
Paolo Milazzo
Dániel Varró
Manuel Wimmer (Eds.)

 123

LN
CS

 9
94

6

STAF 2016 Collocated Workshops:
DataMod, GCM, HOFM, MELO, SEMS, VeryComp
Vienna, Austria, July 4–8, 2016, Revised Selected Papers

Software Technologies:
Applications and Foundations

Lecture Notes in Computer Science 9946

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Paolo Milazzo • Dániel Varró
Manuel Wimmer (Eds.)

Software Technologies:
Applications and Foundations
STAF 2016 Collocated Workshops:
DataMod, GCM, HOFM, MELO, SEMS, VeryComp
Vienna, Austria, July 4–8, 2016
Revised Selected Papers

123

Editors
Paolo Milazzo
Dipartimento di Informatica
Universita di Pisa
Pisa
Italy

Dániel Varró
Budapest University of Technology and
Economics

Budapest
Hungary

Manuel Wimmer
Vienna University of Technology
Vienna
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-50229-8 ISBN 978-3-319-50230-4 (eBook)
DOI 10.1007/978-3-319-50230-4

Library of Congress Control Number: 2016958996

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the technical papers presented in six of the eight workshops
collocated with “Software Technologies: Applications and Foundations (STAF 2016),”
a federation of leading conferences on software technologies. The workshops took
place at TU Wien, Austria, during July 4–8, 2016.

STAF 2016 brought together researchers and practitioners from both academia and
industry to advance the state of the art on all aspects of software technology. The
satellite workshops provided a highly interactive and collaborative environment to
discuss emerging areas of software technologies, model-driven engineering, and formal
methods.

The six workshops whose papers are included in this volume are:

– DataMod 2016 – 5th International Symposium “From Data to Models and Back”
– GCM 2016 – 7th International Workshop on Graph Computation Models
– HOFM 2016 – Third International Workshop on Human-Oriented Formal Methods
– MELO 2016 – Second International Workshop on Model-Driven Engineering,

Logic and Optimization
– SEMS 2016 – Third International Workshop on Software Engineering Methods in

Spreadsheets
– VeryComp 2016 – First International Workshop on Formal to Practical Software

Verification and Composition

Two more workshops were organized as satellite events of STAF 2016, but with
separately published proceedings. They are the International Workshop on Formal
Methods for the Quantitative Evaluation of Collective Adaptive Systems (FORECAST
2016) and the 4th International Workshop on Scalable Model-Driven Engineering
(BigMDE 2016).

Messages from the organizers of STAF 2016 and of the six workshops listed above,
as well as the abstracts of the keynote talks of the six workshops, follow this preface.

We are grateful to EasyChair for the support with the paper submission and
reviewing process for all workshops, and with the preparation of this volume. For each
of the workshops at STAF 2016, we thank the organizers for the interesting topics and
resulting talks. We also thank the paper contributors to these workshops and those who
attended them. We would like to extend our thanks to all keynote speakers for their
excellent presentations, and also to the members of each workshop’s Program Com-
mitee. Finally, we would like to thank the organizers of STAF 2016 and, in particular,
the general chair, Gerti Kappel.

September 2016 Paolo Milazzo
Manuel Wimmer

Dániel Varró

STAF 2016 Organizers’ Message

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but all focus
on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2016 took place at TU Wien, Austria, during July 4–8, 2016, and hosted the
five conferences ECMFA 2016, ICGT 2016, ICMT 2016, SEFM 2016, and TAP 2016,
the transformation tool contest TTC 2016, eight workshops, a doctoral symposium, and
a projects showcase event. STAF 2016 featured eight internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2016 Organizing Committee thanks: (a) all participants for submitting to
and attending the event; (b) the program chairs and Steering Committee members of the
individual conferences and satellite events for their hard work; (c) the keynote speakers
for their thoughtful, insightful, and inspiring talks; and (d) TU Wien, the city of
Vienna, and all sponsors for their support. A special thank you goes to the members
of the Business Informatics Group, coping with all the foreseen and unforeseen work
(as usual ☺)!

July 2016 Gerti Kappel

DataMod 2016 Organizers’ Message

The 5th International Symposium From Data to Models and Back (DataMod 2016),
formerly known as MoKMaSD, was held in Vienna, Austria, on July 8, 2016.

The symposium aims at bringing together practitioners and researchers from aca-
demia, industry, government, and nongovernmental organizations to present research
results and exchange experiences, ideas, and solutions for modelling and analyzing
complex systems and using knowledge management strategies, technology, and sys-
tems in various domain areas such as ecology, biology, medicine, climate, governance,
education, and social software engineering.

After a careful review process, the Program Committee accepted seven papers, five
full and two short, for presentation at the symposium. The program of DataMod 2016
was also enriched by the keynote speeches of Mirco Musolesi entitled “Mining Big
(and Small) Mobile Data for Social Good” and of Emanuela Merelli entitled “The
Topological Field Theory of Data: A Program Towards a Novel Strategy for Data
Mining Through Data Language.”

Several people contributed to the success of DataMod 2016. We are grateful to the
Steering Committee, and in particular to Antonio Cerone, Paolo Milazzo, and Anna
Monreale, who assisted us in some organizational aspects of the event. We would like
to thank the organizers of STAF 2016, and in particular the workshops chairs, Manuel
Wimmer, Dániel Varró, and Paolo Milazzo. We would also like to thank the Program
Committee and the additional reviewers for their work on reviewing the papers. The
process of reviewing and selecting papers was significantly simplified through using
EasyChair.

We thank all the symposium attendees and hope that this event facilitated a good
exchange of ideas and generate new collaborations among attendees.

The organization of DataMod 2016 was supported by the Future and Emerging
Technologies (FET) program within the Seventh Framework Programme (FP7) for
Research of the European Commission, under the FP7 FET-Proactive Call 8 Dynamics
Multi-level Complex Systems (DyMCS), Grant Agreement TOPDRIM, Number FP7-
ICT-318121.

September 2016 Luca Tesei
Roberto Trasarti

DataMod 2016 Steering Committee

Antonio Cerone IMT Institute for Advanced Studies Lucca, Italy
Jane Hillston University of Edinburgh, UK
Marijn Janssen Delft University of Technology, The Netherlands
Stan Matwin University of Ottawa, Canada
Paolo Milazzo University of Pisa, Italy
Anna Monreale University of Pisa, Italy

DataMod 2016 Program Committee

Ezio Bartocci Vienna University of Technology, Austria
Luca Bortolussi University of Trieste, Italy
Giulio Caravagna University of Edinburgh, UK
Paweł Dłotko Inria, Saclay, France
Nadia Essoussi University of Carthage, Tunisia
Alexeis Garcia-Perez Coventry University, UK
Yiwei Gong Wuhan University, China
Tias Guns KU Leuven, Belgium
Joris Hulstijn Delft University of Technology, The Netherlands
Krzysztof Krawiec Poznan University of Technology, Poland
Donato Malerba University of Bari, Italy
Emanuela Merelli University of Camerino, Italy
Paolo Milazzo University of Pisa, Italy
Patrick Mukala Eindhoven University of Technology, The Netherlands
Nicola Paoletti University of Oxford, UK
Giovanni Pardini University of Pisa, Italy
Nikos Pelekis University of Piraeus, Greece
Anna Philippou University of Cyprus, Cyprus
Barbara Re University of Camerino, Italy
Giulio Rossetti ISTI-CNR and University of Pisa, Italy
Bruno Rossi Masaryk University, Brno, Czech Republic
Luca Tesei University of Camerino, Italy (Co-chair)
Manolis Terrovitis IMIS, Athena Research Center, Greece
Roberto Trasarti ISTI-CNR, Pisa, Italy (Co-chair)

X DataMod 2016 Organizers’ Message

GCM 2016 Organizers’ Message

The 7th International Workshop on Graph Computation Models (GCM 2016) was held
in Vienna, Austria, on July 4, 2016.

Graphs are common mathematical structures that are visual and intuitive. They
constitute a natural and seamless way for system modeling in science, engineering, and
beyond, including computer science, life sciences, business processes, etc. Graph
computation models constitute a class of very high level models where graphs are first-
class citizens. They generalize classical computation models based on strings or trees,
such as Chomsky grammars or term rewrite systems. Their mathematical foundation, in
addition to their visual nature, facilitates specification, validation, and analysis of
complex systems. A variety of computation models have been developed using graphs
and rule-based graph transformation. These models include features of programming
languages and systems, paradigms for software development, concurrent calculi, local
computations and distributed algorithms, and biological and chemical computations.

The aim of GCM 2016 was to bring together researchers interested in all aspects of
computation models based on graphs and graph transformation techniques. The
workshop promotes the cross-fertilizing exchange of ideas and experiences among
researchers and students from the different communities interested in the foundations,
applications, and implementations of graph computation models and related areas.
Previous editions of the GCM series were held in Natal, Brazil (GCM 2006), in
Leicester, UK (GCM 2008), in Enschede, The Netherlands (GCM 2010), in Bremen,
Germany (GCM 2012), in York, UK (GCM 2014), and in L’Aquila, Italy (GCM 2015).

After a thorough review process, the Program Committee accepted five papers for
publication in the proceedings and four additional papers for presentation and
publication before the proceedings.

Several people contributed to the success of GCM 2016. I would like to thank the
organizers of STAF 2016, and in particular the general chair, Gerti Kappel, and the
workshops chairs, Manuel Wimmer, Dániel Varró, and Paolo Milazzo. I would also
like to express my thanks to the Program Committee and the additional reviewers for
their valuable help. The EasyChair system greatly facilitated the submission and
program selection process.

I would furthermore like to thank all authors, speakers, and participants of the
workshop.

September 2016 Barbara König

GCM 2016 Program Committee

Rachid Echahed Laboratoire d’Informatique de Grenoble, France
Annegret Habel Universität Oldenburg, Germany
Alexander Heußner Universität Bamberg, Germany
Dirk Janssens Universiteit Antwerpen, Belgium
Barbara König Universität Duisburg-Essen, Germany (Chair)
Hans-Jörg Kreowski Universität Bremen, Germany
Ian Mackie University of Sussex, UK
Mohamed Mosbah LaBRI, Université de Bordeaux, France
Detlef Plump University of York, UK

XII GCM 2016 Organizers’ Message

HOFM 2016 Organizers’ Message

The Third International Workshop on Human-Oriented Formal Methods (HOFM 2016)
was held on July 4, 2016 in Vienna, Austria. This workshop was affiliated to the
Software Technologies: Applications and Foundations (STAF 2016), a federation of
leading conferences on software technologies.

The aim of the HOFM workshop series is to establish a community that will
investigate the field of application of human factors to the analysis and to the
optimization of formal methods. Formal methods (FMs) have been successfully applied
in software engineering research for several decades. However, many software
engineers largely reject FMs as “too hard to understand and use in practice” while
admitting that they are powerful and precise. The reason for this rejection is the lack of
usability features: If usability is compromised, methods cannot fit in a real software
development process.

HOFM 2016 received submissions from 16 authors, affiliated with universities and
industries from Australia, Austria, Czech Republic, Germany, Italy, Kazakhstan, The
Netherlands, and Norway. Every submitted paper was carefully reviewed by the
Program Committee members, and eight papers were accepted for presentation at
HOFM 2016. All authors of the HOFM workshop were invited to submit extended
versions of their peer-reviewed papers to the proceedings, taking into account feedback
from the HOFM reviewers as well as the discussions during the workshop.

The program of HOFM 2016 was enriched by two keynote talks:

– Daniel Ratiu, Siemens AG, Germany: “Enabling Software Verification for Prac-
ticing Engineers with Domain Specific Languages”

– Michael Sedlmair, University of Vienna, Austria
“Human-Centered Methods in Visualization Research”

We would like to thank all authors who contributed to HOFM 2016 as well as all the
workshop attendees. We hope that the attendees found the program relevant to their
interests and inspiring. We also thank the STAF Workshop chairs and local organizers
for their help. We would like to express our gratitude to the Program Committee
members for their support and considered reviews.

September 2016 Maria Spichkova
Heinz Schmidt

HOFM 2016 Program Committee

Luis Barbosa University of Minho, Portugal
Daniel Berry University of Waterloo, Canada
Jan Olaf Blech RMIT University, Australia
Antonio Cerone IMT Inst. for Advanced Studies Lucca, Italy
Eitan Farchi IBM Haifa Research Lab, Israel
Pedro Isaias Universidade Aberta, Portugal
Irit Hadar University of Haifa, Israel
Peter Herrmann NTNU Trondheim, Norway
Gerwin Klein NICTA/Data61, UNSW, Australia
Jayprakash Lalchandani IIIT Bangalore, India
James Noble Victoria University of Wellington, New Zealand
Srini Ramaswamy ABB, USA
Daniel Ratiu Siemens AG, Germany
Guillermo Rodriguez-Navas Maelardalen University, Sweden
Bernhard Rumpe RWTH Aachen, Germany
Thomas Santen Microsoft, Germany
Heinz Schmidt RMIT University, Australia (Co-chair)
Maria Spichkova RMIT University, Australia (Co-chair)
Richard Trefler University of Waterloo, Canada
Andreas Vogelsang TU Munich, Germany
Anna Zamansky University of Haifa, Israel

XIV HOFM 2016 Organizers’ Message

MELO 2016 Organizers’ Message

The Workshop on Model-Driven Engineering, Logic and Optimization (MELO 2016)
was held in Vienna, Austria, on July 4, 2016.

