
An Experience Integrating Response-Time
Analysis and Optimization with an MDE

Strategy

Juan M. Rivas1(&), J. Javier Gutiérrez1, Mario Aldea1, César Cuevas1,
Michael González Harbour1, José María Drake1, Julio L. Medina1,

Laurent Rioux2, Rafik Henia2, and Nicolas Sordon2

1 Software Engineering and Real-Time Group,
University of Cantabria, Santander, Spain

{rivasjm,gutierjj,aldeam,cuevasce,

mgh,drakej,medinajl}@unican.es
2 Thales Research and Technology, Palaiseau, France

{laurent.rioux,rafik.henia,

nicolas.sordon}@thalesgroup.com

Abstract. The objective of this experience is applying Model-Driven Engi-
neering (MDE) to the development of complex design toolchains for distributed
real-time systems by integrating stand-alone tools for this kind of system. MDE
provides the capability to present to each tool the view of the design that is
required in each case and also provides the traceability between models to return
the results of applying a tool to the original model where the whole information
of the developed system persists. Since the tools require complex and interre-
lated scenarios of model transformation processes they need to be programmed
and optimized to obtain acceptable execution times and scalability. The expe-
rience described in this paper is the development of a Model-Driven Engi-
neering (MDE) toolchain to support the design of distributed real-time systems
using stand-alone tools for calculating response times, assigning priorities to
tasks and allocating tasks to processors. The process starts from a base design
described with a model that follows the OMG MARTE specification. This
toolchain can be applied at any stage of the design process using timing
parameters with different degrees of refinement, thus allowing the exploration of
different design solutions when needed.

Keywords: MDE tools � IDE � Schedulability analysis � Optimization �
Real-time � Design space exploration

1 Introduction

Development toolchains for embedded real-time systems require exploring multiple
optimization aspects at the design phase, before their implementation. Aspects like the
architectural design, the concurrency model, the deployment on the distributed plat-
forms, the timing behavior, security and others require the description of specific
system information and are heavily interrelated. Each of these aspects is supported by a

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 303–316, 2016.
DOI: 10.1007/978-3-319-50230-4_23



community of experts that generates knowledge and provides tools to manage it.
A challenge of current software engineering is to facilitate the integration of this
knowledge and the resources produced by the experts in different domains in such a
way that the engineers developing the system can use them in an efficient and easy
way.

Model-Driven Engineering (MDE) [1] is the methodology that currently provides
the most promising approach to manage the complexity and multi-aspect nature of
embedded real-time systems development:

• In MDE all the information on the system is formulated as models and the devel-
opment and design processes are specified in terms of model transformations.
A system may be represented by a large number of models, some of which have the
objective of storing a persistent description of the system, but others are temporarily
generated to extract and adapt the information required by the specific tools used
during the development to handle each aspect of the design.

• In MDE each model is defined as an instance of a meta-model that describes the
contents, structure and format of the terminal model containing the system infor-
mation. This formalization allows generating transformation tools that are generic
and reusable over many kinds of models by using the meta-models as reflective
information.

• The use of references between the elements of different models avoids duplicating
information and facilitates the global coherence and maintenance of the system
information.

Conventional MDE toolchains are sequences of model transformations. However, a
toolchain for embedded real-time systems must contain different branches working on
the aspects of the design supported by stand-alone tools. In this case we find the
following requirements:

• The transformation branches are usually of double direction. The direct branch
adapts the information stored in the base design models to the representation
required by the stand-alone tool, while the reverse branch returns the results gen-
erated by the tool to the system base description. Since these branches are inter-
dependent they need to be co-designed and co-maintained, and they need to
exchange transversal configuration information among them.

• Sometimes the transformation processes are iterative rather than linear, since the
transformation branch must be repeated until a particular objective is achieved.

• Efficiency is a concern, especially in these iterative processes, and this requires
finding imaginative ways to store the models and avoid repeating transformations as
much as possible.

