
Incremental Consistency Checking
of Heterogeneous Multimodels

Zinovy Diskin1,2 and Harald König3(B)

1 NECSIS, McMaster University, Hamilton, Canada
2 Generative Software Development Lab, University of Waterloo, Waterloo, Canada

zdiskin@uwaterloo.ca
3 University of Applied Sciences FHDW Hannover, Hannover, Germany

harald.koenig@fhdw.de

Abstract. The local approaches to global consistency checking (GCC)
of heterogeneous multimodels strive to reduce the model merging and
matching workload within GCC. The paper’s contribution to such
approaches is a framework allowing the user to do matching incremen-
tally: to build the match required for checking the multimodel w.r.t. a
new constraint, the user employs matches produced in previous GCC
sessions.

1 Introduction

Modeling a complex system normally results in a (heterogeneous) multimodel,
i.e., a set of heterogenous (component) models each one conforming to its own
metamodel. A fundamental fact about multimodeling is that if even each of the
component model perfectly conforms to its metamodel, taken together they may
violate some global consistency (GC) rules, i.e., be globally inconsistent [2,7].
An accurate mathematical definition of GC based on model merge was proposed
in [9] for the homogeneous case, and extended for the heterogeneous multimod-
eling in [1]. Moreover, while in [9], the merge-based definition of GC was also
used as a practical procedure for GC checking (GCC), in [1] we proposed a
more efficient local approach, in which consistency is only checked at the over-
laps of the component metamodels, which reduces the model merge workload in
GCC. The local idea was significantly developed in our paper [4], in which we
proposed to check each global constraint c individually, and correspondingly do
matching and merging as minimally as required for checking c, i.e., only using
those (meta)model elements that affect the validity of c. In this way, not only
model merging, but also matching workload is reduced. As model matching is
a very expensive procedure, the local approach of [4] provides significant gains
for GCC.

The present paper makes a new contribution to the local GCC by reducing
the model matching workload even more by doing it incrementally. Suppose that

This work is supported by the Automotive Partnership Canada via the Network on
Engineering Complex Software Intensive Systems (NECSIS).

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 274–288, 2016.
DOI: 10.1007/978-3-319-50230-4 21

Incremental Consistency Checking of Heterogeneous Multimodels 275

the user performed GCC of a given multimodel w.r.t. a set of global constraints
C, but after that the user needs to make yet another GCC session for a bigger
set of constraints C ′ ⊃ C. We show how the user can effectively perform the
new matching procedure required for the latter GCC by using results of the
former match rather than building the new match from scratch. In a nutshell,
the mathematical framework we develop allows us to transform a constraint
increment C ′ −C into a respective increment in the inter-model correspondence
specification.

The paper is structured as follows. Sections 2 and 3 provide the required
background: in Sect. 2, we explain the main concepts and challenges of GCC
of heterogeneous multimodels with a simple example, and in Sect. 3, we outline
our mathematical framework, particularly, the machinery of diagrammatic con-
straints. Section 4 presents the contribution of the paper—incremental model
matching within GCC. In Conclusion we outline directions for future work.

2 Background I: Multimodeling, Global Constraints and
Global Consistency

Modeling a complex system normally results in a multimodel, i.e., a set of het-
erogenous models (class diagrams, sequence diagrams, statecharts, activity dia-
grams, etc.), each one conforming to its own metamodel. For illustrating the
main concepts, we will consider a toy example in Fig. 1, which shows two class
diagrams A1,2, each one conforming to its own metamodel M1,2. Metamodel M1

specifies classes implementing interfaces with operations implemented by meth-
ods. Metamodel M2 says that classes can be abstract, they have attributes, and
also implement interfaces. Each of the metamodels has its own constraints, e.g.,
all directed association are assumed to have multiplicities [0..1] at the target

Fig. 1. Sample multimodel

276 Z. Diskin and H. König

end by default, and the OCL constraint in M1 prescribes that each implemented
operation in a class belongs to this class’ implemented interface. In addition, we
may want to require that every class owns at least one either method or attribute
(or have both). This constraint cannot be declared in any of the two metamodels
as M1 knows nothing about attributes while M2 knows nothing about methods.
Following [1], we call such constraints inter-metamodel or global; correspondingly,
metamodels M1,2 and their constraints are called local.

