SPO-Rewriting of Constrained Partial Algebras

Michael Lowe®)

FHDW Hannover, Freundallee 15, 30173 Hannover, Germany
michael.loewe@fhdw.de

Abstract. Recently, single-pushout rewriting (SPO) has been applied
to arbitrary partial algebras (PA). On the one hand, this allows a sim-
ple and straightforward integration of (base type) attributes into graph
transformation. On the other hand, SPO-PA-rewriting comes equipped
with an easy-to-check application condition, namely that an operation
cannot be defined twice on the same set of arguments. This provides very
natural termination criteria for example in model transformation.

In this paper, we generalise this approach to constrained partial alge-
bras. We allow two different types of constraints, namely (i) requiring
some operations to be total and (ii) enforcing some consistency condi-
tions on the algebras by suitable conditional equations. We show that this
generalisation again induces an easy to check application condition and
provides considerably more expressive power: For example, constraints
allow a straightforward algebraic model for the object-oriented concept
of inheritance with runtime specialisation and generalisation of objects.

1 Introduction

In [18,20], we introduced single-pushout rewriting (SPO) in categories of partial
morphisms over partial algebras (PA) wrt. arbitrary signatures. Therefore, we
gave up the usual restriction of SPO-rewriting to graph structures which are
signatures with unary operation symbols only, compare [13]. Categories of par-
tial morphisms constructed over graph structures have an initial object and all
pushouts, which means that all finite co-limits can be constructed. This property
leads to a rich theory, compare again [13]. This is no longer the case if we admit
constants and operation symbols with more than one argument even if we pass
from total to partial algebras.

Partial algebras, however, allow a simple reduction to total graph structures
which are constrained by a set of Horn-formulas. The reduction provides an
easy to check and characterising condition for the existence of pushouts of par-
tial morphisms, namely that the pushout of partial algebras coincides with the
pushout constructed in the underlying graph structure.!

In this paper, we discuss which types of additional constraints on categories of
partial algebras preserve this property that the operational semantics is just well-
known rewriting of graph structures. We present two types of such constraints.
The first type uses arbitrary conditional equations, which can for example be

! For details compare [18].

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 129-144, 2016.
DOI: 10.1007/978-3-319-50230-4_10

130 M. Lowe

used to specify that some operations are injective or that different composi-
tions of operations lead to the same result if applied to the same argument.?
The second type of constraints discussed in this paper specifies that some unary
operations shall be total, i.e. defined for all arguments. Total and injective opera-
tions can be used to model the object-oriented concept of inheritance by sub-type
inclusions, compare Sect. 5.

The paper is structured as follows. In Sect.2, we recapitulate our notion
of partial algebra and the reduction to hierarchical graph structures. Section 3
presents and generalises the results of [18] concerning existence and characterisa-
tion of pushouts in categories of partial morphism over partial algebras. On the
basis of these results, the main Sect. 4 introduces new constraints which preserve
the operational semantics of SPO-rewriting for graph structures and, therefore,
can be interpreted as global application conditions. Section5 demonstrates the
gain in expressive power which we obtain by using constrained partial algebras.
Finally, Sect. 6 discusses related word and future research issues.

2 Partial Algebras and Hypergraphs

A signature X = (S,0) consists of a set of sort names S and a domain- and
co-domain-indexed family of operation names O = (Ouw,v),, g+ A partial X-

algebra A = (AS, OA) is a family Ag = (As),cg of carrier sets together with a
partial map o : A¥ — AV for every operation symbol 0 € O,, , with w,v € §*.3

A homomorphism h : A — B between two partial algebras A and B wrt. the
same signature X' = (S,0) is a family of mappings h = (hs : A; — Bs), g,
such that, for all operation symbols o € O, ,, the following condition is satis-
fied: If 0 (z) is defined in A for 2 € AY, then oP(h¥(z)) is defined in B and
hY (04 (x)) = of (h*(z)).* A homomorphism h = (hs : A; — By),g is closed, if
we have for every operation o € O, ,: Whenever o? is defined for h%(z) there
is 2/ € A% with h*(x) = h*(2’) and o is defined for 2.

The category of all partial X-algebras and all homomorphisms between them
is denoted by Asx. By Ay, we denote the subcategory of all total X-algebras. Note
that all homomorphisms in Ay, are closed.

A (constructive) X-contraint is given by an epimorphism ¢ : P — C from a
X -algebra P, called the premise, to a X-algebra C which is called the conclusion.
A homomorphism h : P — A solves the constraint ¢ : P — C, written h = ¢, if
there is homomorphism A* : C'— A such that h* oc = h. An algebra A satisfies

2 Commutativity in the categorical sense.

3 By this definition, an operation symbol 0 € O, . is interpreted in an algebra A as a
partial operation into an one-element-set, i.e.0* : A — {*}, which means that o®
singles out a sub-set of A* only, namely the sub-set where it is defined. Hence, o®
is a predicate.

4 Given a sort indexed family of mappings (fs
recursively defined for every w € S* by (i) f¢
and (iii) f* = f¥ x f*, if w = vu.

