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Abstract. UML and OCL are frequently employed languages in model-
based engineering. OCL is supported by a variety of design and analysis
tools having different scopes, aims and technological corner stones. The
spectrum ranges from treating issues concerning formal proof techniques
to testing approaches, from validation to verification, and from logic pro-
gramming and rewriting to SAT-based technology.

This paper presents steps towards a well-founded benchmark for
assessing UML and OCL validation and verification techniques. It puts
forward a set of UML and OCL models together with particular questions
centered around OCL and the notions consistency, independence, con-
sequences, and reachability. Furthermore aspects of integer arithmetic
and aggregations functions (in the spirit of SQL functions as COUNT
or SUM) are discussed. The claim of the paper is not to present a com-
plete benchmark. It is intended to continue the development of further
UML and OCL models and accompanying questions within the modeling
community having the aim to obtain an overall accepted benchmark.

Keywords: OCL ·Model-driven engineering · Benchmark · Verification
and validation · SAT

1 Introduction

Model-driven engineering (MDE) as a paradigm for software development is gain-
ing more and more importance. Models and model transformations are central
notions in modeling languages like UML, SysML, or EMF and transformation
languages like QVT or ATL. In these approaches, the Object Constraint Lan-
guage (OCL) can be employed for expressing constraints and operations and
therefore OCL plays a central role in MDE.

A variety of OCL tools and verification/validation/testing techniques around
OCL are currently available (e.g. [1–4,6,8–11,14–17,19,21–23]) but it is an open
issue how to compare such tools and support developers in choosing the OCL
tool most appropriate for their project. In many other areas of computer science
this comparison is performed by evaluating the tools over a set of standardized
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benchmark able to provide a somewhat fair comparison environment. Unfortu-
nately, such benchmarks are largely missing for UML and practically inexistent
for OCL.

In this sense, this paper continues the initial proposal of a set of UML/OCL
benchmarks [13] and puts forward a couple of complementary benchmark models
and a few ideas to encourage the community to have an active participation in
this benchmark creation and acceptance process. The two new scenarios focus
on integer arithmetic (area that has a significant effect on the tool efficiency
depending on the underlying formalism used in the reasoning tasks) and large
models with heavy use of aggregated functions, a topic for which the OCL lan-
guage itself has limited coverage [7].

The structure of the rest of this paper is as follows. The next section gives
a short introduction to OCL. Section 3 reviews the initial set of models in our
benchmark. Section 4 puts forward additional benchmark models while Sect. 5
discusses possible actions to take to further extend the benchmark. The paper
is finished in Sect. 6 with concluding remarks.

2 OCL in a Nutshell

The Object Constrains Language (OCL) is a textual, descriptive expression lan-
guage. OCL is side effect free and is mainly used for phrasing constraints and
queries in object-oriented models. Most OCL expressions rely on a class model
which is expressed in a graphical modeling language like UML, MOF or EMF.
The central concepts in OCL are objects, object navigation, collections, collec-
tion operations and boolean-valued expressions, i.e., formulas. Let us consider
these concepts in connection with the object diagram in Fig. 1 which belongs to
the class diagram in Fig. 2. This class diagram captures part of the submission
and reviewing process of conference papers. The class diagram defines classes
with attributes (and operations, not used in this example) and associations with
roles and multiplicities which restrict the number of possible connected objects.

Fig. 1. Object diagram for WR
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Fig. 2. Class diagram for WR

Objects: An OCL expression will often begin with an object literal or an object
variable. For the system state represented in the object diagram, one can
use the objects ada, bob, cyd of type Researcher and sub 17, sub 18 of
type Paper. Furthermore variables like p:Paper and r:Researcher can be
employed.

Object navigation: Object navigation is realized by using role names from
associations (or object-valued attributes, not occurring in this example) which
are applied to objects or object collections. In the example, the following nav-
igation expressions can be stated. The first line(s) shows the OCL expression
and the last line the evaluation result and the type of the expression and the
result.

bob.manuscript

sub_17 : Paper

bob.manuscript.referee

Set{ada} : Set(Researcher)

cyd.manuscript.referee.manuscript.referee

Bag{ada} : Bag(Researcher)

sub_17.author->union(sub_17.referee)

Set{ada,bob} : Set(Researcher)

Collections: Collections can be employed in OCL to merge different elements
into a single structure containing the elements. There are four collection kinds:
sets, bags, sequences and ordered sets. Sets and ordered sets can contain an
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elements at most once, whereas bags and sequences may contain an element
more than once. In sets and bags the element order is insignificant, whereas
sequences and ordered sets are sensitive to the element order. For a given
class, the operation allInstances yields the set of current objects in the class.