What is the metamodel to which a global constraint can be attached? A
reasonable answer seems obvious: we need to merge local metamodels into a
global metamodel M , which in our case can be easily done manually as shown in
Fig. 1(b). For this merge, we have silently assumed (1) merging elements of M1,2

(i.e., glueing them together) with the same names except two associations owns,
and (2) merging associations impl@M1 and implmnts@M2 even though they
have different names (elements to be merged as well as their merge are shaded
in grey). The merged metamodel M clearly violates two basic constraints of the
metametamodel: (C1) different associations from the same metaclass must be
named differently, and (C2) any element only has one name. Thus, while local
metamodels do conform to the metametamodel, their merge does not, and we
say that metamodels M1,2 are globally inconsistent. Fixing global inconsistency
in our case is easy: we need to rename homonymic elements (say, into owns a
and owns m), and choose one of the synonymic names (say, impl) or generate a
new one. These fixes are not shown in Fig. 1(b), but below we will assume them
done. After the merged metamodel M is built and fixed, we can attach global
constraints to it, and check global consistency of the multimodel (A1, A2). For
this, we need first to merge the local models into a global model A as shown
in Fig. 1(b) (again shaded in grey in A1,2 and A0), and then check validity of
global constraints for A. Specifically, we see that the “one method or attribute”-
constraint described above is satisfied by model A.

In the toy example above, all manipulations were easy, but in practice, merg-
ing and checking global consistency may be a far more complicated issue. Specifi-
cally, (meta)model matching (together with subsequent merging) are very expen-
sive operations which need intelligent tool support, but anyway cannot be fully
automated. A key observation made in [1] and further developed in [4] is that for
checking a particular constraint or a group of constraints C, the user can match
only small parts of the (meta)models that matter for C’s validity rather than
match and merge the entire (meta)models. For instance, in the example above,
the “one method or attribute”-constraint does not cover interfaces, such that
manual effort for the decision whether to match “Comparable” and “TotalOrder”
can be omitted.

To make the simple example above generalizable and applicable to practically
interesting cases, we need a precise mathematical framework and tools built on
the base of such a framework. Specifically, we need a formal specification of
models and their merge, metamodels and constraints, and conformance of a
model to a metamodel. A suitable mathematical framework is outlined in the
next section.

Incremental Consistency Checking of Heterogeneous Multimodels 277

3 Background II: Mathematical Framework

We assume the reader to be familiar with the concept of (directed multi-)graphs
and graph morphisms (mappings), which together constitute the category G of
graphs. We also assume some basic knowledge of categories and functors. In
Sect. 3.1, we explain model mappings and spans, and in Sect. 3.2 model merge.
Section 3.3 explains the fundamental tool for our considerations — diagrammatic
constraints, and Sect. 3.4 explains local checking of global constraints in detail.
To make the paper self-contained, we sketched some technical material heavily
used in the paper in the appendix.

3.1 Model Mappings and Spans

Models’ structures are governed by metamodels. Since many models are graph-
ical, this can be formalized via typed graphs by defining a model A as a triple
(MA, GA, τA) with MA a graph of types or A’s metamodel graph, GA a graph
specifying model’s data, and τA : GA → MA a graph morphism called typing,
which assigns to each model element its type in the metamodel graph MA (see,
for example, models A1 and A2 in Fig. 2). We will often omit subindex A near
model’s components. In a homogeneous environment determined by a single
metamodel M , all models are typed over M and thus are pairs (G, τ). We will
also use the latter notation if M is clear from the context. We will denote the
class of all models over M by Model[M].

τ τ τ

Fig. 2. Model overlapping via spans

278 Z. Diskin and H. König

The following notion is fundamental for our work with hetero-
geneous models. A model mapping or morphism r : A → A′ is a
pair (rG, rM) of graph morphisms rG : G → G′ and rM : M → M ′

such that the inset diagram commutes, i.e. τ ; rM = rG; τ ′. For
example, Fig. 2 presents two model mappings, r1 = (r1G, r1M) :
A1 ← A0 and r2 = (r2G, r2M) : A0 → A2. Note the importance
of commutativity, which enforces mapping models’ data elements
to preserve their types. We will often omit subindexes M,G if they are clear from
the context.

Three special types of model maps are important. Two models are isomor-
phic, written A ∼= A′, if both mappings rM and rG are isomorphisms. Model A
is a submodel of A′, written A ↪→ A, if both rM and rG are inclusions. Finally,
if the square in the inset diagram above is a pullback (see Appendix), then we
write r : A pb→ A′ and call model A the (retyped) restriction (or reduction) of
model A′ along map rM .

Model overlap can be specified by a pair of model mappings

A1 A0
r1�� r2 �� A2 with a common source as illustrated in Fig. 2 (curved

arrows denote mapping behavior). Such a configuration of models and map-
pings is called a span; the common model is the head of the span, and the two
mappings are its legs. In more detail, a model span consists of two graph spans:

a metamodel span M1 M0
r1M�� r2M �� M2 and a data span G1 G0

r1G�� r2G �� G2 .
In each of the graph spans, an element x in the head represents a common/shared
concept, while legs show how this concept is represented in each of the compo-
nents. For example, each element x ∈ M0 declares that elements r1M (x) ∈ M1

and r2M (x) ∈ M2 refer to the same (meta)classifier. Particularly, associations
impl in metamodel M1 and implmnts in M2 are declared to be the same in Fig. 2
despite their different names. Analogously, the upper span declares that classes
Person@A1 and Person@A2 refer to the same class. Note that it is no restriction
to assume that the overlap span is jointly injective, i.e., for any two elements
x, x ∈ M0, if r1M (x) = r1M (x′) and r2M (x) = r2M (x′), then x = x′.