5 This means that definedness in B stems from definedness in A.

Gs — Hs),eq, f* 1 G¥ — H" is
{(*v*)}y (ii) fw = fs ifw=seS,

SPO-Rewriting of Constrained Partial Algebras 131

a constraint ¢ : P — C, written A | ¢, if every morphism h : P — A solves
c. Given a set € of Y-constraints, Ax ¢ denotes the full sub-category of Ay of
all algebras that satisfy all the constraints ¢ € €. Such a category specified by
X-constraints is called a quasi-variety. It is well-known that a full sub-category
of Ay is a quasi-variety, if and only if it is an epi-reflective sub-category of
Ax.% Typically, a constraint is syntactically presented as an implication from
a syntactical presentation of the premise to a syntactical presentation of the
conclusion.

By contrast to total algebras, epimorphisms in categories of partial algebras
need not be surjective in each component.” Thus, constraints can express some
definedness requirements. Consider as an example the (unconditional) clause
x € S: f(f(x)) = £(x) for a signature & with an operation symbol f : § — S. It
requires f to be idem-potent and total.

Given a signature X = (5,0), X% = (5%, 0") denotes the underlying graph
structure which is defined on sorts by:

S'=S 4 Ouw.

w,vES*
in X with j,k > 0, Op,,
0,s,4, CONtains an operation
symbol ¢? for 1 < i < k.8 There are no other operation symbols in O".

Note that the signature X* = (S", O") constitutes a hierarchical graph struc-
ture in the sense of [13].2 In S, the sorts in S are on level 0 and the sorts in
Lﬂw,v c5+Ow,w are on level 1. All operations in O" are unary and map from sorts
on level 1 to sorts on level 0. Thus, a total algebra wrt. X" = (S",0") can be
interpreted as a hypergraph having vertices typed in S" and hyperedges typed
in O".

Let G denote the category of all total X "-algebras and X"-homomorphisms,
i.e. Gy is short for As..!” Then there is a full and faithful functor v : As — Gx
mapping each partial algebra A € Ax to v(A) € Gx by setting

For every operation symbol o € Osl_,,sj L Sit1eSith
contains an operation symbol df for 1 <14 < j and O

1. for each sort s € S: v(A)s = As and
2. for each operation o € Oy, .

(a) v(A), = o? and

with 7,k > O:

-85 5, 8j4+1---Sj+k

5 A category S is an epi-reflective sub-category of a category C, if it is a sub-category
of C, i.e. § C C, and for every object C € C there is a C-epi-morphism n¢c : C' - S
such that S € S and for every morphism f : C — S’ with S’ € S, there is a unique
morphism f* : § — S’ with f*onc = f. For the results about epi-reflection, compare
[21] for the total case and [1] for the partial case. They can also be found in [14].

" Compare [1,14].

8 d¢ and c? are short for i-th domain respectively co-domain of operation o.

9 A signature X = (S, 0) is a graph structure, if it contains unary operation symbols
only, i.e. Oy, = 0, if jw| = 0 or |w| > 2. It is hierarchical, if there is no family
(0; € OSi,vz‘)ieNv such that, for all ¢ € N, v; = x;8;4+1y; with z;,y; € S™.

10 Tt is well-known that Gy is complete and co-complete.

132 M. Lowe

(b) for all (z,y) = ((x1,..-,2;), (Y1,---,yx)) €01, 1<m <j, 1 <n< kM
i (dfn)'Y(A) (z,y) = x,, and
o) (2,y) = yn

n

ii. (c
and each homomorphism h: A — B in Ay to v(h) : v(4) — v(B) by setting

1. for each sort s € S: v(h)s = hs and
2. for each operation o € O, with w,v € §*: y(h), (z,y) = (K" (z), h*(y)).

Proposition 1 (Preservation of Epimorphisms). Ifvy: As — Gy is the
full and faithful functor from partial X'-algebras to the underlying hierarchical
XM-graph-structures, then y(h) : v(A) — ~v(B) is epimorphism, if and only if
h: A — B is a closed epimorphism.

Proof. “<": Every closed epimorphism is surjective on all sorts and, by definition
of closedness, also on “operations”. “=": Suppose y(h) : v(A) — v(B) is epi-
morphism, i.e. is surjective in each component. Then hs = 7(h); is surjective for
each sort s. Thus, h is epimorphism. If o is defined for h*(x), (h”(z),y) € oP.
Since «y(h), is surjective for every operation o, (h“(x),y) = v(h), (2’,y") which
means that h"(x) = h(2') and o? is defined for 2’. Therefore, h is closed. O

Unfortunately, the functor « is not isomorphism-dense'?, such that Ay and Gx
are not equivalent. We have to further restrict Gy by the following family of
constraints which formalises uniqueness of partial maps:

U= (Vel,eg €o: (df(er) = d?(BQ))lgiglw\ = e = 62) (1)

w,vES*,0€0 4

By Cy, we denote the constraints (epimorphisms) presented by the implications
U. Figurel illustrates the correspondence between U and Cp; for the sample
signature L. Since there is only one operation, namely f : S,8 — 3, Cy; contains
a single epimorphism only, which is depicted in Fig. 1 by the dotted arrows.'?

