Model-Based Generation of Natural Language
Specifications

Phan Thu Nhat Vo and Maria Spichkova(®)

RMIT University, Melbourne, Australia
532209760@student.rmit.edu.au, maria.spichkova@rmit.edu.au

Abstract. Application of formal models provides many benefits for the
software and system development, however, the learning curve of formal
languages could be a critical factor for an industrial project. Thus, a
natural language specification that reflects all the aspects of the formal
model might help to understand the model and be especially useful for
the stakeholders who do not know the corresponding formal language.
Moreover, an automated generation of the documentation from the model
would replace manual updates of the documentation for the cases the
model is modified. This paper presents an ongoing work on generating
natural language specifications from formal models. Our goal is to gen-
erate documentation in English from the basic modelling artefacts, such
as data types, state machines, and architectural components. To allow
further formal analysis of the generated specification, we restrict English
to its subset, Attempto Controlled English.

1 Introduction

Model-based development (MBD) is a paradigm in which software and system
development focus on high-level executable models, cf. [34]. In the early develop-
ment phases, formal models allow a wide range of exploration and analysis using
domain-specific notations in order to simplify the system design, development or
verification/testing. Application of formal models provides many benefits for the
software and system development. In “40 years of formal methods” [5], Bjgrner
and Havelund admit that the gap between academic research on formal methods
and its integration in large industrial projects is yet to be bridged. There are a
number of hindering factors for adoption of formal methods in industry [33]. As
crucial obstacles can be named lack of understandability and readability [29,32],
and our aim is to find appropriate ways to avoid these obstacles. Also, human
factors play a crucial role and have to be taken into account [28,31].
Application of formal models requires an interplay between formal and infor-
mal methods, which use different levels of formality in descriptions. A manual
solution to this problem was suggested many years ago: Guiho and Hennebert
reported a communication problem in the SACEM project [15] between the ver-
ifiers and other engineers, who were not familiar with the formal specification
method. The problem was solved by providing the engineers with a natural lan-
guage description derived manually from the formal specification. For a large-
scale projects, it would be too time-consuming to derive a natural language

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 221-231, 2016.
DOI: 10.1007/978-3-319-50230-4_16

222 P.T.N. Vo and M. Spichkova

specification (NLS) manually. In this paper, we propose a framework for auto-
mated generation of NLS from the basic modelling artefacts, such as data type
definitions, State Transition Diagrams (STDs), and architecture specifications.

Contributions: The proposed solution would serve not only increasing the
understandability of formal models, but also keeping the system documenta-
tion up-to-date. System documentation is an important part of the development
process, but it is often considered by industry as a secondary appendage to the
main part of the development — modelling and implementation. It is hard to keep
the documentation up-to-date if the system model is frequently changing during
the modelling phase of the development. Thus, system requirements documents
and the general systems description are not updated according to the system’s or
model’s modifications. Sometimes the updates are overlooked, sometimes they
are omitted on purpose. For example, it is because of timing or costs constraints
on the project. As a result, the system documentation is often outdated and does
not describe the latest version of the system model. The question is whether we
need to update the documentation manually, cf. [32].

Outline: The rest of the paper is organised as follows. Section 2 describes the
related work. Section 3 introduces the proposed framework and a small case study
to illustrate the ideas of the framework. In Sect.4 we summarise the paper and
propose directions for future research.

2 Related Work

The research field of automated translation from formal modelling languages
to natural languages is almost uncovered, however, there are many approaches
on automated generation of (semi-)formal specifications from natural language
ones. Lee and Bryant [23] presented an approach automatically generate formal
specifications in an object-oriented notation from NLS. Cabral and Sampaio [9]
suggested to use a Controlled Natural Language (CNL), a subset of English
to analyse system characteristics represented by a set of declarative sentences.
CNL use restricted vocabulary, grammar rules in defined knowledge based for
the aim of formal models generation. This also allows to generate structured
models at different levels of abstraction, as well as provides formal refinement of
user actions and system responses.

Schwitter et al. [27] introduced ECOLE, an editor for a controlled language
called PENG (Process-able English), that defines a mapping between English
and First-Order Logic in order to verify requirements consistency, as well as
to help writing manuals and system specifications to improve documentation
quality, which is our goal of generated specifications in natural language.

