
An Accelerated MapReduce-Based
K-prototypes for Big Data

Mohamed Aymen Ben HajKacem(B), Chiheb-Eddine Ben N’cir,
and Nadia Essoussi

LARODEC, Université de Tunis, Institut Supérieur de Gestion de Tunis,
41 Avenue de la Liberté, Cité Bouchoucha, 2000 Le Bardo, Tunisia

medaymen.hajkacem@gmail.com, {chiheb.benncir,nadia.essoussi}@isg.rnu.tn

Abstract. Big data are often characterized by a huge volume and a
variety of attributes namely, numerical and categorical. To address this
issue, this paper proposes an accelerated MapReduce-based k-prototypes
method. The proposed method is based on pruning strategy to acceler-
ate the clustering process by reducing the unnecessary distance compu-
tations between cluster centers and data points. Experiments performed
on huge synthetic and real data sets show that the proposed method
is scalable and improves the efficiency of the existing MapReduce-based
k-prototypes method.

Keywords: K-prototypes · MapReduce · Big data · Mixed data

1 Introduction

Given the exponential growth and availability of data collected from different
resources, analyzing these data has become an important challenge referred to
as Big data analysis. Big data analysis usually refers to three mains character-
istics also called the three Vs [7] which are respectively Volume, Variety and
Velocity. Volume refers to the large scale data, Variety indicates the different
data types and formats and Velocity refers to the streaming data [6]. One of
the most important challenges in Big data analysis is how to explore the large
amount of mixed data using machine learning techniques. Clustering is one of the
machine learning techniques, which has been used to organize data into groups
of similar data points called also clusters. Examples of clustering methods cat-
egories are hierarchical methods, density-based methods, grid-based methods,
model-based methods and partitional methods [13]. However, traditional clus-
tering methods are not suitable for processing large scale of mixed data. For
example, k-prototypes clustering [18] which is one of the most popular method
to cluster mixed data, it does not scale with huge volume of data [20].

To deal with this issue, Ben HajKacem et al. [3] have proposed a paralleliza-
tion of k-prototypes method through MapReduce model. Although this method
offers for users an efficient analysis of a huge amount of mixed data, it requires
computing all distances between each of the cluster centers and the data points.
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 13–25, 2016.
DOI: 10.1007/978-3-319-50230-4 2



14 M.A.B. HajKacem et al.

However, many of these distance computations are unnecessary, because data
points usually stay in the same clusters after first few iterations. Therefore, we
propose in this paper an Accelerated MapReduce-based k-prototypes method
called AMR k-prototypes. The proposed method is based on pruning strategy
to accelerate the clustering process by reducing the unnecessary distance com-
putations between cluster centers and data points. The experiments show that
the proposed method is scalable and outperforms the efficiency of the existing
MapReduce-based k-prototypes method [3].

The organization of this paper is as follows: Sect. 2 presents related works
in the area of Big data clustering. Then, Sect. 3 describes the proposed AMR
k-prototypes method while Sect. 4 presents experiments that we have performed
to evaluate the efficiency of the proposed method. Finally, Sect. 5 presents con-
clusion and future work.

2 Related Works

Big data clustering has recently received a lot of attentions to build parallel
clustering methods. In this context, several parallel clustering methods have been
designed in the literature [2,4,9,14,16,17,19,23]. Most of these methods use the
MapReduce [5], which is a programming model for processing large scale data
by exploiting the parallelism among a cluster of machines. For example, Zaho
et al. [23] have proposed a parallelization of k-means method using MapReduce
model. Kim et al. [14] have introduced an implementation of DBSCAN method
through MapReduce model. Recently, a parallel implementation of fuzzy c-means
clustering algorithm using MapReduce model is presented in [17]. Indeed, Big
data are often characterized by the variety of attributes, including numerical and
categorical. Nevertheless, the existing parallel methods can not handle different
types of data and are limited to only numerical attributes.

To deal with mixed data, a pre-processing step is usually required to trans-
form data into a single type since most of proposed clustering methods deal with
only numerical or categorical attributes. However, transformation strategies is
often time consuming and produce information loss, leading to undesired clus-
tering results [1]. Thus, several clustering methods for mixed data have been
proposed in the litterateur [1,8,11,15]. For instance, Huang [11] have proposed
k-prototypes method which combines k-means [18] and k-modes [12] methods
for clustering mixed data. Li and Biswas [15] have proposed Similarity-Based
Agglomerative Clustering called SBAC, which is a hierarchical agglomerative
algorithm for mixed data. Among the later discussed methods, k-prototypes
remains the most popular method to cluster mixed data, because of its simplic-
ity and linear computational complexity [8].

