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Abstract. Practitioners and students tend to have a negative inclina-
tion towards formal methods and consider them hard to learn and unus-
able in practice. In this paper we analyse the perspectives of practition-
ers, computer scientists and students to show that a notation developed
for modelling interactive systems in previous work and its translations
into rewriting logic and process algebra represent an appropriate com-
promise among such perspectives.
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1 Introduction

Formal methods experts are often so much focussed on the investigation of theo-
retical aspects of formal notations rather than on their applications to real prob-
lems, that they often neglect the needs of practitioners. As a result, they produce
methods of little use in practice and have to resort to simplified, unrealistic, too
abstract versions of application-domain problems while they are also biased in
choosing the data that best illustrate the features and potential of their favourite
formal languages and analysis techniques [5]. Instead of focusing on usability, for-
mal analysis and the tools that realise it are more and more evolving towards
efficient, automatic rather than human-oriented proofs (theorem-proving) [1] or
the checking of rich extensions of temporal logic, which are hard to understand by
humans (model checking). Nothing of this is of any interest for a practitioner. In
addition, formal methods are often presented to students through dry syntax and
involved semantics rather than seen in a lively applicative context through lab
sessions that allow students to use appropriate, usable tools to experiment both
with learning-oriented, fun-making examples and, when familiarity is acquired,
with real world case studies [4].

In this paper we consider three human-oriented perspectives in which formal
methods can be used to model human-computer interaction.

First, the development of new approaches to the use of formal methods
and tools within a specific application domain should address the perspective
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of and provide an effective support to the practitioner (who is normally a domain
expert) and should be tested on real case studies from the application domain.
This aspect is dealt with in Sect. 2, where modelling and analysis goals and
objectives, as well as description level, are established from the perspective of a
practitioner, who is, in our context, a cognitive psychologist/scientist. An intu-
itive but unambiguous notation to model cognitive processes, subset of a more
extensive notation presented in previous work [3], is illustrated in the context of
the practical use of the practitioner.

Second, the intuitive description of the problem given from a domain expert
perspective has to be translated or, technically speaking, implemented into an
appropriate formal language, which, on the one hand, is equipped with powerful
tools that support the accomplishment of the modelling and analysis objectives of
the domain expert, and, on the other hand, is close enough to the intuitive mod-
elling notation used by the domain expert. Section 3 provides another notation,
also from our previous work [3], with simple primitives to describe the behaviour
of interfaces, which reflects, in a simplified form, the formal methods perspective
of modelling a system in terms of transitions between states. Section 4 merges
the notations corresponding to the two perspectives into a modelling language
for interactive systems, which has been implemented using two distinct formal
methods, rewriting logic and process algebra.

Third, it essential to address learners’ and practitioners’ negative inclination
towards formal methods and provide the appropriate educational tools to allow
learners, as well as practitioners, to overcome the prejudice that “formal methods
are hard to learn and to use”. This should be done at the root, by making learning
formal methods motivating, appealing and involving for students. Therefore, in
Sect. 5 we discuss the role of our modelling language and its translations into
rewriting logic and process algebra in the context of an PhD course on applied
formal methods.

2 A Perspective from Cognitive Science

Cognitive science is an interdisciplinary field that comprises various research
disciplines, including psychology, artificial intelligence, philosophy, neuroscience,
linguistics, and anthropology [13]. Moreover, it adopts the so-called informa-
tion processing approach, whereby human cognitive processes are modelled as
processing activities that make use of input-output channels, to interact with
the external environment, and three main kinds of memory to store informa-
tion: sensory memory, where information perceived through the senses persists
for a very short time; short-term memory (STM), where the information that is
needed for processing activities is temporary stored; long-term memory (LTM),
where information is organised in structured ways for long-term use [6]. In this
sense computer scientists and cognitive scientists share the view of a process-
ing system with components for input, output and storage of information, and
information streams flowing between different components (computer analogy).

In spite of this important commonality, the perspective of a cognitive scientist
tends to be very different from the perspective of a computer scientist, especially
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if the computer scientist is a formal methods expert. In particular, a cognitive
scientist tends to see a model as conceptual rather than formal and give it
representations that are visual rather than mathematical and/or symbolic. Even
when a mathematical representation of the model is conceived, this is envisaged
as an operational tool to be used only for description or simulation purposes.
Furthermore, even cognitive scientists who work in the area of human-computer
interaction are not keen to use formal descriptions, but prefer to adopt instead
the scientific method and analyse and evaluate systems using empirical and
measurable evidence, systematic observation and usability experiments.

In terms of general goals a domain expert aims at

1. describing domain phenomena with a notation that represents them in an
intuitive way by providing a direct representation of the basic components
and processes of the domain;

2. using tools that can:
(a) automatically manipulate such notation to generate simulations of the

domain phenomena and map the results on the structure of the domain
components;

(b) extract global information and general properties from an extensive set
of simulations.