The main goal of this workshop was to bring together three different communities:
the model-driven engineering (MDE) community, the logic programming community,
and the optimization community, to explore how each community can benefit from the
techniques of the other. The workshop aimed at developing bridges and synergies
between these communities, and at providing a forum for researchers to discuss new or
ongoing projects and forge new collaborations. The widespread application of MDE in
all kinds of domains (e.g., critical systems, software product lines, embedded systems,
etc.) has triggered the need of new techniques to solve optimization, visualization,
verification, and configuration problems at the model level. Instead of reinventing the
wheel, most of these problems could be solved by reexpressing the modeling problem
as a logic programming problem or as an optimization or search problem. As an
example, verification (satisfiability) of large static models can be addressed by
reexpressing the model as a constraint satisfaction problem to be solved by state-of-the-
art constraint solvers.

Similarly, logic programming can benefit from the integration of MDE principles.
As in any other domain, introduction of MDE would help to raise the abstraction level
at which the problem is described (e.g., by providing domain-specific languages that
allow non-technical users to specify the problem using a vocabulary closer to the
domain), improve the separation of concerns by using different model-based views
of the problem at different levels of detail, achieve tool independence (e.g., by
following a typical platform-Independent model – platform-specific model separation
where, for instance, at the platform-Independent model level we could define tool-
independent logic programming metamodels), and increase reusability. In addition,
optimization techniques can benefit from closer connections to MDE principles, e.g., to
help develop generic solutions to optimization problems (e.g., standardized represen-
tations of optimization problems, benchmarks).

The workshop focused on presentation of ongoing work at the intersection of at least
two of the aforementioned areas (e.g., MDE + logic programming, MDE + optimization).
After a thorough review process, the Program Committee accepted five papers for
publication in the LNCS proceedings.

September 2016 Jordi Cabot
Richard Paige

Alfonso Pierantonio

MELO 2016 Program Committee

Achim D. Brucker The University of Sheffield, UK
Athanasios Zolotas University of York, UK
Daniel Varro University of Technology and Economics, Hungary
Esther Guerra Universidad Autónoma de Madrid, Spain
Federico Ciccozzi MDH, Sweden
Manuel Clavel Universidad Complutense de Madrid, Spain
Marsha Chechik University of Toronto, Canada
Raphael Chenouard Ecole Centrale de Nantes, France
Robert Claris Universitat Oberta de Catalunya, Spain
Rolf Drechsler University of Bremen, Germany
Romin Eramo University of L’Aquila, Italy
Shiva Nejati University of Luxembourg, Luxembourg
Sophie Demassey MINES ParisTech, France
Steffen Zschaler King’s College London, UK
Zinovy Diskin McMaster University/University of Waterloo, Canada

XVI MELO 2016 Organizers’ Message

SEMS 2016 Organizers’ Message

The Third International Workshop on Software Engineering Methods in Spreadsheets
(SEMS 2016) was held in Vienna, Austria, on July 4, 2016, as a satellite event of STAF
2016. The first edition of SEMS co-located with the annual conference of the EuSpRIG
in 2014, in Delft, The Netherlands, was successful in bringing together the spreadsheet
research community, and spreadsheet practitioners. The second edition, held as satellite
event of ICSE 2015 in Florence, Italy, was aimed at bringing together the communities
of software engineering research and spreadsheet research. In this third edition, a new
direction was explored as SEMS became part of a federation of conferences oriented
for modeling, transformations, formal methods, and testing.

Once more, the workshop was a success, with several submissions, including papers
from members of the STAF community who had not yet participated in SEMS. In
particular, we received nine submissions, all receiving three reviews. From these, eight
were accepted for presentation at the workshop. The set of authors spans across eight
countries: Austria, Canada, Germany, Poland, Portugal, Spain, The Netherlands, and
Vietnam. The program was further enriched by the keynote speech of Sumit Gulwani,
from Microsoft Research Redmond, entitled “Spreadsheet Programming Using
Examples.”

We would like to thank the Steering Committee for their guidance and support during
the entire organizational process. We would also like to thank the Program Committee
and reviewers, who did an excellent job reviewing and subsequently participating in the
discussion for acceptance of the papers. Furthermore, we want to thank the organization
of STAF 2016 for their impressive responsiveness and help, and in particular the
workshop chairs, Manuel Wimmer, Dániel Varró, and Paolo Milazzo. We also extend
our gratitude to EasyChair for its support in the entire organization process of SEMS
2016.

Finally, we express our heartfelt thanks to all the participants of SEMS 2016 who,
as always, are key in making the workshop a success as a premier venue for discussing
spreadsheet research.

September 2016 Jácome Cunha
Daniel Kulesz

Sohon Roy

SEMS 2016 Steering Committee

Felienne Hermans Delft University of Technology, The Netherlands
Richard Paige University of York, UK
Peter Sestoft IT University of Copenhagen, Denmark

SEMS 2016 Program Committee

Martin Erwig Oregon State University, USA
João P. Fernandes Universidade da Beira Interior, Portugal
Felienne Hermans Delft University of Technology, The Netherlands
Birgit Hofer Graz University of Technology, Austria
Richard Paige University of York, UK
João Saraiva Universidade do Minho, Portugal
Peter Sestoft IT University of Copenhagen, Denmark
Leif Singer Automattic Inc., USA

SEMS 2016 Additional Reviewers

Bas Jansen Delft University of Technology, The Netherlands
Jorge Mendes Universidade do Minho, Portugal
Karl Smeltzer Oregon State University, USA

XVIII SEMS 2016 Organizers’ Message

VeryComp 2016 Organizers’ Message

The First International Workshop on Formal to Practical Software Verification and
Composition (VeryComp 2016) was held in Vienna, Austria, on July 4, 2016. The aim
of the workshop is to counteract the specialization of traditional venues by bringing
together researchers and practitioners from different areas concerning software
verification and composition, to fill the gap between the requirements of modern
applications and current verification and composition methods. In particular, VeryComp
2016 aimed at attracting contributions related to the subject at different levels, from
modeling to verification and analysis, from componentization to composition. The
workshop constituted a forum for scientists and engineers in academia and industry to
present and discuss their latest ongoing research as well as radical new research
directions that represent challenging innovations.

After a careful review process, the Program Committee accepted four papers.
Several people contributed to the success of VeryComp 2016. We would like to thank
the STAF 2016 Workshops organizers as well as the general chair. We would also like
to thank the Program Committee for their work in reviewing the papers. The process of
reviewing and selecting papers was significantly simplified through using EasyChair.

We thank all the workshop attendees and hope that this event facilitated a good
exchange of ideas and new collaborations among attendees.

The organization of VeryComp 2016 was partially supported by the H2020 EU
project CHOReVOLUTION1.

September 2016 Marco Autili
Marcello Bersani
Davide Bresolin
Luca Ferrucci

Marisol Garcia-Valls
Manuel Mazzara
Massimo Tivoli

1 http://www.chorevolution.eu/bin/view/Main/.

http://www.chorevolution.eu/bin/view/Main/

VeryComp 2016 Program Committee

Luciano Baresi Politecnico di Milano, Italy
Carlo Bellettini Università degli studi di Milano, Italy
Amel Bennaceur The Open University, UK
Domenico Bianculli University of Luxembourg, Luxembourg
Antonio Brogi Università di Pisa, Italy
Antonio Bucchiarone FBK-IRST, Italy
Radu Calinescu University of York, UK
Mauro Caporuscio Linnaeus University, Sweden
Vincenzo Ciancia ISTI-CNR, Italy
Ivica Crnkovic Malardalen University, Sweden
Guglielmo De Angelis CNR-IASI/ISTI, Italy
Stéphane Demri NewYork University and CNRS, France
Salvatore Distefano Università di Messina, Italy
Schahram Dustdar University of Technology Wien, Austria
Nikolaos Georgantas Inria, France
Carlo Ghezzi Politecnico di Milano, Italy
Silvio Ghilardi Università degli studi di Milano, Italy
Paola Inverardi University of L’Aquila, Italy
Patricia Lago VU University Amsterdam, The Netherlands
Julio Medina Universidad de Cantabria, Spain
Hernan Melgratti Universidad de Buenos Aires, Argentina
David M.R. Pereira Polytechnical School of Porto, Portugal
Saad Mubeen Mälardalen University, Sweden
Pascal Poizat Paris Ouest University and LIP6, France
Nafees Qamar Vanderbilt University, USA
Victor Rivera Innopolis University, Russia
Gwen Salaün Inria, Grenoble-Rhone-Alpes, France
Cesar Sanchez IMDEA Software Institute, Spain

XX VeryComp 2016 Organizers’ Message

Keynote Talks

The Topological Field Theory of Data:
A Program Towards a Novel Strategy for Data

Mining through Data Language

Emanuela Merelli

School of Science and Technology, University of Camerino, Camerino, Italy

Keynote Speaker of DataMod 2016

We aim to challenge the current thinking in IT for the Big Data question, proposing a
program aiming to construct an innovative methodology to perform data analytics in a
way that returns an automaton as a recognizer of the data language: a Field Theory of
Data. We suggest to build, directly out of probing data space, a theoretical framework
enabling us to extract the manifold hidden relations (patterns) that exist among data, as
correlations depending on the semantics generated by the mining context. The program,
that is grounded in the recent innovative ways of integrating data into a topological
setting, proposes the realization of a Topological Field Theory of Data, transferring and
generalizing to the space of data notions inspired by physical (topological) field the-
ories and harnesses the theory of formal languages to define the potential semantics
necessary to understand the emerging patterns.

Mining Big (and Small) Mobile Data
for Social Good

Mirco Musolesi

Intelligent Social Systems Lab, University College London, London, UK

Keynote Speaker of DataMod 2016

An increasing amount of data describing peoples behaviour is collected by means of
applications running on smartphones or directly by mobile operators through their
cellular infrastructure. This information is extremely valuable for marketing applica-
tions, but it has also an incredible potential to be beneficial for society as a whole,
thanks to applications in a variety of fields, from healthcare to transportation, from
geodemographics to national security. In particular, mobile data can be extremely
valuable for developing and evaluating quantitative models of human behaviour, which
can be used as a basis for the development of intelligent mobile systems. In this talk I
will analyze the challenges and opportunities in using big (and small) data for appli-
cations of high societal and commercial impact discussing the current work of my lab
in the area of mobile data mining and anticipatory mobile computing. The scope of my
talk will be broad, encompassing both modelling and systems-oriented issues.

Enabling Software Verification for Practicing
Engineers with Domain Specific Languages

Daniel Ratiu

Siemens AG, Munich, Germany

Keynote Speaker of HOFM 2016

Despite the maturity of current verification techniques, formal verification tools have
not found their way in the daily practice yet. The main reason for the low adoption is
related to pragmatic aspects such as usability or the cost of applying formal verification
(e.g. specifying properties, running the analyses, interpreting the results). For a large
majority of developers, formal verification techniques are seen rather as expert tools
and not as engineering tools that can be used on a daily basis. This is mostly the case in
the context of main stream systems (e.g. automotive, medical, industrial automation)
where pragmatics (e.g. personnel skills, cost structures, deadlines, existent processes)
plays a major role. I will present our approach and experience to tackle some of these
challenges with the help of domain specific languages in the mbeddr project (www.
mbeddr.com) and its extensions at Siemens.

http://www.mbeddr.com
http://www.mbeddr.com

Human-Centered Methods
in Visualization Research

Michael Sedlmair

University of Vienna, Vienna, Austria

Keynote Speaker of HOFM 2016

Visualization systems provide a unique way for people to interact, explore, and better
understand their data. Visualization systems might, for instance, help medical doctors
to base tricky medication decisions on historic patient data; journalists to get a quick
overview over large sets of documents; or economists to better understand stock trends.

As visualization systems target human users, closely involving them into design
and research processes is crucial. While this importance has been acknowledged many
times, realizing such a human-centered focus in day-to-day research practices is
challenging.

This talk will shed some light into existing human-centered methods that are used
in visualization research, as well as the challenges that come with them. To illustrate
these aspects, I will present case studies from several visualization research projects,
such as my own 3.5-year collaboration with automotive engineers at BMW. The
ultimate goal of the talk would be to help building a bridge between the human-
centered challenges faced in visualization research and those in formal methods.

Spreadsheet Programming Using Examples

Sumit Gulwani

Microsoft Research, Redmond, USA

Keynote Speaker of SEMS 2016

99% of spreadsheet users do not know programming, and struggle with repetitive data
wrangling tasks such as extracting tabular data from text files, string transformations,
and table re-formatting. Programming by Examples (PBE) can revolutionize this
landscape by enabling users to synthesize intended programs from example-based
specifications.

A key technical challenge in PBE is to search for programs that are consistent with
the examples provided by the user. Our efficient search methodology is based on two
key ideas: (i) Restriction of the search space to an appropriate domain-specific lan-
guage that offers balanced expressivity and readability (ii) A divide-and-conquer based
deductive search paradigm that inductively reduces the problem of synthesizing a
program of a certain kind that satisfies a given specification into sub-problems that refer
to sub-programs or sub-specifications.

Another challenge in PBE is to resolve the ambiguity in the example based spec-
ification. We will discuss two complementary approaches: (a) machine learning based
ranking techniques that can pick an intended program from among those that satisfy the
specification, and (b) active-learning based user interaction models.

The above concepts will be illustrated using various PBE technologies including
FlashFill, FlashExtract, and FlashRelate. These technologies have been released inside
various Microsoft products including Excel. The Microsoft PROSE SDK allows easy
construction of such technologies.