Paper.allInstances

Set{sub_17,sub_18} : Set(Paper)

let P=Paper.allInstances in P.referee->union(P.author)

Bag{ada,bob,bob,cyd} : Bag(Researcher)

Paper.allInstances->sortedBy(p|p.wordCount)

Sequence{sub_18,sub_17} : Sequence(Paper)

Sequence{bob,ada,bob,cyd,ada}->asOrderedSet

OrderedSet{bob,ada,cyd} : OrderedSet(Researcher)

Collection operations: There is a number of collection operations which con-
tribute essentially to the expressibility of OCL and which are applied with the
arrow operator. Among further operations, collections can be tested on empti-
ness (isEmpty, notEmpty), the number of elements can be determined (size),
the elements can be filtered (select, reject), elements can be mapped to
a different item (collect) or can be sorted(sortedBy), set-theoretic opera-
tions may be employed (union, intersection), and collections can be con-
verted into other collection kinds (asSet, asBag, asSequence, asOrderdSet).
Above, we have already used the collection operations union, sortedBy, and
asOrderedSet.

Paper.allInstances->isEmpty

false : Boolean

Researcher.allInstances->size

3 : Integer

Researcher.allInstances->select(r | not r.isStudent)

Set{ada,cyd} : Set(Researcher)

Paper.allInstances->reject(p | p.studentPaper)

Set{sub_17} : Set(Paper)

Paper.allInstances->collect(p | p.author.name)

Bag{‘Bob’,‘cyd’} : Bag(String)

Boolean-valued expressions: Because OCL is a constraint language, boolean
expressions which formalize model properties play a central role. Apart from
typical boolean connectives (and, or, not, =, implies, xor), universal and
existential quantification are available (forAll, exists).

Researcher.allInstances->forAll(r, s |



Continuing a Benchmark for UML and OCL Design and Analysis Tools 293

r<>s implies r.name<>s.name)

true : Boolean

Paper.allInstances->exists(p |

p.studentPaper and p.wordCount>4242)

false : Boolean

Boolean expressions are frequently used to describe class invariants and oper-
ation pre- and postconditions.

3 Previous Benchmarks

The previous benchmark posed general questions that concerned the validation
and verification of properties in UML and OCL models. The questions came
hand in hand with precise models in which the questions were made concrete.
Questions were given names in order to reference them. The following questions
were stated:

ConsistentInvariants: Is the model consistent? Is there at least one object
diagram satisfying the UML class model and the explicit OCL invariants?

Independence: Are the invariants independent? Is there an invariant which is
a consequence of the conditions imposed by the UML class model and the
other invariants?

Consequences: Is it possible to show that a stated new property is a conse-
quence of the given model?

LargeState: Is it possible to automatically build valid object diagrams in a
parameterized way with a medium-sized number of objects, e.g. 10 to 30
objects and appropriate links, where all attributes take meaningful values
and all links are established in a meaningful way? These larger object dia-
grams are intended to explain the used model elements (like classes, attributes
and associations) and the constraints upon them by non-trivial, meaningful
examples to domain experts not necessarily familiar with formal modeling
techniques.

InstantiateNonemptyClass: Can the model be instantiated with non-empty
populations for all classes?

InstantiateNonemptyAssoc: Can the model be instantiated with non-empty
populations for all classes and all associations?

InstantiateDisjointInheritance: Can all classes be populated in presence of
UML generalization constraints like disjoint or complete?

InstantiateMultipleInheritance: Can all classes be populated in presence of
multiple inheritance?