Therefore, the respective objective of a cognitive scientist are

1. a notation to define cognitive processes in terms of how the different com-
ponents of human cognition (perception, attention, memory, reasoning and
action) cooperate to process information, possibly with the support of a dig-
ital device or system through its interface, to accomplish specific goals of
human behaviour;

2. the availability of tools that:
(a) allow a simulation mapped on the various cognitive and non cognitive

components;
(b) provide analysis features to conduct in-silico experiments to overcome a

major difficulty in cognitive science field studies and lab experiments,
that is, that human behaviour, the main object of study, is characterised
by multiple aspects, such as unpredictability, ethical issues, individual
and cultural diversity, inaccessibility of introspective processes and slow
evolution, that hinder the design of the research plan and the validity of
the results.

In order to address these human-oriented objectives and link the two distinct
perspectives of a cognitive scientist and a computer scientist, we devised an intu-
itive, formal notation to describe the components of a cognitive system and the
information flow among them [3]. We consider only STM as a dynamic memory,
that is, supporting both storage and retrieval of information; LTM is, instead,
implicitly seen as a container of all knowledge needed for the processing activ-
ities, as already given rather than dynamically constructed, with only retrieval
and no storage (i.e. no transfer between STM and LTM); sensory memory is not
represented at all.
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2.1 A Formal Notation for Human Cognition and Behaviour

Input and output occur in humans through senses. We give a general represen-
tation of input channels in term of perceptions, with little or no details about
the specific senses involved in the perception. We represent output channels in
term of actions. Actions are performed in response to perceptions.

Human behaviour is driven by goals. In order to accomplish a goal in a specific
domain of action, the human has to carry out a task, that is, an operation to
manipulate the concepts of the domain. This is done by performing actions. In
an interactive context, namely while interacting with an interface, each action is
normally executed as an automatic response to a specific perception (automatic
control or automaticity). For example, automaticity is essential in driving a car:
the driver is aware of the high-level tasks that are carried out, such as driving to
office, turning to the right and waiting at a traffic light, but is not aware about
low-level details such as changing gear, using the indicator and the colour of the
traffic light, amber or red, while stopping at a traffic light. A goal is associated
with a top-level task. A top-level task can be decomposed in a hierarchy of tasks
until reaching basic tasks, which cannot be further decomposed. We model a
basic task as a quadruple

infoi ↑ perch =⇒ acth ↓ infoj

where perception perch triggers the retrieval of information infoi from the STM,
the execution of action acth and the storage of information infoj in the STM.
We formally denote by none when there is no information to retrieve from or
store in the STM.

Information is kept promptly available, while it is needed to perform the
current top-level task, by storing it in the STM. For the purpose of our work
we consider only two kinds of information that can be stored in the STM: task
goal, represented as the action that directly accomplishes the goal, and action
reference, which refers to a future action to be performed. A task goal is formally
modelled as goal(act) where act is the action that directly accomplishes the goal.

As an example, a simple Automatic Teller Machine (ATM) task, in which
the user has only the goal to withdraw cash, is modelled by the following four
basic tasks

1. none ↑ cardR =⇒ cardI ↓ cardB
2. none ↑ pinR =⇒ pinI ↓ none
3. none ↑ cashO =⇒ cashC ↓ none
4. cardB ↑ cardO =⇒ cardC ↓ none

where: cardR denotes the perception that the ATM is ready to receive the card,
pinR that it has requested the pin, cashO that it has delivered the cash and
cardO that it has delivered the card; cardI denotes the action of inserting the
card, pinI inserting the pin, cashC collecting the cash and cardC collecting the
card; cardB is the action reference used as a memory for the card collection (it
refers to action cardC). The goal (“to withdraw cash”) is identified with the act
of collecting cash (action cashC) and is formally modelled as goal(cashC).
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3 A Perspective from Formal Methods

We consider one possible formal methods perspective in which the system behav-
iour is seen as a discrete sequence of state changes. We apply this perspective to
the context of a user interacting with an interface. Normally an interface provides
an output to the user and waits for the user action (i.e. reaction), which is seen
as an input that triggers a change of state. In some cases the current state stateh
is associated with a timeout: if user’s reaction acth occurs before the timeout
expires, then it triggers the change to state statek, otherwise, at the expiration
of the timeout, the state changes to state stater, which may be distinct from
statek. In order to associate timeouts with interface states, we decorate interface
states as follows.

state!0 state not associated with a timeout;
state!1 state associated with a timeout that is not expired;
state!2 state associated with a timeout that has already expired.