Contents

DataMod

Separating Topological Noise from Features Using Persistent Entropy 3
Nieves Atienza, Rocio Gonzalez-Diaz, and Matteo Rucco

An Accelerated MapReduce-Based K-prototypes for Big Data 13
Mohamed Aymen Ben HajKacem, Chiheb-Eddine Ben N’cir,
and Nadia Essoussi

Refinement Mining: Using Data to Sift Plausible Models 26
Antonio Cerone

Towards Platform Independent Database Modelling in Enterprise Systems . . . 42
Martyn Ellison, Radu Calinescu, and Richard F. Paige

AUDIO ERGO SUM: A Personal Data Model for Musical Preferences 51
Riccardo Guidotti, Giulio Rossetti, and Dino Pedreschi

A High-Level Model Checking Language with Compile-Time Pruning
of Local Variables. 67

Giovanni Pardini and Paolo Milazzo

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 83
Daniël Reijsbergen

GCM

On the Definition of Parallel Independence in the Algebraic Approaches
to Graph Transformation . 101

Andrea Corradini

Approximating Parikh Images for Generating Deterministic Graph Parsers . . . 112
Frank Drewes, Berthold Hoffmann, and Mark Minas

SPO-Rewriting of Constrained Partial Algebras. 129
Michael Löwe

Attributed Graph Transformation via Rule Schemata:
Church-Rosser Theorem. 145

Ivaylo Hristakiev and Detlef Plump

http://dx.doi.org/10.1007/978-3-319-50230-4_1
http://dx.doi.org/10.1007/978-3-319-50230-4_2
http://dx.doi.org/10.1007/978-3-319-50230-4_3
http://dx.doi.org/10.1007/978-3-319-50230-4_4
http://dx.doi.org/10.1007/978-3-319-50230-4_5
http://dx.doi.org/10.1007/978-3-319-50230-4_6
http://dx.doi.org/10.1007/978-3-319-50230-4_6
http://dx.doi.org/10.1007/978-3-319-50230-4_7
http://dx.doi.org/10.1007/978-3-319-50230-4_8
http://dx.doi.org/10.1007/978-3-319-50230-4_8
http://dx.doi.org/10.1007/978-3-319-50230-4_9
http://dx.doi.org/10.1007/978-3-319-50230-4_10
http://dx.doi.org/10.1007/978-3-319-50230-4_11
http://dx.doi.org/10.1007/978-3-319-50230-4_11

HOFM

Visual Notation and Patterns for Abstract State Machines 163
Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini,
and Elvinia Riccobene

Visualization of Formal Specifications for Understanding
and Debugging an Industrial DSL . 179

Ulyana Tikhonova, Maarten Manders, and Rimco Boudewijns

Spatio-Temporal Models for Formal Analysis and Property-Based Testing . . . 196
Nasser Alzahrani, Maria Spichkova, and Jan Olaf Blech

Towards a Developer-Oriented Process for Verifying Behavioral Properties
in UML and OCL Models . 207

Khanh-Hoang Doan, Martin Gogolla, and Frank Hilken

Model-Based Generation of Natural Language Specifications 221
Phan Thu Nhat Vo and Maria Spichkova

Human-Oriented Formal Modelling of Human-Computer Interaction:
Practitioners’ and Students’ Perspectives . 232

Antonio Cerone

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 242
Maria Spichkova

Formal Model-Based Development in Industrial Automation
with Reactive Blocks . 253

Peter Herrmann and Jan Olaf Blech

MELO

Computational Design Synthesis Using Model-Driven Engineering
and Constraint Programming . 265

Raphael Chenouard, Chris Hartmann, Alain Bernard,
and Emmanuel Mermoz

Incremental Consistency Checking of Heterogeneous Multimodels 274
Zinovy Diskin and Harald König

Continuing a Benchmark for UML and OCL Design and Analysis Tools 289
Martin Gogolla and Jordi Cabot

XXX Contents

http://dx.doi.org/10.1007/978-3-319-50230-4_12
http://dx.doi.org/10.1007/978-3-319-50230-4_13
http://dx.doi.org/10.1007/978-3-319-50230-4_13
http://dx.doi.org/10.1007/978-3-319-50230-4_14
http://dx.doi.org/10.1007/978-3-319-50230-4_15
http://dx.doi.org/10.1007/978-3-319-50230-4_15
http://dx.doi.org/10.1007/978-3-319-50230-4_16
http://dx.doi.org/10.1007/978-3-319-50230-4_17
http://dx.doi.org/10.1007/978-3-319-50230-4_17
http://dx.doi.org/10.1007/978-3-319-50230-4_18
http://dx.doi.org/10.1007/978-3-319-50230-4_19
http://dx.doi.org/10.1007/978-3-319-50230-4_19
http://dx.doi.org/10.1007/978-3-319-50230-4_20
http://dx.doi.org/10.1007/978-3-319-50230-4_20
http://dx.doi.org/10.1007/978-3-319-50230-4_21
http://dx.doi.org/10.1007/978-3-319-50230-4_22

An Experience Integrating Response-Time Analysis and Optimization
with an MDE Strategy . 303

Juan M. Rivas, J. Javier Gutiérrez, Mario Aldea, César Cuevas,
Michael González Harbour, José María Drake, Julio L. Medina,
Laurent Rioux, Rafik Henia, and Nicolas Sordon

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly. . . 317
Steffen Zschaler and Lawrence Mandow

SEMS

On the Emergence of Patterns for Spreadsheets Data Arrangements. 333
Ricardo Teixeira and Vasco Amaral

Towards an Automated Classification of Spreadsheets 346
Jorge Mendes, Kha N. Do, and João Saraiva

Programming Communication with the User in Multiplatform
Spreadsheet Applications . 356

Jerzy Sikora, Jacek Sroka, and Jerzy Tyszkiewicz

Fragment-Based Diagnosis of Spreadsheets . 372
Thomas Schmitz, Birgit Hofer, Dietmar Jannach, and Franz Wotawa

TrueGrid: Code the Table, Tabulate the Data . 388
Felienne Hermans and Tijs van der Storm

Views on UML Interactions as Spreadsheet Queries 394
Martin Gogolla and Antonio Vallecillo

Implementing Nested FOR Loops as Spreadsheet Formulas 401
Paul Mireault

SheetGit: A Tool for Collaborative Spreadsheet Development. 415
Ricardo Moreira

VeryComp

Context-Aware Design of Reflective Middleware in the Internet
of Everything . 423

Marina Mongiello, Tommaso di Noia, Francesco Nocera,
Eugenio di Sciascio, and Angelo Parchitelli

Composition of Advanced (l)Services for the Next Generation
of the Internet of Things . 436

Amleto Di Salle, Francesco Gallo, and Claudio Pompilio

Contents XXXI

http://dx.doi.org/10.1007/978-3-319-50230-4_23
http://dx.doi.org/10.1007/978-3-319-50230-4_23
http://dx.doi.org/10.1007/978-3-319-50230-4_24
http://dx.doi.org/10.1007/978-3-319-50230-4_25
http://dx.doi.org/10.1007/978-3-319-50230-4_26
http://dx.doi.org/10.1007/978-3-319-50230-4_27
http://dx.doi.org/10.1007/978-3-319-50230-4_27
http://dx.doi.org/10.1007/978-3-319-50230-4_28
http://dx.doi.org/10.1007/978-3-319-50230-4_29
http://dx.doi.org/10.1007/978-3-319-50230-4_30
http://dx.doi.org/10.1007/978-3-319-50230-4_31
http://dx.doi.org/10.1007/978-3-319-50230-4_32
http://dx.doi.org/10.1007/978-3-319-50230-4_33
http://dx.doi.org/10.1007/978-3-319-50230-4_33
http://dx.doi.org/10.1007/978-3-319-50230-4_34
http://dx.doi.org/10.1007/978-3-319-50230-4_34
http://dx.doi.org/10.1007/978-3-319-50230-4_34

A Formal Approach to Error Localization and Correction
in Service Compositions . 445

Julia Krämer and Heike Wehrheim

Pure Edge Computing Platform for the Future Internet. 458
Mirko D’Angelo and Mauro Caporuscio

Author Index . 471

XXXII Contents

http://dx.doi.org/10.1007/978-3-319-50230-4_35
http://dx.doi.org/10.1007/978-3-319-50230-4_35
http://dx.doi.org/10.1007/978-3-319-50230-4_36

DataMod

Separating Topological Noise from Features
Using Persistent Entropy

Nieves Atienza1(B), Rocio Gonzalez-Diaz1, and Matteo Rucco2

1 Applied Math Department, School of Computer Engineering,
University of Seville, Seville, Spain

{natienza,rogodi}@us.es
2 Computer Science Division, School of Science and Technology,

University of Camerino, Camerino, Italy
matteo.rucco@unicam.it

Abstract. Topology is the branch of mathematics that studies shapes
and maps among them. From the algebraic definition of topology a new
set of algorithms have been derived. These algorithms are identified
with “computational topology” or often pointed out as Topological Data
Analysis (TDA) and are used for investigating high-dimensional data in a
quantitative manner. Persistent homology appears as a fundamental tool
in Topological Data Analysis. It studies the evolution of k−dimensional
holes along a sequence of simplicial complexes (i.e. a filtration). The set
of intervals representing birth and death times of k−dimensional holes
along such sequence is called the persistence barcode. k−dimensional
holes with short lifetimes are informally considered to be topological
noise, and those with a long lifetime are considered to be topological
feature associated to the given data (i.e. the filtration). In this paper, we
derive a simple method for separating topological noise from topological
features using a novel measure for comparing persistence barcodes called
persistent entropy.

Keywords: Persistent homology · Persistence barcodes · Shannon
entropy · Topological noise · Topological features

1 Introduction

Persistent homology studies the evolution of k−dimensional holes along a
sequence of simplicial complexes. Persistence barcode is the collection of intervals
representing birth and death times of k−dimensional holes along such sequence.
In persistence barcode, k−dimensional holes with short lifetimes are informally
considered to be “topological noise”, and those with a long lifetime are “topo-
logical features” of the given data.

In general, “very” long living intervals (long lifetime) are considered topolog-
ical features since they are stable to “small” changes in the filtration. Neverthe-
less, the definition of what a “topological feature” is, depends on the application.
This way, the technique presented in this paper should be considered as an option
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-50230-4 1

4 N. Atienza et al.

that can be used for discriminating between topological features and topological
noise. Moreover, we claim it is very easy (and fast) to compute, and easy to
adapt depending on the application.

In [1] a methodology is presented for deriving confidence sets for persistence
diagrams to separate topological noise from topological features. The authors
focused on simple, synthetic examples as proof of concept. Their methods have
a simple visualization: one only needs to add a band around the diagonal of the
persistence diagram. Points in the band are consistent with being noise. The
first three methods are based on the distance function to the data. They started
with a sample from a distribution P supported on a topological space C. The
bottleneck distance is used as a metric on the space of persistence diagrams. The
last method uses density estimation. The advantage of the former is that it is
more directly connected to the raw data. The advantage of the latter is that it
is less fragile; that is, it is more robust to noise and outliers.

Persistent entropy (which is the Shannon entropy of the persistence barcode)
is a tool formally defined in [2] and used to measure similarities between two
persistence barcodes. A precursor of this definition was given in [3] to measure
how different the intervals of a barcode are in length.

In this paper, we use the difference of persistent entropy to measure sim-
ilarities between two persistent barcodes. More concretely, we derive a simple
method for separating topological noise from topological features of a given per-
sistence barcode obtained from a given filtration (ie., a sequence of simplicial
complexes) using the mentioned persistent entropy measurement.

2 Related Work

Persistent homology based techniques are nowadays widely used for analyzing
high dimensional dataset and they are good tool for shaping these dataset and
for understanding the meaning of the shapes. There are several techinques for
building a topological space from the data. The main approach is to complete the
data to a collection of combinatorial objects, i.e. simplices. A nested collection of
simplices forms a simplicial complex. Simplicial complexes can be obtained from
graphs and point cloud data (PCD) [4,5]. For example, PCD can be completed to
simplicial complexes by using the Vietoris-Rips approach. Vietoris-Rips filtration
is a versatile tool in topological data analysis. It is a sequence of simplicial
complexes built on a metric space to add topological structure to an otherwise
disconnected set of points. It is widely used because it encodes useful information
about the topology of the underlying metric space. The mathematical details of
Vietoris-Rips filtration are given in Sect. 3.

Let’s take a look at Fig. 1, it represents a collection of RNA secondary sub-
optimal structures within different bacteria. All the shapes are characterized
by several circular substructures, each of them is obtained by linking different
nucleotides. Each substructure encodes functional properties of the bacteria. Per-
sistent homology properly identifies these substructures. For the love of precise-
ness, Mamuye et al. [6], used Vietoris-Rips complexes and persistent homology

Separating Topological Noise from Features Using Persistent Entropy 5

Fig. 1. From left to right: RNA secondary suboptimal structures within different bac-
teria.

for certifying that there are different species but characterized with the same
RNA suboptimal secondary structure, thus these species are functionally equiv-
alent.

In [7], the authors proposed a new methodology based on information the-
ory and persistent homology for classifying real length noisy signals produced
by small DC motors. They introduced an innovative approach based on “auto
mutual information” and the “CAO’s method” for providing the time delay
embedding of signals. The time delay embedding transforms the signal into a
point cloud data in R

d, where d is the dimension of the new space. Vietoris-Rips
complex is then computed and analyzed by persistent homology. The authors
classified the signal in two classes, respectively “properly working” and “broken”.