The experience described in this paper is the implementation of a toolchain for
designing embedded real-time distributed systems starting from a base description of
the system that follows the OMG MARTE standard profile (The UML Profile for
Modelling and Analysis of Real-Time and Embedded Systems) [2]. The Schedulability
Analysis Modeling chapter (SAM) of this standard supports all the necessary modelling
elements to perform the schedulability analysis or optimization of a real-time system.
The process followed by the toolchain includes the schedulability analysis of the

304 J.M. Rivas et al.



system, which allows ensuring whether the timing requirements imposed in the soft-
ware can be met or not. When a system meets all its timing requirements, we say that
the system is schedulable. In common real-time distributed systems, like those that can
be found on cars or airplanes, the schedulability analysis normally consists on the
calculation of worst-case response times in order to compare them with the timing
requirements imposed on specific actions of the software.

On the other hand, the toolchain pays attention to two particular optimization
aspects: (1) finding the scheduling parameters (usually priorities) that allow the system
to be schedulable, and (2) in a distributed system finding a suitable allocation of tasks
and messages to processors and networks, respectively. This is what we call the
architecture optimization. During the optimization process these two aspects can be
combined in order to find the best possible solution. The schedulability analysis and
optimization of a real-time distributed system are supported by complex techniques that
are implemented in the appropriate stand-alone tools.

In this paper, we propose the integration of schedulability analysis and optimization
tools within an MDE strategy with the following characteristics:

• A general meta-model based on the MARTE standard is used at the base design
level. This meta-model allows modelling systems independently of the application
domain.

• An intermediate model particularly suitable for analysis will allow the connection
(through the appropriate transformations) between the general model coming from
the design phase and the specific model used by the selected analysis tool.
Therefore, any existing analysis tool can be integrated in the toolchain through the
adequate model transformation.

• A special-purpose tool is created to optimize (1) the priority assignment for the
tasks and messages (the latter only if fixed-priority communication networks are
specified), and (2) the allocation of tasks and messages to processors and networks.

As a proof of concepts, in a previous work [3] we presented a prototype of the
toolchain described in this paper. In the current work, the integration of the stand-alone
tools has been completed and implementation details are presented.

This document is organized as follows. Section 2 reviews some tools that are
related with the approach we present in this paper. In Sect. 3 we review the real-time
system model and current schedulability analysis and optimization techniques. In
Sect. 4, we provide an overview of the architecture proposed for the integration of the
tools in the MDE toolchain. Section 5 describes the integration of an available
schedulability analysis tool in our MDE strategy. In Sect. 6, we describe the design of
the optimization tool for priorities and architecture. Section 7 provides an industrial
case study to which the tools have been applied. Finally, Sect. 8 draws the conclusions.

2 Related Work

There are other recent works in line with this approach. For example, [4] presents
Optimum, a MARTE-based methodology for designing real-time applications in a
schedulability-aware fashion, i.e., enabling schedulability analysis of UML models at

An Experience Integrating Response-Time Analysis and Optimization 305



early stages. In [5], the MoSaRT analysis repository is presented as a helpful modelling
support to avoid wrong design choices at an early design phase, thus helping designers
to cope with the scheduling analysis difficulties. The work in [6] proposes an integrated
approach for prediction of performance in the context of distributed real-time
embedded defense systems. In this case, performance prediction aims at addressing
issues related to the integration of realistic data sources or the visualization of the
causes of performance issues. In [7], model-driven development is applied to the
integration of schedulability analysis in the development process of high-integrity
distributed real-time systems programmed in the Ada programming language.

The main difference with previous works is that our MDE approach is more
complete and modular in the sense that the tools for analysis, priority optimization, or
architecture optimization, are independent and could be easily changed if, for example,
a better tool is available. On the other hand, our approach can be applied to any
application domain that would need verifying real-time properties or optimizing the
whole or a part of the application, once it has been designed following the general base
model.

3 Real-Time Model

This section gives a high-level overview of the real-time model behind the presented
MDE strategy, along with the different versions of this model used by the schedula-
bility analysis and optimization tools integrated in the toolchain. We follow the
OMG MARTE standard [2] in which the system’s software is described as a set of
distributed end-to-end flows executing in multiple processors that can be communi-
cated through one or more networks. This model is commonly used by schedulability
analysis and optimization algorithms for distributed real-time systems.