When a span specifies a model overlap, we will refer to it as an overlap or
correspondence span. Thus, the metamodel of our sample multimodel is actually
a span M = (M1,M2,M0, r1M , r2M) or shorter M = (r1M , r2M) rather than a
pair (M1,M2), and the multimodel itself is a span A = (A1, A2, A0, r1, r2) or
shorter A = (r1, r2) rather than a pair (A1, A2). We will call (A1, A2) the base
of multimodel A. Thus, a multimodel is essentially richer than its base (cf. [1]).

3.2 Model Merge and Global Constraints

After model overlap is specified by a span, we can merge the component models
in an entirely automatic way by employing an operation called pushout (PO).
Figure 3 explains the idea by showing how the two metamodels are merged.
Intuitively, we first take the disjoint union of M1 and M2, and then glue together
those elements, which are declared to be the same by the span. The result is a
merged graph M together with two mappings r1 : M1 → M and r2 : M ← M2

Incremental Consistency Checking of Heterogeneous Multimodels 279

Fig. 3. Merging metamodels (Color figure online)

specifying embedding of the local metamodel graphs into the merge. We will
denote it by M1 +M0 M2.

Local constraints are directly carried into the merged graph along the maps
r1 and r2, in this way the commutativity constraint (note the label [=]) and
multiplicities (not shown) are carried into the merge. Thus, PO takes a span of
metamodels as its input, and outputs a cospan (two mappings with a common
target), encompassing all data from the local metamodels without duplication.
Models’ data graphs are also merged with PO, and it can be shown that the
result of data graph PO is properly typed over the metamodel graph PO (we
omit the figure to save space). However, as our discussion in Sect. 2 shows, some
constraints can be violated and have to be checked. In addition, inter-metamodel
constraints may be added to the merged metamodel, e.g. the above mentioned
“one method [or] attribute” constraint shown in green in Fig. 3.

3.3 Diagrammatic Constraints

Table 1. Sample constraints

Name Shape

[0..1] �������	1
12 �� �������	2

[or] �������	1 �������	0
02

��
01

�� �������	2

[=] �������	0
01 ��

02 ���
��

��
��
�������	1

12
��
�������	2

A key feature of constraints used in metamodeling
is their diagrammatic nature: the set of elements
over which a constraint is declared is actually a dia-
gram of some shape specific for the constraint. For
example, the shape of any multiplicity constraint
is a single arrow, while the shape of constraint [or]
discussed above is a span of two arrows.

To declare a constraint named c over a meta-
model graph M , we recognize the constraint shape
in the graph and label the respective configuration
by constraint name c. Formally, we first declare a
signature of constraints, i.e., a set of constraint names/labels, each one assigned
with its (arity) shape denoted, for a constraint c, by Sc. For example, Table 1

280 Z. Diskin and H. König

specifies a simple signature consisting of three constraints. Now, to declare a con-
straint c over a graph M , we need to specify a graph morphism δ : Sc → M called
(shape) binding. E.g. in Fig. 4, constraint c = [or] is declared via binding δ with
δ(01) = owns m, δ(02) = owns a, which automatically implies δ(1) = Method ,
δ(0) = Class, δ(2) = Attribute. The elements in M the shape is mapped to, is
called the image or the scope of the binding; in Fig. 4 the elements beyond the
scope are veiled. The same formal mechanisms underlines commutativity con-
straint in Fig. 3: labeling an arrow square by [=] is a syntactic sugar for adding
the diagonal arrow, and declaring the constraint [=] from Table 1 for the two
triangles (by mapping the triangle shape to the respective triangle in the graph).

The pair (c, δ) is called a constraint declaration. In the sequel, we write c@δ,
meaning that constraint c is imposed on metamodel M at the image of binding
map δ.

Constraint name “or” already suggests its semantic interpretation in this
context: “Each class shall own at least a method or an attribute”. Importantly,
semantics of a constraint is, in general, defined irrespective to the binding by
defining a validating function validatec(X : Model[Sc]): boolean which
inputs a typed graph X = (GX , τX : GX → Sc), i.e. a model typed over c’s
shape, and outputs Boolean truth iff the model is considered to be satisfying
the constraint. The validating function must be stable under isomorphism: if
X ∼= X ′, then validatec(X) = validatec(X ′).