In the following, Ps;, C G5 denotes the quasi-variety of all algebras in Gy
satisfying all the constraints in i, i.e. Py = Az'ucu- Since Py is an epi-reflection
of the category Gy, we obtain a pair (F(A) € Px,na: A — F(A)) for every
A € Gy such that for every other pair (X € Py, f: A — X), there is a unique
f*: F(A) — X with f* ona = f. Since every image of v is in Py and + is
isomorphism-dense wrt. Py, we have:

11 Note that all operations in y(A) are just projections!

12 A functor v : A — B between categories A and B is isomorphism-dense, if for every
B € B there is A € A such that v(A) = B.

13 Note that this visualisation suggests that the constraints in I{ can be interpreted as
total and non-injective SPO graph rewriting rules. Indeed, applying these rules until
every further application leads to an identity trace, provides a constructive way to
“execute” the reflection from Gx to As.

SPO-Rewriting of Constrained Partial Algebras 133

Zer =
sorts S
opns f: S, -->s o e

df |e2|~
2 |e2 Faw
d4' ‘dzf d1
f
4/ Ny |
O] O
\[4 14

Fig. 1. Example for a uniqueness constraint

Fact 2 (Partial Algebras as Hypergraphs). Ay and Px are equivalent.

Therefore, partial algebras can be considered as special hypergraphs which
do not allow multiple edges of the same type between the same domain vertices.

Since Ay and Py are equivalent, all results we obtain for Py in the following
are also valid in Ay;. Since Ps; is an epi-reflection of Gy, Ps; is closed wrt. sub-
objects and products. Thus, pullbacks in Py coincide with pullbacks in Gx.
Pushouts in Py are quotients of pushouts in Gy in the following sense: The
pushout of (f: A — B,g: A — C) in Py is given by (npog*: B — D', npo f*:
C — D’) where (¢* : B— D, f* : C — D) is the pushout of f and ¢ in G5 and
np : D — D’ is the epi-reflector that transfers the Gx-object D into Psx.

3 Partial Morphisms for Algebras and Hypergraphs

The single-pushout approach to rewriting uses partial morphisms as rules, total
morphisms as matches, and pushouts in categories of partial morphisms as direct
derivations. Therefore, we have to proceed from the categories Gy, and Py with
total morphisms to the categories G& and P% of hypergraphs and partial algebras
with partial morphisms.

A concrete partial morphism in G is a span of Gy-morphisms (p : K —
P,q : K — @) such that p is monic. Two concrete partial morphisms (p1,q1)
and (p2,q2) are equivalent and denote the same abstract partial morphism if
there is an isomorphism ¢ such that py oi = py and ¢ o i = ¢o; in this
case we write (p1,q1) = (p2,42) and [(p,q)]= for the class of spans that are
equivalent to (p,q). The category of partial morphisms G5 over Gy has the
same objects as Gy and abstract partial morphisms as arrows. The identities

are defined by idi’g = [(idiz,idjgf)} _and composition of partial morphisms
(p: K Pg: K —Q)]_ and [(r: J— Q,s:J — R)|_ is given by

[(r,8)]= ege [(p,@))= = [(pogs 7 : M — Psogs ¢ : M — R))_

134 M. Lowe

L+ K-—"3R
pT (1) ﬁT (2)]\p*
P+l DT pr
ql (3) lﬁ (4) lq*

Fig. 2. Pushout in g;

where (M, : M — K,q' : M — J) is pullback of ¢ and r. Note that there is
the faithful embedding functor ¢ : G — G% defined by identity on objects and
(f:A—-B)—[ida:A— A, f: A— B]onmorphisms. Wecall [d: A" — A, f:
A’ — B] a total morphism and, by a slight abuse of notation, write [d, f] € Gx,
if d is an isomorphism. From now on, we mean the abstract partial morphism
[f, g]= if we write (f : B — A,g: B — C). If the monic component in a partial

morphism is an inclusion, we also write g : A E, Cfor(f: B— A,g: B— ().
We omit the annotation of the arrow, if the sub-object of the partial morphism
is irrelevant or uniquely determined by some universal properties.

It is well-known that G%, is complete and co-complete.!*

K
Construction 3 (Pushout in G%). For partial morphisms r : L --+ R and

P K* p*
q : L --» @, the pushout morphisms r* : @ --+ H and ¢* : R --+ H are
constructed as follows, compare Fig. 2:

1. D is the largest sub-algebra in K N P satisfying:
(a) r(z) =r(yyhe € D = y e Dand
(b) q(z) =q(y) Nz €D = yeD.
.1l:D— Pandp:D — K are the corresponding inclusions.
. P* and K* are the largest sub-algebras in R — (K — D) resp.Q — q(P — D).
. p*: P*— Rand[l*: K* — @ are the corresponding inclusions.
7: D — P* is defined by d — r(d) and §: D — K* by d — ¢(d).
6. (¢*,r*) is the pushout of (g,7) in Gsx.