The model follows an event-driven approach, in which each end-to-end flow is
re-leased by an event that can be periodic or sporadic. Sporadic events must have a
minimum inter-arrival time. Each end-to-end flow is composed of a series of steps that
execute sequentially. A step represents the execution of a thread in a processor, or the
transmission of a message through a network. Each step has a worst-case execution
time (WCET), which specifies the maximum amount of time (or an upper bound on it)
that the step needs to execute if it were alone in the system. Likewise, a step can also
have a best-case execution time or lower bound on it (BCET). Each step is scheduled
by using the scheduling parameters assigned according to the scheduling policy used.
In this work we consider a fixed-priority policy.

Figure 1 shows an example of one end-to-end flow with 6 steps executing in two
processors and one network. After the first step, there is a forking action that simulta-
neously releases two different branches of the end-to-end flow. The timing requirements
are given as end-to-end deadlines which reference the event triggering the end-to-end
flow, and must be met by the last step in the corresponding end-to-end flow branch. As a
result of applying a schedulability analysis technique, a worst-case response time
(WCRT) is calculated for each step. If the WCRT of the last step of each end-to-end flow
branch is less than or equal to its deadline, the system is said to be schedulable, that is, it
is guaranteed to meet its deadlines in all cases, including the worst one.

306 J.M. Rivas et al.



At the base design level we will use the TEMPO-MARTE meta-model presented in
a previous work [8] which enables the description of the real-time system design. This
meta-model is suitable for different application domains, and it has been successfully
applied to the industrial design of on-board satellite software. This design model can be
transformed into another one, compliant to another meta-model called
TEMPO-Analysis, which contains the relevant information (concurrency and real-time
aspects) organized in a format more suitable for the schedulability analysis and opti-
mization tools. Finally, this analysis model should be transformed into the specific
model of the selected analysis tool.

In this paper, we present the integration of MAST (Modeling and Analysis Suite for
Real-Time Applications) in the proposed toolchain for the schedulability analysis of the
system. MAST defines a meta-model [9, 10] to describe the timing behavior of
real-time systems which is aligned with the MARTE standard, and it also provides a
selection of techniques [11] to perform schedulability analysis, priority optimization, or
sensitivity analysis (assessment of how far or close is the system from meeting its
timing requirements). Regarding schedulability analysis, this selection includes rep-
resentative algorithms such as: the classic holistic analysis [12] that considers the steps
as if they were independent; (2) an offset-based technique [13] that exploits the
interdependencies among the steps of the same end-to-end flow through the use of task
offsets; and (3) another offset-based technique [14] that exploits the precedence rela-
tions among the steps.

4 Toolchain Architecture Overview

We propose an MDE toolchain that implements the necessary underlying infrastructure
to perform schedulability analysis and optimization of real-time systems inside an
EMF/Ecore environment based on the TEMPO meta-model aforementioned. An
overview of the architecture of the toolchain is shown in Fig. 2. The toolchain is
composed of two different interoperable tools:

Fig. 1. Example of an end-to-end flow

An Experience Integrating Response-Time Analysis and Optimization 307



1. A schedulability analysis tool that determines if the modelled system is schedulable
by calculating the worst-case response times of the steps.

2. Two optimization tools that modify certain characteristics of the TEMPO-Analysis
model to achieve schedulability: (1) a priority optimization tool that assigns opti-
mized priorities to steps, and (2) an architecture optimization tool that allocates
steps to processors and networks.

While TEMPO-MARTE represents the basis for the design view, its SAM-like
derivative (TEMPO-Analysis) specifically targets schedulability analysis and opti-
mization tools. Hence, the toolchain we propose operates on the TEMPO-Analysis
models directly, thus avoiding unnecessary TEMPO-MARTE to TEMPO-Analysis
(and vice versa) transformations.

The architecture optimization tool relies on the priority optimization tool to cal-
culate a priority assignment for each allocation of steps to processors tested. Similarly,
the priority optimization tool uses a schedulability analysis tool that accepts a
TEMPO-Analysis model as input. In this experience we use MAST as the schedula-
bility analysis tool inside this Ecore environment, but the toolchain is designed to work
with any other TEMPO-Analysis compatible tool. In this way, the optimization tools
can be used in conjunction with other analysis tools such as SymTA/S [15].