Now checking consistency of model A = (G, τ : G → M) against a fixed
constraint declaration c@δ in M is performed by function

check(A:Model[M], c@δ:Constr): boolean

which performs three steps:

1. Restrict A to elements, whose types are in the image of δ in M .
2. Retype elements of this new structure to formal typing over Sc. This yields

typed graph Ac@δ = (Gc@δ, τ c@δ).
3. Return the result of validatec(Ac@δ).

Fig. 4. Constraint declaration and check

In Fig. 4 the steps of
function check can be
tracked: validatec acts on
models typed over Sc: It
returns true if each element
of type 0 in Gc@δ has an
outgoing edge to some ele-
ment of type 1 or to some
element of type 2. Graph G
is restricted and retyped by
pulling back τ along δ, τ c@δ

is the retyping.
Model A satisfies c@δ,

written A |= c@δ, if

Incremental Consistency Checking of Heterogeneous Multimodels 281

check(A, c@δ)=true. A is a legal model over metamodel M , if A |= c@δ for
all constraints c@δ declared in M .

The framework described above allows us to give an accurate formal definition
of global consistency. In a nutshell, we specify local (meta)model overlap by
a span, then merge using PO, specify global constraints over the the merged
metamodel, and finally check the merged model against global constraints.

3.4 Global Consistency Revisited: Local Constraint Checking

As mentioned above, using this definition of global consistency as an algorithm
for consistency checking is very inefficient due to the expensive operation of
model matching. A better technique is given in [4]: Let A be a multimodel with
base (A1, A2), Ai = (Gi, τi: Gi → Mi) (i = 1, 2) defined over a multimeta-
model M = (M1,M0,M2, r1, r2). An inter-metamodel constraint c@δ is verified
as follows (see Appendix for how the pullback operation works).

1. Binding projection: Identify those fragments of M1, M2, and M0, that matter
for checking, by pulling δ back along r1, along r2, and along r1; r1 (or, equiv-
alently, along r2; r2 as the square is commutative), cf. Fig. 4. This results in
mappings r∗

1(δ) : Sc@δ
1 → M1, r∗

2(δ) : Sc@δ
2 → M2, and (r1; r1)∗(δ) : Sc@δ

0 →
M0. Let’s call these maps localised bindings (of δ to M1, M2, M0. resp.). Let

Sc@δ
i

kiM �� Ic@δ
i

� � �� Mi for i = 1, 2, 0

be their epi-mono-factorisations, i.e.Ic@δ
i is the image of δ’s localised binding

to Mi.
2. Model restriction and retyping: Carry out steps one and two of the constraint

checking algorithm of Sect. 3.3 locally, i.e. construct consecutive pullbacks of
τi along the two morphisms of the above epi-mono-factorisation, yielding

Bc@δ
i

pb
ki �� Ac@δ

i
pb � � �� Ai

The right pullback yields subgraph Ac@δ
i of Ai comprising those model ele-

ments that are typed in Ic@δ
i , the left pullback retypes elements of Ac@δ

i such
that they are typed over Sc@δ

i . Let Ac@δ
i = (Gc@δ

i , τ c@δ
i : Gc@δ

i → Ic@δ
i) and

provide the modeler with model data Gc@δ
1 and Gc@δ

2 .1, 2

3. Matching: Determine compatibly typed overlap Ac@δ
0 = (Gc@δ

0 , τ c@δ
0 : Gc@δ

0 →
Ic@δ
0) of these two data graphs, including correspondence span r′

1: Ac@δ
0 →

Ac@δ
1 and r′

2: Ac@δ
0 → Ac@δ

2 .3 We will refer to the triple (Ac@δ
0 , r′

1, r
′
2) as a

constraint specific (correspondence) span and denote it by span(c@δ).

1 In Fig. 3, Gc@δ
1 comprises classes, interfaces, and operations; Gc@δ

2 contains classes,
interfaces, and attributes.

2 Recall the fact that Bc@δ
i , Ac@δ

i , and Ai are typed graphs, such that the arrows of
the form pb→ depict morphism pairs in a pullback square, cf. Sect. 3.1.

3 Hence, in Fig. 3, Gc@δ
0 contains only certain classes.

282 Z. Diskin and H. König

4. Validation: Compute pullback Bc@δ
0 = (Hc@δ

0 , σc@δ
0 : Hc@δ

0 → Sc@δ
0) of this

overlap along k0M and apply validatec(Bc@δ
1 +Bc@δ

0
Bc@δ

2).

The key point of this algorithm is that the constraint-tailored correspondence
span span(c@δ) can be much smaller than the span specifying all correspondences
between the component models. E.g. checking our sample multimodel against the
constraint “One attribute or one method” specified in Sect. 2 requires to match
classes in models A1 and A2 while matching interfaces is not necessary. For this
toy example, the difference is not significant, but for practical models comprising
thousands of elements, the performance gain is essential.