In the following, we present an accelerated MapReduce-based k-prototypes
method to deal with large scale of mixed data.



An Accelerated MapReduce-Based K-prototypes for Big Data 15

3 An Accelerated MapReduce-Based K-prototypes for
Big Data

We propose in this section an accelerated MapReduce-based k-prototypes
method. Before presenting the proposed method, we first introduce the k-
prototypes method [11], then the MapReduce model [5].

3.1 K-prototypes Method

Given a data set X={x1 . . . xn} containing n data points, described by mr

numerical attributes and mt categorical attributes, the aim of k-prototypes [11]
is to find k clusters where the following objective function is minimized:

J =
n∑

i=1

k∑

j=1

pijd(xi, cj), (1)

where pil ∈ {0, 1} is a binary variable indicating the membership of data point
xi in cluster cj , cj is the center of the cluster cj and d(xi, cj) is the dissimilarity
measure which is defined as follows:

d(xi, cj) =
mr∑

r=1

√
(xir − cjr)2 + γj

mt∑

t=1

δ(xit, cjt), (2)

where xir represents the value of numeric attribute r and xit represents the value
of categorical attribute t for data point xi, cjr is the mean of numeric attribute r
and cjt is the most common value (mode) for categorical attributes t for cluster
cj . For categorical attributes, δ(p,q)=0 when p = q and δ(p, q) = 1 when p �=
q. γj is a weight for categorical attributes to cluster cj . The optimization of
the objective function J is performed using an alternating iterative process by
looking for the optimal cluster centers. These two steps are alternated iteratively
until convergence. The main algorithm of k-prototypes method is described in
Algorithm 1.1.

Algorithm 1.1. Main algorithm of k-prototypes method
Input: X={x1 . . . xn}, k

Output: Centers={c1 . . . ck}
begin

Choose k cluster centers randomly from X
repeat

Compute distance between data points and clusters using Eq. 2
Update the cluster centers (Save the previous cluster centers as Centers∧

to analyze the convergence)

until Centers∧ = Centers;

end



16 M.A.B. HajKacem et al.

3.2 MapReduce Model

MapReduce [5] is a parallel programming model designed to process large scale
data sets among cluster nodes. The MapReduce model works as follows. The
input and output of the computation is a set of <key/value> pairs. The algo-
rithm to be parallelized needs to be expressed by map and reduce functions. The
map function is applied in parallel to each input <key/value> pair and returns
a set of intermediate <key

′
/value

′
> pairs. Then, shuffle phase groups all inter-

mediate values associated with the same intermediate key and passes them to
the reduce function. The reduce function takes the intermediate key and set of
values for this key. These values are merged together to produce a set of values.
Figure 1 illustrates the flowchart of MapReduce model. The inputs and outputs
are stored in an associated distributed file system that is accessible from any
machine of the cluster nodes. The implementation of the MapReduce model is
available in Hadoop1. Hadoop provides a distributed file system named Hadoop
Distributed File System, (HDFS) that stores data on the nodes.

Fig. 1. MapReduce model flowchart

3.3 An Accelerated MapReduce-Based K-prototypes Method for
Big Data (AMR K-prototypes)

To offer for users the possibility to build grouping from large scale of mixed
type data, we propose the accelerated MapReduce-based k-prototypes method.
The proposed method mainly consists of two functions: map function which
performs the assignment of each data point to the nearest cluster, and reduce
function which is devoted to update the new cluster centers. Then, we iterate
1 http://hadoop.apache.org/.

http://hadoop.apache.org/


An Accelerated MapReduce-Based K-prototypes for Big Data 17

calling the two functions several times until convergence. It is important to note
that the initial cluster centers are chosen randomly.

3.3.1 Map Function:
During this function, we assign each data point to the nearest cluster by com-
puting distance of Eq. 2 between data points and cluster centers. To reduce the
number of distance computations, we propose a pruning strategy using triangle
inequality. More precisely, the triangle inequality is used to prove that if cluster
center c1 is close to data point x, and some other cluster center c2 is far away
from another cluster center c1, then c1 must be closer than c2 to x. The fol-
lowing theorem shows how to use the triangle inequality to reduce the distance
computations and more details can be found in [10].

Theorem 1. Let x a data point and let c1 and c2 cluster centers. If we know
that d(c1,c2) ≥ 2 ∗ d(x,c1) ⇒ d(x,c1) ≤ d(x,c2) without having to calculate
d(x,c2).