As several attempts have been made to automate the requirement capture,
there is another approach for the automatic construction of Object-oriented
design model in UML diagram from natural language requirement specification.
Mala and Uma [24] present a methodology that utilizes the automatic reference

Model-Based Generation of Natural Language Specifications 223

resolution and eliminates the user intervention. The input problem statement is
split into sentences for tagging by sentence splitter in order to get parts of speech
for every word. The nouns and verbs are then identified by tagged texts based
on simple phrasal grammars. Reference resolver is used to remove ambiguity by
pronouns. The final text is then simplified by the normaliser for mapping the
words into object-oriented system elements. The result produced by the system
is compared with human output on the basic analysis of the text. The approach
is promising to introduce a method to restructure the natural language text into
modelling language in respect of system requirements specifications. Although
there is a shortage of the efficiency in the tagger and reference resolver that
result in unnatural expressions and misunderstandings, it can be improved by
building a knowledge base for the system elements generation.

Juristo et al. [20] introduced an approach to formalise the requirement analy-
sis process. The goal of this approach was to generate conceptual models in a
precise manner, which provides support for resolving difficulties of misunder-
standing the system requirements. The approach is based on examining the infor-
mation extraction at the beginning of the development process (i.e., describing
the problems in natural language sentences), and consists of two different activ-
ities: formalisation of the conceptual model and creation of the formal model.
The limitation of this approach is in the difficulties to retrieve the rigorous and
concise problem descriptions.

Gangopadhyay [14] suggested to design a conceptual model from a func-
tional model, expressed in natural language sentences. Although its application
is mainly for database applications, it can be extended to other design problems
such as Web engineering and data warehousing. In order to interpret natural
language expressions, Gangopadhyay applied the theory of Conceptual Depen-
dencies developed by Schank, cf. [26]. The main goal of this approach was to
identify data elements from functional model expressed in NLS, to locate miss-
ing information, as well as to integrate all individual data elements into an over-
all conceptual schema for data model establishment. A prototype system using
Oracle database management system has been implemented to contain a parser
for information collection. However, the lexicon in use is developed incremen-
tally and semi-automated, so domain specialists still need to manually categorise
words and phrases, to ensure non-relevant words are included in the system dur-
ing the development of the conceptual model and to prevent systematic bias.

Bryant [8] suggested the theory of Two-Level Grammar for natural language
requirements specification, in conjunction with Specification Development Envi-
ronment to allow user interaction to refine model concepts. This approach allows
the automation of the process of transition from requirements to design and
implementation, as well as producing an understandable document on which
software system will base on.

Ilieva and Ormandjieva [19] proposed an approach on transition of nat-
ural language software requirements specification into formal presentation. The
authors decided their method into three main processing parts: (1) the Linguistic
Component as the text sentences to be analysed; (2) the Semantic Network as

224 P.T.N. Vo and M. Spichkova

the formal NL presentation; and (3) modelling as the final phase of formal pre-
sentation of the specification. However, the approach of Ilieva and Ormandjieva
involves manual human analysis process, to break down problems into smaller
parts that are easily understood.

3 Framework

Figure 1 illustrates the general ideas of the suggested framework. To build a pro-
totype for generation of NLS from the basic modelling artefacts, we have selected
the AutoFocus3 modelling tool [4,16] as the basis for our models, because this
tool (1) embeds the basic modelling artefacts, (2) is open source, as well as (3)
has a well defined formal syntax behind all its modelling elements.

AutoFocus3 is developed on system models based on the Focus theory [7]
that allows to specify system on different levels of abstraction formally and
precisely. Source code of AutoFocus3 models are coded in XML, which makes it
easy to parse and to analyse. AutoFocus3 has many advantages and is constantly
evolving through last 10 years. The tool was applied as a part of tool chain
within a number of development methodologies, e.g., for safety-critical systems
in general [17,18,30], and for automotive-systems [10,11]. The tool can also be
successfully applied for service-oriented modelling [6], which gives us another
reason to select AutoFocus3 for the framework we develop.

To allow further formal analysis of the generated specification, we restrict
English to its subset, Attempto Controlled English (ACE), cf. [13]. Specifica-
tions written in ACE give the impression of being informal, though they are in
fact formal and machine executable. ACE provides a set of principles and recom-
mendations for the strategy: to reduce the amount of lexical resources and struc-
tural sentences for a specification text to be unambiguously represented, and
to fulfil the communication gap between domain specialist and software devel-
oper. Basically, the construct of ACE specification is the declarative sentence
that is expressive enough to allow both natural usage and computer-processed
purpose [12].