In order to allow the specification of other parameters not included in the
TEMPO-Analysis meta-model but necessary for the optimization process, the input
model for the optimization tool is complemented with an additional constraints model
that is compliant to the TEMPO-Constraints meta-model. This model contains infor-
mation such as valid priority ranges, which step priorities cannot be modified, or
step-to-processor affinities.

Fig. 2. Architecture of the TEMPO analysis and optimization toolchain

308 J.M. Rivas et al.



The toolchain implements the necessary model-to-model (M2M) transformations to
operate with the different meta-models involved. All these transformations work under
the Eclipse Modeling Framework (EMF). Some of them are implemented in Java,
while others rely on ATL [16]. The following sections explain in more detail the design
of these tools and their interconnections. Details on the TEMPO-MARTE to
TEMPO-Analysis transformations and back can be found in [8].

5 Integration of the Schedulability Analysis Tool

The goal of the schedulability analysis tool is to determine if the system is schedulable.
This is carried out by calculating the WCRTs of the steps and comparing them with the
imposed deadlines. In this work we define a tool to perform the schedulability analysis
on models compliant to the TEMPO-Analysis meta-model using the MAST analysis
tools. The link between the TEMPO-Analysis input model and MAST is automatically
established using ATL M2M transformations. Two transformation chains are defined in
this link:

1. A TEMPO-Analysis to MAST transformation to create the input model for the
MAST analysis tool.

2. A return transformation, in which the worst-case response times obtained by MAST
are incorporated into the TEMPO-Analysis model.

The TEMPO-Analysis to MAST transformation chain is depicted in Fig. 3, and is
composed of two ATL transformations applied sequentially. In the first ATL transfor-
mation (TA_To_CustomTA.atl), a new TEMPO-Analysis customized model is gener-
ated from the TEMPO-Analysis input model. This new model adds the information that
is optional in TEMPO but is mandatory in a MAST model, such as names for every
element. Afterwards, the second transformation is applied to this intermediate cus-
tomized TEMPO-Analysis model (TA_To_MAST.atl). This transformation generates

Fig. 3. TEMPO-Analysis to MAST transformation

An Experience Integrating Response-Time Analysis and Optimization 309



two models, (1) a MAST model that can be used as input to the MAST analysis tool, and
(2) a mappings model (compliant to the MapIDs meta-model) that maps the names of the
TEMPO-Analysis model elements to the names of their counterpart MAST model
elements.

A diagram of the return MAST to TEMPO-Analysis transformation is shown in
Fig. 4. It consists of one transformation (TA_MASTResults_MAPIDS_to_TA.atl).
This transformation has three inputs, (1) a MAST-Results model that contains the
worst-case response times of the steps, (2) the MapIDs model generated previously,
and (3) the TEMPO-Analysis custom model that has also been generated previously.
The output of this transformation is a TEMPO-Analysis model which now includes the
worst-case response times of the steps.

6 TEMPO Optimization Tools

The optimization tools are stand-alone tools written in Java that implement all the
necessary infrastructure to automatically perform priority and architecture optimiza-
tions on TEMPO-Analysis models. The information in a TEMPO-Analysis model is
complemented with a TEMPO-Constraints model that stores parameters that are not
modelled by TEMPO-Analysis but must be specified for the optimization process.

6.1 Priority Optimization

The goal of the priority optimization is to find a suitable assignment of priorities (if
possible) that makes the system schedulable. This assignment assumes that steps have
been statically allocated to processors or networks.

Fig. 4. MAST-Results to TEMPO-Analysis transformation

310 J.M. Rivas et al.



The priority optimization uses an iterative process that implements the HOSPA
heuristic algorithm [17] included in the MAST tools. The flow of this optimization
algorithm is depicted in Fig. 5, and is composed of the following stages:

1. The input of the priority optimization tool is a pair of TEMPO-Analysis and
TEMPO-Constraints models. The parameters of the TEMPO-Constraints model
relevant to the priority optimization are (1) the priority ranges from which the
priorities of the steps can be selected, and (2) the list of steps that have pre-assigned
priorities that cannot be changed.

2. The priority optimization process starts with an initial priority assignment. As with
HOSPA, this initial assignment is a fast non-iterative algorithm that distributes the
deadlines of the end-to-end flows among the tasks, and then the Deadline Mono-
tonic criterion is applied. The TEMPO-Analysis input model is updated with these
initial priorities.

