle and
does not depend on a cycle, otherwise it is blocked and the old timestamp is
retained.

4 Excel for Android recomputes all cells which are not elements of cycles, even if they
depend on cells which are elements of cycles. Therefore our solution does not work
in Excel for Android.

366 J. Sikora et al.

– Conditional formatting is applied to all cells in B1:B10. Those which have
been recomputed are equal to C1 and are not formatted; those which have not
been recomputed contain a timestamp older than the present value of C1 and
are therefore formatted.

A small variation allows a single monitor to be applied to several cells, e.g.,

B1 =IF(COUNT(A1:A10)=COUNT(A1:A10),C1)

collectively monitors the whole range A1:A10.
This design pattern incurs only low computational overhead and does not

require modifying the monitored spreadsheet computation. In particular, it can
be easily removed, when it is no longer needed.

3.3 Data Export

Requirement H was to provide data export from Strati5 to Stratify [6]. This tool
can read csv files of a specific structure, defined by the number of columns, their
data types and headers. The solution we implemented was to produce such a
csv file by concatenating values of certain cells, in a worksheet intended for data
export. The user is supposed to either copy and paste its content into a text
editor, or save it directly from the spreadsheet system as a csv file. Subsequently
Stratify can import such a file.

3.4 “Soft” Methods to Reduce Resource Consumption

We used two “soft” tricks to reduce the resource consumption of Strati5, both
related to the interaction with the user. This was done to satisfy requirement I.

The first one is that the user, while describing a context, is allowed to spec-
ify only contexts which are later than the present one, while relations in both
directions make perfect sense in archaeology, and Stratify permits them to be
specified. Specifying that a context c is earlier than the presently edited context
d can still be done: by going to the row with context c and entering there d as
a later context. This way we avoided expensive sorting by spreadsheet formulas
to group the tuples of the earlier-than relation by the first coordinate, which is
crucial for our implementation of BFS.

The next trick is that we introduced two predefined contexts: the chrono-
logically oldest context “sterile layer” and the top context “surface”, which are
crucially not processed in the acyclicity test (but are processed in the duplicate-
freeness test). The typical structure of many archaeological sites causes these
two contexts to be present in a very large fraction of the earlier-than tuples,
while they have no impact on the cyclicity of the relation. By eliminating them,
we get a significant reduction of the number of tuples Strati5 must process.

We expect that in many other contexts, domain-specific knowledge about
data to be processed can help devising analogous layout solutions to reduce the
computational cost of the spreadsheet application.

Programming Communication with the User 367

4 Scalability Problem

This is a problem we did not find any good solution for. Spreadsheets come
always with certain fixed number of rows and columns of formulas, and thus are
capable of processing a predefined maximal number of data items. Too small a
spreadsheet is therefore bad, too large one slows down the applications and drains
the battery—the opposite of requirement I. The designer has two basic methods
to overcome this problem: either to produce a couple of spreadsheets of different
sizes and let the user transfer the data between them when necessary (which is
error prone), or to assume that the user will modify the spreadsheet, adding or
removing rows of formulas. Preparing the spreadsheet for the latter action is not
trivial and requires a good deal of additional design work. It also interferes with
the good practice of hiding or locking those portions of the spreadsheet which
are not supposed to be edited by the end user.

5 Availability

Strati5 is available from http://bit.ly/Strati5, and is an open-source software
with a BSD license. Let us note here that, as far as we know, there is no tech-
nology to close the code of a multiplatform spreadsheet application, so multi-
platform spreadsheets are open source by necessity.

6 Standardization Issues

We were asked by the anonymous reviewers to discuss the issue of standardiza-
tion between spreadsheet management systems.

The following list indicates the main difficulties encountered while developing
our multiplatform spreadsheet:

a. Limited mutual compatibility of spreadsheet systems.
b. Highly insufficient documentation.
c. Technical and legal problems with using SDK tools for mobile systems.