4 From Constraints to Model Matching, Incrementally

This section introduces the main contribution of the paper. Since the most expen-
sive step in the algorithm of Sect. 3.4 is model matching (Step 3), we focus on
minimizing this effort by computing the required correspondence span incre-
mentally. The idea is briefly explained in Sect. 4.1, Sect. 4.2 describes our main
technical vehicle for the constraint grouping task, and Sect. 4.3 explains incre-
mentality in detail.

4.1 Incrementality in a Nutshell

Suppose we need to check global consistency wrt. a set of constraints

C = {c1@δ1, ..., cn@δn}.

In the next section we will show that any such set gives rise to a constraint
declaration c@δ for some new constraint symbol c with a new binding map δ
such that for any multimodel A we have A |= c@δ iff A |= C (where, as usual,
A |= C means A |= ci@δi for all i = 1, .., n). We will denote this new constraint
declaration by

∧
C and call it consolidation of C. Thus, we can replace checking

A against C by checking it against a single constraint
∧

C with our algorithm in
Sect. 3.4, so that model matching is reduced to discovering the correspondence
span span(C) def= span(

∧
C).

Assume now that new constraints are added to group C resulting in a
bigger group C ′ ⊇ C. To check A against C ′, we need to build a corre-
spondence span span(C ′), which, as we mentioned several times, is an expen-
sive procedure. Our idea is to build span(C ′) incrementally (rather than from
scratch) using the previously built correspondence span span(C). Indeed, we will
define a “delta” span span(C,C ′) and an operation � of span union such that
span(C ′) = span(C) � span(C,C ′), so that GCC can be done incrementally with
an effective reuse of the model matching knowledge.

Incremental Consistency Checking of Heterogeneous Multimodels 283

4.2 Constraint Grouping

Logical programming enables definition of new formulas with the help of con-
junction of already known formulas, e.g.

pythagoreanTriple(x, y, z) := (x2 + y2 = z2) ∧ isInteger(x) ∧ isInteger(y).

This classical consolidation of three small formulas by defining their conjunction
can be carried out in the same way with diagrammatic constraints: For the sake
of simplicity we explain the idea for two constraint declarations only. The general
case of an arbitrary (finite) number is straightforward. Let c1@δ1 and c2@δ2 be
imposed on metamodel M . We can define a new constraint symbol c1 ∧ c2 (read
“c1 and c2”) with arity graph Sc1∧c2 := Sc1 + Sc2 , i.e. the coproduct of the two
arity graphs (whenever, in the sequel, a term is printed in italics, we refer to
the appendix’ terminology). In the classical case this corresponds to the disjoint
union of all variable slots in the atomic formulae: We obtain 5 slots s1, . . . , s5
for the arity of the consolidated formula. For the diagrammatic conjunction of
c1@δ1 and c2@δ2 we take [δ1, δ2] : Sc1 + Sc2 (universal morphism) to be the
corresponding binding map. In the classical example above, this means that the
slots are mapped s1
→ x, s2
→ y, s3
→ z, s4
→ x, s5
→ y, placing x, y, z
accordingly into the slots.

Semantics of c1 ∧ c2 is defined as follows. For any model X with τX : GX →
Sc1∧c2 , we set X |= c1 ∧ c2 iff i∗c1(X) |= c1 and i∗c2(X) |= c2, where ic1 : Sc1 →
Sc1∧c2 and ic2 : Sc2 → Sc1∧c2 are the coproduct’s canonical injections (recall that
Sc1∧c2 = Sc1 + Sc2), and i∗c1(), i∗c2() are the respective PB operations (acting,
in fact, on τX — see Appendix). Stability under isomorphisms is obvious.

(c1 ∧ c2)@[δ1, δ2] is called a consolidated constraint declaration (composed of
c1@δ1 and c2@δ2). Note that in the partially ordered (by |=) set of all constraint
declarations, (c1 ∧ c2)@[δ1, δ2] is the g.l.b. of c1@δ1 and c2@δ2.

The construction defined above for the case of two constraint declarations in
the group, is directly generalized for the case of any finite number of constraints
C = {c1@δ1, . . . , cn@δn}. We will denote the corresponding consolidated con-
straint by

∧
C.

Theorem. Given a set of global constraints C = {c1@δ1, . . . , cn@δn} (declared
over the metamodel merge), let

∧
C be its consolidated constraint declaration

as defined above. Then A |= C iff A |= ∧
C.

4.3 From Constraints to Correspondence Spans

Given a constraint declaration c@δ, let Sc@δ kM �� Ic@δ � � �� M be its epi-mono
factorisation as described in Sect. 3.4.