3. The next step is to determine if this new priority assignment makes the system
schedulable. This is achieved by applying a schedulability analysis tool on the
TEMPO-Analysis model with the updated priorities.

4. Once the schedulability analysis has been performed, the priority optimization
process finishes if any of the following stopping criteria is met:
(a) The last priority assignment makes the system schedulable.
(b) Two consecutive priority assignments were identical.
(c) A pre-established maximum number of iterations have been reached. This

number of iterations can be set to zero, thus making the priority optimization
process non iterative, finishing with the initial assignment.

(d) A pre-established maximum number of iterations on an already schedulable
solution are reached. The priority optimization process has the capability of
improving an already schedulable solution by iterating over it.

5. If no stopping criterion is met, a new priority assignment is made by using the same
formulation as in HOSPA. This new assignment takes into account the previously
calculated worst-case response times of the steps to reorganize the priorities in the
system, giving higher priorities to those tasks that are farther from meeting their

Fig. 5. Design of the priority optimization tool

An Experience Integrating Response-Time Analysis and Optimization 311



deadlines. The TEMPO-Analysis model is updated with these new priorities, and
the process continues with stage 3 of the priority optimization process (the
schedulability analysis).

6. The priority optimization finishes by returning a TEMPO-Analysis model with the
best priority assignment that was found, which could be schedulable or not, and its
corresponding worst-case response times.

6.2 Architecture Optimization

The objective of the architecture optimization is to find an allocation of steps to
processors or networks that makes the system schedulable. Secondary optimization
criteria can be set, i.e., to balance the workload among the processors, or to minimize
the inter-processor communications.

As with the priority assignment, the architecture optimization process operates on a
TEMPO-Analysis model complemented with a TEMPO-Constraints model. A diagram
of the architecture optimization algorithm is depicted in Fig. 6 and comprises the
following stages:

1. The input is a pair of TEMPO-Analysis and TEMPO-Constraints models. The
parameters of the constraints model relevant to the architecture optimization are:
(1) the step to processor affinities (subset of processors to which each step can be
assigned to); (2) inter-processor latencies (communication latencies of messages
between pairs of processors); and (3) default inter-processor latencies for processor
pairs whose latencies were not explicitly specified. These inter-processor latencies
can be interpreted as message transmission times if a full schedulability analysis of
the networks is specified.

2. A brute-force search algorithm is intractable for non-trivial systems, thus an
advanced algorithm is required. We are experimenting with a backtracking algorithm

Fig. 6. Design of the architecture optimization tool

312 J.M. Rivas et al.



that is providing promising results. The search tree is traversed and nodes are pruned
according to their a priori likelihood of satisfying the optimization criteria (nodes
with low a priori likelihood are pruned). This likelihood is determined taking into
consideration indications such as the utilization in the processors, the number of
messages that need to be transmitted, or a quick estimation of the worst-case
response times.

3. By traversing the search tree, the algorithm reaches a candidate allocation. The
input TEMPO-Analysis model is updated with this candidate step to processor or
network allocation.

4. The priority optimization tool described in Sect. 6.1 is applied on the
TEMPO-Analysis model with the updated architecture. The TEMPO-Constraints
model is also provided. The priority optimization returns a TEMPO-Analysis model
with the best priority assignment that could be found for this allocation, together
with the associated worst-case response times.

5. The optimization process finishes when the resulting TEMPO-Analysis model
meets the optimization criterion set by the user. The main criterion is that the system
has reached schedulability. Secondary criteria that can be set are: (1) to minimize
the number of processors used, (2) to balance the load, or (3) to minimize the
inter-processor communications. A maximum number of iterations can also be set.
If no criterion is met, the process continues on stage 2, continuing the tree traversal
until another candidate allocation is reached.

6. When a stopping criterion is satisfied, the architecture optimization finishes by
returning a TEMPO-Analysis model with an updated allocation, a priority assign-
ment for this allocation, and the associated worst-case response times for this
system configuration.