Thus we model a state change as a triple

stateh!m acth−→ statek!n

where interface state stateh, with possible timeout characterised by m, triggers
the execution of action acth with a change to state statek, whose possible timeout
is charcterised by n. The initial state of the interface is normally an idling state
(the interface is available for an interaction), thus it is not associated with a
timeout (state!0). If we have

stateh!1 acth−→ statek!nk

and the timeout associated with stateh expires, than stateh!1 changes to stateh!2
and the state change that occurs at the timeout expiration is modelled by

stateh!2 −→ stater!nr

where the absence of action denotes that there is no interaction with the user,
thus describing an autonomous action of the interface.

4 A Common Perspective

We have seen in Sect. 3 that an action act is performed through a cooperation
between the human (the subject performing the action) and the interface (which
changes its internal state as a consequence of the human action). Therefore, an
action belongs to both a task and an interface transition and represents the
basic form of interaction. In the context of an interactive system, a user per-
ception refers to a stimulus produced by an output of the interface with which
the human is interacting. We can thus identify the perception with such an out-
put. Moreover, since the output of the interface is associated with the interface
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state that results from producing that output, we can take a step forward and
identify the user perception with the interface state associated with the out-
put that produced that perception. For example, the interface state associated
with the interface of a vending machine giving a change is identified with the
perception (sound of falling coins or sight of the coins) produced. Thus, in our
notation, interface state and corresponding human perception are denoted by
the same formal entity (which, assuming the cognitive scientist’s perspective, we
call “perception” rather than “state”). In this way our formal notation meets
Objective 2 presented in Sect. 2.

Identifying interface state and corresponding human perception allows us
to merge the two notations presented in Sects. 2 and 3 and attain a modelling
language for interactive systems. A state change is thus modelled as

perch!m acth−→ perck!n

where perch is the perception that triggers the user to perform action acth, which
causes the interface to change to the state corresponding to perception perck.
As an additional link between the two merged notations, we keep track of the
human action acth, if any, that produced the state perck by defining an interface
state as a pair acth � perck!n. The initial state becomes then � perc!0.

With reference to the ATM example introduced in Sect. 2.1, we model an old
interface that sequentially requests a card, requests a pin, delivers the cash and
returns the card, and a new interface that returns the card before delivering the
cash. The two interface models are as follows.

Old ATM: transitions

1. cardR!0 cardI−→ pinR!1
2. pinR!1

pinI−→ cashO!1
3. cashO!1 cashC−→ cardO!1
4. cardO!1 cardC−→ cardR!0
5. pinR!2 −→ cardO!1
6. cashO!2 −→ cardO!1
7. cardO!2 −→ cardR!0

New ATM: transitions

1. cardR!0 cardI−→ pinR!1
2. pinR!1

pinI−→ cardO!1
3. cardO!1 cardC−→ cashO!1
4. cashO!1 cashC−→ cardR!0
5. pinR!2 −→ cardR!0
6. cashO!2 −→ cardR!0
7. cardO!2 −→ cardR!0

For both interfaces the initial state is � cardR!0. In both interfaces, transitions
1–4 model the normal sequences of interactions for the specific design (old or
new).

The last three transitions model interface autonomous actions. If the timeout
expires after requesting a pin (transitions 5), then in the old ATM the card is
returned, whereas in the new ATM the control goes back to the initial state,
implicitly modelling that the card is confiscated by the ATM, and in both cases
the cash delivery is inhibited. If the timeout expires after delivering the cash
(transitions 6), then in the old ATM the card is returned, whereas in the new
ATM the control goes back to the initial state, so inhibiting a cash collection
action in both cases and implicitly modelling that the cash is taken back by
the ATM. Finally, in both interfaces, if the timeout expires after returning the



238 A. Cerone

card, then the control goes back to the initial state, so inhibiting a card col-
lection action and, as a result, implicitly modelling that the card is confiscated
(transitions 7), obviously, with no cash delivery in the new ATM.

Our modelling language for interactive systems has been translated into
rewriting logic [3] and implemented using the MAUDE rewrite system1, and
into the CSP (Communicating Sequential Processes) process algebra [2] and
implemented using the Process Analysis Toolkit (PAT)2. Both tools, MAUDE
and PAT, are equipped with model checkers, thus featuring the potential for
meeting Objective 2 from Sect. 2. In reality, the simulators and model-checkers
of the two tools produce results that refer to the low-level structures that imple-
ment the modelling language with no mechanisms to present the effect of such
results on the high-level cognitive and non cognitive components, which the
practitioner is familiar with. Therefore, implementing such mechanisms, such as
domain specific visualisations [9], would be necessary to accomplish Objective 2.

5 Students’ Perspective

There is an ongoing debate on the importance of formal methods to computer
science education. This debate links with the wider debate on the centrality
of mathematics and logic in computer science curricula: on the one side the
claim that rigorous mathematical knowledge is not necessary for computer sci-
ence practitioners [7] and, on the other side, the belief [14,15] and the empirical
evidences [10–12] that learning rigorous discrete mathematics and formal meth-
ods has an important impact on problem-solving and programming skills and is
perceived by students as useful in practical problems and helpful in improving
their mental processes [16].