T N

Remark. Construction 3 leads to the four commutative squares (1)—(4) in Fig. 2.
They possess the following properties:

1. Squares (2) and (3) are pullbacks such that r* o g = ¢* or.

2. Squares (1)—(3) make up a final triple in the sense of [19].

3. Square (4) is hereditary pushout in G5 since all pushouts in Gy, are hereditary,
compare Definition 4 below.

Therefore, Construction 3 provides a pushout in G due to the following general
fact: A diagram as in Fig. 2 is pushout of partial morphisms over an arbitrary
category C, if and only if (1)—(3) make up a final triple in C and (4) is hereditary
pushout in C, compare [19,20].

4 Compare for example [13].

SPO-Rewriting of Constrained Partial Algebras 135

B— D
q

Fig. 3. Hereditary pushout

Definition 4 (Hereditary Pushout). A pushout (p',q") of (p,q) in an arbi-
trary category is hereditary, if for each commutative cube as in Fig. 3, which has
pullback squares (q;,i0) and (p;,i0) of (i1,q) and (iz,p) resp. as back faces with
monic i1 and iy the following compatibility between pushouts and pullbacks holds:
In the top square, (q.,p;) is pushout of (pi,q;), if and only if, in the front faces,
(pl,i1) and (g},i2) are pullbacks of (is,p’) and (i3, q’) resp. and iz is monic.'®

PY is the full sub-category of G5 determined by the object inclusion of Py C
Gx. PY does not possess all pushouts. Py has all final triples but not all pushouts
in Py are hereditary. Final triples are constructed as in Gy, since steps (1)—(5)
of Construction 3 produce sub-objects D, P*, and K* which satisfy all Horn-
formulae in U (compare (1) on p. x), if L, R, and @ do. Hereditariness of pushouts
in Py is characterised by an easy to check condition.

Fact 5 (Hereditrary Pushouts in Px). A pushout in Px is hereditary, if
and only if it is pushout in Gy .

The proofs for this fact are provided by the proofs for Proposition 7 (<) and
Proposition 8 (=) in [18]. Since all arguments in these proofs do not refer to the
concrete structure of the formulae in U, the result can be generalised as follows:

Theorem 6 (Hereditary Pushouts in Reflective Sub-categories of Gy).
For every epi-reflective sub-category Cx of Gs;, we have:

1. Pushouts in Cx are hereditary, if and only if they are pushouts in Gy .

2. Let CY, be the full sub-category of G%. determined by the object inclusion of
Cx C Gx: If a pushout for a pair of morphisms in CY, exists, then it coincides
with the pushout of the pair constructed in G

4 SPO-Rewriting of Constrained Partial Algebras

Fact 5 shows that SPO-rewriting in PY is just SPO-rewriting in graph structures
from the operational point of view. It only adds an application condition, namely

5 For details on hereditary pushouts see [11,12].

Tf = ® -0—=0 o oy O —— .o
sorts S (@) L O——0 o
opns f: S -=> S (—=) (a) v (c)

/ C O—

|4 w Y —

o—0 o o—9°

Fig. 4. Examples for impossible rewrites

that rewriting a partial algebra (as a graph structure) must result in a graph
structure that represents a partial algebra.

Figure4 presents three typical impossible rewrites in 735. The mappings
of the rule morphisms, which are all total in the three examples, are depicted
by black straight arrows and the mappings of the match morphisms by dotted
arrows. In the situation (a), the rule tries to add a definition of £ to an object
in the host graph that possesses a definition of f already. Situation (b) wants to
add a new object as the result of the application of £ for two existing objects.
The match identifies the two existing objects. Rewriting in the underlying graph
structure produces two parallel “edges” between the old and the new object
which does not satisfy the uniqueness condition I, compare (1) on p. x. Situation
(c) is kind of symmetric to situation (b). Here two existing objects have the same
result under application of £. The rule tries to merge these two objects, which
again leads to two parallel “edges” violating U.

If we add more constraints on partial algebras that are subject to SPO-
rewriting, we want to preserve this fundamental property, i.e.:

Operational Semantics. FEvery SPO-rewrite of a constrained partial
algebra coincides with the SPO-transformation of the underlying graph
structure.

Theorem 6 provides a first sort of constraints that satisfy this criteria: namely
arbitrary constraints wrt. Gs.'% But these constraints do not one-to-one cor-
respond to general constraints on Py. Constraints on partial algebras can for-
mulate conditional equalities and definedness requirements, since epimorphisms
in categories of partial algebras need not be surjective. Therefore, we have to
restrict the constraints to those that do not implicitly formulate definedness
requirements. By Proposition 1, these constraints are exactly characterised by
the epimorphism that are closed. We call a constraint of this type conditional
equation, since its conclusion in the syntactical presentation as an implication
consists of equalities between variables only. Note that the set of constraints
presented by U on p. x is a set of conditional equations.

Corollary 7 (Conditional Equation). If Ax is a category of partial alge-
bras and E a set of conditional equations wrt. X, then every pushout in ASE

coincides with the pushout constructed in gg.

