
Computational Design Synthesis
Using Model-Driven Engineering
and Constraint Programming

Raphael Chenouard1(B), Chris Hartmann1,2, Alain Bernard1,
and Emmanuel Mermoz2

1 Ecole Centrale de Nantes, IRCCyN UMR CNRS 6597, 1 Rue de la No BP 92101,
44321 Nantes Cedex 3, France

{raphael.chenouard,alain.bernard}@irccyn.ec-nantes.fr,
chris.hartmann@airbus.com

2 Airbus Helicopters, Aéroport de Marseille Provence, 13700 Marignane, France
emmanuel.mermoz@airbus.com

Abstract. This paper introduces a new process for computational
design synthesis. It starts from functional requirements to generate one
or more topologies of components. This process is implemented using
Model-Driven Engineering techniques and Constraint Programming solv-
ing capabilities. Model transformations are used to transform functions
and available components to a CSP. This problem is solved with a CSP
solver, which solutions are transformed to topological architectures. The
process is successfully applied on the design synthesis of an autonomous
generator. It produces about 60 relevant solutions from which we found
some existing product architectures.

1 Introduction

Design synthesis is a hard task in the design process of a product. It is one step
within the preliminary design phase of a system of interest, when considering
a common design process [10]. The design synthesis task ends-up with a set
of architectures related to a functional decomposition derived from the stake-
holders’ needs. The modeling of products during preliminary design phases is
generally based on three aspects: function, behavior and structure [4].

Some previous works in design synthesis are based on graph grammars and
rules to build graphs corresponding to relevant topologies of components [6].
These rules are based on well-known principles of solutions or functional decom-
position in a given context. The major advantages of this kind of approaches
is that it generates solutions that fit good practices and designer experience.
However, the search space of possible solutions may be only partially explored.
Thus, some innovative and efficient solutions may not be found.

Some recent works mainly in the field of embedded systems investigate this
kind of problem as Design Space Exploration (DSE) [8,16]. These works use
as well model-driven engineering and optimization techniques to automate the
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 265–273, 2016.
DOI: 10.1007/978-3-319-50230-4 20



266 R. Chenouard et al.

definition of a valid solution. [8] like [6] uses graph theory to define rules that
guide the building of solutions. Some cut-off criteria are used to improve the
exploration procedure which defines new states by applying graph transforma-
tion rules using a selection heuristic. In [16], the aim is to define a more generic
framework being able to address various kinds of DSE like resource allocation
problems, routing problems or configuration problems. One of the major benefits
of this approach is its wide application range and its solver independence. How-
ever, the designer has to define a metamodel template used for the exploration.
Obviously it makes the exploration easier, but it requires to know in advance
the main structure of valid solutions even if their language propose mechanisms
to deal with alternatives or optional elements.

Another previous approach also mixed Model-Driven Engineering (MDE)
and Constraint Programming (CP) [2] to define a framework for modeling prob-
lems independently from a solver like in the Model-Driven Architecture philos-
ophy, but applied here to mathematical problem modeling and solving. This
work was also followed by the definition of high level modeling concepts to ease
the definition of Constraint Satisfaction Problems (CSPs) in order to represent
design problems [3]. The behavioral aspect of a product was the main target,
whereas functional and structural concerns were not really investigated.

In this paper, we propose a method based on MDE and CP to compute prod-
uct topologies from a brief functional description. The generation of topologies
must only satisfy the functional requirements. We do not take into account, at
this step, the behavioral aspect of a product and we restrict the structure def-
inition to a topological architecture: a set of inter-connected components. Our
aim is to explore all possible solutions and provide more innovative architectures
that may not be found using classical design processes. Moreover, we do not want
to use pre-defined rules or patterns that will always lead to the same kinds of
solution principles and exclude possible promising solutions.

The next section introduces the main process and modeling elements regard-
ing designers activities for design synthesis. Section 3 deals with automated solv-
ing of a computational design synthesis problem. Section 4 presents an applica-
tion of the method on a concrete case with a discussion of the proposed process
issues, before ending with a conclusion and the future works description.

2 Design Synthesis Automated Process

As said previously, design synthesis aims at generating a product architecture
from needs and requirements [1]. In this paper, we focus on the transformation
of functional needs to topological architectures, namely networks of components.
In most existing work, designers first decompose functions to define a functional
architecture [6], then allocate functions to physical components and check feasi-
bility and performances [17].