Proof. According to triangle inequality, we know that d(c1,c2) ≤ d(x,c1) +
d(x,c1) ⇒ d(c1,c2) − d(x,c1) ≤ d(x,c2). Consider the left-hand side d(c1,c2)
− d(x,c1) ≥ 2 ∗ d(x,c1) − d(x,c1) = d(x,c1) ⇒ d(x,c1) ≤ d(x,c2).

After assigning each data point to nearest cluster, we update a local information
about clusters. To do so, we first update the values of the numerical attributes of
data points. Second, we update the frequencies of different values of categorical
attributes of data points. Third, we update the number of data points assigned
to clusters. Keeping these information is inexpensive and avoids the calculation
over all data points for each iteration. Each time a data point changes cluster
membership, the local information are updated. After few iterations, most data
points remain in the same cluster for other iterations. Then, the map function
outputs the local information about clusters to the reduce function.

Let X=
{
X1 . . . Xm

}
the input data set where Xg the portion of input data

set associated to map function g. Let Centers={c1 . . . ck} the set of cluster
centers. Let SUMg={sumg

1 . . . sumg
k} the set of sum of data values of numeri-

cal attributes relative to different clusters. Let FREQg={freqg1 . . . freqgk} the
set of frequencies of data values of categorical attributes relative to different
clusters. Let NUMBERg={numberg1 . . . numbergk} the set of number of data
points relative to different clusters. Let new (resp. old) the cluster index of
data point xi in the current (resp. previous) iteration. Let Cluster − Cluster a
matrix which records the distances between each pair of cluster centers where
Cluster − Clusterij returns the distance between ci and cj . The main steps of
map function is described in Algorithm 1.2.

3.3.2 Reduce Function
During this function, we merge the local information which are produced from all
map functions in order to calculate the new cluster centers. So, for each cluster,
we first sum the numeric values of data points. Second, we compute the total



18 M.A.B. HajKacem et al.

Algorithm 1.2. Map function
Input: < key : g/value : Xg >,Centers

Output: < key
′
: 1/value

′
: SUMg, FREQg, NUMBERg >

begin
SUMg← ∅ FREQg← ∅ NUMBERg ← ∅
for i ← 1 . . . k do

for j ← 1 . . . k do
Cluster − Clusterij← d(ci, cj)

foreach xi ∈ Xg do
for j ← 1 . . . k do

if pij = 1 then
old ← j

minDistance← d(si, cold)
for j ← 1 . . . k do

if minDistance ≤ 2*Cluster − Clusterjold then
j ← j+1

else
% Distance computation
Distance← d(xi, cj)
if distance < minDistance then

minDistance ← distance
new ← j

if new �= old then
sumg

new ← sumg
new + xi

sumg
old ← sumg

old − xi

freqgnew ← freqgnew + 1
freqgold ← freqgold − 1
numbergnew ← numbergnew + 1
numbergold ← numbergold − 1

return < 1/SUMg, FREQg, NUMBERg >

end

frequencies of different values of categorical attributes relative to the data points.
Third, we sum the number of total data points. Given the above information,
we can compute both the mean and mode value of the new cluster centers. Once
the new cluster centers are computed, the proposed method moves to the next
iteration until convergence. The convergence is achieved when cluster centers
become stable for two consecutive iterations. We notate that the new cluster
centers are stored in HDFS to be ready for next iteration.

Let NewCenters={newc1 . . . newck} the set of new cluster centers. Let
Highest-Freq(freqj) a function which returns the mode value of cluster j from
freqj . The main steps of reduce function is described in Algorithm 1.3.



An Accelerated MapReduce-Based K-prototypes for Big Data 19

Algorithm 1.3. Reduce function
Input: < key : 1/value : SUM1, FREQ1, NUMBER1, . . . , SUMm, FREQm,

NUMBERm >

Output: < key
′
: 1/value

′
: NewCenters >

begin
NewCenters← ∅
for j ← 1 . . . k do

for g ← 1 . . .m do
sumj ← sumj + sumg

j

freqj ← freqj + freqgj
numberj ← numberj + numbergj

for j ← 1 . . . k do
Calculation of mean value
newcj ← sumj/numberj
Calculation of mode value
newcj ← Highest − Freq(freqj)

return < 1/NewCenters >

end

4 Experiments and Results

In this section, we describe the experiments which are performed to evaluate
the efficiency of the proposed AMR k-prototypes method. First, the execution
environment, and the information of the data sets used are given. Then, the
evaluation measures are presented, and the experimental results are provided
and discussed.