Definition. Given two constraints, c@δ and c′@δ′, we say the latter (semanti-
cally) entails the former, and write c′@δ′ |= c@δ, if Ic@δ ⊂ Ic′@δ′

and A |= c@δ
for any multimodel A with A |= c′@δ′.

284 Z. Diskin and H. König

Corollary. Given a metamodel M , the space of all constraint declarations over
M is a (thin) category, say, Constr(M), whose arrows are entailments. 4 �

Specifically, it is easy to see that given two groups of constraints such that
C ⊂ C ′, we have

∧
C ′ |= ∧

C for their consolidations. This is our main moti-
vating example, but proofs are easier to build in a bit more general situation of
semantic entailment.

Given entailment c′@δ′ |= @δ, we have a diagram

Sc′@δ′
��Sc@δ �� Ic@δ � � �� Ic′@δ′ � � �� M (1)

with Ic@δ and Ic′@δ′
being images of δ and δ′ resp., which gives rise (through

backward propagation) to inclusions

Ac@δ
1 ⊆ Ac′@δ′

1 and Ac@δ
2 ⊆ Ac′@δ′

2

where models A with subindexes are constraint-specific restrictions of local mod-
els produced in Step 2 of the algorithm (Sect. 3.4). Thus, there will be further
automation potential for matching in Step 3, if two elements x1 ∈ Ac@δ

1 and
x2 ∈ Ac@δ

2 are declared to be the same: In this case neighbors (reachable via an
edge in the data graph) y1 ∈ Ac′@δ′

1 − Ac@δ
1 (of x1) and y2 ∈ Ac′@δ′

2 − Ac@δ
2 (of

x2) are likely to be identical, too.
We demonstrate the effects for the simple situation of a singleton C =

{c1@δ1} and C ′ = C ∪ {c2@δ2}. Consider for this the metamodel merge M in
Fig. 3. Suppose again that classes shall either possess an attribute or a method
(constraint c1@δ1), and, additionally, the following property (constraint c2@δ2)
has to hold for any class c:

(∼ c.abstract ∧ c.impl = i) implies (∀op ∈ i.ops: ∃m ∈ c.owns m: m.implOf = op)

i.e. each operation of an implemented interface has to be instantiated in each
concrete class. Let c′@δ′ be the consolidation of C ′. Its scope consists of the
complete merge M in Fig. 3. For applying our algorithm for checking validity
of (A1, A2) against c1@δ1, the user has to specify sameness of model elements.
Since the image of δ1 only covers Class in the complete overlap of M1 and M2,
the user only needs to match classes. Thus, in Fig. 2, he will declare classes
Person to be the same. In contrast, extended constraint declaration c′@δ′ covers
the complete overlap M0 in Fig. 3. Hence the user, additionally, has to specify
sameness of interfaces. Since Person-classes have already been matched, it is
likely that interfaces Comparable and TotalOrder are the same, and the system
can propose their matching to the user, which he can confirm or reject.

In the rest of the section, we investigate the nature of mapping span, which
maps a constraint c@δ to its specific correspondence span. We will show that it
can be extended to arrows by mapping an entailment c′@δ′ |= c@δ to the respec-
tive inclusion of correspondence spans. The latter can be seen as an increment
for model matching.
4 A thin category is nothing but a partially preordered (big) set: for any pair of objects,
the set of mediating arrows between them is either empty or a singleton.

Incremental Consistency Checking of Heterogeneous Multimodels 285

It is easy to verify that image inclusion of two constraints faithfully propa-
gates back to the local metamodels and its overlap by Preservation properties of
pullbacks. Thus diagram (1) is fully propagated back to mappings with codomain
M1, M2, and M0 in step 1 of the algorithm in Sect. 3.4, meaning that we get the
same shaped diagram (including image properties) for the localised bindings:

Sc′@δ′
i ��Sc@δ

i
�� Ic@δ

i
� � �� Ic′@δ′

i
� � �� Mi (2)

for all i ∈ {0, 1, 2}. In step 2, pullback of τi along these mappigs (i ∈ {1, 2}) is
carried out. If verification of c@δ and c′@δ′ would be performed simultaneously,
the system would present to the modeler typed graphs (Ac@δ

i) pb ↪→ (Ac′@δ′
i)

for i ∈ {1, 2} where inclusion is provided by preservation properties and one
can show that the pullback property arises from its decomposition property (see
Appendix). Suppose the modeler has already specified model overlap Ac@δ

0 =
(Gc@δ

0 , τ c@δ
0) for checking c@δ, then the question is, how to efficiently fill the

gaps (question marks and dashed arrows) in

Ac@δ
1
pb� �

��

Ac@δ
0
pb� �

?