However, Vietoris-Rips based analysis suffers of the selection of the parame-
ter ε. Generally speaking, for different ε, different topological features can be
observed. In [7], ε was selected as the euclidean distance among the points in
the new space. We remark that the parameter ε does not have a unique physical
meaning and it depends on the problem under analysis. For example, in [8], sev-
eral applications of Vietoris-Rips based analysis to biological problems have been
reported and examples of different ε with different meaning were found. In order
to select the best ε, some statistics have been provided what it is known as “per-
sistence landscape” [9]. Landscape is a powerful tool for statistically assessing
the global shape of the data over different ε. Technically speaking, a landscape
is a piecewise linear function that basically maps a point within a persistent
diagram (or barcode) to a point in which the x−coordinate is the average para-
meter value over which the feature exists, and the y−coordinate is the half-life of
the feature. Landscape analysis allows to identify topological features and which
are not. In Sect. 5 we propose an alternative approach to landscape. The main
difference between landscape and our method is that the former uses the average
of ε, while the latter works directly on a fixed ε.

3 Background

This section provides a short recapitulation of the basic concepts needed as a
basis for the presented method for separating topological noise from features.

Informally, a topological space is a set of points each of them equipped with
the notion of neighboring. A simplicial complex is a kind of topological space

6 N. Atienza et al.

constructed by the union of n-dimensional simple pieces in such a way that the
common intersection of two pieces are lower-dimensional pieces of the same kind.
More concretely, an abstract simplicial complex K is composed by a set K0 of
0−simplices (also called vertices V , that can be thought as points in R

n); and,
for each k ≥ 1, a set Kk of k−simplices σ = {v0, v1, . . . , vk}, where vi ∈ V for
all i ∈ {0, . . . , k}, satisfying that:

– each k−simplex has k + 1 faces obtained removing one of its vertices;
– if a simplex σ is in K, then all faces of σ must be in K.

The underlying topological space of K is the union of the geometric realization of
its simplices: points for 0-simplices, line segments for 1-simplices, filled triangles
for 2-simplices, filled tetrahedra for 3-simplices and their n-dimensional coun-
terparts for n-simplices. We only consider finite (abstract) simplicial complexes
with finite dimension, i.e., there exists an integer n (called the dimension of K)
such that for k > n, Kk = ∅ and for 0 ≤ k ≤ n, Kk is a finite set. See [10,11] for
an introduction to algebraic topology.

Two classical examples of abstract simplicial complexes are each complexes
and Vietoris-Rips complexes (see [12, Chapter 3]). Let V be a finite set of points
in R

n. The ech complex of V and r denoted by r(V) is the abstract simplicial
complex whose simplices are formed as follows. For each subset S of points in
V , form a closed ball of radius r/2 around each point in S, and include S as a
simplex of r(V) if there is a common point contained in all of the balls in S. This
structure satisfies the definition of abstract simplicial complex. The Vietoris-
Rips complex denoted as V Rr(V) is essentially the same as the ech complex.
Instead of checking if there is a common point contained in the intersection of
the (r/2)−ball around v for all v in S, we may just check pairs adding S as
a simplex of r(V) if all the balls have pairwise intersections. We have r(V) ⊆
V Rr(V) ⊆√

2r (V). See Fig. 2.

Fig. 2. [12, p. 72] Nine points with pairwise intersections among the disks indicated
by straight edges connecting their centers, for a fixed time ε. The ech complex ε(V)
fills nine of the ten possible triangles as well as the two tetrahedra. The Vietoris-Rips
complex V Rε(V) fills the ten triangles and the two tetrahedra.

Separating Topological Noise from Features Using Persistent Entropy 7

Homology is an algebraic machinery used for describing topological spaces.
The k−Betti number βk represents the rank of the k−dimensional homology
group of a given simplicial complex K. Informally, β0 is the number of connected
components, β1 counts the number of loops in R

2 or tunnels in R
3, β2 can be

thought as the number of voids and, in general, βk can be thought as the number
of k-dimensional holes.

Persistent homology is a method for computing k−dimensional holes of K
at different spatial resolutions. The key idea is as follows: First, the space must
be represented as a simplicial complex and a distance function must be defined
on the space. Second, a filtration of the simplicial complex, that is a nested
sequence of increasing subsets (referred above as different spatial resolutions), is
computed. More concretely, a filtration of a simplicial complex K is a collection
of simplicial complexes {K(t)|t ∈ R} of K such that K(t) ⊂ K(s) for t < s and
there exists tmax ∈ R such that Ktmax = K. The filtration time (or filter value)
of a simplex σ ∈ K is the smallest t such that σ ∈ K(t).

Then, persistent homology describes how the homology of a given simpli-
cial complex K changes along filtration. If the same topological feature (i.e.,
k−dimensional hole) is detected along a large number of subsets in the filtra-
tion, then it is likely to represent a true feature of the underlying space, rather
than artifacts of sampling, noise, or particular choice of parameters. More con-
cretely, a k−dimensional Betti interval, with endpoints [tstart, tend), corresponds
to a k−dimensional hole that appears at filtration time tstart and remains until
filtration time tend. The set of intervals representing birth and death times of
homology classes is called the persistence barcode associated to the corresponding
filtration. For more details and a more formal description we refer to [12].

4 Persistent Entropy

In order to measure how much the construction of a filtered simplicial complex
is ordered, a new entropy measure, the so-called persistent entropy, were defined
in [2]. A precursor of this definition was given in [3] to measure how different
the intervals of a barcode are in length. In [13], persistent entropy is used for
addressing the comparison between discrete piece-wise linear functions.

Given a ech or Vietoris-Rips filtration F = {K(t)|t ≤ T} (in practice one
will never construct the filtration up to the end and will stop at a certain time
T), and the corresponding persistence barcode B = {[ai, bi) : 1 ≤ i ≤ n}, let
L = {�i = bi − ai : 1 ≤ i ≤ n}. The persistent entropy H of the filtration F is:

HL = −
n∑

i=1

�i

SL
log

�i

SL
, being SL =

∑

i∈I

�i.

Note that the maximum persistent entropy would correspond to the situation in
which all the intervals in the barcode are of equal length. Conversely, the value of
the persistent entropy decreases as more intervals of different lengths are present.
More concretely, if B has n intervals, the possible values of the persistent entropy
HL associated with the barcode B lie in the interval [0, log(n)].

8 N. Atienza et al.

The following result supports the idea that persistent entropy can differenti-
ate long from short intervals as we will see in the next section.

Theorem 1. For a fixed integer i, 1 ≤ i ≤ n, let Li = {�i+1, . . . �n}, Si =∑n
j=i+1 �j and let Hi be the persistent entropy associated to Li. Let

L′(i) = {�′
1, . . . , �

′
i, �i+1, . . . , �n}, where �′

j = Si/eHi , for 1 ≤ j ≤ i.

Then HL ≤ HL′(i).

Proof. Let us prove that HL′(i) is the maximum of all the possible persistent
entropies associated to lists of intervals with n elements, such that the last n− i
elements of any of such lists is {�i+1, . . . , �n}. Let M = {x1, . . . , xi, �i+1, . . . , �n}
(where xj > 0 for 1 ≤ j ≤ i) be any of such lists. Let Sx =

∑i
j=1 xj . Then, the

persistent entropy associated to M is:

HM =
i∑

j=1

xj

Sx + Si
log

(
xj

Sx + Si

)
+

n∑

j=i+1

�j

Sx + Si
log

(
�j

Sx + Si

)
.

In order to find out the maximum of HM with respect to the unknown variables
xk, 1 ≤ k ≤ i, we compute the partial derivative of HM with respect to those
variables:

∂HM

∂xk
=

1
(Sx + Si)2

⎛

⎝−SiHi + Si log
(

Si

xk

)
+

∑

j �=k

xj log
(

xj

xk

)⎞

⎠ .

Finally, {xk = Si

eHi
: 1 ≤ k ≤ i} is the solution of the system {∂HM

∂xk
= 0 : 1 ≤

k ≤ i}. �	

5 Separating Topological Features from Topological Noise

Let us start with a sample V from a distribution P supported on a topological
space C. Suppose the Vietoris-Rips filtration F is computed from V , and the
persistence barcodes B is computed from F . The following are the steps of our
proposed method, based on persistent entropy, to separate topological noise from
topological features in the persistence barcode B, estimating, in this way, the
topology of C.

1. Order the intervals in B by decreasing length. Then L = {�i = bi − ai : 1 ≤
i ≤ n} satisfies that �i ≤ �j for i < j;

2. Compute the persistent entropy HL of B. Denote HL′(0) := HL.
3. From i = 1 to i = n,

a. Compute the persistent entropy HL′(i) for L′(i) = {�′
1, . . . , �

′
i, �i+1, . . . ,

�n}, being �′
k = Si

eHi
for 1 ≤ k ≤ i as in Theorem 1.

b. Compute Hrel(i) = (HL′(i) − HL′(i−1))/(log(n) − HL).

Separating Topological Noise from Features Using Persistent Entropy 9

c. If Hrel(i) > i
n , then the associated interval [ai, bi) represents a topological

feature. Otherwise, the interval [ai, bi) represents noise.

Steps 1, 2 and 3.a can be considered as a general method for any kind of appli-
cation. For 1 ≤ i ≤ n, HL′(i) is the entropy of the barcode obtained by replacing
the intervals �1, . . . , �i by i intervals that maximize the entropy. Observe that
HL′(0) = HL, HL′(i) < HL′(j) for 0 ≤ i < j ≤ n and HL′(n) = log(n) by
Theorem 1.

Step 3.b and 3.c are used to test a possible dissimilarity measure to differ-
entiate topological features from noise. These two steps could be modified later
depending on the application. In this paper, we use HL′(i) −HL′(i−1) to measure
the influence of the current interval �i in the initial persistent entropy HL. It
is in order to appreciate this influence, why we divide HL′(i) − HL′(i−1) by the
difference of the possible maximal entropy (which is log(n)) and HL. Then, we
compare the resulting Hrel(i) with i

n since Hrel(i) is affected by the total number
of intervals and the number of intervals we are replacing.

Fig. 3. Left: 30 data points sampled from a circle of radius 2. Middle: Balls of radius
0.5 centered at the sample points. Right: Balls of radius 0.8 centered at the sample
points.

We have applied our methodology to two different scenarios. First, we take 30
data points sampled from a circle of radius 2 (see Fig. 3(Left)). This example has
been taken from paper [1]. Vietoris-Rips complex for t = 0.5 can be deduced from
the picture shown in Fig. 3(Middle) which consists of two connected components
and zero loops. Looking at Vietoris-Rips complex for t = 0.8 (see Fig. 3(Right)),
we assist at the birth and death of topological features: at t = 0.8, one of the
connected components has died (was merged with the other one), and a loop
appears; this loop will die at t = 2, when the union of the pink balls representing
the distance function becomes simply connected.

In our method, an interval is considered to be a feature if Hrel(i) > i
n . In

Table 1(Left), we have applied our method to the intervals that make up the
barcode (without differentiating dimension). This way, only the intervals with
length 2 (that corresponds to the connected component that survives until the
end) and 1.2 (that correspond to the loop that appears at t = 0.8 and disappears
at t = 2) are considered features. Later, in Table 1(Right) we have applied our
method to the intervals that make up the 0-barcode (i.e., the lifetime of the
connected components along the filtration). This way, the intervals with length

10 N. Atienza et al.

2 and 0.7 (that corresponds to the connected components that dies just before
the loop is created) are considered features. This example highlight that we the
results may be different depending on if we apply our method to the whole set
of intervals of the barcode or if we do it dimension by dimension.

Table 1. Results of our method applied to the intervals that make up: (Left) the bar-
code (i.e., without differentiating dimension); and (Right) the 0-barcode; both associ-
ated to the Vietoris-Rips filtration obtained from 30 data points sampled from a circle
of radius 2 (see Fig. 3(Left)).

i
Hi

log(n)
Hrel(i) Feature

2. 0.967011 0.542391 yes
1.2 0.985761 0.260088 yes
0.7 0.991422 0.07853 no
0.45 0.992506 0.0150434 no
0.45 0.993746 0.0171948 no
.

li
Hi

log(n)
Hrel(i) Feature

2. 0.985109 0.77248 yes
0.7 0.991032 0.0905039 yes
0.45 0.992167 0.0173301 no
0.45 0.993463 0.0198057 no
0.4 0.994199 0.0112466 no
.

Consider now a set V of 400 points sampled from a 3D torus. The barcodes
(separated by dimension) computed from the Vietoris-Rips filtration associated
to V are showed in Fig. 4. We have applied our method to the 0-barcode (lifetime
of connected components along the V-R filtration) and the 1-barcode (lifetime
of loops along the V-R filtration). See Table 2(Left) and (Right), respectively.
The interval of length 1.9 in the table on the left corresponds to the connected
component that survives until the end. The intervals of length 1.531 in the table
on the right corresponds to the two tunnels of the 3D torus. In Table 3 we show
the results of our method applied to all the intervals of the barcode without
separating by dimensions. We can see in this case that we obtain the same
features as before plus the interval representing the void.

Table 2. Results of our method applied to the 0-barcode (table on the left) and the
1-barcode (table on the right) associated to the Vietoris-Rips filtration obtained from
400 points sampled from a 3D torus.

i
Hi

log(n)
Hrel(i) Feature

1.9 0.996295 0.442767 yes
0.396 0.996325 0.00449624 no
0.387 0.996351 0.00386916 no
0.387 0.996376 0.00389884 no
0.387 0.996403 0.00392887 no

...

i
Hi

log(n)
Hrel(i) Feature

1.531 0.918238 0.238936 yes
1.531 0.950752 0.302654 yes
0.27 0.952044 0.012028 no
0.261 0.953275 0.011451 no
0.234 0.954209 0.00869544 no

...