Conditional equations provide a rich supply for useful constraints on partial
algebras which are subject to rewriting, for example:

16 Recall that G is the underlying graph structure of Ps.

SPO-Rewriting of Constrained Partial Algebras 137

Singleton: = = 1/,

Injectivity: f(z) = f(z') = xz =2/,

Joint-Injectivity: fi(z) = fi(2),..., fu(z) = fu(d)) = z =2/,
Commutativity: f(g(z)) = z,h(z) =2 = z=72,

Inverse: f(x) = z,9(z) =2/ = xz =2/, and

Mutual Inverse: f(z) = z,9(z) =z ,f(N=z = x=212'2=2".

/

Note that the last five examples require equalities only in situations where the
operations are “defined enough”, i.e. the premises can be satisfied.

Up to this point, we do not have any means to require some sort of defined-
ness. As it has been shown in [13], requiring definedness of operation symbols
having more than one argument or none can lead to situations in which a final
triple does not exist, compare steps (1)—(5) of Construction3. Even worse: If
operations with at least two arguments are required to be defined for a certain
range of arguments, there are no obvious conditions which decide whether or not
the final triple in Construction 3 exists.

Therefore, we restrict definedness requirements to unary operations here as
well. Unfortunately, we cannot be as liberal as we want to at this point. This
is due to the fact that even definedness requirements for unary operations may
heavily interact with other constraints in form of conditional equations in an
undesirable way.

Ezample 8 (Interference of FEquations and Definedness). A good example for
such an interference is depicted in Fig.5. The shown specification requires its
two unary operations £ and i to be total, i.e. to be defined for all arguments.
We — here and in the following — indicate this requirement by underlining the
affected operations. Additionally, the operation i is forced to be injective.

The right part of the figure shows a pushout of two morphisms from L to R
and L to G indicated by the black straight and dotted arrows resp. Note that
the pushout does not coincide with the pushout constructed in the underlying
graph structure. But it is hereditary.

This is mainly due to the fact, that G admits five sub-algebras only, namely
the empty graph, G itself, and the three possible sub-graphs consisting of ele-
ments of the sort 8’ only. Only three of them can occur in a commutative cube

Lo R
sPeccycle = O//;O
sorts S,S' (©0,0)
opns f: S --> S (—=) G H
i: S —=> S' (-==-»)

i:
L

axms 1i(x)=1(y)==> x=y Z
‘ﬂ\g/_\/;()

Fig. 5. Operation cycles

138 M. Lowe

as in Fig. 3, namely the empty graph, G, and the sub-graph consisting of the two
S’-elements. And all these three cubes satisfy the hereditariness requirement. O

Example 8 shows a situation that violates our requirement “Operational Seman-
tics” on p. y: We have hereditariness without coincidence of the pushout in the
constrained and the unconstrained category. This is mainly due to the cyclic
structure induced by the operation f. Therefore, we restrict definedness require-
ments of unary operations to those that do not lead to cycles, i.e. to those that
produce a hierarchical underlying graph structure.

Definition 9 (Constrained Category of Partial Algebras). A constrained
category R (s c,r) of partial algebras is syntactically given by a triple (¥, C,T),
where X = (S,0) is a signature, C is a set of conditional equations and T =
(Ts,w € Osw)seswes s a sub-set of the unary operations in O satisfying the
following hierarchy condition: There is no family (o; € TSuwz')ieN; such that, for
all v € N, w; = visip1u; with vi,u; € S*. The semantics of Rx,c 1) is the full
sub-category of .APE),E of those algebras in which all operations in T are total.

As a generalisation of Propositions 7 and 8 in [18], we obtain:

Theorem 10 (Hereditariness in Constrained Categories). A pushout in
R(x,c,1) is hereditary, if and only if it is pushout in the underlying graph struc-
ture Gs;.

Proof. “<”: In addition to the arguments in the proof of Proposition 7 in [18], we
have to show that a pushout (f*: C — D,g*: B— D) in Gy for (f : A — B,g:
A — () satisfies the definedness requirements specified by T'. So let o € Ty 4,
and « € Dg. Then x = f*(x.) or x = g*(xp). Without loss of generality assume
the first. Since C satisfies the definedness requirements, 0% (x..) is defined. Since
() (0% (ze)) = o (f¥(zc)) = o (z), o is defined for z.