We propose in this paper to directly compute a topological architecture with-
out investigating too deeply the functional architecture. Our aim is to maximize
innovative solutions without using classical design patterns that will always pro-
duce the same solution principles. Thus, we just want to use high-level functions



Computational Design Synthesis 267

Fig. 1. Main process of the proposed method.

- issuing from stakeholders needs - and a database of allowed topological com-
ponents (see Fig. 1). These high-level functions define the functional require-
ments from which we compute satisfying architectures. The following subsec-
tions presents the two main metamodels we used as input and output of our
automated process implemented in the Eclipse environment with ATL transfor-
mation Language [11]. The solving is done using CSP formalism with classical
CP solving methods [12]. Computed solutions are transformed into topological
architectures and finally designers can analyse and investigate the best one(s)
for physical feasibility analysis.

2.1 Functional Requirements Modeling

Since more than a decade, researchers investigate the best manner to represent
functions within a design process. The kind of words or verbs to use is out of the
scope of this paper. We refer to this previous work [9] to deal with this issue. We
want to define the main concepts that are used in the proposed transformation
process to state input models like in [7].

Then, a function is defined by a name (that should be an action verb) and
a set of flows (oriented or not). Flows can be of three main categories: material,
energy and signal. Functions and flow may have some properties defined by a
name and a unit (e.g. an electrical flow is often defined with 2 properties: current
with unit A and voltage with unit V ). A model of functional requirements is
simply a set of functions and flows instances as shown in Fig. 2.

2.2 Topological Architecture Modeling

We consider that a topological architecture is a network of components, namely
a set of inter-connected components. This definition is similar to the definition
in the systems engineering domain [14]. Then, a component is mainly defined
by its name and its interfaces relating to flows (see Fig. 3). Components are



268 R. Chenouard et al.

Fig. 2. Metamodel for simplified functional requirements definition.

connected through their interfaces which must be of compatible flows. Some
concepts are similar to those defined in the functional requirements metamodel,
like flow and property. Components are close to functions, but the function
concept relates to main functions, whereas components may integrate additional
flows corresponding to induced effects and they are connected to form a network.
Moreover, they are defined as generic abstractions of real components like for
instance a generic piston engine or an electrical battery.

Components are not considered as composite since we only consider atomic
ones. We focus on their connections within an architecture at a given level of
decomposition. Following a systemic approach, one can easily define functional
requirements for a component and apply recursively this process to define its
composition. In fact, we consider that a component only refers to a physical ele-
ment that interacts with other elements of the same decomposition level. In this
way, several components of the same type are just considered as different compo-
nents with same properties and interfaces definition. For instance, we may have
several piston engines with identical characteristics (maximum power, efficiency
curve, input/output interfaces), but we consider them as different components
in a topological architecture.

3 Solving a Design Synthesis Problem

Passing from functional requirements to a physical architecture is not obvious
and cannot be processed using a simple model transformation. We propose in
this paper to formulate a graph problem that can be solved using CP solvers.
The objective is to find a set of connected nodes (i.e. used component interfaces)
and a set of isolated ones (i.e. unused component interfaces) with respect to a
set of constraints related to the possible connections.



Computational Design Synthesis 269

Fig. 3. Metamodel for topological architecture definition.

Given a database of allowed components and the set of functions to sat-
isfy, we generate a mathematical problem which solutions are connected graphs
compatible with the following constraints:

1. connections can only exist between compatible interfaces,
2. function flows must be satisfied by input/output interfaces of the whole sys-

tem,
3. all interfaces of a component must be connected or none of them.

In our CSP, decision variables are the connections between interfaces (com-
ponents and functional requirements). Thus, we use a matrix of binary variables
to represent these decision variables. We can easily pre-compute the compati-
ble and incompatible interfaces of each given interface using its flow description
to eliminate some trivial decision variables. Concretely, we compute a matrix
of binary values defining allowed and not allowed connections and we set con-
straints fixing these decision variables if the connection is not allowed. Thus,
only the second and third set of constraints are used to restrict the domain of
variables during the solving process [15].

We use a simplified metamodel to define CSPs as shown in Fig. 4. A CSP
is defined as three sets: domains, variables and constraints. Since we only use
integer and binary variables, no additional domain kinds are considered. Con-
straints are not detailed here, but consist of classical logical and arithmetical
expressions [2]. Since we use MiniZinc concrete syntax, we take advantage of
some additional high-level constructs like matrices of variables or parameters,
forall and if-else constraints or sum function calls [13]. The solving is carried out
with the default solver of MiniZinc 2.0.12 distribution.