4.1 Environment and Data Sets

The experiments are performed on Hadoop cluster running the latest stable ver-
sion of Hadoop 2.7.1. The Hadoop cluster consists of 4 machines. Each machine
has two Pentium(R) Core i5 (2.70 GHz) CPU E5400 and 1 GB of memory. The
operating system of each machine is Ubuntu 14.10 server 64 bit. We conducted
the experiments on the following data sets:

– Synthetic data set: four series of mixed data sets generated using the data
generator developed in2. The data sets range from 1 million to 4 million
data points. Each data point is described using 3 numeric and 3 categori-
cal attributes. In order to simplify the names of the synthetic data sets, we
used names with specific pattern based on the data size. For example: the
Sy1M data set consists of 1 million data points.

– KDD Cup data set (KDD): This is a real data set which consists of data about
TCP connections simulated in a military network environment. Each connec-
tion is described using 7 numeric and 3 categorical attributes. The clustering

2 https://projets.pasteur.fr/projects/rap-r/wiki/SyntheticDataGeneration.

https://projets.pasteur.fr/projects/rap-r/wiki/SyntheticDataGeneration


20 M.A.B. HajKacem et al.

process for this data set detects type of attacks among all the connections.
KDD data set was obtained from UCI machine learning repository3.

– Cover Type data set (Cover): This is a real data set which represents cover type
for 30× 30 meter cells from US Fores. Each measurement is described using
5 numeric and 3 categorical attributes. The clustering process for this data
set identifies types of trees. Cover data set was obtained from UCI machine
learning repository4. Statistics of these data sets are summarized in Table 1.

Table 1. Summary of the data sets

Data set Number of data points Number of attributes Domain

Sy1M 1.000.000 6 (3 Numeric, 3 Categorical) Synthetic

Sy2M 2.000.000 6 (3 Numeric, 3 Categorical) Synthetic

Sy3M 3.000.000 6 (3 Numeric, 3 Categorical) Synthetic

Sy4M 4.000.000 6 (3 Numeric, 3 Categorical) Synthetic

KDD 4.898.431 10 (7 Numeric, 3 Categorical) Detection intrusion

Cover 581.012 8 (5 Numeric, 3 Categorical) Agriculture

4.2 Evaluations Measures

In order to evaluate the quality of the obtained results, we use Sum Squared
Error (SSE) [21] which is defined as follows.

– The Sum Squared Error [21] is one of the most common partitional clustering
criteria and its general objective is to obtain a partition which minimizes the
squared error. This criterion is defined as follows:

SSE =
n∑

i=1

k∑

j=1

d(cj , xi). (3)

We used in our experiments the Speedup and Scaleup [22] measures to evaluate
the performance of AMR k-prototypes method, which are defined as follows.

– The Speedup [22] is measured by fixing the data set size while increasing the
number of machines to evaluate the ability of parallel algorithm to scale with
increasing the number of machines of the Hadoop cluster, which is calculated
as follows:

Speedup =
T1

Th
, (4)

where T1 the running time of processing data on 1 machine and Th the running
time of processing data on h machines in the Hadoop cluster.

3 https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data.
4 http://archive.ics.uci.edu/ml/datasets/Covertype.

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://archive.ics.uci.edu/ml/datasets/Covertype


An Accelerated MapReduce-Based K-prototypes for Big Data 21

– The Scaleup [22] is a measure of speedup that increases with increasing data
set sizes to evaluate the ability of the parallel algorithm for utilizing the
Hadoop cluster effectively, which is calculated as follows:

Scaleup =
Tn1

Th∗nh

, (5)

where Tn1 the running time of processing data with size of n on 1 machine
and Th∗nh

the running time of processing data with size of h∗n on h machines
of the Hadoop cluster.

4.3 Results

We first evaluate the performance of the pruning strategy to reduce the unneces-
sary distances computations. Tables 2 and 3 report the number of distance com-
putations performed by AMR k-prototypes compared to existing MapReduce-
based k-prototypes (MR k-prototypes) method [3] for synthetic and real data
sets respectively using ten runs. A different initialization of cluster centers have
been used over the ten runs, whereas within each run the same initialization of
cluster centers has been used for the different methods. The number of iterations
is fixed as 10 for each run. From Tables 2 and 3, we can observe that the pro-
posed method can reduce a lot of distance computations over MR k-prototypes
method on both synthetic and real data sets. More importantly, this reduction
becomes more significant with the increase of k. For example, the number of
distance computations is reduced by 46.12% when k = 50 and by 78.09% when
k = 100 for Sy4M data set.