“=” (Sketch): Here, we can repeat the arguments in the proof of Proposi-
tion8 in [18]. Let (f : A — B,g: A — C) be given, (f*: C — D,g* : B — D)
the pushout in Gy, and (f' : C — E, g’ : B — E) the pushout in Rs ¢ r). Since
D satisfies all definedness requirements (see above), E is a quotient of D and
the two pushout morphisms (f’,¢’) are jointly surjective. If the two pushouts
are different, there are two elements z,y € BWC which are mapped to the same
element z by f’ and/or ¢’ in E and to different elements z;, 25 by f* and/or
g* in D. Now, we construct sub-algebras of A’ C4 A, B' Cg B, and C' C¢ C
by erasing z and recursively its minimal context in all three algebras such that
(Ca, fiar) becomes the pullback of (Cp, f) and (C4, gja’) becomes the pullback
of (C¢,g). Since all total operations are hierarchical and and y are not identi-
fied by f* and g*, the element y remains in B’ or C’ and we obtain 2z’ = fI/A’ (y)
or 2/ = gl’A, (y) as an element in the pushout (E’, fl’A, O — E’,ngr B — FE'
of (fjas,9p’). The universal morphism u from E’ to £ maps 2’ to z. Now, we
have u(z') = z and f'(x) = 2’ or ¢’(x) = 2’. Since by construction, x is neither
in B’ nor in C’, either (QB,g"A,) is not pullback of (u,g’) or (C¢, f"A,) is not
pullback of (u, f'). O

SPO-Rewriting of Constrained Partial Algebras 139

Having this result about hereditary pushouts, we can conclude:

Corollary 11 (Rewriting in Constrained Categories). Fvery pushout in
the category R&’QT) of partial morphisms wrt. a constrained category R (= c,r)

coincides with the pushout constructed in the underlying graph structure G..

Remark. Note that step (1) in Construction3 on p. z needs a marginal modifi-
cation. Now we construct D as the largest sub-algebra satisfying all definedness
constraints in T with properties (1a) and (1b). This algebra always exists, since
all total operations are unary and the construction ends up in the standard
cascade-on-delete behaviour that is well-known from single-pushout rewriting.'”

The results of this section offer better ways to specify the structures that
are subject to single-pushout rewriting. The appropriate framework is provided
by the notion of constrained category of partial algebras, compare Definition 9.
By Corollary 11, a simple operational semantics for rewrites in constrained cat-
egories is guaranteed. Therefore, there is a good chance to transfer some SPO-
theory from graph structures to partial algebras and even to constrained partial
algebras. This is subject of future research. In the rest of the paper, we want to
present the gain of expressive power for SPO-rewriting of constrained structures.

5 Inheritance — The Algebraic Way

SPO-rewriting in categories of constrained partial algebras provides mechanisms
to model many object-oriented concepts incl. inheritance in a straightforward
and appropriate way. The inheritance model which we introduce below goes
beyond all existing ones,'® since it provides easy means for “runtime” type-
specialisation and -generalisation of objects. Here is the general recipe how
object-oriented class and type models are translated into constrained categories
of partial algebras:

Immutable base types, like Integer and String, and the operations on these
base types, like concatenation (+) of strings and addition (+), subtraction (-),
multiplication (*), and division (/) of integers are just modelled as a part of the
underlying signature by appropriate sort and operation symbols. On the object-
level, i.e. on the level of the objects that are subject to SPO-transformation these
sort and operation symbols are interpreted by the standard carrier sets and par-
tial operations. Note that the interpretation as partial operations provides an
adequate model for overflow-situations or division-by-zero. In transforma-
tion rules, partial term algebras over a suitable set of variables are used. By

17 Cacade-on-delete is a notion well-known from relational databases: If a row in a
relation is deleted, all rows pointing directly or indirectly to it by foreign keys are
deleted as well. SPO-rewriting provides exactly the same effect: If a vertex is deleted
all edges adjacent to the vertex are deleted as well. In arbitrary graph structure this
effect can cascade as well, if we have more than 2 hierarchy levels, see [13] for details.

8 Compare [4,8,9,17] for the double-pushout, [6,16] for the single-pushout, and [15]
for the sesqui-pushout approach.

140 M. Lowe

contrast to total term algebras which are almost always infinite, the partial
term algebras used in rules can always be chosen as finite algebras.'®

Classes are modelled by sorts. So all types (base or not) are modelled by
sorts.

An attribute a of base type T in a class C is modelled (i) by a partial oper-
ation a:C — T, if its multiplicity is zero or one (0...1), (ii) a total oper-
ation a:C— T,20 if its multiplicity is exactly one (1)?! (iii) by a predicate
a:C, T — {x}, if its multiplicity is many incl. none (*) without double assign-
ments of the same value to the same object,?? and (iii) by an additional sort
symbol A and total operations a, : A — C and a; : A — T, if its multiplicity is
many incl. none (*) and multiple assignments of the same value to the same
object are allowed.??

An association r between classes C and D is modelled as follows: If the
multiplicity of r at both ends is many incl. none (*), we devise a predicate
r: C,D — {x} if multiple links between the same pair of objects are forbidden or
we add an additional sort R and two total operations r¢ : R — Cand rp : R — D
otherwise. If the multiplicity at the D-end is zero or one (0...1), we provide a
partial map r : C — D which obtains an additional injectivity constraint of the
formc e C:r(c) =r(c’) = ¢ = ¢, if the C-end has multiplicity 0. . .1 as well.
If the multiplicity at the D-end is exactly one (1), we can devise a total operation
r:C — D, as long as the signature remains hierarchical.?*

A qualified association q between classes C and D using a T-typed attribute
or association a of D as “key” is modelled by a partial operation q: C,T — D.