Separating Topological Noise from Features Using Persistent Entropy 11

Table 3. Results of our method applied to the barcode (without differentiating dimen-
sion) associated to the Vietoris-Rips filtration obtained from 400 points sampled from
a 3D torus.

�i
�i
L

�′
i

�′
i

L′(i)
HL′(i)
log(n)

Hrel(i) Feature

1.9 0.0145219 0.268369 0.00207708 0.971259 0.0799069 yes

1.531 0.0117016 0.262812 0.00205432 0.972992 0.0554616 yes

1.531 0.0117016 0.257239 0.00203115 0.974775 0.0570812 yes

1.234 0.00943158 0.253276 0.00201566 0.975978 0.0385369 yes

0.396 0.00302667 0.252916 0.00201511 0.976021 0.00137745 no

...

Fig. 4. Barcodes (separated by dimension) computed from the Vietoris-Rips filtration
associated to a point cloud lying on a 3D torus. Left: lifetimes of connected components.
Middle: lifetimes of tunnels. Right: lifetimes of voids.

6 Conclusions and Future Work

In this paper, we have derived a method for separating topological noise from
topological features using the Shannon entropy of persistence barcode. We have
proven that the method is consistent by proving that in step i of the method
we replace i intervals by the same number of intervals but with the length that
maximizes the entropy. This way we “neutralize” the effect of such i intervals
and, by computing the difference of the entropies obtained in step i−1 and step
i, we can deduce if the interval at position i is a topological feature or not.

We intend to adapt our method to study RNA data from healthy and
unhealthy cells. We argue the method will let to highlight the topological features
that are formed by the most relevant genes associated to pathologies.

Acknowledgments. Authors are partially supported by IMUS, University of Seville
under grant VPPI-US and Spanish Government under grant MTM2015-67072-P
(MINECO/FEDER, UE). We also thank the reviewers for their valuable and con-
structive comments.

12 N. Atienza et al.

References

1. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.:
Confidence sets for persistence diagrams. Ann. Stat. 6, 2301–2339 (2014)

2. Rucco, M., Castiglione, F., Merelli, E., Pettini, M.: Characterisation of the idiotypic
immune network through persistent entropy. In: Proceedings Complex (2015)

3. Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An
entropy-based persistence barcode. Pattern Recogn. 48(2), 391–401 (2015)

4. Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for under-
standing biological complex networks via clique weight rank persistent homology.
Electron. Notes Theoret. Comput. Sci. 306, 5–18 (2014)

5. Adams, H., Tausz, A.: Javaplex tutorial (2011)
6. Mamuye, A., Merelli, E., Rucco, M.: Persistent homology analysis of the RNA

folding space. In: Proceedings of 9th EAI Conference on Bio-inspired Information
and Communications Technologies (BICT 2015) (2015)

7. Rucco, M., Concettoni, E., Cristalli, C., Ferrante, A., Merelli, E., Topological clas-
sification of small DC motors. In: 1st International Forum on Research and Tech-
nologies for Society and Industry (RTSI), pp. 192–197. IEEE (2015)

8. Jonoska, N., Saito, M.: Discrete and Topological Models in Molecular Biology.
Springer, Heidelberg (2013)

9. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J.
Mach. Learn. Res. 16(1), 77–102 (2015)

10. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge
11. Munkres, J.R.: Elements of Algebraic Topology, vol. 2. Addison-Wesley, Reading

(1984)
12. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. Am. Math.

Soc. (2010)
13. Rucco, M., Gonzalez-Diaz, R., Jimenez, M.J., Atienza, N., Cristalli, C., Concet-

toni, E., Ferrante, A., Merelli, E.: A new topological entropy-based approach for
measuring similarities among piecewise linear functions. CoRR abs/1512.07613

An Accelerated MapReduce-Based
K-prototypes for Big Data

Mohamed Aymen Ben HajKacem(B), Chiheb-Eddine Ben N’cir,
and Nadia Essoussi

LARODEC, Université de Tunis, Institut Supérieur de Gestion de Tunis,
41 Avenue de la Liberté, Cité Bouchoucha, 2000 Le Bardo, Tunisia

medaymen.hajkacem@gmail.com, {chiheb.benncir,nadia.essoussi}@isg.rnu.tn

Abstract. Big data are often characterized by a huge volume and a
variety of attributes namely, numerical and categorical. To address this
issue, this paper proposes an accelerated MapReduce-based k-prototypes
method. The proposed method is based on pruning strategy to acceler-
ate the clustering process by reducing the unnecessary distance compu-
tations between cluster centers and data points. Experiments performed
on huge synthetic and real data sets show that the proposed method
is scalable and improves the efficiency of the existing MapReduce-based
k-prototypes method.

Keywords: K-prototypes · MapReduce · Big data · Mixed data

1 Introduction

Given the exponential growth and availability of data collected from different
resources, analyzing these data has become an important challenge referred to
as Big data analysis. Big data analysis usually refers to three mains character-
istics also called the three Vs [7] which are respectively Volume, Variety and
Velocity. Volume refers to the large scale data, Variety indicates the different
data types and formats and Velocity refers to the streaming data [6]. One of
the most important challenges in Big data analysis is how to explore the large
amount of mixed data using machine learning techniques. Clustering is one of the
machine learning techniques, which has been used to organize data into groups
of similar data points called also clusters. Examples of clustering methods cat-
egories are hierarchical methods, density-based methods, grid-based methods,
model-based methods and partitional methods [13]. However, traditional clus-
tering methods are not suitable for processing large scale of mixed data. For
example, k-prototypes clustering [18] which is one of the most popular method
to cluster mixed data, it does not scale with huge volume of data [20].

To deal with this issue, Ben HajKacem et al. [3] have proposed a paralleliza-
tion of k-prototypes method through MapReduce model. Although this method
offers for users an efficient analysis of a huge amount of mixed data, it requires
computing all distances between each of the cluster centers and the data points.
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 13–25, 2016.
DOI: 10.1007/978-3-319-50230-4 2

14 M.A.B. HajKacem et al.

However, many of these distance computations are unnecessary, because data
points usually stay in the same clusters after first few iterations. Therefore, we
propose in this paper an Accelerated MapReduce-based k-prototypes method
called AMR k-prototypes. The proposed method is based on pruning strategy
to accelerate the clustering process by reducing the unnecessary distance com-
putations between cluster centers and data points. The experiments show that
the proposed method is scalable and outperforms the efficiency of the existing
MapReduce-based k-prototypes method [3].

The organization of this paper is as follows: Sect. 2 presents related works
in the area of Big data clustering. Then, Sect. 3 describes the proposed AMR
k-prototypes method while Sect. 4 presents experiments that we have performed
to evaluate the efficiency of the proposed method. Finally, Sect. 5 presents con-
clusion and future work.

2 Related Works

Big data clustering has recently received a lot of attentions to build parallel
clustering methods. In this context, several parallel clustering methods have been
designed in the literature [2,4,9,14,16,17,19,23]. Most of these methods use the
MapReduce [5], which is a programming model for processing large scale data
by exploiting the parallelism among a cluster of machines. For example, Zaho
et al. [23] have proposed a parallelization of k-means method using MapReduce
model. Kim et al. [14] have introduced an implementation of DBSCAN method
through MapReduce model. Recently, a parallel implementation of fuzzy c-means
clustering algorithm using MapReduce model is presented in [17]. Indeed, Big
data are often characterized by the variety of attributes, including numerical and
categorical. Nevertheless, the existing parallel methods can not handle different
types of data and are limited to only numerical attributes.

To deal with mixed data, a pre-processing step is usually required to trans-
form data into a single type since most of proposed clustering methods deal with
only numerical or categorical attributes. However, transformation strategies is
often time consuming and produce information loss, leading to undesired clus-
tering results [1]. Thus, several clustering methods for mixed data have been
proposed in the litterateur [1,8,11,15]. For instance, Huang [11] have proposed
k-prototypes method which combines k-means [18] and k-modes [12] methods
for clustering mixed data. Li and Biswas [15] have proposed Similarity-Based
Agglomerative Clustering called SBAC, which is a hierarchical agglomerative
algorithm for mixed data. Among the later discussed methods, k-prototypes
remains the most popular method to cluster mixed data, because of its simplic-
ity and linear computational complexity [8].

In the following, we present an accelerated MapReduce-based k-prototypes
method to deal with large scale of mixed data.

An Accelerated MapReduce-Based K-prototypes for Big Data 15

3 An Accelerated MapReduce-Based K-prototypes for
Big Data

We propose in this section an accelerated MapReduce-based k-prototypes
method. Before presenting the proposed method, we first introduce the k-
prototypes method [11], then the MapReduce model [5].

3.1 K-prototypes Method

Given a data set X={x1 . . . xn} containing n data points, described by mr

numerical attributes and mt categorical attributes, the aim of k-prototypes [11]
is to find k clusters where the following objective function is minimized:

J =
n∑

i=1

k∑

j=1

pijd(xi, cj), (1)

where pil ∈ {0, 1} is a binary variable indicating the membership of data point
xi in cluster cj , cj is the center of the cluster cj and d(xi, cj) is the dissimilarity
measure which is defined as follows:

d(xi, cj) =
mr∑

r=1

√
(xir − cjr)2 + γj

mt∑

t=1

δ(xit, cjt), (2)

where xir represents the value of numeric attribute r and xit represents the value
of categorical attribute t for data point xi, cjr is the mean of numeric attribute r
and cjt is the most common value (mode) for categorical attributes t for cluster
cj . For categorical attributes, δ(p,q)=0 when p = q and δ(p, q) = 1 when p �=
q. γj is a weight for categorical attributes to cluster cj . The optimization of
the objective function J is performed using an alternating iterative process by
looking for the optimal cluster centers. These two steps are alternated iteratively
until convergence. The main algorithm of k-prototypes method is described in
Algorithm 1.1.

Algorithm 1.1. Main algorithm of k-prototypes method
Input: X={x1 . . . xn}, k

Output: Centers={c1 . . . ck}
begin

Choose k cluster centers randomly from X
repeat

Compute distance between data points and clusters using Eq. 2
Update the cluster centers (Save the previous cluster centers as Centers∧

to analyze the convergence)

until Centers∧ = Centers;

end

16 M.A.B. HajKacem et al.

3.2 MapReduce Model

MapReduce [5] is a parallel programming model designed to process large scale
data sets among cluster nodes. The MapReduce model works as follows. The
input and output of the computation is a set of <key/value> pairs. The algo-
rithm to be parallelized needs to be expressed by map and reduce functions. The
map function is applied in parallel to each input <key/value> pair and returns
a set of intermediate <key

′
/value

′
> pairs. Then, shuffle phase groups all inter-

mediate values associated with the same intermediate key and passes them to
the reduce function. The reduce function takes the intermediate key and set of
values for this key. These values are merged together to produce a set of values.
Figure 1 illustrates the flowchart of MapReduce model. The inputs and outputs
are stored in an associated distributed file system that is accessible from any
machine of the cluster nodes. The implementation of the MapReduce model is
available in Hadoop1. Hadoop provides a distributed file system named Hadoop
Distributed File System, (HDFS) that stores data on the nodes.

Fig. 1. MapReduce model flowchart

3.3 An Accelerated MapReduce-Based K-prototypes Method for
Big Data (AMR K-prototypes)

To offer for users the possibility to build grouping from large scale of mixed
type data, we propose the accelerated MapReduce-based k-prototypes method.
The proposed method mainly consists of two functions: map function which
performs the assignment of each data point to the nearest cluster, and reduce
function which is devoted to update the new cluster centers. Then, we iterate
1 http://hadoop.apache.org/.

http://hadoop.apache.org/

An Accelerated MapReduce-Based K-prototypes for Big Data 17

calling the two functions several times until convergence. It is important to note
that the initial cluster centers are chosen randomly.

3.3.1 Map Function:
During this function, we assign each data point to the nearest cluster by com-
puting distance of Eq. 2 between data points and cluster centers. To reduce the
number of distance computations, we propose a pruning strategy using triangle
inequality. More precisely, the triangle inequality is used to prove that if cluster
center c1 is close to data point x, and some other cluster center c2 is far away
from another cluster center c1, then c1 must be closer than c2 to x. The fol-
lowing theorem shows how to use the triangle inequality to reduce the distance
computations and more details can be found in [10].

Theorem 1. Let x a data point and let c1 and c2 cluster centers. If we know
that d(c1,c2) ≥ 2 ∗ d(x,c1) ⇒ d(x,c1) ≤ d(x,c2) without having to calculate
d(x,c2).

Proof. According to triangle inequality, we know that d(c1,c2) ≤ d(x,c1) +
d(x,c1) ⇒ d(c1,c2) − d(x,c1) ≤ d(x,c2). Consider the left-hand side d(c1,c2)
− d(x,c1) ≥ 2 ∗ d(x,c1) − d(x,c1) = d(x,c1) ⇒ d(x,c1) ≤ d(x,c2).

After assigning each data point to nearest cluster, we update a local information
about clusters. To do so, we first update the values of the numerical attributes of
data points. Second, we update the frequencies of different values of categorical
attributes of data points. Third, we update the number of data points assigned
to clusters. Keeping these information is inexpensive and avoids the calculation
over all data points for each iteration. Each time a data point changes cluster
membership, the local information are updated. After few iterations, most data
points remain in the same cluster for other iterations. Then, the map function
outputs the local information about clusters to the reduce function.