Natural language
specifications

Models

English

AutoFocus3 ACE

Fig. 1. Framework: generation of natural language specifications from formal models

Model-Based Generation of Natural Language Specifications 225

Implementation: We are currently implementing an automated translator from
the AutoFocus3 models to ACE sentences in the Python programming language.
Python was chosen as the development language due to its rapid prototyping
features, as well as due to its increasing uptake by researchers as a scientific
software development language because of good code readability and maintain-
ability. With regard to the Python performance, it is sufficient for many common
tasks and turns out to be very close to C language for parsing a file and a tree-like
structure, cf. [25]. For the execution environment, we will research on the instal-
lation of ACE parsing engine, cf. [21], to execute natural language sentences in
Prolog, cf. [3].

XML Code of AutoFocus3 Models. While parsing the XML code of an
AutoFocus3 model, we have to identify three core sections:

— Specifications of data types and functions/constants (introduced by the XML-
tag rootElements with the type Data Dictionary, cf. below for an example from
the SimpleTrafficLight case study).

— Specifications of the system and components architecture (introduced by the
XML-tag rootElements with the type ComponentArchitecture);

— Specifications of the state machines, used to describe the behaviour of system
components (introduced by the XML-tag containedElements with the type
StateAutomaton):

As each of these parts consists of XML representation of the AutoFocus3 ele-
ments, we can define a translation schema for each of these elements to generate
English sentences out of the XML code. The sentences should be conform to the
ACE rules. To validate that this constraint is fulfilled, we have to analyse syntax
and semantics of the generated sentences.

Translation Schema. Let us discuss the translation schema in more
details, focusing for simplicity on the specifications of data types and func-
tions/constants. The definition of each data type is provided within the XML-tag
typeDefinitions, where the keyword Enumeration indicates that this is an enu-
meration type. The name of the data type is coded within the attribute name.
The elements of the type are introduces with the tag members. For the case
of an enumeration type, we would have the following XML structure, where NV
is a natural number representing a number of elements in the data type, and
i1,...,iN41 are some natural numbers representing internal identifiers of Auto-
Focus3 elements:

<typeDefinitions xsi:type= “org-fortiss-af3-expression-definitions:Enumeration” id="i;"
name="“TypeName" >

e on

<members id="i2" name="MemberName;" />

<members id="iny,1" name="MemberNamey" />
< /typeDefinitions>

226 P.T.N. Vo and M. Spichkova

To generate an ACE sentence from this structure, we define two templates:

— For the case we have only one element, i.e., N = 1, we would use the template
TypeName is a datatype. It consists-of one element that is MemberName;.

— For the case we have more than one element, i.e., N > 1, we would use the
template TypeName is a datatype. It consists-of N elements that are Member-
Namey, ..., MemberNamey.

The definition of each function/constant is provided within the tag function,
where its name and value are coded within the attributes name and value. For
the case of constant function, we would have the following XML structure, where
Jj1,Jj2 are some natural numbers representing internal identifiers of AutoFocus3
elements:

<functions id="j1" >

<function id="j2" name="“ConstantName” />

<definition>

<statements xsi:type= “org-fortiss-af3-expression-terms-imperative:Return” >

<value xsi:type= “org-fortiss-af3-expression-terms:IntConst” value="ConstantVaue" />
< /statements>

< /definition>

<returnType xsi:type= “org-fortiss-af3-expression-types: TInt" />

< /functions>

To generate an ACE sentence from this structure, we define the following
template:

ConstantName is a constant. It is equal to ConstantVaue.

Similar translation patterns apply for architecture specifications and state tran-
sition diagram sections.

ACE: Syntax Check. ACE supports declarative sentences, which includes
simple sentences, there is/are-sentences, boolean formulas, composite sentences,
interrogative sentences, imperative sentences. ACE construction rules determine
whether an English sentence is an ACE sentence, cf. [1]. Each ACE sentence is
an acceptable English sentence, but not every English sentence is justified as a
valid ACE sentence. Thus, to be conformed to ACE construction rules, an NLS
in English should be constructed from the following elements:

— Function words: determiners, quantifiers, coordinators, negation words, pro-
nouns, query words, modal auxiliaries, “be”, Saxon genitive marker’s;

— Fixed phrases: “there is”, “it is true that”;

— Content words: nouns, verbs, adjectives, adverbs, prepositions.