If a set aj,...,a, of 0...1l-attributes and/or associations of the same class
C is a key to the objects of C, we add an injectivity constraint of the following
form:

c,c’ €C:ay(c) =ay(c),...,an(c) =ay(c’) = c=¢

Inheritance S — G of sub-class S from super-class G, is modelled by a total
and injective operation ig¢ : S — G and for every diamond-situation, defined by
S — Gy, S — Gy, Gy — G, and Gy — G, we add a commutativity constraint like:

X €8;y,y €G:igalisg (%) =¥ ig0(ise(x) =y = y=y

Let us apply this recipe to the class model for file systems in Fig. 6. We obtain
the signature and constraints File System below. Note the seamless integration

19 For example, the total term algebra is infinite, if we have a single sort (Nat) with a
constant (zero) and an unary operation (successor). In partial algebras, the con-
stant need not be defined and the unary operation need not be defined everywhere.
Thus, we can define them as far as they are used in the rule (e. g. to denote constants)
and leave them undefined for all values that are not mentioned in the rule.

20 Note that we indicate the constraint that an operation is total by underlining the
operation name.

21 Note that the attribute automatically becomes final, if we model it by a total
operation.

22 Get, semantics.

23 Multi-set semantics.

24 Note again that the association becomes final, if we model it by a total operation.

SPO-Rewriting of Constrained Partial Algebras 141

Component

name:String

T

. 0.1 * .
Container | name |=————={ Containee
contains »

0.1 < references

System Directory File Link

contents:String

Fig. 6. Class model for file systems

of the “base type” String: On the one hand, it is used as “value-provider” for
attributes name and contents. On the other hand, it is integrated in “graphi-
cal” structures as in contains. The constraints al and a2 specify the injectivity
of the sub-type embeddings. Constraint a3 specifies the multiple inheritance of
Directory and the diamond situation wrt. Component. Constraint a4 specifies
that the index, that is used by a Container to manage its Containees, is con-
sistent with the naming of the contained Components. Constraint a5 stems from
the 0. ..1-multiplicity at the container-end of the contains-association.

File System =

sorts:

C(omponent), C(ontain)er, C(ontain)ee, S(ystem),
D(irectory), F(ile), L(ink), Str(ing).

opns:

i: C’er —+ C, i: C’ee — C, i: S — C’er, i;: D — C’er,
ip: D — C’ee, i: F — C’ee, i: L — C’ee,

n(ame): C — Str, c(ontents): F — Str,

r(erefences): L — C’ee, co(ntains): C’er,Str — C’ee.
axms:

[al]l (x,x’€ X: i(x) = i(x’) = X = X?)xc{Cler,Clee s F.L}»
[a2] (x,x’€D: i, (x) = i, (X?) =% = X’)pe(1,2}>

[a3] x€D;y,zeC: i(11(x)) =y, i(1,(x)) =z=y = z
[a4] x€C’er;s,s’ €Str: n(i(co(x,s))) = s> = s = s’
[ab] x,x’€C’er;seStr: co(x,s) = co(x’,s) — x = x’

On the basis of the specification File System, operations that change the
system’s structure can be specified by SPO rewrite rules. Figure 7, for exam-
ple, specifies the operation that moves a Containee (2) from Container (1) to

142 M. Lowe

1:Container

2:Containee

3:contains

)

1:Component 2:Component 1:Component 2:Component
name = x name =y name = x name =y
/\

/\

4:Component 4:Component
5:contains
name = z name =z
/\

1:Component

Fig. 7. Rewrite rule: move containee

2:Component

1:Component

2:Component

name:String name:String To File name:String name:String
1:File 2:Link ‘ To Link 1:File 2:File ‘
contents = x contents = x contents = x

Fig. 8. Rewrite rule: convert to file/convert to link

Container (4). Note that this operation fails, if the receiving container already
contains a containee named y. This is due to the fact that the index “contains”
is specified as a partial operation that needs to be unique.

The rules in Fig. 8 demonstrate the ability of the chosen inheritance model
to change the types of objects at “runtime”.2® The rule read from left to right
converts a Link (2) to a File (1) into a file with the same contents as (1). This
is possible by exchanging the Link-part of object (2) by a File-part.26 The rule
read from right to left has the inverse effect, namely it converts a file (2) that
happens to have the same contents as another file (1) into a link to the file (1).
Note that the context (other contains- and references-connections) of the
manipulated entity on the Containee-level is not change, since all Containee-
parts are preserved.

25 Runtime means here: In the rewrite process.
26 Note that the rule first generalises the manipulated object by deleting the Link-part.
Afterwards it specialises the manipulated object by adding a new File-part.

SPO-Rewriting of Constrained Partial Algebras 143

6 Related Work and Future Research

There are only a few articles in the literature that address rewriting of partial
algebras, for example [3] and [2] for the double- and single-pushout approach
resp. But, both papers stay in the framework of signatures with unary operation
symbols only and aim at an underlying category of partial morphisms that is
co-complete. Aspects of partial algebras occur in all papers that are concerned
with relabelling of nodes and edges, for example [10], or that invent mechanisms
for exchanging the attribute value without deleting and adding an object, for
example [7]. Most of these approaches avoid “real” partial algebras by completing
them to total ones by some undefined-values.