���
�
�
�

r′
1

��
r′
2

�� Ac@δ
2
pb� �

��

= span(c@δ)
� �

��
Ac′@δ′

1 Ac′@δ′
0 ?? � ���� � ?�� ���� Ac′@δ′

2 = span(c′@δ′)
(3)

Whereas the two horizontal dashed correspondence morphisms declare the
extended overlap, the vertical dashed line guarantees coherence with the overlap
w.r.t. c@δ.

Note that for any solution Ac′@δ′
0 := (Gc′@δ′

0 , τ c′@δ′
0 : Gc′@δ′

0 → Ic′@δ′
0) the

codomain Ic′@δ′
0 is already known, cf. (2). Thus, we have to find Gc′@δ′

0 and its
typing. We claim that Gc′@δ′

0 is of the form Gc@δ
0 + G0, where G0 can be any

subset of elements of

{(x1, x2) ∈ Gc′@δ′
1 × Gc′@δ′

2 | ∃t0 ∈ Ic′@δ′
0 − Ic@δ

0 : τc′@δ′
1 (x1) = r1(t0)∧ τc′@δ′

2 (x2) = r2(t0)},

which turns Gc′@δ′
0 into a legal graph. We call G0 the match-extension and define

τ c′@δ′
0 = τ c@δ

0 on Gc@δ
0 and τ c′@δ′

0 (x1, x2) = t0. Note that this is unique since we
assumed in the beginning of Sect. 3.2 r1 and r2 to be jointly injective. Moreover
the correspondence maps must be taken to be projections (x1, x2)
→ x1 and
(x1, x2)
→ x2 on match-extension and such that they coincide with r′

1G and r′
2G

on Gc@δ
0 . Finally the model part of the vertical dashed map is the inclusion of

Gc@δ
0 into Gc′@δ′

0 . It can now be shown that Gc′@δ′
0 is indeed a graph, the above

diagram becomes commutative, all mappings on the model level are proper graph
morphisms and are compatibly typed, and the three vertical arrows are inclusion
pullbacks, as desired.

286 Z. Diskin and H. König

Thus, in the example above, Gc′@δ′
0 = Gc@δ

0 + G0, where graph Gc@δ
0 has

exactly one node Person. For graph G0, there are three cases:

1. G0 = ∅ (no extension)
2. G0 = {(Comparable : Interface, TotalOrder : Interface)}.
3. G0 = {(Comparable : Interface, TotalOrder : Interface), (impl1, impl2)},

where impl1 specifies that Person implements Comparable and impl2 spec-
ifies that Person implements TotalOrder.

The second case results in a double declaration of Comparable = TotalOrder
to be implemented by Person, which can automatically be rejected by the algo-
rithm. In addition to that, the algorithm can propose the third case, because
it is likely that Comparable and TotalOrder can be declared to be the same,
since otherwise Person should not be in the original overlap (because then it
implements different behavior). The user must only confirm this choice. If he
rejects, the algorithm outputs case 1.

Given a multimodel base (A1, A2) over the multimetamodel M, the con-
struction described by diagram (3) defines mappings between model correspon-
dence spans over M, which makes the space of spans a category Span(M). We
can summarize our discussion by formulating an important requirement to the
model matching tool: in order to preserve the matching knowledge, mapping
span : Constr(M) → Span(M) should be a functor. This requirement is well
aligned with matching algorithms based on similarity flooding [6]: global con-
straints provide information about model correspondences, which can be used
for matching (e.g., as it was done in our example above).

5 Conclusion: Future Work

We plan to extend the functorial nature of mapping span : Constr(M) →
Span(M) towards a richer structure over the spaces. Namely, we want to make
them lattices formed by Boolean logical operations for the former space, and
by Boolean operations over spans for the latter space. Then it should be possi-
ble to establish a structure compatible map (homomorphism) from the former
algebra to the latter, which would allow the user to do matching in a composi-
tional way with extensive reuse. Another direction is to investigate interaction
between our incremental approach and similarity flooding matching algorithms,
which potentially can enhance tools for both model matching and global con-
sistency checking. We also plan to develop a tool support for the approach in
collaboration with the Bergen group, whose ongoing work on tooling for dia-
grammatic constraint checking, and subsequent model repairing [5,8] looks very
promising.

A Appendix. Some Operations Over Graphs and Models

Two operations over graphs and graph morphisms heavily employed in the paper
are sketched below; a detailed specification can be found in, say, [3].

Incremental Consistency Checking of Heterogeneous Multimodels 287

Coproducts. The coproduct G1 + G2 of two graphs G1, G2 is their disjoint
union. Importantly, any coproduct is endowed with two canonic injections ik :
Gk ↪→ G1 + G2, k = 1, 2, which map each element to itself in the union.

