
“Boring Formal Methods” or “Sherlock Holmes
Deduction Methods”?

Maria Spichkova(B)

RMIT University, Melbourne, Australia
maria.spichkova@rmit.edu.au

Abstract. This paper provides an overview of common challenges in
teaching of logic and formal methods to Computer Science and IT stu-
dents. We discuss our experiences from the course IN3050: Applied Logic
in Engineering, introduced as a “logic for everybody” elective course at
TU Munich, Germany, to engage pupils studying Computer Science, IT
and engineering subjects on Bachelor and Master levels. Our goal was
to overcome the bias that logic and formal methods are not only very
complicated but also very boring to study and to apply. In this paper,
we present the core structure of the course, provide examples of exercises
and evaluate the course based on the students’ surveys.

1 Introduction

Logic not only helps to solve complicated and safety-critical problems, but also
disciplines the mind and helps to develop abstract thinking, which is very impor-
tant for any area of Computer Science and Engineering. Problems in teaching
and learning the basic principles of logic lead to the lack of analytical skills and
abstract thinking as well as to the problems in understanding of Formal Meth-
ods (FMs). The disputes on teaching logic and FMs have been going on for a
long time, but most lecturers teaching these subjects agree that they face many
challenges specific to these subjects.

Students are strongly focused on the direct relevance of what they study to
their daily practice, and are not interested to study more fundamental subjects,
especially logic [29,32]. The main obstacle in this case is that the students cannot
match logic and FMs (in contrary to Games Development, Programming, Test-
ing, etc.) to real world problems. As curricula becomes more practice-oriented,
the mathematical background of the students becomes weaker which provides
an additional obstacle in understanding of logic and FMs, cf. [2,5,34]. Also,
many students have negative perceptions and even fear of courses that require
dealing with complex mathematical notations. This is strongly related to the
phenomenon of mathematical anxiety [22,31].

The term mathematical anxiety was introduced in 1972 by Richardson and
Suinn as “feelings of tension and anxiety that interfere with the manipulation
of numbers and the solving of mathematical problems in a wide variety of ordi-
nary life and academic situations,” [18]. As stressed by Wang et al., mathemat-
ical anxiety has attracted recent attention because of its damaging psycholog-
ical effects and potential associations with mathematical problem solving and
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 242–252, 2016.
DOI: 10.1007/978-3-319-50230-4 18

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 243

achievement. From our point of view, this term could be extended to mathemat-
ical and logical anxiety (or even to formal methods anxiety), to cover a similar
phenomenon on learning logic and FMs.

Moreover, the term “formal” is for many people just some kind of synonym for
“unreadable”, however, even small syntactical changes of a formal method can
make it more understandable and usable for an average engineer. In the course
IN3050: Applied Logic in Engineering we aimed to apply the core principles of
our research work on Human Factors of Formal Methods [24,25], applying the
engineering psychology achievements to the design of FMs. However, improving
the usability aspects we cannot overcome the preconceived notions about FMs
completely. To achieve the goal, we should start by training and teaching of
logic not only by presenting its theoretical aspects but also focusing on its real
applications, industrial and non-industrial ones, referring to the programming
languages where the formal side is almost covered, or to famous fiction books
and movies, e.g., to the famous crime stories by A.C. Doyle. We applied these
ideas within the course IN3050: Applied Logic in Engineering for Bachelor and
Master students, and the students’ feedback on this matter was very positive.

There also is a great diversity in the students’ background and cognitive skills
due to the globalisation of higher education, which requires constant adaptation,
cf. [7,12]. One possible solution to overcome this problem is to provide courses
that require very basic or even no background knowledge in the corresponding
areas, having as result a “course for everybody”, and providing students with
deeper background additional non-compulsory tasks.

Contributions: Our goal was to overcome these problems and to teach the
course IN3050: Applied Logic in Engineering without expecting any previous
knowledge on logics and abstract thinking (in contrary to the many courses on
logic and FMs). We introduced this lecture course as a “logic for everybody”,
to engage pupils studying Computer Science, IT and engineering subjects, to
overcome the bias that logic and formal methods are not only very complicated
but also “very boring to study and to apply”. As per evaluation report [1], the
majority of the students agreed that the course was helpful to their understand-
ing of application of logic and FMs in Engineering. We believe that this course
would be especially beneficial for Computer Science students, as well as for the
IT students who aim to work as Software Requirements Engineers and Software
Testers. A general introduction to this course was presented in a technical report
[26]. In this paper we are going to focus on generalisation and analysis of the
proposed solutions to improve students’ learning experience.