Let X=
{
X1 . . . Xm

}
the input data set where Xg the portion of input data

set associated to map function g. Let Centers={c1 . . . ck} the set of cluster
centers. Let SUMg={sumg

1 . . . sumg
k} the set of sum of data values of numeri-

cal attributes relative to different clusters. Let FREQg={freqg1 . . . freqgk} the
set of frequencies of data values of categorical attributes relative to different
clusters. Let NUMBERg={numberg1 . . . numbergk} the set of number of data
points relative to different clusters. Let new (resp. old) the cluster index of
data point xi in the current (resp. previous) iteration. Let Cluster − Cluster a
matrix which records the distances between each pair of cluster centers where
Cluster − Clusterij returns the distance between ci and cj . The main steps of
map function is described in Algorithm 1.2.

3.3.2 Reduce Function
During this function, we merge the local information which are produced from all
map functions in order to calculate the new cluster centers. So, for each cluster,
we first sum the numeric values of data points. Second, we compute the total

18 M.A.B. HajKacem et al.

Algorithm 1.2. Map function
Input: < key : g/value : Xg >,Centers

Output: < key
′
: 1/value

′
: SUMg, FREQg, NUMBERg >

begin
SUMg← ∅ FREQg← ∅ NUMBERg ← ∅
for i ← 1 . . . k do

for j ← 1 . . . k do
Cluster − Clusterij← d(ci, cj)

foreach xi ∈ Xg do
for j ← 1 . . . k do

if pij = 1 then
old ← j

minDistance← d(si, cold)
for j ← 1 . . . k do

if minDistance ≤ 2*Cluster − Clusterjold then
j ← j+1

else
% Distance computation
Distance← d(xi, cj)
if distance < minDistance then

minDistance ← distance
new ← j

if new �= old then
sumg

new ← sumg
new + xi

sumg
old ← sumg

old − xi

freqgnew ← freqgnew + 1
freqgold ← freqgold − 1
numbergnew ← numbergnew + 1
numbergold ← numbergold − 1

return < 1/SUMg, FREQg, NUMBERg >

end

frequencies of different values of categorical attributes relative to the data points.
Third, we sum the number of total data points. Given the above information,
we can compute both the mean and mode value of the new cluster centers. Once
the new cluster centers are computed, the proposed method moves to the next
iteration until convergence. The convergence is achieved when cluster centers
become stable for two consecutive iterations. We notate that the new cluster
centers are stored in HDFS to be ready for next iteration.

Let NewCenters={newc1 . . . newck} the set of new cluster centers. Let
Highest-Freq(freqj) a function which returns the mode value of cluster j from
freqj . The main steps of reduce function is described in Algorithm 1.3.

An Accelerated MapReduce-Based K-prototypes for Big Data 19

Algorithm 1.3. Reduce function
Input: < key : 1/value : SUM1, FREQ1, NUMBER1, . . . , SUMm, FREQm,

NUMBERm >

Output: < key
′
: 1/value

′
: NewCenters >

begin
NewCenters← ∅
for j ← 1 . . . k do

for g ← 1 . . .m do
sumj ← sumj + sumg

j

freqj ← freqj + freqgj
numberj ← numberj + numbergj

for j ← 1 . . . k do
Calculation of mean value
newcj ← sumj/numberj
Calculation of mode value
newcj ← Highest − Freq(freqj)

return < 1/NewCenters >

end

4 Experiments and Results

In this section, we describe the experiments which are performed to evaluate
the efficiency of the proposed AMR k-prototypes method. First, the execution
environment, and the information of the data sets used are given. Then, the
evaluation measures are presented, and the experimental results are provided
and discussed.

4.1 Environment and Data Sets

The experiments are performed on Hadoop cluster running the latest stable ver-
sion of Hadoop 2.7.1. The Hadoop cluster consists of 4 machines. Each machine
has two Pentium(R) Core i5 (2.70 GHz) CPU E5400 and 1 GB of memory. The
operating system of each machine is Ubuntu 14.10 server 64 bit. We conducted
the experiments on the following data sets:

– Synthetic data set: four series of mixed data sets generated using the data
generator developed in2. The data sets range from 1 million to 4 million
data points. Each data point is described using 3 numeric and 3 categori-
cal attributes. In order to simplify the names of the synthetic data sets, we
used names with specific pattern based on the data size. For example: the
Sy1M data set consists of 1 million data points.

– KDD Cup data set (KDD): This is a real data set which consists of data about
TCP connections simulated in a military network environment. Each connec-
tion is described using 7 numeric and 3 categorical attributes. The clustering

2 https://projets.pasteur.fr/projects/rap-r/wiki/SyntheticDataGeneration.

https://projets.pasteur.fr/projects/rap-r/wiki/SyntheticDataGeneration

20 M.A.B. HajKacem et al.

process for this data set detects type of attacks among all the connections.
KDD data set was obtained from UCI machine learning repository3.

– Cover Type data set (Cover): This is a real data set which represents cover type
for 30× 30 meter cells from US Fores. Each measurement is described using
5 numeric and 3 categorical attributes. The clustering process for this data
set identifies types of trees. Cover data set was obtained from UCI machine
learning repository4. Statistics of these data sets are summarized in Table 1.

Table 1. Summary of the data sets

Data set Number of data points Number of attributes Domain

Sy1M 1.000.000 6 (3 Numeric, 3 Categorical) Synthetic

Sy2M 2.000.000 6 (3 Numeric, 3 Categorical) Synthetic

Sy3M 3.000.000 6 (3 Numeric, 3 Categorical) Synthetic

Sy4M 4.000.000 6 (3 Numeric, 3 Categorical) Synthetic

KDD 4.898.431 10 (7 Numeric, 3 Categorical) Detection intrusion

Cover 581.012 8 (5 Numeric, 3 Categorical) Agriculture

4.2 Evaluations Measures

In order to evaluate the quality of the obtained results, we use Sum Squared
Error (SSE) [21] which is defined as follows.

– The Sum Squared Error [21] is one of the most common partitional clustering
criteria and its general objective is to obtain a partition which minimizes the
squared error. This criterion is defined as follows:

SSE =
n∑

i=1

k∑

j=1

d(cj , xi). (3)

We used in our experiments the Speedup and Scaleup [22] measures to evaluate
the performance of AMR k-prototypes method, which are defined as follows.

– The Speedup [22] is measured by fixing the data set size while increasing the
number of machines to evaluate the ability of parallel algorithm to scale with
increasing the number of machines of the Hadoop cluster, which is calculated
as follows:

Speedup =
T1

Th
, (4)

where T1 the running time of processing data on 1 machine and Th the running
time of processing data on h machines in the Hadoop cluster.

3 https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data.
4 http://archive.ics.uci.edu/ml/datasets/Covertype.

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://archive.ics.uci.edu/ml/datasets/Covertype

An Accelerated MapReduce-Based K-prototypes for Big Data 21

– The Scaleup [22] is a measure of speedup that increases with increasing data
set sizes to evaluate the ability of the parallel algorithm for utilizing the
Hadoop cluster effectively, which is calculated as follows:

Scaleup =
Tn1

Th∗nh

, (5)

where Tn1 the running time of processing data with size of n on 1 machine
and Th∗nh

the running time of processing data with size of h∗n on h machines
of the Hadoop cluster.

4.3 Results

We first evaluate the performance of the pruning strategy to reduce the unneces-
sary distances computations. Tables 2 and 3 report the number of distance com-
putations performed by AMR k-prototypes compared to existing MapReduce-
based k-prototypes (MR k-prototypes) method [3] for synthetic and real data
sets respectively using ten runs. A different initialization of cluster centers have
been used over the ten runs, whereas within each run the same initialization of
cluster centers has been used for the different methods. The number of iterations
is fixed as 10 for each run. From Tables 2 and 3, we can observe that the pro-
posed method can reduce a lot of distance computations over MR k-prototypes
method on both synthetic and real data sets. More importantly, this reduction
becomes more significant with the increase of k. For example, the number of
distance computations is reduced by 46.12% when k = 50 and by 78.09% when
k = 100 for Sy4M data set.

Table 4 presents results obtained with AMR k-prototypes versus MR k-
prototypes in terms of SSE values for real data sets. From Table 4, we can observe
that the proposed method produces the same SSE values compared to MR-KP
method. Therefore, we can conclude that AMR-KP avoids unnecessary distance

Table 2. Comparison of the number of distance computations for the synthetic data
sets (averaged over 10 runs)

Data set Number of distance computations (∗108)

MR k-prototypes AMR k-prototypes

Sy1M (K = 50) 5.0000 (± 0.01) 4.6553 (± 0.17)

Sy2M (K = 50) 10.0000 (± 0.03) 9.3087 (± 0.28)

Sy3M (K = 50) 15.0000 (± 0.01) 10.3966 (± 0.22)

Sy4M (K = 50) 20.0000 (± 0.01) 10.8620 (± 0.18)

Sy1M (K = 100) 10.0000 (± 0.02) 2.2671 (± 0.15)

Sy2M (K = 100) 20.0000 (± 0.01) 4.4502 (± 0.31)

Sy3M (K = 100) 30.0000 (± 0.01) 6.8056 (± 0.25)

Sy4M (K = 100) 40.0000 (± 0.03) 9.0711 (± 0.33)

22 M.A.B. HajKacem et al.

Table 3. Comparison of the number of distance computations for the real data sets
(averaged over 10 runs)

Data set Number of distance computations (∗108)

MR k-prototypes AMR k-prototypes

KDD (K = 50) 24.4921 (± 0.56) 3.8136 (± 0.26)

Cover (K = 50) 19.7198 (± 0.17) 2.1147 (± 0.54)

KDD (K = 100) 48.9843 (± 0.28) 6.2263 (± 0.44)

Cover (K = 100) 38.2515 (± 0.58) 1.6948 (± 0.23)

Table 4. Comparison of the SSE values for the real data set (averaged over 10 runs)

Data set SSE (∗108)

MR k-prototypes AMR k-prototypes

KDD (K = 50) 8.8131 (± 0.17) 8.8131 (± 0.17)

Cover (K = 50) 6.5124 (± 0.33) 6.5124 (± 0.33)

KDD (K = 100) 7.6916 (± 0.25) 7.6916 (± 0.25)

Cover (K = 100) 5.2678 (± 0.19) 5.2678 (± 0.19)

computations while still always producing exactly the same quality result as
MR-KP method.

Then, we evaluate the speedup of the proposed method when the data set
grows. Figure 2 shows the speedup results on the synthetic data sets. As the size
of the data set increases, the speedup of AMR k-prototypes becomes approxi-
mately linear, especially in the case of Sy3M and Sy4M data sets. In addition,
Fig. 2 shows that when the data size is 1 million, the performance of 4 machines of
the Hadoop cluster is not significantly improved compared to that of 2 machines.
The reason is that the time of processing 1 million data points is not very bigger
than the communication time among the machines and time occupied by fault
tolerance. Therefore, we can conclude that the larger the data set, the better
the speedup.

To study the scalability of the proposed method, we have evaluated scaleup
measures when we increase the size of the data set in direct proportion to the
number of machines of the Hadoop cluster. The Sy1M, Sy2M, Sy3M and Sy4M
data sets are processed on 1, 2, 3, 4 machines respectively. Figure 3 illustrates
the scaleup results on the synthetic data sets. The scaleup has almost a constant
ratio and ranges between 1 and 1.06. For example, the scaleup for Sy1M is 1
while for Sy4M it is 1.06, which is a very small difference. Therefore, we can
conclude that the proposed method is scalable.

An Accelerated MapReduce-Based K-prototypes for Big Data 23

0

1

2

3

4

5

1 2 3 4

Linear

Sy1MS
pe

ed
up

0

1

2

3

4

5

1 2 3 4

Linear

Sy2MS
pe

ed
up

number of machines number of machines

0

1

2

3

4

5

1 2 3 4

Linear

Sy3MS
pe

ed
up

0

1

2

3

4

5

1 2 3 4

Linear

Sy4MS
pe

ed
up

number of machines number of machines

Fig. 2. Speedup results

0,2

0,6

1

Sy1M Sy2M Sy3M Sy4M

S
ca

le
up

Data set

Fig. 3. Scaleup results

5 Conclusion

In this paper, we have proposed an accelerated MapReduce-based k-prototypes
method to deal with large scale of mixed data. The proposed method is based on
pruning strategy to reduce the unnecessary distance computations. The experi-
ment results show that our method is scalable and can improves the efficiency of
existing MapRedced-based k-prototypes method without decreasing the quality.
A proper initialization of k-prototypes method is crucial for obtaining a good
final solution. Thus, we plan to propose an efficient initialization of k-prototypes
using MapReduce model in the future work.