ObjectRepresentsInteger: Given a representation of the integers in terms of
a UML class model where an integer is captured as a connected component
in an object diagram. Is it true that any connected component of a valid
object diagram either corresponds to the term zero or to a term of the form
succn(zero) with n > 0 or to a term of the form predn(zero)?
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Fig. 3. Class diagram for CS

Fig. 4. Class diagram for DS

IntegerRepresentsObject: Is it true that any term of the form zero or of the
form succn(zero) or of the form predn(zero) corresponds to a valid object
diagram for the model?

The concrete four UML and OCL models that were used to make the ques-
tions precise were: CivilStatus (CS) [see Fig. 3], WritesReviews (WR) [see Fig. 2],
DisjointSubclasses (DS) [see Fig. 4], and ObjectsAsIntegers (OAI) [see Fig. 5]. All
details can be found in [13].
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Fig. 5. Class diagram for OAI

4 Additional Benchmarks

The two new benchmarks described in this section complement the old bench-
marks with regard to the use of integer arithmetic and the construction of larger
models for which aggregate functions (in the sense of SQL functions as count or
min) are needed.

4.1 Integer Arithmetic

As indicated in Fig. 6, for the integer arithmetic benchmark the respective class
diagram only has one class with three integer attributes a, b, and c. Basically
in this benchmark solutions for the equation a = b op c have to be found. The
operator op is one of the basic OCL integer operators +, -, *, div. Exactly
one of the four invariants from the lower left of Fig. 6 will be active.

The benchmark asks for the construction of a number of C objects (in the
example exactly 31) in which the respective operator invariant is valid. The other
two invariants guarantee that the solutions in the found C objects are mutually
distinct solutions, i.e., each solution appears only once.

We have used this benchmark to compare the efficiency of different SAT
solvers that can be employed for the model validator available in the USE tool.
The different SAT solvers (SAT4J, LightSAT4J, MiniSat, MiniSatProver) avail-
able under Windows show significantly different performance under this bench-
mark. Another instantiation of the benchmark for available SAT solvers under
Linux confirmed the observations made for Windows.
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Fig. 6. Integer arithmetic benchmark

4.2 Larger Model with Aggregation Functions

The second new benchmark handles global invariants restricting many classes
and concerns the construction of object diagrams for a State-Distict-Community
world as shown in Fig. 7. States consist of districts that in turn consist of commu-
nities. Individual persons with four statistical attributes (female, young, degree,
married) live in communities. The task is to construct an object diagram where
in each geographical area (State, District, Community) the statistical distribu-
tion of the attributes follows the percentages (Pc) stated in the Config object.

An example object diagram is presented in Fig. 8. For example, there the
Config object requires that in each state, district and community the percentage
of young people lies between 25% and 75% (minPcYoung and maxPcYoung).
This example object diagram used 2 states, 3 districts, and 4 communities. The
number of Person objects is also stated in the Config object.

The underlying invariants concern the three geographical areas and the four
statistical attributes. The invariants also include a decent degree of integer arith-
metic in order to restrict the statistical distribution of the attributes correctly.
It took the USE model validator about 6 min to construct the example object
diagram. This benchmark is well-suited for comparing the abilities of a UML
and OCL analysis tool with regard to global constraints, integer arithmetic and
the construction of middle-sized object diagrams.

5 Community Roadmap

Completing the benchmark is not something we can do on our own. And we
shouldn’t either. The next subsections discuss three different community-driven
actions to bring our proposal closer to reality.
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Fig. 7. Class diagram for state-district

5.1 Improving Benchmark Coverage

Our initial collection of benchmark models covers already a good number of inter-
esting OCL expressions and scenarios but it is far from being complete. Speaking
generally, for an OCL tool there are challenges in two dimensions: (a) challenges
related to the expressiveness of OCL (i.e., the complete and accurate handling
of OCL) and (b) challenges related to the computational complexity of the eval-
uating OCL for a given problem (verification, testing, code-generation,...).

Therefore, beyond increasing the number of benchmark models, we also
require several variations of the same model, e.g. in terms of size and specific con-
structs used in the OCL constraints, to be part of the benchmark and improve
this way it’s coverage. And each of these variations can be decomposed in a num-
ber of subvariations that are relevant too. For instance, wrt size variations, we
can increase a model by adding more classes, more attributes per class, increasing
its density (number of associations between classes), the number of constraints,
or all of them at the same time. Some underlying formalisms are more sensitive
than others to some of these variations so fair evaluations would require to play
with all these extension variables.