We agree with the latter position but, in addition, we believe [4] that:

1. instead of tediously going through the semantics of each construct in a formal
language, students should be allowed to experiment with an appropriate tool
to discover the semantics by themselves;

2. tools for simulation visualisation are essential to allow students to understand
the behaviour associated with their models.

Moreover, in order to motivate students, formal methods should be presented in
a variety of realistic, applied contexts, not at all limited to computer science and
software engineering, and including, why not, examples that can bring some fun
[4] in an apparently very serious area. The recent application of formal methods
to several disciplines such as biology and cognitive science provides heaps of
interesting and motivating examples.

The rewrite systems and CSP translations of our modelling language were
presented during a course on “Formal Methods for Interactive Systems”, which
was held at the IMT School for Advanced Studies Lucca in May 2015 and deliv-
ered to four first year PhD students. The double aim of the course, teaching
1 http://sysma.imtlucca.it/cognitive-framework-maude-hofm-2016/.
2 http://sysma.imtlucca.it/cognitive-framework-csp-hofm-2016/.

http://sysma.imtlucca.it/cognitive-framework-maude-hofm-2016/
http://sysma.imtlucca.it/cognitive-framework-csp-hofm-2016/
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formal methods and provide an approach for their application to interactive sys-
tems, was realised through the use of our practitioner-oriented formal notation
and its translations in MAUDE and CSP.

After introducing the two translations but before introducing the tools, the
students were asked three questions:

1. “In which of the two approaches did you find easier to get the model right?”
2. “Which of the two translations is more elegant?”
3. “In which of the two approaches the resultant behaviour is easier to guess?”

The PhD students unanimously answered “the rewriting logic approach” to
Questions 1 and 3, and “the process algebra approach” to Question 2. It is
interesting to notice that, in spite of finding the process algebra approach more
difficult, the student unanimously agreed that it is more elegant. These answers,
as well as further remarks and opinions that emerged in an open discussion that
followed, are an indicator that students have a strong interest for solutions that
are concise, elegant and abstract, and that they are happy to tackle challenging
problems in order to look for elegant rather than easy solutions. Given the small
number of students and the absence of research design we cannot draw empirical
conclusions from the students’ answers and remarks, although these appear to
be in line with the results of previous research [16].

In terms of tools, from the perspective of a student learning formal meth-
ods, it is important to see simulation and model-checking results directly on the
low-level semantic structures underlying high-level domain structures. This per-
spective is very different from that of a practitioner, who prefers tools that hide
the formal semantic structures underlying domain structures. Moreover, in the
case of students’ perspective, the presentation of results must aim at highlighting
relations between behaviour and semantics and using under-approximation [8],
the capability to output only relevant states and/or events, as well as stimulating
and developing their abstraction and problem solving skills.

MAUDE and PAT are somehow complementary in terms of presentation of
results, also due to the different characteristics of the formal methods on which
they are based. MAUDE does not support any form of graphical representation
but supports a form of under-approximation, by filtering the output through
additional rewrite rules, and allows the designer to easily track which rewrite
rule is applied and check the content of all data structures, thus tracking the
behaviour back to the architectural view of the designer. PAT facilitates the
visual representations of the global behaviour in terms of finite state machines,
but the form of under-approximation introduced by the CSP hiding operator
is not very effective due to the possible introduction of nondeterminism, while
the represented behaviour does not reflect the structure, in terms of concurrent
components and synchronisations, from which the global behaviour has been
attained. However, the use of both these tools in our course has allowed students
to make use of all needed presentation features, visualisation from PAT, under-
approximation and behaviour tracking from MAUDE. Moreover, in our class
discussions, students showed the perception that the fact that the two tools are
based on two distinct modelling paradigms contributed to stimulate and develop
their abstraction and problem solving skills.
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6 Conclusion and Future Work

We have discussed to which extent the modelling language developed in previous
work [3] for modelling interactive systems may represent an appropriate compro-
mise between the perspectives of an HCI practitioner (meets Objective 2 from
Sect. 2) and a formal methods expert (can be translated into formal methods and
undergo formal analysis). We noted that in order to accomplish Objective 2 from
Sect. 2 it would be necessary to implement mechanisms to effectively present the
results of simulation and model checking on the high-level cognitive and non
cognitive components, for example through domain specific visualisations.

Instead, for students learning formal methods, the presentation of both the
rewriting logic translation and the CSP translation and both respective tools,
MAUDE and PAT, was perceived by the students themselves as beneficial for
their abstraction and problem solving skills. In our future work, we plan to
systematically investigate empirical evidence of such student perception.
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