Model-Based Generation of Natural Language Specifications 227

The function words and fixed phrases are predefined and cannot be changed,
whereas content words can be modified by users within the lexicon format, cf. [2].
The content words cannot contain blank spaces. For instance, “interested in”
should be reformulated to “interested-in”.

ACE: Semantics Check. The mentioned above rules cannot remove all ambi-
guities in English. To avoid ambiguity, ACE provides a set of interpretation
rules. Thus, each ACE sentence can have only one meaning, based on its syntax
and on syntax of previous sentences.

The correctness of the generated sentences can be validated by the ACE query
sentences, cf. [12]. They can be subdivided into three forms that are yes/no-
questions (questions that require answer “yes” or “no”), wh-questions (questions
starting with the words “What”, “When”, “Where”, etc.), and how much/many-
questions, cf. [1]. For example, we could use the following questions to check the
definition of an enumeration data type XData Type:

— What is XData Type?
— How many elements does XDataType have?
— Is SomeElementName an element of XDataType?

Case Study: SimpleTrafficLight System. We present the core ideas of the
framework on example of a small case study, Simple Traffic Lights, introduced by
Lam and Teufl in [22]. In the Simple Traffic Lights case study, we the following
elements in the data definitions section:

— Functions tGreen, tRed, and tYellow that return a constant integer value to
represent the time in seconds for the active pedestrian or traffic light.
— Enumeration data types:

pedastrianColor: pedestrian lights (Stop, Walk);

TrafficColor: traffic lights (Green, Red, RedYellow, Yellow);
Signal: one-element data type to represent the Present signal;
IndicatorSignal: pedestrian requests to pass the street (Off, On).

Figure 2 illustrates the translation process from the AutoFocus3 data types and
the corresponding XML descriptions, to ACE sentences. After translation, we
check the definition of each data type as shown on Table1 and in Fig. 3.

In a similar manner the natural language description of the system and
components architecture as well as of state machines, representing components
behaviour, are generated and checked.

228 P.T.N. Vo and M. Spichkova

Table 1. Validation the generated sentences using ACE-questions

Question Answer
What is IndicatorSignal? It is a data-type.
How many elements does IndicatorSignal have? | It has 4 elements.
Is On an element of IndicatorSignal? Yes, it is.

AF3 Data Dictionary

<rootElements xsi:type="org-fortiss-af3-expression:DataDictionary" xmi
Data Dictionary">
/pe="org-fortiss-af3-expression-definitions:Enumeration”
name="TrafficColor">

© tGreen(- int |

[T @ tRed0:im <members Green"/>
- °.5‘!‘.'.;"!'2;.".‘1..‘ <members Red"/>
VO TrafficColor <menbers RedYellow"/>
© Green <menbers Yellow"/>
© Red SLsyReReLInIRIOn.
@ RedYellow <typeDefinitions x /pe="org-fortiss-af3-expression-definitions:Enumeration"”
2 _Yellow "IndicatorSignal">

ofre"/> I
Oon"/>

<members xr " id="11"
<members xr "12" id="12"
<LsyreResinizions>
<typeDefinitions xsi
xmi:id="13"
<members xmi
<members xm

Pri <LsyreResinizions>
o Present <typeDefinitions x. /pe="org-fortiss-af3-expression-definitions:Enumeration”
d="16" 1 Signal">

<members xn d="17" name="Present"/>

/pe="org-fortiss-af3-expression-definitions:Enumeration”

id="18">
id="19" name="tGreen"/>

<definition>
<statements xsi:type="org-fortiss-af3-expression-terms-imperative:Return">
<value x ype="org-fortiss-af3-expression-terms:IntConst" value="2"/>
</statements>
</definition>

<ret Type xsi /pe="org-fortiss-af3-expression-types:TInt"/>

n20">
"21" name="tRed"/>

<statements x ype="org-fortiss-af3-expression-terms-imperative:Return">
<value xsi:type="org-fortiss-af3-expression-terms:IntConst" value="5"/> L
</statements>
</definition>
<returnType xsi:type="org-fortiss-af3-expression-types:TInt"/>
</functions>
<functions Xxn
<function xm
<definition>
<statements x Return">
<value x

</definition>

<returnType xsi:type="org-fortiss-af3-expression-types:TInt"/>
</functions>
</rootElements>

tGreenis a constant. Itisequalt0 2. ¢«——— |

tRed is a constant. Itis equal to 5. < <

tYellow is a constant. Itisequalto 1. «—— T |

Signal is a data-type. It consists-of one element that is Present.