Outline: The rest of the paper is organised as follows. Section 2 presents a short
overview of the related work on teaching logic and FMs. Section 3 introduces the
core structure of the course IN3050: Applied Logic in Engineering, where Sect. 4
presents a number of examples we used at the lectures and tutorials. Section 5
concludes the paper evaluating the course based on the results from the students’
surveys.

244 M. Spichkova

2 Related Work

A symposium to explore and discuss the challenges and successful solutions in
teaching of FMs was organised in 2004. After 12 years, the lecturers face very
similar problems while teaching logic and FMs: mathematical and logical anxiety
as well as understandability and readability of FMs. However, over the last few
years there have been number of interesting and promising approaches that we
would like to discuss here. In our previous work [28], we discussed the common
issues in teaching of FMs and logic, as well as reviewed various approaches for
teaching FMs for Software Engineering that have been proposed, and discuss
how they address the above mentioned challenges. The focus of our analysis
here is on the collaborative and communication aspects of software development
using formal methods and logical modelling.

A novel way to attract students while teaching FMs was presented in [6].
Within the engagement project cs4fn, Computer Science for Fun, the authors
taught logic and computing concepts using magic tricks, which inspired students
to work with logical tasks. Our approach was less revolutionary: we based the
course on both practical examples and entertainment examples, such as formal
modelling of logical puzzles and the Sherlock Holmes deductions from the modern
BBC TV series “Sherlock”.

Noble et al. [17] presented a course on Introduction to Software Modelling,
where Alloy programming language was taught along with introduces the prin-
ciples and practices of Software Engineering, beginning with domain analysis,
specification of classes and use cases, writing invariants, etc. An interesting point
about this douse is that the Alloy tool itself and the Alloy language were not
introduced until the final two blocks of the course, to allow focusing on software
modelling, rather than on the technical tools.

Wang and Yilmaz suggested to group the study programs in three main cat-
egories, based on the way logic and FMs are integrated into software engineering
curriculum, cf. [30]: programs avoiding FMs, programs having a specific course
with emphasis on formal verification of source code, and programs redesigned to
have FMs integrated throughout the curriculum. This grouping does not cover
another category, which we see as a very promising for integrating logic FMs
into software engineering curriculum: to introduce a specific course that

(1) covers basics of logic and FMs, without requiring a deep knowledge in math-
ematics, and

(2) uses visualisation and gamification/puzzle strategies to make the material
more understandable and less boring for the students.

Examples of this kind of courses might be

– the Logic and FM course designed for Information Systems students [35],
– a series of courses specifically adapted to the needs of university of applied

sciences, described in [29],

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 245

– Courses Computational Thinking at the Singapore Management University
and Computational Thinking and Design at the University of Maryland, organ-
ised in the spirit of “computational thinking for everybody” envisioned by
Wing [33].

The course IN3050: Applied Logic in Engineering, which we introduced as a
“logic for everybody” course, can be seen as another example of this kind of
courses.

3 Course: Applied Logic in Engineering

The course IN3050: Applied logic in Engineering (ALE) was introduced at TU
Munich, Germany, in Winter Semester 2012/2013 as a face-to-face course on
Bachelor and Master levels.1 The course was designed as an elective without any
enforced prerequisites. It contributed 6 credit points to the student curriculum,
which corresponds to 4 teacher-directed hours.

In the case of ALE, the teacher-directed hours were divided into weekly
lectures (2 h a semester week) and weekly tutorials (2 h a semester week). The
course attracted 20 students from the following study programs:
– Computer Science (German, “Informatik”),
– Business Informatics (German, “Wirtschaftsinformatik”),
– Mechanical Engineering (German, “Maschinenwesen”).

Introductory courses on Modelling in/for Software Engineering are usually
taught in the first or second semester of the first year of study. In contrast
to this kind of courses, we
– focused not on principles and practices of Software Engineering, but on logical

concepts, representation and analysis of information and problems;
– provided the course without any restriction on the year of study, and as result

most of the students enrolled into this course were either at the beginning of
their study (1–3 semester) or at their final semesters (7th semester or later).

The exam for this course was organised as an open book exam, as our goal was
to examine whether the students understand and are able to apply the core
principles of logic methods, rather than check they memory.