After the solving phase, we get a set of solutions. A solution is simply a list of
couples (value, variable) for which all constraints are satisfied (see Fig. 5). Obvi-
ously all variables must have a value to get a complete solution. Since decision
variables are connections between interfaces of components, it is easy to identify



270 R. Chenouard et al.

Fig. 4. Simplified metamodel for CSP modeling.

Fig. 5. Metamodel for solution modeling.

which ones are used and how they are linked to each others. A last transforma-
tion step is used to generate a topology from the set of used components and a
CSP solution.

One drawback of this modeling, is the possible huge number of variables.
For n interfaces (from a given set of allowed components) and m interface from
input and output functions to satisfy, we have more than n2 + m ∗ n variables.
Nevertheless, we use binary variables and the scaling of CP solving algorithms
stays satisfactory.

4 Application and Discussion

We applied our approach to an autonomous generator design synthesis problem.
We consider three high-level functions:

– the system must start/stop on demand,
– the system must produce electrical energy,
– the system must follow a voltage order (e.g. between 110 V, 220 V and 370 V),

These three functions imply two input flows: (1) the voltage order and (2)
an on/off signal; and only one output flow: electrical energy.

We use a set of 10 allowed components corresponding to 39 interfaces. So,
we get 1521 + 117 binary variables. These components include the environment
as a source for air and a sink for (exhaust) gas and thermal energy.

We obtain about 60 solutions. Figure 6 shows one solution that uses all
allowed components. A turbine and a piston engine are used to produce the



Computational Design Synthesis 271

mechanical energy for an alternator which produces electrical energy. An electri-
cal engine is used, since it is required to start the turbine and the piston engine.
It produces mechanical energy and it receives the start signal and electrical
energy. No electrical energy flow is defined in the input functional requirements,
so a battery is used to feed the electrical engine. This battery can also be used
to store and deliver the produced electricity. It also may improve the electricity
quality as the battery can soften the power demand.

For each solution and the corresponding selected component descriptions,
an architectural topology is generated. For printing purposes, we also generate
a DOT model processed with the GraphViz compiler [5] as it can be seen on
Fig. 6.

We apply our process to an autonomous generator problem. We only con-
sider 10 topological components, but we get more than 60 topologies. All these

PistonEngine

Alternator

TurbineEngine

ElectricalEngine

ACDCConverter

Battery

DCACConverter

FuelTank

VoltageRegulator
Input Flows

Output Flows

Environment

Fuel

RotationalEnergy

Air

ThermalEnergy

ThermalEnergy

ExhaustGas

ExhaustGas

RotationalEnergy

RotationalEnergy

ACElectricalEnergy

ACElectricalEnergy

ElectricalEnergy

ThermalEnergy

Fuel

RotationalEnergy

Air

ThermalEnergy

ExhaustGas

RotationalEnergy

ONOFFSignal

ACElectricalEnergy

RotationalEnergy

ThermalEnergy

DCElectricalEnergy

DCElectricalEnergy

ThermalEnergy

DCElectricalEnergy

DCElectricalEnergy

ACElectricalEnergy

ThermalEnergy

Fuel

VoltageOrderSignal

ElectricalEnergy ACElectricalEnergy

VoltageOrderSignal

ONOFFSignal

Air

Fig. 6. Example of a solution obtained by the solving process.



272 R. Chenouard et al.

solutions are valid in terms of flow connections and we were able to find some
architectures used in existing products.

On this example, we do not use several occurrences of components. Some
other experiments show that many similar (i.e. symmetrical) solutions are com-
puted and we can expect an exponential rise of the solution number according
to the number of allowed components (and their number of interfaces). The next
step for the designer is to check the physical feasibility of a topological architec-
ture. Working with so much solutions is not realistic on bigger design synthesis
problems even if we can automate many steps, but additional constraints can
be easily integrated in our approach to take into account other requirements or
performance criteria.

5 Conclusion and Future Work

In this paper, we present an innovative process to automate the design synthesis
of system architectures. We implement it using MDE tools and CP techniques to
compute relevant topologies. The designer has just to define functional require-
ments and select candidate components, then the automated process will produce
all possible topologies. We define several simplified metamodels for the function
definitions, the CSP model, the CSP solution, the topological architecture model
and we use an existing DOT language metamodel for printing the computed
topologies. We apply this process on a real example using a set of allowed com-
ponents. It proves the relevance of the process, even if some improvement must
be done.