7 Industrial Case Study

In this section we present a case study consisting on the application of our MDE
analysis and optimization strategy on a simplified version of an industrial system. The
system is a robot controller composed of two specialized nodes (Teleoperation Station
and Local Controller) connected via Ethernet. Both nodes and use fixed priority
(FP) scheduling while the network has no contention given the offsets of the messages
sent. The software consists of one end-to-end flow crossing both nodes and the net-
work, and two independent tasks. Figure 7 shows an overview of the system, including
the worst-case execution times (WCET) of each task.

The end-to-end flow is triggered by a periodic event with a period of 50 ms. The
first task in the end-to-end flow is Trajectory Planner, executing in the Teleoperation
Station. Once finished, this task sends a message to the Local Controller which laun-
ches the execution of task Command Manager. The flow continues with the execution
of task Data Sender on the Local Controller, which sends a message to the Teleop-
eration Station, launching task Reporter, which is the last task in the flow. This task
must finish at the latest 50 ms after the external event that triggered the flow arrived.
Additionally, the system has a task (GUI) with a period of one second executing in the

An Experience Integrating Response-Time Analysis and Optimization 313



Teleoperation Station, and another task (Servo Control) with a period of 5 ms exe-
cuting in the Local Controller. These two tasks must finish before their next activation
(deadline equal to their periods). The system also has three shared resources (mutual
exclusion resources) that are accessed via the immediate ceiling protocol. These shared
resources are named Commands, Servo Data, and Status. Which tasks access each
shared resource, and for how long, is also shown in Fig. 7.

During the design phase inside our MDE strategy, the system is modeled with the
TEMPO-MARTE meta-model. During this phase, the priorities (Prio) and associated
worst-case response times of the tasks (R) are still unknown. Once all the tasks and
timing requirements have been laid out, a designer of such system must determine these
values of the system, so it can be guaranteed whether deadlines are going to be met in
the worst-case. For this purpose, the TEMPO-MARTE model is transformed into
another model that conforms to the TEMPO-Analysis meta-model, which is suited for
the schedulability analysis. We now use the proposed analysis and optimization tool-
chain to achieve this goal.

The schedulability analysis tool is implemented as an Eclipse plug-in that operates
on TEMPO-analysis (*.tempo) models. The optimization tool uses the same internal
functionality as the schedulability analysis tool, but is implemented as a stand-alone
tool that can operate without Eclipse. We model the robot controller system using the
TEMPO-analysis meta-model, and then use this stand-alone tool to calculate a priority
assignment and its associated worst-case response times. We also define a
TEMPO-Constraints model specifying that the priorities should be selected in the range
[1, 10]. Since each processor has at most three tasks, this range is large enough to
guarantee that tasks don’t share the same priority level. No architecture optimization is
needed in this case because the tasks have a fixed allocation driven by their hardware
requirements. The priorities and worst-case response times calculated by the tool are
depicted in Fig. 8. Since the worst-case response times of the tasks (R) are lower than
the associated deadlines, we can now determine that the system, with the priorities
provided by the tool, is schedulable. It is worth noting that the worst-case response

Fig. 7. Robot controller system

314 J.M. Rivas et al.



times are given as an upper bound of the latency from the arrival of the external event
until the task finishes its execution.

Including all the underlying M2M transformations, the schedulability analysis of
this system required approximately 1 s, while the priority assignment required 2 s.

8 Conclusions

We have presented a toolchain to perform, inside the Thales’ TEMPO Ecore envi-
ronment, three of the most important actions in the development of real-time systems:
the schedulability analysis, the optimization of the priorities and the optimization of the
allocation of tasks and messages to processors and networks. This toolchain imple-
ments the necessary M2M transformations to take advantage of the widely used MAST
analysis tool, although the optimization tools can use any TEMPO-Analysis compatible
schedulability analysis tool.

This toolchain is a result of the fruitful collaboration between Thales Research &
Technology and the University of Cantabria (industry and academia). It represents a
contribution to the industrial exploitation of model-driven technologies, schedulability
analysis and optimization in the design of real-time systems in a variety of application
domains.

Acknowledgment. This work has been funded in part by the Spanish Government under grant
number TIN2014-56158-C4-2-P (M2C2).