Thus, the approach presented in [18] and further developed in this paper is
original. It proposes to start with partial algebras in the first place and to require
total operations where needed.?” This is the other way around as most other
approaches do: they start with total algebras and add some partiality where
needed. Future research will show which approach is more suitable. Another
topic for future research is the transfer of SPO-theory to the presented con-
strained framework. And finally, bigger case studies must be elaborated in order
to confirm practical applicability.

References

1. Burmeister, P.: Introduction to Theory and Application of Partial Algebras - Part
I. Mathematical Research, vol. 32. Akademie-Verlag, Berlin (1986)

2. Burmeister, P., Monserrat, M., Rosselld, F., Valiente, G.: Algebraic transformation
of unary partial algebras II: single-pushout approach. Theor. Comput. Sci. 216(1—
2), 311-362 (1999)

3. Burmeister, P., Rosselld, F., Torrens, J., Valiente, G.: Algebraic transformation of
unary partial algebras I: double-pushout approach. Theor. Comput. Sci. 184(1-2),
145-193 (1997)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

5. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): ICGT 2012. LNCS,
vol. 7562. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6

6. Liidtke Ferreira, A.P., Ribeiro, L.: Derivations in object-oriented graph gram-
mars. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT
2004. LNCS, vol. 3256, pp. 416-430. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30203-2_29

7. Golas, U.: A general attribution concept for models in M-adhesive transformation
systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2012. LNCS, vol. 7562, pp. 187-202. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33654-6_13

27 Note that standard SPO-Rewriting on multi-graphs turns out to be a special case
of the set-up presented in this paper: The underlying category is defined by a
signature with two sorts, i.e. vertives V and edges E, and two unary operations
source,target:E—V that are required to be total.

http://dx.doi.org/10.1007/978-3-642-33654-6
http://dx.doi.org/10.1007/978-3-540-30203-2_29
http://dx.doi.org/10.1007/978-3-540-30203-2_29
http://dx.doi.org/10.1007/978-3-642-33654-6_13
http://dx.doi.org/10.1007/978-3-642-33654-6_13

144

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Lowe

Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theor. Comput. Sci. 424, 46-68 (2012)

Guerra, E.; de Lara, J.: Attributed typed triple graph transformation with inheri-
tance in the double pushout approach. Technical report UC3M-TR-CS-06-01, Uni-
versidad Carlos III de Madrid (2006)

Habel, A., Plump, D.: M, N-Adhesive Transformation Systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 218-233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6-15
Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schiirr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 250-265. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15928-2_17

Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 490-504. Springer, Heidelberg (1991). doi:10.1007/BFb0017408

Lowe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181224 (1993)

Lowe, M.L: Algebraic systems, June 2015. http://ux-02.ha.bib.de/daten/Lowe/
Master/Theorielnformationssystem/Algebra20150606.pdf

Lowe, M.: Polymorphic sesqui-pushout graph rewriting. In: Parisi-Presicce, F.,
Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 3-18. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-21145-9_1

Loéwe, M., Koénig, H., Schulz, C.: Polymorphic single-pushout graph transforma-
tion. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 355-369.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54804-8_25

Lowe, M., Koénig, H., Schulz, C., Schultchen, M.: Algebraic graph transformations
with inheritance and abstraction. Sci. Comput. Program. 107-108, 2-18 (2015)
Lowe, M., Tempelmeier, M.: On single-pushout rewriting of partial algebras. In:
ECEASST, vol. 73 (2016)

Monserrat, M., Rossello, F., Torrens, J., Valiente, G.: Single pushout rewriting in
categories of spans I: The general setting. Technical report LSI-97-23-R, Depart-
ment de Llenguatges i Sistemes Informtics, Universitat Politcnica de Catalunya
(1997)

Tempelmeier, M., Lowe, M.: Single-pushout transformation partieller algebren.
Technical report 2015/1, FHDW-Hannover (2015). (in German)

Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on
Theoretical Computer Science, vol. 25. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.1007/978-3-642-15928-2_17
http://dx.doi.org/10.1007/BFb0017408
http://ux-02.ha.bib.de/daten/Lowe/Master/TheorieInformationssystem/Algebra20150606.pdf
http://ux-02.ha.bib.de/daten/Lowe/Master/TheorieInformationssystem/Algebra20150606.pdf
http://dx.doi.org/10.1007/978-3-319-21145-9_1
http://dx.doi.org/10.1007/978-3-642-54804-8_25

	SPO-Rewriting of Constrained Partial Algebras
	1 Introduction
	2 Partial Algebras and Hypergraphs
	3 Partial Morphisms for Algebras and Hypergraphs
	4 SPO-Rewriting of Constrained Partial Algebras
	5 Inheritance -- The Algebraic Way
	6 Related Work and Future Research
	References