Indeed, we have to consolidate our transformations and we have to auto-
mate the whole process, since some steps are manually launched and achieved
(e.g. some model injections). Nevertheless, we expect to link our process with
existing system modeling languages like SysML. Functional requirements may
automatically be extracted. Topological architectures can also be defined using
block definition diagrams and internal block diagrams.

Several harder issues must be investigated after this work. The major one is
the number of solutions and the symmetries appearing with multiple occurrences.
Without a drastic reduction of the number of computed solutions, the process
will not be fully usable for real-world design synthesis problems. In CP, some
existing work deals with symmetry breaking techniques [18] and we hope to
reduce drastically the number of computed solutions.

Another way to reduce valid topologies is to add more constraints about the
design synthesis problem. We only use high-level functional requirements, but
additional knowledge may be integrated as constraints in our CSPs to assess the
feasibility in terms of physical behavior. However, these constraints may often
lead to nonlinear constraints. In this case, we have to deal with Mixed-Integer
NonLinear Problems (MINLPs) which are harder to solve than current Integer
Linear Problem (ILP). We can also use an optimization algorithm to reduce
the number of computed solutions, but we have to define generic metrics or
performance criteria related to the topological aspects of the computed solutions.



Computational Design Synthesis 273

Some additional knowledge may also be integrated to deal with performance
criteria coming from needs and requirements.

References

1. Cagan, J., Campbell, M.I., Finger, S., Tomiyama, T.: A framework for computa-
tional design synthesis: model and applications. ASME. J. Comput. Inf. Sci. Eng.
5(3), 171–181 (2005)

2. Chenouard, R., Granvilliers, L., Soto, R.: Model-driven constraint programming.
In: Proceedings of the 10th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP), pp. 236–246 (2008)

3. Chenouard, R., Granvilliers, L., Soto, R.: High-level modeling of component-based
CSPs. In: Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA 2010.
LNCS (LNAI), vol. 6404, pp. 233–242. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16138-4 24

4. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI
Mag. 11(4), 26 (1990)

5. Graphviz: Graph visualization software. http://www.graphviz.org
6. Helms, B., Shea, K.: Computational synthesis of product architectures based on

object-oriented graph grammars. J. Mech. Des. 134(2), 1–14 (2012)
7. Hartmann, C., Chenouard, R., Mermoz, E., Bernard, A.: Formulation of a design

problem for computational pre-design. In: Virtual Concept Workshop (2016)
8. Hegeds, A., Horvth, A., Varr, D.: A model-driven framework for guided space

exploration. Autom. Softw. Eng. 22(3), 399–436 (2015)
9. Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., Wood, K.L.: A functional

basis for engineering design: reconciling and evolving previous efforts. Res. Eng.
Des. 13(2), 6582 (2002)

10. Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach. Springer, London
(1995)

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(12), 3139 (2008)

12. Kumar, V.: Algorithms for constraint satisfaction problems: a survey. AI Mag.
13(1), 32–44 (1992)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

14. Rechtin, E.: Systems Architecting: Creating and Building Complex Systems. Pren-
tice Hall, Englewood Cliffs (1991)

15. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
New York (2006)

16. Saxena, T., Karsai, K.: Towards a generic design space exploration framework.
In: IEEE 10th International Conference on Computer and Information Technology
(CIT), pp. 1940–1947 (2010)

17. Umeda, Y., Tomiyama, T., Yoshikawa, H.: FBS modeling: modeling scheme of
function for conceptual design. In: Proceedings of the 9th International Workshop
on Qualitative Reasoning (1995)

18. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006). doi:10.1007/
11889205 46

http://dx.doi.org/10.1007/978-3-642-16138-4_24
http://dx.doi.org/10.1007/978-3-642-16138-4_24
http://www.graphviz.org
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/11889205_46
http://dx.doi.org/10.1007/11889205_46

	Computational Design Synthesis Using Model-Driven Engineering and Constraint Programming
	1 Introduction
	2 Design Synthesis Automated Process
	2.1 Functional Requirements Modeling
	2.2 Topological Architecture Modeling

	3 Solving a Design Synthesis Problem
	4 Application and Discussion
	5 Conclusion and Future Work
	References