It is clear that the more functionalities are compatible between spreadsheet
systems, the easier is to program multiplatform spreadsheets. Issues a and b are
two sides of the same coin. Definitely, they are real: during the whole development
process of Strati5 we had problems with mutual compatibility between spread-
sheet management systems and with their (lack of) documentation. Therefore
we had to rely on experiments choosing solutions in many cases, and we could
not use SDK tools for that.

A lot of work was necessary to find a workaround (not a solution!) of the
problem that cyclic references, a fundamental property of a spreadsheet, are
reported in so many different ways. Even spreadsheet systems coming from the
same vendor differ in this respect: Microsoft Excel for Windows (pop-up) differs
from its Online and Windows mobile versions (stop), WPS Office for Android
and Windows (pop-up) differ from WPS Office for iOS (stop).

http://bit.ly/Strati5

368 J. Sikora et al.

Cross-vendor problems concern other fundamental issues: LibreOffice and
OpenOffice do not permit formula-based data validations. Even the syntax and
behavior of formulas tends to differ from vendor to vendor like, e.g., error encod-
ing and handling between various Excel variants and LibreOffice on the one hand
and OpenOffice on the other hand.

The methods to create references to external workbooks are not transferable
between spreadsheet systems, in particular if one wants to use INDIRECT or some
other programmable, foolproof mechanism.

Indeed, as commented during the workshop, the relations between different
spreadsheet systems and their vendors seem to resemble those between Web
browsers and their vendors during the browser wars, with similar consequences
for the users and programmers.

A significant problem is related to the performance of the whole systems and
of their particular functions. Working with hardware of potentially low perfor-
mance, the programmer must know how spreadsheet systems implement specific
functions.5 E.g., in desktop Excel =MATCH(val,rng,0) is of linear time complex-
ity, while =MATCH(val,rng,1) is logarithmic, assuming that rng is sorted. It
would be desired to have guarantees that these complexities carry over to other
spreadsheet systems. In desktop Excel =COUNTIFS(rng1,val1,rng2,val2) is
much faster than =SUMPRODUCT((rng1=val1)*(rng2=val2)). Again, one would
like to know that the same relation holds in other systems. If many formulas are
being evaluated, the ability of the spreadsheet systems under consideration to
perform multi-threaded computations becomes an important factor, too.

We can also list two particular functionalities which would be very useful in
programming multiplatform spreadsheets.
Widely adopted and extended INFO function to determine the identity of the
spreadsheet system. That would help in programming spreadsheets in a clean
way, with clearly indicated portions of the code to be executed on particular
spreadsheet systems. The present functionality of INFO is insufficient: it returns
the version number of the system, but not its identity. E.g., =INFO("RELEASE")
returns the same value 11 in the latest WPS Office on Windows and on Android,
even though both spreadsheet systems differ in behavior and functionality, and
in quite different and much older Excel 2003. The situation is even worse with
Excel, whose online and Android versions do not support this function at all.

Row-wide and column-wide conditional formatting – in particular, setting con-
ditionally the width of columns and height of rows. This way one could set a
column to be a (part of a) frozen pane and be always present on the screen, fill
it with formulas computing warning messages, and set its width conditionally
to be 0 if it does not contain any warnings. Effectively, the column would then
play the role of a pop-up window produced without any scripts or macros.

Built-in array function sorting its input (like the one present in Google sheets)
in O(n log n) time would be a great tool to reduce resource consumption by many
5 We would like to thank one of the anonymous reviewers, who has pointed to us the

importance of this topic.

Programming Communication with the User 369

algorithms implemented by spreadsheet formulas. The typical sorting algorithms
built from formulas are quadratic. There is a spreadsheet sorting algorithm of
O(n log2 n) time complexity, but it requires O(n log n) formulas and is quite
complex [11]. Reducing resource consumption is particularly important on mobile
systems, due to their relatively low performance and dependence on battery.

Acknowledgments. We would like to thank the anonymous reviewers of our paper
and all participants of SEMS 2016, whose comments influenced this post-proceedings
paper.

The research project in Ostrowite, where J. Si. tested Strati5, was financed by
the National Science Centre grant based on the decision 2015/19/B/HS3/02124. The
research of J. Sr. was sponsored by National Science Centre grant based on the decision
2012/07/D/ST6/02492.