The learning outcomes of this course are that on completion of this course
students
(1) will be able to state the basic principles of logic applied in Engineering, and
(2) will experience practical applications of these principles.

The general structure of the course is presented on Fig. 1. ALE is partially
based on the book of Schöning [20], which introduces the notions and methods
of formal logic from a computer science standpoint, as well as on the book of
Russell and Norvig [19]. We also recommended our students to read the textbook
of Harrison [11], which focuses on practical application of logic and automated
reasoning [11], as well as a number of other books on logic and (semi-)automated
theorem proving [4,10,14].
1 http://www4.in.tum.de/lehre/vorlesungen/Logic/WS1213/index.shtml.

http://www4.in.tum.de/lehre/vorlesungen/Logic/WS1213/index.shtml

246 M. Spichkova

Fig. 1. Structure of the course Applied logic in Engineering

To explain the core ideas of Propositional Logic, First Order Logic (FOL) as
well as of the special kinds of logics (such as Datalogic, Description logic, etc.),
we provided illustrative examples and exercises that were based both

– on application of the logics in Engineering, coming from real industrial prob-
lems,

– on puzzles and analysis of situations from famous fiction books and movies,
e.g., detective stories like the famous Sherlock Holmes crime stories written
by A.C. Doyle.

The second kind of examples and exercises was required to provide more enter-
tainment background for the course and to illustrate that logic is not necessary
a very dry subject.

Thus, the course introduces not only the basic principles of Propositional and
First Order logic, but also presents the applied nature of logic and FMs, such as

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 247

– Reasoning and Planning problems;
– Formal Specifications/models for precise description of systems and require-

ments and analysis of systems;
– Verification: Proving that a system fulfils its requirements, and that a new

version of a system is a refinement of the previous version;
– Theorem proving/Model checking allowing (semi-)automated proofs;
– Design/optimization of digital circuits: Claude Shannon has shown that

propositional logic can be used to describe and optimize electromechanical
circuits, [21];

– Formalisation of queries in databases.

We also analysed application of FMs in a number of recent research projects,
as well as discussed our experience from large scale industrial projects involving
FMs, focusing not only on the efficiency features but also on usability aspects
and corresponding feedback from industrial partners [3,8,9,13,15,16,23,27].

4 Examples and Exercises Provided Within the Course

In this section we discuss examples and exercises introduced within the course.
Example: Propositional Logic. This example we used to explain visually
how to solve a suggested by Einstein logical puzzle, also in Propositional Logic.
Figure 2 presents the task of the puzzle and the initial set up for the suggested
visual framework, where the five blocks represent the houses. In the second step,
presented on Fig. 3, we apply all the facts highlight hem with light blue, and
visualise the corresponding information. In the next step we generate additional
rules based on the facts we already know and solve the puzzle, as shown on
Fig. 4.

Exercise: Applied Propositional Logic. Formalise the following sentences
S1 and S2 as formulas and then show that they are equivalent:

The Briton lives in the red house.
The Swede keeps dogs as pets.
The Dane drinks tea.
Looking from in front, the green house is just to
the left of the white house.
The green house's owner drinks coffee.
The person who smokes Pall Malls raises birds.
The owner of the yellow house smokes Dunhill.
The man living in the center house drinks milk.
The Norwegian lives in the leftmost house.

The man who smokes Blends lives next to the one
who keeps cats.
The man who keeps a horse lives next to the man
who smokes Dunhill.
The owner who smokes Bluemasters also drinks
beer.
The German smokes Prince.
The Norwegian lives next to the blue house.
The man who smokes Blends has a neighbor who
drinks water.

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

Who owns fish?

Fig. 2. Solving the Einstein puzzle: Step 1

248 M. Spichkova

The Briton lives in the red house.
The Swede keeps dogs as pets.
The Dane drinks tea.
Looking from in front, the green house is just to
the left of the white house.
The green house's owner drinks coffee.
The person who smokes Pall Malls raises birds.
The owner of the yellow house smokes Dunhill.
The man living in the center house drinks milk.
The Norwegian lives in the leftmost house.

The man who smokes Blends lives next to the one
who keeps cats.
The man who keeps a horse lives next to the man
who smokes Dunhill.
The owner who smokes Bluemasters also drinks
beer.
The German smokes Prince.
The Norwegian lives next to the blue house.
The man who smokes Blends has a neighbor who
drinks water.