Table 4 presents results obtained with AMR k-prototypes versus MR k-
prototypes in terms of SSE values for real data sets. From Table 4, we can observe
that the proposed method produces the same SSE values compared to MR-KP
method. Therefore, we can conclude that AMR-KP avoids unnecessary distance

Table 2. Comparison of the number of distance computations for the synthetic data
sets (averaged over 10 runs)

Data set Number of distance computations (∗108)

MR k-prototypes AMR k-prototypes

Sy1M (K = 50) 5.0000 (± 0.01) 4.6553 (± 0.17)

Sy2M (K = 50) 10.0000 (± 0.03) 9.3087 (± 0.28)

Sy3M (K = 50) 15.0000 (± 0.01) 10.3966 (± 0.22)

Sy4M (K = 50) 20.0000 (± 0.01) 10.8620 (± 0.18)

Sy1M (K = 100) 10.0000 (± 0.02) 2.2671 (± 0.15)

Sy2M (K = 100) 20.0000 (± 0.01) 4.4502 (± 0.31)

Sy3M (K = 100) 30.0000 (± 0.01) 6.8056 (± 0.25)

Sy4M (K = 100) 40.0000 (± 0.03) 9.0711 (± 0.33)



22 M.A.B. HajKacem et al.

Table 3. Comparison of the number of distance computations for the real data sets
(averaged over 10 runs)

Data set Number of distance computations (∗108)

MR k-prototypes AMR k-prototypes

KDD (K = 50) 24.4921 (± 0.56) 3.8136 (± 0.26)

Cover (K = 50) 19.7198 (± 0.17) 2.1147 (± 0.54)

KDD (K = 100) 48.9843 (± 0.28) 6.2263 (± 0.44)

Cover (K = 100) 38.2515 (± 0.58) 1.6948 (± 0.23)

Table 4. Comparison of the SSE values for the real data set (averaged over 10 runs)

Data set SSE (∗108)

MR k-prototypes AMR k-prototypes

KDD (K = 50) 8.8131 (± 0.17) 8.8131 (± 0.17)

Cover (K = 50) 6.5124 (± 0.33) 6.5124 (± 0.33)

KDD (K = 100) 7.6916 (± 0.25) 7.6916 (± 0.25)

Cover (K = 100) 5.2678 (± 0.19) 5.2678 (± 0.19)

computations while still always producing exactly the same quality result as
MR-KP method.

Then, we evaluate the speedup of the proposed method when the data set
grows. Figure 2 shows the speedup results on the synthetic data sets. As the size
of the data set increases, the speedup of AMR k-prototypes becomes approxi-
mately linear, especially in the case of Sy3M and Sy4M data sets. In addition,
Fig. 2 shows that when the data size is 1 million, the performance of 4 machines of
the Hadoop cluster is not significantly improved compared to that of 2 machines.
The reason is that the time of processing 1 million data points is not very bigger
than the communication time among the machines and time occupied by fault
tolerance. Therefore, we can conclude that the larger the data set, the better
the speedup.

To study the scalability of the proposed method, we have evaluated scaleup
measures when we increase the size of the data set in direct proportion to the
number of machines of the Hadoop cluster. The Sy1M, Sy2M, Sy3M and Sy4M
data sets are processed on 1, 2, 3, 4 machines respectively. Figure 3 illustrates
the scaleup results on the synthetic data sets. The scaleup has almost a constant
ratio and ranges between 1 and 1.06. For example, the scaleup for Sy1M is 1
while for Sy4M it is 1.06, which is a very small difference. Therefore, we can
conclude that the proposed method is scalable.



An Accelerated MapReduce-Based K-prototypes for Big Data 23

0

1

2

3

4

5

1 2 3 4

Linear

Sy1MS
pe

ed
up

0

1

2

3

4

5

1 2 3 4

Linear

Sy2MS
pe

ed
up

number of machines number of machines 

0

1

2

3

4

5

1 2 3 4

Linear

Sy3MS
pe

ed
up

0

1

2

3

4

5

1 2 3 4

Linear

Sy4MS
pe

ed
up

number of machines number of machines 

Fig. 2. Speedup results

0,2

0,6

1

Sy1M Sy2M Sy3M Sy4M

S
ca

le
up

Data set

Fig. 3. Scaleup results

5 Conclusion

In this paper, we have proposed an accelerated MapReduce-based k-prototypes
method to deal with large scale of mixed data. The proposed method is based on
pruning strategy to reduce the unnecessary distance computations. The experi-
ment results show that our method is scalable and can improves the efficiency of
existing MapRedced-based k-prototypes method without decreasing the quality.
A proper initialization of k-prototypes method is crucial for obtaining a good
final solution. Thus, we plan to propose an efficient initialization of k-prototypes
using MapReduce model in the future work.