This could easily lead to a combinatorial explosion. Still, based on our own
experience we believe that at least the following scenarios should be added to
our current collection of benchmark models:

1. Models with tractable constraints, i.e., constraints that can be solved ‘triv-
ially’ by simple propagation steps.
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2. Models with hard, non-tractable constraints, e.g., representations of NP-hard
problems.

3. Unsatisfiable models, i.e. models that cannot be even instantiated in way
that all constraints are satisfied.

4. Highly symmetric problems, i.e., that require symmetry breaking to effi-
ciently detect unsatisfiability.

5. Intensive use of Real arithmetic.
6. Intensive use of String values and operations on strings. So far, String

attributes are mostly ignored [5] or simply regarded as integers which pro-
hibits the verification of OCL expressions including String operations other
than equality and inequality.

7. Many redundant constraints: is the approach able to detect the redundancies
and benefit from them to speed up the evaluation?

8. Sparse models: instances with comparably few links offer optimization oppor-
tunities that could be exploited by tools.

9. Support for recursive operations, e.g. in form of fixpoint detection or static
unfolding.

10. Intensive use of the ‘full’ semantic of OCL (like the undefined value or col-
lection semantics); this poses a challenge for the lifting to two-valued logics.

Recent research developments (e.g. [20]) could be enhanced to deal with OCL
expressions and be employed to automatically generate some of these benchmark
models, specially variations in size or density given a “seed” model. Nevertheless,
making an effort to find and contribute industrial models is still key to make
sure that tools face realistic models.

5.2 OCL Repository

The easiest way to share and contribute models to a common benchmark is by
storing them all in a single repository. This is not a new idea, several initiatives
like MDEForge [18] or ReMODD [12] have been proposed before but with limited
success, mainly due to their ambitious goal: a repository for all kinds of models
(and other modeling artifacts) in any format, shape or size.

We aim for a less ambitious but more feasible goal, a repository for OCL-
focused models. Being a textual language, the standard infrastructure for code
hosting services/version control systems can be largely reused. We still need
to store the models accompanying those OCL expressions but, in our scenario,
they are basically only UML models and, mostly, limited to class diagrams which
simplifies a lot their management.

Nowadays, the online coding platform GitHub (with over 30 million hosted
projects) is the only reasonable choice to host such repository since it offers all
the functionality we need and it is very well-known which reduces the entry
barrier of possible contributors that are not forced to invest time learning a new
environment. Therefore we have initialized our OCL repository there1 and added
some basic instructions on how to contribute new UML/OCL models there.
1 https://github.com/jcabot/ocl-repository.

https://github.com/jcabot/ocl-repository
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5.3 OCL Competitions

Competition is in our blood. Therefore, one way to increase awareness on the
benchmark is to organize yearly competitions of OCL tools where tool vendors
evaluate their tools against each other by executing them on the same set of
benchmark models.

This format is very successful in the SAT community (e.g. see2) where win-
ning a competition is considered a very prestigious achievement for a SAT solver
and therefore something that vendors/researchers strive for. In the MDE com-
munity we have the successful example of the Tool Transformation Contest3,
focusing on comparing the expressiveness, usability and performance of trans-
formation tools to get a deeper understanding of their relative merits and identify
open problems. We propose to replicate these successes in the OCL community.

Typically, competitions are organized in different tracks depending on the
properties we want to measure and, more importantly, include an initial call
for problems/case studies to use in the competition itself. These proposals are
perfect candidates to extend our benchmark.

6 Conclusions

This paper emphasizes the increasing need for a reliable set of OCL Benchmarks
that can be used to consistently evaluate and compare OCL tools. We believe
such benchmarks would encourage the development of new OCL tools (that
now would have a way to evaluate their progress and contrast it against more
established tools and a chance to distinguish themselves by focusing on those
aspects where others may be failing) and increase the user base of OCL and other
similar languages since users would be more confident on the tools’ capabilities.

This is still work in progress, and thus, we have also outlined how the com-
munity as a whole should (and could) push forward these ideas by, for instance,
contributing to a common repository or organizing and participating in specific
events on this topic. We hope to see these actions taking place in a near future.
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