???
Pet?
Drink?
Cigarettes?

Norwegian
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Milk
Cigarettes?

Who owns fish?

Swede
Dogs
Drink?
Cigarettes?

Dane
Pet?
Tea
Cigarettes?

German
Pet?
Drink?
Prince

Briton
Pet?
Drink?
Cigarettes?

Not located
on this step:

Fig. 3. Solving the Einstein puzzle: Step 2 (Color figure online)

Swede
Dogs
Beer
Bluemasters

Norwegian
Cats
Water
Dunhill

Dane
Horse
Tea
Blends

German
Fish
Co ee
Prince

Who owns fish?

Briton
Birds
Milk
Pall Malls

Fig. 4. Solving the Einstein puzzle: Step 3

S1: If the communication fails or the battery power gets low, while the system is
in sending mode, then the system goes into safety mode.

S2: If the communication fails, then the system must go into safety mode provided
that it is in sending mode; and if it is in sending mode, it goes into safety
mode, if the battery power gets low.

To solve this task it is enough to apply Propositional Logic. We define the
following four propositions to show that the above sentences are equivalent

A = “communication fails”
B = “battery power gets low”
C = “system is in sending mode”
D = “system gets into safety mode”

Then we will have

S1 : (A ∨ B) ∧ C −→ D
S2 (A −→ (C −→ D)) ∧ (C −→ (B −→ D))

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 249

First step: simplify S1:
(A ∨ B) ∧ C −→ D ≡
¬((A ∨ B) ∧ C) ∨ D ≡
¬(A ∨ B) ∨ ¬C ∨ D ≡
(¬A ∧ ¬B) ∨ ¬C ∨ D

Second step: simplify S1:

(A −→ (C −→ D)) ∧ (C −→ (B −→ D)) ≡
(¬A ∨ ¬C ∨ D) ∧ (¬C ∨ ¬B ∨ D) ≡
¬A ∧ (¬C ∨ ¬B ∨ D) ∨ ¬C ∧ (¬C ∨ ¬B ∨ D) ∨ D ∧ (¬C ∨ ¬B ∨ D) ≡
(¬A ∧ ¬C) ∨ (¬A ∧ ¬B) ∨ (¬A ∧ D) ∨ (¬C) ∨ (¬C ∧ ¬B) ∨ (¬C ∧ D)

∨(D ∧ ¬C) ∨ (D ∧ ¬B) ∨ (D) ≡
(¬A ∧ ¬C) ∨ (¬A ∧ ¬B) ∨ (¬A ∧ D) ∨ (¬C) ∨ (¬C ∧ ¬B) ∨ (¬C ∧ D)

∨(D ∧ ¬C) ∨ (D ∧ ¬B) ∨ (D) ≡
(¬A ∧ ¬B) ∨ ¬C ∨ D

This proves semantical equivalence of the formulas. �
Example: First Order Logic. Figure 5 provides an example we used to explain
the idea of formal notation for syllogisms.

Exercise: Applied First Order Logic. Formalize the following sentences as
formulas and then show that they are equivalent:

(1) The following property holds not for all time intervals: If the system gets a
signal from its sensors that there is no communication at a time interval t or
that the battery power gets low at a time interval t, and exists an information
package that have to be send, then at a time interval t there is an information
package in the temporal buffer.

(2) At some time interval t the following holds for all information packages:
there is an information package that have to be send, but there is no infor-
mation package in the temporal buffer, and the system gets a signal from its
sensors that there is no communication or that the battery power gets low.

If all plants need to be watered and
Violet is a plant.
then Violet need to be watered

premises

conclusion

If all X are Z and
A is X,
then A is Z

All plants need to be watered.
Violet is a plant.