24 M.A.B. HajKacem et al.

References

1. Ahmad, A., Dey, L.: A k-mean clustering algorithm for mixed numeric and cate-
gorical data. Data Knowl. Eng. 63(2), 503–527 (2007)

2. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable
k-means++. Proc. VLDB Endowment 5(7), 622–633 (2012)

3. Ben Haj Kacem, M.A., Ben N’cir, C.E., Essoussi, N.: MapReduce-based
k-prototypes clustering method for big data. In: Proceedings of Data Science and
Advanced Analytics, pp. 1–7(2015)

4. Cui, X., Zhu, P., Yang, X., Li, K., Ji, C.: Optimized big data k-means clustering
using mapReduce. J. Supercomput. 70(3), 1249–1259 (2014)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and ana-
lytics. Int. J. Inf. Manag. 35(2), 137–144 (2015)

7. Gorodetsky, V.: Opportunities, challenges and solutions. In: Information and Com-
munication Technologies in Education, Research, and Industrial Applications, pp.
3–22

8. Ji, J., Bai, T., Zhou, C., Ma, C., Wang, Z.: An improved k-prototypes clustering
algorithm for mixed numeric and categorical data. Neurocomputing 120, 590–596
(2013)

9. Hadian, A., Shahrivari, S.: High performance parallel k-means clustering for disk-
resident datasets on multi-core CPUs. J. Supercomput. 69(2), 845–863 (2014)

10. Hamerly, G., Drake, J. Accelerating Lloyd’s algorithm for k-means clustering. In:
Partitional Clustering Algorithms, pp. 41–78 (2015)

11. Huang, Z.: Clustering large data sets with mixed numeric and categorical values.
In Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 21–34(1997)

12. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)

13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. (CSUR) 31(3), 264–323 (1999)

14. Kim, Y., Shim, K., Kim, M.S., Lee, J.S.: DBCURE-MR: an efficient density-based
clustering algorithm for large data using mapReduce. Inf. Syst. 42, 15–35 (2014)

15. Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data.
Knowl. Data Eng. 14(4), 673–690 (2002)

16. Li, Q., Wang, P., Wang, W., Hu, H., Li, Z., Li, J.: An efficient k-means cluster-
ing algorithm on mapReduce. In: Proceedings of Database Systems for Advanced
Applications, pp. 357–371 (2014)

17. Ludwig, S.A.: MapReduce-based fuzzy c-means clustering algorithm: implementa-
tion and scalability. Int. J. Mach. Learn. Cybern. 6(6), 923–934 (2015)

18. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 14, no. 1, pp. 281–297 (1967)

19. Shahrivari, S., Jalili, S.: Single-pass and linear-time k-means clustering based on
mapReduce. Inf. Syst. 60, 1–12 (2016)

20. Vattani, A.: K-means requires exponentially many iterations even in the plane.
Discrete Comput. Geom. 45(4), 596–616 (2011)

21. Xu, R., Wunsch, D.C.: Clustering algorithms in biomedical research: a review.
Biomed. Eng. IEEE Rev. 3, 120–154 (2010)



An Accelerated MapReduce-Based K-prototypes for Big Data 25

22. Xu, X., Jäger, J., Kriegel, H.P.: A fast parallel clustering algorithm for large spatial
databases. In: High Performance Data Mining, pp. 263–290 (2002)

23. Zhao, W., Ma, H., He, Q. Parallel k-means clustering based on mapReduce. In:
Proceedings of Cloud Computing, pp. 674–679 (2009)


	An Accelerated MapReduce-Based K-prototypes for Big Data
	1 Introduction
	2 Related Works
	3 An Accelerated MapReduce-Based K-prototypes for Big Data
	3.1 K-prototypes Method
	3.2 MapReduce Model
	3.3 An Accelerated MapReduce-Based K-prototypes Method for Big Data (AMR K-prototypes)

	4 Experiments and Results
	4.1 Environment and Data Sets
	4.2 Evaluations Measures
	4.3 Results

	5 Conclusion
	References