A BFS by Spreadsheet Formulas

Below we describe our implementation of the cyclicity test, which is based on
BFS graph traversal of [11], for Strati5 with the size limits we have indicated.
The way it is programmed is important for the generation of messages about
cyclicity of the relation.

Initial data is located in the worksheet Contexts. The range with contexts
is Contexts!A2:S200, with two contexts predefined: the top and the bottom
layer. The range Contexts!I4:T200 contains the relations: in row i (i.e., the
range Contexts!Ii : Ti) contains the list of contexts which are later than the
context in cell Contexts!Ai. The formulas below are located in the worksheet
Cycle test, which is hidden by default, because it is not intended to be edited
by the end user.

Below we indicate ranges and formulas. Each time, if the range consists of
more than one cell, we assume that the formula is entered into the top cell of
the range and copied down, with automatic modifications introduced by the
spreadsheet.

The formulas below ignore rows 1, 2 and 3 of the tab Contexts. The first of
them contains the headers, the other two contain two predefined contexts: the
sterile layer and the present surface, which are the bottom and top contexts in
the earlier-than relation. We do not process them.

First we count later contexts in each row, to know how many tuples it will
produce.

A2:A200 =COUNTA(Contexts!I4:T4)

Now we compute the incremental sum of the tuples to be created, adding
one dummy tuple for each context.

B2 =1

B3:B500 =B2+A2+1

This is the total number of all tuples:

370 J. Sikora et al.

C2 =SUM(B2:B200)

And this is the total number of all contexts:

D2 =COUNTA(Contexts!A4:A200)

Next we produce the number of the row in which the first coordinate of the
tuple is located. The count of rows refers to the area starting in row 4 in tab
Contexts, hence here we start with 1.

E2 =IF(ROW()>C$2+D$2,"",1)

E3:E500 =IF(ROW()>D$2+D$2,"",IF(F2>INDEX(A$2:A$200,E2),1+E2,E2))

The following is then the number of the column from which the second ele-
ment of the tuple originates:

F2 =IF(E2="","",1) F3:F500 =IF(E3="","",IF(E2=E3,1+F2,1))

Now we import the id of the context, which is the second element of the
tuple.

G2:G500 =IF(E2="","",INDEX(Contexts!I$4:T$200,E2,F2))

At this moment, consecutive rows in columns E and G contain the tuples of
the earlier-than relation we should process. In column E they are represented by
row numbers, in column G by real ids. They are grouped: all tuples that share
the same value of the first coordinate form a contiguous block.

The next formula searches column with ids of the contexts in sheet Contexts
to find the position of the context which is the second coordinate in the present
tuple:

H2:H500 =IF(OR(E2="",G2=0),-1,MATCH(G2,Contexts!A$4:A$200,0))

In case of nonexistent tuples (second coordinate "") or artificial ones (second
coordinate 0) we produce -1 without performing the actual search, because IF
is a lazy function, otherwise MATCH does the exact search (third parameter 0) for
the value of G2 in the range Contexts!A$4:A$200 and returns the position of
the match.

The last formula is the key one. Rows with -1 in column H get value 1 and are
the beginning of the recursion. Otherwise a = INDEX(B$2:B$200,H2) gives the
row number of the beginning of the block of tuples with the first coordinate equal
to G2 (via the value in the previous column), and b = INDEX(A$2:A$200,H2)
the size of that block. OFFSET then creates a range, which starts a rows below
and 0 columns to the right of I1, and spans b rows and 1 column (default
value, omitted in the formula). Now 1+MAX of that range does the recursion. It
is well-founded if there are no cycles in the earlier-than relation, and results in
a cyclic reference in case this relation contains a cycle.

I2:I500
=IF(H2=-1,1,1+MAX(OFFSET(I1,INDEX(B$2:B$200,H2),0,
INDEX(A$2:A$200,H2)+1)))

Therefore the correctness test is really the test if the above formulas produce
a cyclic reference or not.