PedestrianColor is a data-type. It consists-of two elements that are Stop and Walk. <«——

IndicatorSignal is a data-type. It consists-of two elements that are Off and On. «——«+—————

TrafficColor is a data-type. It consists-of four elements that are Green, Red, RedYellow, and Yellow.

Fig. 2. Mapping from AutoFocus 3 data types to ACE sentences

Model-Based Generation of Natural Language Specifications 229

Question
— What is IndicatorSignal?

How many elements does IndicatorSignal have?

Is On an element of IndicatorSignal?

Answer
— |t is a data-type.

L—» |t has 4 elements.

L——> Yes, itis.

Fig. 3. Validation the generated sentences using ACE-questions

4 Conclusions and Future Work

This paper introduces our ongoing work on NLS from formal models. The goal
of our current work is to generate documentation in English from the basic mod-
elling artefacts of the AutoFocus3 modelling language, that are data types, state
machines, and architectural components. This would allow to have an easy-to-
read and easy-to-understand specifications of systems-under-development, writ-
ten in English. To allow further formal analysis of the generated specification,
we restrict English to its subset, ACE. The proposed framework, in its current
version, can be applied to build a prototype for generation of ACE specifications
from the AutoFocus3 models.

The future work focuses on the implementation of an prototype translator
from AutoFocus3 to ACE, as well as on the extension of the framework to other
formal modelling languages.

References

1. ACE Construction Rules. http://attempto.ifi.uzh.ch/site/docs/ace-
constructionrules.html. Accessed 28 July 2016

2. ACE Lexicon Specification. http://attempto.ifi.uzh.ch/site/docs/ace_lexicon.html.
Accessed 28 July 2016

3. SWI-Prolog. http://www.swi-prolog.org. Accessed 28 July 2016

4. Aravantinos, V., Voss, S., Teufl, S., Holzl, F., Schitz, B.: AutoFOCUS 3: tooling
concepts for seamless, model-based development of embedded systems. In: Joint
proceedings of ACES-MB 2015-Model-based Architecting of Cyber-physical and
Embedded Systems, p. 19 (2015)

5. Bjgrner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42—61. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9_4

http://attempto.ifi.uzh.ch/site/docs/ace_constructionrules.html
http://attempto.ifi.uzh.ch/site/docs/ace_constructionrules.html
http://attempto.ifi.uzh.ch/site/docs/ace_lexicon.html
http://www.swi-prolog.org
http://dx.doi.org/10.1007/978-3-319-06410-9_4

230

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

P.T.N. Vo and M. Spichkova

Broy, M., et al.: Service-oriented modeling of CoCoME with focus and AutoFocus.
In: Rausch, A., Reussner, R., Mirandola, R., P14sil, F. (eds.) The Common Com-
ponent Modeling Example. LNCS, vol. 5153, pp. 177-206. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85289-6_8

Broy, M., Stélen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2001)

Bryant, B.R.: Object-oriented natural language requirements specification. In: 23rd
Australasian Computer Science Conference, pp. 24-30. IEEE (2000)

Cabral, G., Sampaio, A.: Formal specification generation from requirement docu-
ments. Electron. Notes Theor. Comput. Sci. 195, 171-188 (2008)

Feilkas, M., Fleischmann, A., Holzl, F., Pfaller, C., Scheidemann, K., Spichkova,
M., Trachtenherz, D.: A top-down methodology for the development of automotive
software, Technical report, TUM-10902, TU Miinchen (2009)

Feilkas, M., Fleischmann, A., Holzl, F., Pfaller, C., Scheidemann, K., Spichkova,
M., Trachtenherz, D.: A refined top-down methodology for the development of
automotive software systems - the keylessentry system case study, Technical report,
TUM-I1103, TU Miinchen (2011)

Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104-124.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85658-0-3

Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). arXiv preprint
cmp-lg/9603003 (1996)

Gangopadhyay, A.: Conceptual modeling from natural language functional speci-
fications. Artif. Intell. Eng. 15(2), 207-218 (2001)