References

1. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 26–31 (2006)
2. Object Management Group: UML profile for MARTE: modeling and analysis of real time

embedded systems, version 1.1. OMG document formal/2011‐06‐02 (2011)

Fig. 8. Robot controller system with results (priorities and response times)

An Experience Integrating Response-Time Analysis and Optimization 315



3. Rioux, L., Henia, R., Sordon, N., González Harbour, M., Gutiérrez, J.J., Rivas, J.M.,
Cuevas, C., Drake, J.M., Medina, J.L.: Schedulability analysis and optimization in a
model-based integrated toolchain: synthetic MARTE models for optimizing real-time design
with MAST and TEMPO. In: Proceedings of the Forum on specification & Design
Languages, FDL 2015, Barcelona, Spain, Demo Night Session (2015)

4. Mraidha, C., Tucci-Piergiovanni, S., Gérard, S.: Optimum: a MARTE-based methodology
for schedulability analysis at early design stages. ACM SIGSOFT Softw. Eng.Notes 36, 1–8
(2011)

5. Ouhammou, Y., Grolleau, E., Richard, M., Richard, P.: Towards a model-based approach
guiding the scheduling analysis of real-time systems design. In: Proceedings of the 5th
International WATERS Workshop, pp. 19–24 (2014)

6. Falkner, K., Chiprianov, V., Falkner, N.J., Szabo, C., Hill, J., Puddy, G., Fraser, D.,
Johnston, A., Rieckmann, M., Wallis, A.: Model-driven performance prediction of
distributed real-time embedded defense systems. In: Proceedings of the 18th International
Conference on Engineering of Complex Computer Systems (ICECCS), pp. 155–158 (2013)

7. Pérez, H., Gutiérrez, J.J., Asensio, E., Zamorano, J., de la Puente, J.A.: Model-driven
development of high-integrity distributed real-time systems using the end-to-end flow model.
In: Proceedings of the 37th Euromicro SEAA Conference, pp. 209–216 (2011)

8. Henia, R., Rioux, L., Sordon, N., Garcia, G.-E., Panunzio, M.: Integrating formal timing
analysis in the realtime software development process. In: WOSP 2015, pp. 35–40 (2015)

9. González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: modeling and
analysis suite for real time applications. In: Proceedings of the 13th Euromicro Conference
on Real-Time Systems, Delft, The Netherlands, pp. 125–134 (2001)

10. González Harbour, M., Gutiérrez, J.J., Drake, J.M., López, P., Palencia, J.C.: Modeling
distributed real-time systems with MAST 2. J. Syst. Architect. 56(6), 331–340 (2013).
Elsevier

11. MAST. http://www.mast.unican.es
12. Tindell, K.W., Clark, J.: Holistic schedulability analysis for distributed hard real-time

systems. Microprocessing Microprogramming 40(2–3), 117–134 (1994)
13. Mäki-Turja, J., Nolin, M.: Efficient implementation of tight response-times for tasks with

offsets. Real-Time Syst. J. 40(1), 77–116 (2008)
14. Palencia, J.C., González Harbour, M.: Exploiting precedence relations in the schedulability

analysis of distributed real-time systems. In: Proceedings of the 20th Real-Time Systems
Symposium, Phoenix, AZ, USA, pp. 328–339. IEEE (1999)

15. SymTA/S. https://www.symtavision.com/
16. Frédéric, J., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci.

Comput. Program. 72(1), 31–39 (2008)
17. Rivas, J.M., Gutiérrez, J.J., Palencia, J.C., González Harbour, M.: Schedulability analysis and

optimization of heterogeneous EDF and FP distributed real-time systems. In: Proceedings of
the 23rd Euromicro Conference on Real-Time Systems, Porto, pp. 195–204 (2011)

316 J.M. Rivas et al.

http://www.mast.unican.es
https://www.symtavision.com/

	An Experience Integrating Response-Time Analysis and Optimization with an MDE Strategy
	Abstract
	1 Introduction
	2 Related Work
	3 Real-Time Model
	4 Toolchain Architecture Overview
	5 Integration of the Schedulability Analysis Tool
	6 TEMPO Optimization Tools
	6.1 Priority Optimization
	6.2 Architecture Optimization

	7 Industrial Case Study
	8 Conclusions
	Acknowledgment
	References