24 M.A.B. HajKacem et al.

References

1. Ahmad, A., Dey, L.: A k-mean clustering algorithm for mixed numeric and cate-
gorical data. Data Knowl. Eng. 63(2), 503–527 (2007)

2. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable
k-means++. Proc. VLDB Endowment 5(7), 622–633 (2012)

3. Ben Haj Kacem, M.A., Ben N’cir, C.E., Essoussi, N.: MapReduce-based
k-prototypes clustering method for big data. In: Proceedings of Data Science and
Advanced Analytics, pp. 1–7(2015)

4. Cui, X., Zhu, P., Yang, X., Li, K., Ji, C.: Optimized big data k-means clustering
using mapReduce. J. Supercomput. 70(3), 1249–1259 (2014)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and ana-
lytics. Int. J. Inf. Manag. 35(2), 137–144 (2015)

7. Gorodetsky, V.: Opportunities, challenges and solutions. In: Information and Com-
munication Technologies in Education, Research, and Industrial Applications, pp.
3–22

8. Ji, J., Bai, T., Zhou, C., Ma, C., Wang, Z.: An improved k-prototypes clustering
algorithm for mixed numeric and categorical data. Neurocomputing 120, 590–596
(2013)

9. Hadian, A., Shahrivari, S.: High performance parallel k-means clustering for disk-
resident datasets on multi-core CPUs. J. Supercomput. 69(2), 845–863 (2014)

10. Hamerly, G., Drake, J. Accelerating Lloyd’s algorithm for k-means clustering. In:
Partitional Clustering Algorithms, pp. 41–78 (2015)

11. Huang, Z.: Clustering large data sets with mixed numeric and categorical values.
In Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 21–34(1997)

12. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)

13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. (CSUR) 31(3), 264–323 (1999)

14. Kim, Y., Shim, K., Kim, M.S., Lee, J.S.: DBCURE-MR: an efficient density-based
clustering algorithm for large data using mapReduce. Inf. Syst. 42, 15–35 (2014)

15. Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data.
Knowl. Data Eng. 14(4), 673–690 (2002)

16. Li, Q., Wang, P., Wang, W., Hu, H., Li, Z., Li, J.: An efficient k-means cluster-
ing algorithm on mapReduce. In: Proceedings of Database Systems for Advanced
Applications, pp. 357–371 (2014)

17. Ludwig, S.A.: MapReduce-based fuzzy c-means clustering algorithm: implementa-
tion and scalability. Int. J. Mach. Learn. Cybern. 6(6), 923–934 (2015)

18. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 14, no. 1, pp. 281–297 (1967)

19. Shahrivari, S., Jalili, S.: Single-pass and linear-time k-means clustering based on
mapReduce. Inf. Syst. 60, 1–12 (2016)

20. Vattani, A.: K-means requires exponentially many iterations even in the plane.
Discrete Comput. Geom. 45(4), 596–616 (2011)

21. Xu, R., Wunsch, D.C.: Clustering algorithms in biomedical research: a review.
Biomed. Eng. IEEE Rev. 3, 120–154 (2010)

An Accelerated MapReduce-Based K-prototypes for Big Data 25

22. Xu, X., Jäger, J., Kriegel, H.P.: A fast parallel clustering algorithm for large spatial
databases. In: High Performance Data Mining, pp. 263–290 (2002)

23. Zhao, W., Ma, H., He, Q. Parallel k-means clustering based on mapReduce. In:
Proceedings of Cloud Computing, pp. 674–679 (2009)

Refinement Mining: Using Data to Sift
Plausible Models

Antonio Cerone(B)

Department of Computer Science, Nazarbayev University, Astana, Kazakhstan
antonio.cerone@nu.edu.kz

Abstract. Process mining techniques have been developed in the ambit
of business process management to extract information from event logs
consisting of activities and then produce a graphical representation of
the process control flow, detect relations between components involved
in the process and infer data dependencies between process activities.
These process characterisations allow the analyst to discover an anno-
tated visual representation of the conceptual model or the performance
model of the process, check conformance with an a priori model to detect
deviations and extend the a priori model with quantitative information
such as frequencies and performance data. However, a process model
yielded by process mining techniques is more similar to a representation
of the process behaviour rather than an actual model of the process: it
often consists of a huge number of states and interconnections between
them, thus resulting in a spaghettilike net which is hard to interpret or
even read.

In this paper we propose a novel technique, which we call model min-
ing, to derive an abstract but concise and functionally structured model
from event logs. Such a model is not a representation of the unfolded
behaviour, but comprises, instead, a set of formal rules for generating
the system behaviour. The set of rules is inferred by sifting a plausible
a priori model using the event logs as a sieve until a reasonably con-
cise model is achieved (refinement mining). We use rewriting logic as
the formal framework in which to perform model mining and implement
our framework using the MAUDE rewrite system. Once the final for-
mal model is attained, it can be used, within the same rewriting logic
framework, to predict future evolutions of the behaviour through simu-
lation, to carry out further validation or to analyse properties through
model checking. We illustrate our approach on a case study from the
field of ecology.

Keywords: Formal methods · Model-driven approaches · Process
mining · Application to ecosystem modelling

1 Introduction

The large amount of data available in online repositories have recently driven
research towards the development of techniques and methodologies aiming at
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 26–41, 2016.
DOI: 10.1007/978-3-319-50230-4 3

Refinement Mining: Using Data to Sift Plausible Models 27

extracting meaningful information from data and exploiting it to describe and
understand the processes that have generated such data. Large online reposito-
ries exist in various areas, ranging from economy, learning, sociology and other
social sciences to biology, medicine and ecology.

One of these data analysis techniques is process mining, which emerged in the
field of business process management (BPM). It is used to extract information
from event logs consisting of activities and then produce a graphical representa-
tion of the process control flow, detect relations between components/individuals
involved in the process and infer data dependencies between process activities
[17]. Process mining supports not only the discovery of an a posteriori process
model and its representation as a process map, but also the extension of a pre-
existing a priori model by enriching it with new aspects and perspectives and
the comparison, by using a technique called conformance analysis [13], of the a
priori model with the event logs.

These three approaches, i.e. discovery, extension and conformance analysis,
are alternative ways of using process mining and, although it is possible to apply
them all to the same case, their outcomes cannot be automatically integrated,
but require the analyst to proceed manually with a comparison work [10].

Only recently the potentialities of process mining in disciplines other than
BPM are starting to be understood and realised. Process mining and confor-
mance analysis can be used in a number of contexts, in and across areas such as
human-computer interaction (HCI) and learning [3]. Some of these ideas have
already resulted in research outputs: process mining have been used to extract
learning processes from open source software (OSS) project repositories and
check conformance of learning models based on the literature [10,11].

Process mining aims at understanding the process and validating its effi-
ciency. It is therefore appropriate for descriptive purposes but not for actual
modelling. We want to take a step forward and exploit real data in a constructive
rather than descriptive way by integrating techniques from the realm of process
mining with modelling approaches. In particular, we are interested in formal
approaches to modelling, which have the potential to make the modelling process
automatic, by appropriately manipulating the information extracted from data
logs, and produce a model that can be automatically verified. Although there are
a number of works in the areas of synthesis of programs [7,14,15] and synthesis
of biological and probabilistic systems from data [5,8,12], to our knowledge, the
only attempt to integrate process mininig and formal verification is a work by
van der Aalst, de Beer and van Dongen’s, which aims at verifying whether an
event log satisfies a property expressed in linear temporal logic (LTL) [16]. To
accomplish our objective we use rewriting logic [9], and the Maude system [6], a
tool based on rewriting logic that has a great expressive power and is equipped
with an efficient model checker.

Section 2 introduces the notion of structured event used in our framework
and shows how to instantiate it within various application fields, also providing
motivations for our work. Section 3 introduces our Model Mining Formal Frame-
work (MMFF) by defining the required data structure while Sect. 3.1 describes

28 A. Cerone

the model mining engine. Section 4 presents how to sift a plausible a priori model
using event logs and illustrates the approach using a case study on the dynamics
of a mosquito population. Section 5 describes the possible uses of the generated
model and the advantages of the model mining approach to modelling. Finally,
Sect. 6 illustrate further possible applications and future research challenges.

2 Event Structure and Instantiation

In order to be successfully processed with the purpose of extracting process
control flow information, event logs have to meet a number of structural prop-
erties, namely to contain adequately organised and clustered data. Therefore,
unstructured data contained in event logs stored in repositories have first to
be semantically interpreted according to the purpose of the model we aim to
devise, so that such interpretation can drive their structuring and clustering.
Structural and semantical organisation can be attained by applying text mining
techniques, in particular semantic indexing, in combination with an appropriate
ontology from the given application domain. This approach is commonly used
in process mining, which is thus applied to a set of pre-processed event logs.

For the purpose of model mining we assume to have already pre-processed
events organised as a sequence of structured entities. In order to devise a general
methodology to efficiently apply formal methods to drive the mining engine, we
consider an essential structure of events, as a list of attributes that are general
enough to be instantiated depending on the application domain and purpose.
In particular, we aim to define a methodology that is partly independent of the
precise semantics of the attribute.

We consider the reality to be modelled as an ecosystem of dynamic entities
linked together through causality relationships and activity flows. These causal-
ity relationships and activity flows are what we need to discover in order to
build the ecosystem model. The dynamic evolution of the ecosystem, namely of
its entities, is visible through events.

An event is defined as a quadruple

[|t, d, s, v|]
where

– t is the time at which the event occurs;
– d is the domain name, the name of the domain to which entities belong;
– s is the subdomain name, namely a further categorisation of the entity within

the domain;
– v is the concrete value that refers to domain and subdomain.

We consider two level of domains (domain and subdomain), but this could be
generalised to n levels.

Moreover, we have entities which are the target of our modelling process and
others that make up the environment in which our target entities evolve. Thus
we identify two categories of events:

Refinement Mining: Using Data to Sift Plausible Models 29

target event which describes the activities or actions to be modelled;
environmental event which modifies the conditions that enable activities
and actions.

We denote an environmental event by env[|t, d, s, v|] and a target event by
target[|t, d, s, v|]. We describe below possible instantiations of target and envi-
ronmental events in various application fields, as summerised in Table 1, in which
a “Value” within the “Domain” quantifies or qualify the event, while “Weight”
quantifies a relevant attribute of the “Value” within the environment.

In the field of ecology, if we wish to model the dynamic of a population,
target events may describe the population size (hence its growth activity) or
location (hence its movement or migration activity). In a typical target event,
the domain is the population species, the subdomain is the maturation stage of
the individual (e.g. larva, juvenile or adult) and the concrete value is the actual
population size. Environmental events determine or modify all conditions that
affect the life and maturation of the population (e.g. food availability, predation,
human impact, temperature, humidity, etc.).

For more examples, we can consider the realm of social networks. In a review
community (about resorts, hotels, restaurants, books, or specific products) activ-
ities are reviews, ratings, replies, recommendations, while possible environmental
conditions are changes to or launch, closing/discontinue of services/products. In
an online product support forum, activities are postings and replies while possi-
ble environmental conditions are release of upgrades and new products.

One of the most popular social networking website is Facebook. If we wish to
analyse the friendship relationships (target domain) between community mem-
bers, we need to characterise the level of friendship or the trustiness or rep-
utation of the friend (value). Conditions that affect these values are intensity,
richness/rate and valence (weight) of posts, “likes” and comments (value) on
the friend’s wall (environmental domain). Intensity comprises the frequency and
size of the post/like/comment, richness refers to the contents (e.g. text, stickers,
photos) and valence is the emotional impact (positive, neutral or negative).

A very articulated case of social network is an OSS community. Project
contributors perform a large range of activities: post, reply to a post, send a
message, review code and commit code. If we consider these activities as envi-
ronmental domains, as in Table 1, with aspects of their contents as value, and
their persistence (posts, replies and messages persist when they generate con-
versations/interactions) and impact (the impact of reviews and commits is their
effectiveness in improving the code) as weights, these can be seen as conditions
that affect the growth of individual community members in terms of knowl-
edge, expertise and skills, the evolution of the entire community, as well as the
project productivity and, to a greater extent, the quality of the produced soft-
ware [2]. Table 1 shows how these environmental conditions affect domains in the
ambit of collaborative learning: learning process and skill acquisition. The learn-
ing process can be described in terms of learning stages. Examples of learning
stages of a project contributor are: “understanding”, the initial stage wherein
the contributor observe community activities, use the code, exchange emails and

30 A. Cerone

post messages with the purpose of understanding contents but does not pro-
duce new content; “practising”, wherein the contributor proposes new contents
and production activity starts as a trial and error process; and “developing”, an
advanced stage wherein the contributor already commits code [2]. Skill acquisi-
tion can be described in terms of the activities carried out by the contributor:
coding, reviewing, etc.

Table 1. Example of event instantiations depending on the environment and target
domains from a number of application fields.

Applic. Environmental Target
Field Domain Value Weight Domain Value Activity

Food availability duration location migrate
grow

Ecology Temper. level duration Population
Predation life impact periodicity size intervent.
Human habitat extension measures
Impact deterior. severity

Quake intensity frequency Casualties number
Emerg. amount water monitor

Rain persistence Damage amount
Manag. intensity duration severity response

Temper. level duration Bushfires extension activities

Social post intensity level increase
Network Wall like richness/rate Friendship trust or

(Facebook) comment valence reputation decrease

Collab. Post persistence Learning learning achive
Learning Reply content (conversation, Process stage maturation

in Message aspects interaction) or
OSS Review impact Skill contributor acquire

Commun. Commit (effectiveness) Acquisition activity skill

HCI Task outcome frequency Interface state transition

Cognitive Interface experience frequency Mental interface human
Science Model state action

In the field of HCI, state and transition of an interface depend on the tasks
performed by the human in interacting with the interface, with the value repre-
senting the outcome of the task (successful outcome or failures) and a possible
weight given by the frequency with which the task is performed. In the more
general view of human behaviour considered in cognitive science, humans have
the skill of exploiting their experiences to build mental models of the reality. In
a way, we can say that humans realise a form of “model mining” when building
models out of experiential data. Interacting with a specific interface produces
this kind of experiencial data and allows the human to build a mental model of
the way the interface works. We can describe this situation in our framework as
shown in the last row of Table 1.