Programming Communication with the User 371

References

1. Bradgar: iPad 2 running Excel with VBA? post #13. http://www.mrexcel.com/
forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.
html

2. Chintapalli, V.V., Tao, W., Meng, Z., Zhang, K., Kong, J., Ge, Y.: A comparative
study of spreadsheet applications on mobile devices. Mobile Information Systems
2016 (2016). doi:10.1155/2016/9816152

3. CWBlack: apps that support Excel VBA. http://www.mrexcel.com/forum/
general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-
applications.html

4. Flood, D., Harrison, R., Iacob, C.: Lessons learned from evaluating the usability
of mobile spreadsheet applications. In: Winckler, M., Forbrig, P., Bernhaupt, R.
(eds.) HCSE 2012. LNCS, vol. 7623, pp. 315–322. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34347-6 23

5. Flood, D., Harrison, R., Iacob, C., Duce, D.: Evaluating mobile applications: a
spreadsheet case study. Int. J. Mob. Hum. Comput. Interact. (IJMHCI) 4(4), 37–
65 (2012)

6. Herzog, I.: Group and conquer - a method for displaying large stratigraphic data
sets. BAR Int. Ser. 1227, 423–426 (2004). http://www.stratify.org

7. kgkev: VBA & Mobile devices. http://www.mrexcel.com/forum/general-excel-
discussion-other-questions/930944-visual-basic-applications-mobile-devices.html

8. QCMan: IPad and desktop. http://www.mrexcel.com/forum/excel-questions/
923376-ipad-desktop.html

9. Sikora, J., Sroka, J., Tyszkiewicz, J.: Spreadsheet as a multi-platform mobile appli-
cation. In: 2015 2nd ACM International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), pp. 140–141. IEEE (2015). doi:10.1109/
MobileSoft.2015.34

10. Sikora, J., Sroka, J., Tyszkiewicz, J.: Strati5 - open mobile software for Harris
matrix. In: Campana, S., Scopigno, R., Carpentiero, G., Cirillo, M. (eds.) Pro-
ceedings of the 43rd Annual Conference on Computer Applications and Quantita-
tive Methods in Archaeology, vol. 2, pp. 1005–1014. Archaeopress Publishing Ltd.,
CAA (2016)

11. Sroka, J., Panasiuk, A., Stencel, K., Tyszkiewicz, J.: Translating relational queries
into spreadsheets. IEEE Trans. Knowl. Data Eng. 27(8), 2291–2303 (2015). doi:10.
1109/TKDE.2015.2397440

http://www.mrexcel.com/forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.html
http://www.mrexcel.com/forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.html
http://www.mrexcel.com/forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.html
http://dx.doi.org/10.1155/2016/9816152
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-applications.html
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-applications.html
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-applications.html
http://dx.doi.org/10.1007/978-3-642-34347-6_23
http://www.stratify.org
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/930944-visual-basic-applications-mobile-devices.html
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/930944-visual-basic-applications-mobile-devices.html
http://www.mrexcel.com/forum/excel-questions/923376-ipad-desktop.html
http://www.mrexcel.com/forum/excel-questions/923376-ipad-desktop.html
http://dx.doi.org/10.1109/MobileSoft.2015.34
http://dx.doi.org/10.1109/MobileSoft.2015.34
http://dx.doi.org/10.1109/TKDE.2015.2397440
http://dx.doi.org/10.1109/TKDE.2015.2397440

	Programming Communication with the User in Multiplatform Spreadsheet Applications
	1 Introduction
	1.1 Early History
	1.2 Why a Spreadsheet?
	1.3 Development History

	2 The Overall Structure of the Interface -- Strati5
	2.1 Fundamental Requirements
	2.2 Structure of the Interface

	3 Interaction with the User
	3.1 Reporting Emergence of Cyclic References
	3.2 By-Product: A Cycle Indicator
	3.3 Data Export
	3.4 ``Soft'' Methods to Reduce Resource Consumption

	4 Scalability Problem
	5 Availability
	6 Standardization Issues
	A BFS by Spreadsheet Formulas
	References