Any pair of graph morphisms f1,2 : G1,2 → H gives rise to a unique mor-
phism [f1, f2] : G1 + G2 → H compatible with injections: i1,2; [f1, f2] = f1,2.
This property of coproducts is called universality and morphism specified above
universal. It is easy to see that universality allows us to define the following
operation over models (typed graphs): having typed graphs A1, A2 we define
A = A1 + A2 by setting GA = G1 + G2, MA = M1 + M2 and τA = [τ1; i1, τ2; i2]
where i1,2 : M1,2 ↪→ MA are coporduct injections.

Restriction/Retyping and Pullbacks. Given a model A =
(M,G, τ) and a type graph map as shown in the inset diagram,
we can define a new model A′ = (G′, τ ′) over M ′ by setting
G′ = {e = (t, x)| t ∈ M ′, x ∈ G, f(t) = τ(x)} 5 with projection
mappings τ ′(e) = t and f ′(e) = x. Further in the paper, we will
often denote map f ′ by τ∗(f) and say that it is obtained by pulling f back along τ ,
and similarly τ ′ = f∗(τ) is obtained by pulling τ back along f ; correspondingly,
the entire operation of producing a span (τ ′, f ′) from cospan (τ, f) is called
pull-back(PB) (of graphs).

If f is inclusion, then PB provides the (retyped) restriction of model A over
the M ′ part of the metamodel graph. Pullback operation can be seen as a gen-
eralization of model restriction for arbitrary mappings f , and we will often call
it so. As any PB square is commutative, we can consider it as a special model
morphism, which we will denote by a special arrow f : A′ pb→ A.

Preservation properties. It is known that If f is inclusion, injective or surjective,
then f ′ is, resp., inclusion, injective or surjective as well.

Pullback composition and decomposition. Given f : A pb→ B and g : B pb→ C,
their composition is also PB, i.e., f ; g : A pb → C. Moreover, given that the
second arrow and the composition are PBs, f ; g : A pb→ C and g : B pb→ C, it
is possible to prove that the first arrow is also PB, f : A pb→ B.6

Coproducts and pullbacks (Extensivity). Given three typed graphs and
morphism pairs A1

�� A0 A2
�� , then A1pb

�� A0 A2pb�� if and only if
A0

∼= A1 + A2.

References

1. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous mod-
els for global consistency checking. In: Dingel, J., Solberg, A. (eds.) MODELS
2010. LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21210-9 16

5 It is easy to show that G′ is equipped with a graph structure in a unique way, see,
e.g., [3].

6 But f ; g : A pb→ C and f : A pb→ B do not, in general, imply g : B pb→ C.

http://dx.doi.org/10.1007/978-3-642-21210-9_16
http://dx.doi.org/10.1007/978-3-642-21210-9_16

288 Z. Diskin and H. König

2. Egyed, A.: Fixing inconsistencies in UML design models. In: ICSE. pp. 292–301
(2007)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Tranformations. Springer, Heidelberg (2006)

4. König, H., Diskin, Z.: Advanced local checking of global consistency in heteroge-
neous multimodeling. In: Modelling Foundations and Applications - 12th European
Conference, ECMFA 2016, Held as Part of STAF 2016, Vienna, Austria, July 6-7,
2016, Proceedings, pp. 19–35 (2016). http://dx.doi.org/10.1007/978-3-319-42061-
5 2

5. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench: a
multi-level language workbench for MDE. In: Proceedings of the Estonian Academy
of Sciences, vol. 62, pp. 3–15 (2013)

6. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: ICDE, pp. 117–
128. IEEE Computer Society (2002)

7. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: ICSE, pp. 455–464 (2003)

8. Rutle, A., Rabbi, F., MacCaull, W., Lamo, Y.: A user-friendly tool for model check-
ing healthcare workflows. In: (EUSPN-2013) and ICTH, pp. 317–326 (2013). http://
dx.doi.org/10.1016/j.procs.2013.09.042

9. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., Chechik, M.: Consistency
checking of conceptual models via model merging. In: RE, pp. 221–230 (2007)

http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://dx.doi.org/10.1016/j.procs.2013.09.042
http://dx.doi.org/10.1016/j.procs.2013.09.042

	Incremental Consistency Checking of Heterogeneous Multimodels
	1 Introduction
	2 Background I: Multimodeling, Global Constraints and Global Consistency
	3 Background II: Mathematical Framework
	3.1 Model Mappings and Spans
	3.2 Model Merge and Global Constraints
	3.3 Diagrammatic Constraints
	3.4 Global Consistency Revisited: Local Constraint Checking

	4 From Constraints to Model Matching, Incrementally
	4.1 Incrementality in a Nutshell
	4.2 Constraint Grouping
	4.3 From Constraints to Correspondence Spans

	5 Conclusion: Future Work
	A Appendix. Some Operations Over Graphs and Models
	References