Guiho, G., Hennebert, C.: Sacem software validation. In: 12th International Con-
ference on Software Engineering, pp. 186-191. IEEE (1990)

Holzl, F., Feilkas, M.: 13 AuToFocus 3 - a scientific tool prototype for model-
based development of component-based, reactive, distributed systems. In: Giese,
H., Karsai, G., Lee, E., Rumpe, B., Schitz, B. (eds.) MBEERTS 2007. LNCS, vol.
6100, pp. 317-322. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16277-0_13
Holzl, F., Spichkova, M., Trachtenherz, D.: AutoFocus Tool Chain, Technical
report, TUM-11021, TU Minchen (2010)

Holzl, F., Spichkova, M., Trachtenherz, D.: Safety-critical system development
methodology. Technical report, TUM-11020, TU Miinchen (2010)

Ilieva, M.G., Ormandjieva, O.: Automatic transition of natural language software
requirements specification into formal presentation. In: Montoyo, A., Munoz, R.,
Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 392-397. Springer, Heidelberg
(2005). doi:10.1007/11428817_45

Juristo, N., Morant, J.L., Moreno, A.M.: A formal approach for generating OO
specifications from natural language. J. Syst. Softw. 48(2), 139-153 (1999)
Kaljurand, K., Fuchs, N.E., Kuhn, T.: APE - ACE Parsing Engine. https://github.
com/Attempto/APE. Accessed 30 Mar 2016

Lam, P.S., Teu, S.: Simple Traffic Lights tutorial for AutoFocus 3. http://af3.
fortiss.org/docs/. Accessed 30 Mar 2016

Lee, B., Bryant, B.R.: Automated conversion from requirements documentation to
an object-oriented formal specification language. In: Proceedings of the 2002 ACM
symposium on Applied computing, pp. 932-936. ACM (2002)

http://dx.doi.org/10.1007/978-3-540-85289-6_8
http://dx.doi.org/10.1007/978-3-540-85658-0_3
https://arxiv.org/abs/cmp-lg/9603003
http://dx.doi.org/10.1007/978-3-642-16277-0_13
http://dx.doi.org/10.1007/11428817_45
https://github.com/Attempto/APE
https://github.com/Attempto/APE
http://af3.fortiss.org/docs/
http://af3.fortiss.org/docs/

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Model-Based Generation of Natural Language Specifications 231

Mala, G.S.A., Uma, G.V.: Automatic construction of object oriented design models
[UML Diagrams| from natural language requirements specification. In: Yang, Q.,
Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 1155-1159. Springer,
Heidelberg (2006). doi:10.1007/978-3-540-36668-3_-152

Sanner, M.F.: Python: a programming language for software integration and devel-
opment. J. Mol. Graph. Model. 17(1), 57-61 (1999)

Schank, R.C.: Conceptual dependency: a theory of natural language understanding.
Cogn. Psychol. 3(4), 552-631 (1972)

Schwitter, R., Ljungberg, A., Hood, D.: ECOLE - a look-ahead editor for a con-
trolled language. In: EAMT-CLAW 2003, pp. 141-150 (2003)

Spichkova, M.: Human factors of formal methods. In: TADIS Interfaces and Human
Computer Interaction, IHCI 2012 (2012)

Spichkova, M.: Design of formal languages, interfaces: “formal” does not mean
“unreadable”. In: Blashki, K., Isaias, P. (eds.) Emerging Research and Trends in
Interactivity and the Human-Computer Interface. IGI Global (2013)

Spichkova, M., Holzl, F., Trachtenherz, D.: Verified system development with the
AutoFocus tool chain. In: Workshop on Formal Methods in the Development of
Software (2012)

Spichkova, M., Liu, H., Laali, M., Schmidt, H.W.: Human factors in software reli-
ability engineering. In: Workshop on Applications of Human Error Research to
Improve Software Engineering (WAHESE 2015) (2015)

Spichkova, M., Zhu, X., Mou, D.: Do we really need to write documentation for a
system? In: International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2013) (2013)

Zamansky, A., Rodriguez-Navas, G., Adams, M., Spichkova, M.: Formal methods
in collaborative projects. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE). IEEE (2016)

Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, pp. 371-380. ACM (2006)

http://dx.doi.org/10.1007/978-3-540-36668-3_152

	Model-Based Generation of Natural Language Specifications
	1 Introduction
	2 Related Work
	3 Framework
	4 Conclusions and Future Work
	References