Violet need to be watered

∀x.plant(x) → needs2Bwatered(x)
plant(V iolet)

needs2Bwatered(V iolet)

Fig. 5. Visual explanation of formal notation: Introduction to the Syllogisms

250 M. Spichkova

One possible solution:
Formalisation of the sentences would be
(1) ¬∀t. ((C(t) ∨ B(t)) ∧ S(t) → T (t)) and
(2) ∃t. (S(t) ∧ ¬T (t) ∧ (C(t) ∨ B(t))).
Proof that both formulas are equal:
¬∀t. ((C(t) ∨ B(t)) ∧ S(t) → T (t))
≡ ∃t.¬ ((C(t) ∨ B(t)) ∧ S(t) → T (t))
≡ ∃t.¬ (¬((C(t) ∨ B(t)) ∧ S(t)) ∨ T (t))
≡ ∃t. (((C(t) ∨ B(t)) ∧ S(t)) ∧ ¬T (t))
≡ ∃t. (S(t) ∧ ¬T (t) ∧ (C(t) ∨ B(t)))

Another possible solution:
Formalization of (1): ¬∀t.∃p. ((C(t) ∨ B(t)) ∧ S(p, t) → T (p, t))
Formalization of (2): ∃t.∀p. (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t)))
Proof that both formulas are equal:
∃t.∀p. (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t)))
≡ ¬∀t.¬(∀p. (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t))))
≡ ¬∀t.(∃p.¬ (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t))))
≡ ¬∀t.(∃p. (¬S(p, t) ∨ T (p, t) ∨ ¬(C(t) ∨ B(t))))
≡ ¬∀t.(∃p. (¬S(p, t) ∨ ¬(C(t) ∨ B(t)) ∨ T (p, t)))
≡ ¬∀t.(∃p. (¬(S(p, t) ∧ (C(t) ∨ B(t))) ∨ T (p, t)))
≡ ¬∀t.(∃p. ((S(p, t) ∧ (C(t) ∨ B(t))) → T (p, t))) �

5 Evaluation and Conclusions

This paper presents an overview of common challenges in teaching of formal
methods and suggested solutions to them, based on our experiences from the
course Applied Logic in Engineering taught at TU Munich, Germany.

The course was introduced as an elective course on Bachelor and Master lev-
els and attracted 20 students. As per course evaluation [1], the majority of the
students agreed that the provided examples were very helpful, and the learning
amount and the amount of the material provided within the course were “exactly
right” (German, “genau richting”). For example, we received the following com-
ments from our students:
“Structured logically and builds up stuff part by part; nice additions as Sherlock
video”;
“The topic presented are interesting and indeed “applied”, unlike other logical
courses that are more theoretic”;
“I liked the small size of the course and I got a deeper understanding of logic”.
To the question what did you most liked in the course, the students replied
“Sherlock, Examples during lecture”.

The students’ feedback highlighted that the examples (for which we used
visual representation to reduce the cognitive load of students and to introduce
the corresponding ideas more understandable) as well as using puzzles and situ-
ations from famous fiction books and movies, not only helps to understand the

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 251

application of logic and FMs to real world problems, but also makes the leaning
experience more interesting and helps to overcome the prejustice that the FMs
are boring per default. Another point that we took out from the evaluation report
is that it would be beneficial for this kind of courses to have a relatively small
size of class, which allows teachers to approach each student individually.

References

1. Auswertung zur Veranstaltung Applied Logic in Engineering. TU Munich (2013)
2. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,

P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9 4

3. Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A., Knapp, S., Kof, L., Paul, W.,
Spichkova, M.: On the correctness of upper layers of automotive systems. Formal
Aspects Comput. 20(6), 637–662 (2008)

4. Büning, H.K., Lettmann, T.: Aussagenlogik: Deduktion und Algorithmen. Teubner
(1994)

5. Crocker, D.: Teaching formal methods with perfect developer. In: Teaching Formal
Methods: Practice and Experience, Electronic Workshops in Computing (2006)

6. Curzon, P., McOwan, P.W.: Teaching formal methods using magic tricks. In: Fun
with Formal Methods: Workshop at the 25th International Conference on Com-
puter Aided Verification (2013)

7. Feast, V., Bretag, T.: Responding to crises in transnational education: new chal-
lenges for higher education. High. Educ. Res. Dev. 24(1), 63–78 (2005)

8. Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Rittmann, S., Scheidemann, K.,
Spichkova, M., Trachtenherz, D.: A top-down methodology for the development of
automotive software. Technical report TUM-I0902, TU München (2009)

9. Feilkas, M., Hölzl, F., Pfaller, C., Rittmann, S., Schätz, B., Schwitzer, W., Sitou,
W., Spichkova, M., Trachtenherz, D.: A refined top-down methodology for the
development of automotive software systems - the KeylessEntry-system case study.
Technical report TUM-I1103, TU München (2011)

10. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer,
New York (1996)

11. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, New York (2009)

12. Hoare, L.: Swimming in the deep end: transnational teaching as culture learning?
High. Educ. Res. Dev. 32(4), 561–574 (2013)

13. Hölzl, F., Spichkova, M., Trachtenherz, D.: Autofocus tool chain. Technical report
TUM-I1021, TU München (2010)

14. Huth, M., Ryan, M.: Logic in Computer Science. Cambridge University Press,
New York (2004)

15. Kühnel, C., Spichkova, M.: FlexRay und FTCom: Formale Spezifikation in FOCUS.
Technical report TUM-I0601, TU München (2006)

16. Kühnel, C., Spichkova, M.: Upcoming automotive standards for fault-tolerant com-
munication: FlexRay and OSEKtime FTCom. In: Proceedings of EFTS 2006 Inter-
national Workshop on Engineering of Fault Tolerant Systems (2006)

17. Noble, J., Pearce, D.J., Groves, L.: Introducing alloy in a software modelling course.
In: ETAPS 2008 Workshop on Formal Methods in Computer Science Education
(FORMED) (2008)

http://dx.doi.org/10.1007/978-3-319-06410-9_4

252 M. Spichkova

18. Richardson, F.C., Suinn, R.M.: The mathematics anxiety rating scale: psychome-
tric data. J. Couns. Psychol. 19(6), 551 (1972)

19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River (2009)

20. Schöning, U.: Logic for Computer Scienctists. Modern Birkäuser Classics, Secaucus
(1989)

21. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Master’s thesis
(1937)

22. Sherman, B.F., Wither, D.P.: Mathematics anxiety and mathematics achievement.
Math. Educ. Res. J. 15(2), 138–150 (2003)

23. Spichkova, M.: FlexRay: Verification of the FOCUS specification in Isabelle/HOL.
A Case Study. Technical report TUM-I0602, TU München (2006)

24. Spichkova, M.: Human factors of formal methods. In: IADIS Interfaces and Human
Computer Interaction 2012 (IHCI 2012) (2012)

25. Spichkova, M.: Design of formal languages and interfaces: “formal” does not mean
“unreadable”. In: Emerging Research and Trends in Interactivity and the Human-
Computer Interface. IGI Global (2013)

26. Spichkova, M.: Applied logic in engineering. CoRR, abs/1602.05170 (2016)
27. Spichkova, M., Hölzl, F., Trachtenherz, D.: Verified system development with the

autofocus tool chain. In: 2nd Workshop on Formal Methods in the Development
of Software (WS-FMDS 2012), vol. 86, pp. 17–24 (2012)

28. Spichkova, M., Zamansky, A.: Teaching formal methods for software engineering.
In: 11th International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE) (2016)

29. Tavolato, P., Vogt, F.: Integrating formal methods into computer science curricula
at a university of applied sciences. In: TLA+ Workshop at the 18th International
Symposium on Formal Methods (2012)

30. Wang, S., Yilmaz, L.: A strategy and tool support to motivate the study of formal
methods in undergraduate software design and modeling courses. Int. J. Eng. Educ.
22(2), 407–418 (2006)

31. Wang, Z., Hart, S.A., Kovas, Y., Lukowski, S., Soden, B., Thompson, L.A., Plomin,
R., McLoughlin, G., Bartlett, C.W., Lyons, I.M., Petrill, S.A.: Who is afraid of
math? Two sources of genetic variance for mathematical anxiety. J. Child Psychol.
Psychiatry 55(9), 1056–1064 (2014)

32. Wing, J.M.: Weaving formal methods into the undergraduate curriculum. In: Pro-
ceedings of Algebraic Methodology and Software Technology, pp. 2–7 (2000)

33. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
34. Zamansky, A., Farchi, E.: Exploring the role of logic and formal methods in infor-

mation systems education. In: Proceedings of the 2nd Human-Oriented Formal
Methods workshop (HOFM) (2015)

35. Zamansky, A., Farchi, E.: Teaching logic to information systems students: chal-
lenges and opportunities. In: Proceedings of the 4th International Conference on
Tools for Teaching Logic (TTL) (2015)

	``Boring Formal Methods'' or ``Sherlock Holmes Deduction Methods''?
	1 Introduction
	2 Related Work
	3 Course: Applied Logic in Engineering
	4 Examples and Exercises Provided Within the Course
	5 Evaluation and Conclusions
	References