Refinement Mining: Using Data to Sift Plausible Models 31

The last column of Table 1 shows the activities that refer to the target
domains. Most of these activities are descriptive, namely they describe how the
domain values change. For example, if we consider a population as a domain,
a change in its location is a migration, while a change in its size is a growth.
Activities shown in italic are instead responsive, namely they aim to modify or,
at least, restrain the descriptive activity. For example, in ecology, intervention
measures are carried out to favour or control the growth of a population.

3 Model Mining Formal Framework

In order to characterise the effect of events on their domain, we need to define
the notion of domain state. Moreover, while events are concrete entities that
accurately represent the reality, states rather refer to the model than to the
reality. They are thus abstract entities, whose values are abstract values.

A domain state is defined as a quintuple

(|d, s, a, w, f |)
where

– d is the domain name;
– s is the subdomain name;
– a is the abstract value that refers to domain and subdomain;
– w is the weight of the value.
– f , called weighting function, is a function from abstract domains to weights.

We mentioned in Sect. 2 that the weight quantifies a relevant attribute of the
value within the environment. Thus the weight quantifies a relevant attribute of
the abstract value. Weight is initialised by f at each change of abstract value and
normally varies as time progresses, independently of the occurrence of events.
For example, in Table 1, we note that in Ecology, a relevant attribute of the value
for “Food availability” is “duration”, since it is the duration of food availability
that modifies the state of the environment. Similarly, relevant attributes of the
value for “Habitat deterioration” are “extension” and “severity” and, in the area
of Collaborative Learning in OSS Communities, relevant attributes of a “Post
content” are its “persistence” in conversations and interactions and its “impact”
on the OSS product, in terms of effective contribution to its improvement.

We denote an environmental state by env(|d, s, a, w|) and a target state by
target(|d, s, a, w, f |). The global state of the ecosystem we are modelling consists
of a set of domain states.

Concrete and abstract values are linked by an abstraction relation

{d, s | v1, v2 → a},

where v1 and v2 may be distinct only if domain d is totally ordered and in this
case v1 ≤ v2. This relation maps any value v of domain d and subdomain s such
that v1 ≤ v ≤ v2 to abstract value a.

32 A. Cerone

The occurrence of environmental event env[|t, d, s, v|] changes environmental
state env(|d, s, a0, w0|) to env(|d, s, a, w|) iff there exist an abstraction relation

{d, s | v1, v2 → a} such that v1 ≤ v ≤ v2,

such that

w =
{

f(a) if a �= a0

w0 otherwise (1)

Therefore, the state weight is reset to f(a) only if there is a change in the abstract
state. In the examples in this paper, we will always have f ≡ 0 and represent state
(|d, s, a, w, f |) simply as a quadruple (|d, s, a, w|). The state weight is regularly
incremented by the passage of time.

We use rewriting logic to define the state transitions. Since one purpose of
model mining is the application of model refinement to a plausible set of models,
we need to consider sets of alternative plausible rules.

A plausible rule is defined as

{i | pre1, ..., pren ⇒ post}

where

– i is the identification number of the plausible rule;
– prei = [di, si, ai, τi]� are preconditions, with di and si environmental domain

and subdmain, respectively, for i = 1, . . . , n, and τi denoting a threshold | τi |
for the effect of the precondition abstract value on the postcondition;

– post =� d, s | a0
α−→ a � is a postcondition, with d and s target domain and

subdomain, respectively.

The plausible rule is enabled on environmental state (|d0, s0, a0, w0|) iff, for each
precondition

prei = [di, si, ai, τi]�, i = 1, . . . , n,

such that di = d0, si = s0 and ai = a0, the following conditions hold

1. τi − w0 ≥ 0 if τi > 0;
2. τi + w0 ≥ 0 if τi ≤ 0.

The application of the rule causes a transition from state (|d0, s0, a0, w0|) to state
(|d0, s0, a, w|), where w is defined as in Eq. (1) above.

A positive threshold τi > 0 means that the precondition is satisfied only if
the abstract value a0 in the current state has been persisting for at most a time
w0 (Condition 1 above is satisfied). A non positive threshold τi ≤ 0 means that
the precondition is satisfied only if the abstract value a0 in the current state has
been persisting for at least a time w0 (Condition 2 above is satisfied).

In order to illustrate the definitions presented in this section, let us con-
sider the following example. Let env(|Temp, avg,med, 3|) be the temperature
state at day 131. It denotes that astract value med, defined according to the

Refinement Mining: Using Data to Sift Plausible Models 33

abstraction relation given in Table 2, persisted for 3 days. Environmental event
env[|131, T emp, avg, 25|], which describes a concrete temperature value of 25◦

at day 131, changes such temperature state to env(|Temp, avg, high, 0|).
Let us consider an application to ecology where the target domain is rep-

resented by a mosquito population of species Aedes albopictus, which rapidly
increases in size when the temperature is high. Let us consider the abstraction
relations in Table 2. Plausible rule

{1 | [Temp, avg, high,−10]� ⇒� Aedes, adult | med
increase−→ high �}

has a single precondition and states that if a high temperature persists for at
least 10 days, then the size of the adult population of Aedes a. increases from
medium to high. If between day 131 and day 141 there are no events that
change the temperature state, env(|Temp, avg, high, 0|) at day 131 becomes
env(|Temp, avg, high, 10|) at day 141. The latter state satisfies Condition 2
above, thus, at day 141, a population state env(|Aedes, adult,med,w|) would
be changed by the plausible rule above to env(|Aedes, adult, high, 0|).

3.1 The Model Mining Engine

We perform model mining using rewriting logic. A prototype of the model mining
engine, implemented using the MAUDE rewrite system [6], and its application
to the case study presented in Sect. 4.1 can be downloaded at

http://sysma.imtlucca.it/refinement-mining-datamod-2016/.

We consider discrete time with a granularity suitable to the specific applica-
tion domain. For example, a daily time progress would, in many cases, suit the
analysis of the dynamic of a population, while for a social network the granu-
larity depends on the frequency of the activity relevant to the model we want
to capture. The data structures defined in Sect. 3 are organised in a configura-
tion, which is manipulated by the model mining engine using rewrite rules. To
distinguish such rules from the plausible rules we call them meta-rules.

A configuration comprises:

abstraction a set of abstraction relations;
past events a list of events that have already been processed by the current
step of the engine;
current events a list of events that are currently being processed by the current
step of the engine;
future events a list of events that have not been processed yet by the current
step of the engine;
option set a collection of plausible rules stuctured as described in Sect. 4;
current state the global state at the current time, which consists in a set of
domain states;

http://sysma.imtlucca.it/refinement-mining-datamod-2016/

34 A. Cerone

control containing static information for reset purpose, i.e. initial domain state
for the target domain, initial time, start and end time for simulation and model
mining, and dynamic information, i.e. information to control the meta-rule selec-
tion and the current choice of plausible rules as well as incrementally built con-
structed model and refinement, and possibly a list of rejected models.

The engine makes use of the following meta-rules:

1. Time Progress to increase the current time and the weight of every domain
state at the beginning of each step and move the events occurring at the next
time from future events to current events;

2. Init Simulation to initialise future events as the list of all events and
control with the initial and final times for the simulation;

3. State Update via Events to modify the current state using environmental
events and abstraction relations as shown in Sect. 3, if there are any environ-
mental events in current events;

4. State Update via Model to select a plausible rule with preconditions sat-
isfying the current state and modify the current state as shown in Sect. 3;

5. No State Update via Model to skip the selection of a plausible rule with
preconditions not satisfying the current state;

6. Model Validation via Events to compare the current state with the target
events, if there are any target events in current events;

7. Init Model Refinement initialise future events as the list of all events
and control with the initial and final times for the model refinement;

8. Refinement Step to sift the plausible model using the target events, if there
are any target events in current events.

Meta-rules 2–6 perform the simulation and meta-rules 7 and 8 perform the model
refinement. The architecture of our model mining engine is shown in Fig. 1. Each
component consist of the evaluation and possibly application of the meta-rule
with the same name, apart form component State Update via Model which
comprises meta-rules 4 and 5.

4 Refinement Mining

Refinement mining is a data-driven model refinement that consists in sifting a
plausible a priori model using the event logs as a sieve until a reasonably concise
model is achieved. In order to carry out refinement mining, plausible rules must
be structured into sets of alternatives called option sets. An option set is defined
as

[i]〈pRule1, ..., pRulen〉
where

– i is the identification number of the option set;
– pRulei are alternative plausible rules for i = 1, . . . , n.

Refinement Mining: Using Data to Sift Plausible Models 35

Fig. 1. Architecture of the model mining engine.

A plausible model is a set of option sets.
A rule reference is defined as

[n : i(j)]

where

– n is a reference to the option set whose identification number is n;
– i is a reference to the plausible rule whose identification number is i within

the option set identified by n;

36 A. Cerone

– j is the number of times the referred plausible rule has been applied during
the current simulation.

A model reference is a set of rule references, one for each option set.
A refinement is a set of model references.
Refinement mining is carried out by performing an event-driven simulation

on all possible choices of one plausible rule for each option set. Each choice
is represented by a model reference. At each step of the simulation, if there
are target events in the current state, then component Refinement Step of
the model mining engine compares the concrete value in each of such target
events with the simulated abstract value of the corresponding target state: if the
concrete value is covered by the abstract value then the current model reference
is added to refinement, otherwise it is added to rejected models (refinement
and rejected models are part of the control field in the engine configuration).
Refinement mining is completed once all possible choices of models are simulated.

4.1 A Case Study from Ecology

In previous work [1] we modelled the dynamic of a population of Aedes albopic-
tus, a mosquito species known as “tiger mosquito”, which is endemic of Asian
regions, where it is a carrier of dengue fever, and now widespread also in Europe.
The model developed in that work is based on biological aspects of the mosquito
and considers the impact of changes in the environmental conditions on such
biological aspects to simulate the population dynamics. Among relevant envi-
ronmental conditions are average temperature and rain amount. The simulation
made use of data on the size of the mosquito population collected during May–
November 2009 in the province of Massa-Carrara (Tuscany, Italy) using CO2
mosquito traps.

If we consider average temperature and rain as environmental domains and
the mosquito population as target domain, we can envisage a plausible model
whose option sets characterise the possible effects of average temperature and
rain amount on the mosquito population. A possible option set is as follows.

[n] 〈 {1 | [Temp, avg, high,−10]� ⇒� Aedes, adult | high
increase−→ extr �}

{2 | [Rain, amount, high,+5]� ⇒� Aedes, adult | high
increase−→ extr �}

{3 | [Temp, avg, high,−1]�, [Rain, amount, high,+10] �
⇒� Aedes, adult | high

increase−→ extr �}
〉

The three alternative plausible rules of option set n state that

1. if a high temperature persists for at least 10 days, then the size of the adult
population of Aedes a. increases from high to extreme;

2. if a high rainfall occurred at most 5 days earlier, then the size of the adult
population of Aedes a. increases from high to extreme;

Refinement Mining: Using Data to Sift Plausible Models 37

3. if a high temperature persists for at least 1 day, and a high rainfall occurred
at most 10 days before, then the size of the adult population of Aedes a.
increases from high to extreme;

If we consider the sequence of events

env[|56, T emp, avg, 25|] −→ target[|56, Aedes, adult, 360|] −→
env[|59, T emp, avg, 24|] −→ env[|59, Rain, amount, 72|] −→
env[|60, T emp, avg, 23|] −→ env[|61, T emp, avg, 22|] −→
env[|62, T emp, avg, 23|] −→ env[|64, T emp, avg, 24|] −→
env[|66, T emp, avg, 25|] −→ env[|67, T emp, avg, 26|] −→
target[|67, Aedes, adult, 561|]

which is a fragment of the data collected in 2009 in the province of Massa-Carrara
and the abstraction relations defined in Table 2, we obtain the abstract values
and weights shown in Table 3. We note that only plausible rule 3 is applicable
at day 67 and thus validated by the sequence of events (i.e. by the data). In
fact, plausible rule 1 is not applicable because the high temperature persisted
for just 1 day rather than the minimum of 10 required by the rule precondition;
plausible rule 2 is not applicable because the high rainfall occurred already 7
days earlier rather than the maximum of 5 required by the rule precondition.
If we suppose that the plausible model consists of just the option set n above
and the refinement mining is driven only by the dataset given in Table 3, then
the final refinement would be set {[n : 3(1)]}, which consists of just the rule
reference of 3 with 1 as the number of times rule 3 has been applied during the
only possible simulation.

5 Model Usage and Model Mining Advantages

The purpose of our framework is not only to generate a model refinement but
also to use it in three possible ways.

The most obvious usage is for prediction. Simulation can be run to predict
the behaviour of the target domain.

Table 2. Abstraction relations for average temperature (Temp, avg), amount of daily
rain (Rain, amount) and Aedes a. population size (Aedes, adult).

Abstract value Concrete value for

Temp, avg Rain, amount Aedes, adult

low (low) 0–19 0–5 0–100

med (medium) 20–24 6–40 101–300

high (high) 25–35 41–200 301–500

extr (extreme) 36–50 201–500 501–800

38 A. Cerone

Table 3. Abstract values (abs) and weight (weight) for real data average tempera-
ture (Temp, avg), amount of daily rain (Rain, amount) and Aedes a. population size
(Aedes, adult), collected in 2009 in the province of Massa-Carrara (the abstract values
are added in accordance with the abstraction relations in Table 2).

Date Day no. Temp, avg Rain, amount Aedes, adult

val abs weight val abs weight val abs

3 July 56 25 high ? - - 0 360 high

6 July 59 24 high > 0 72 high 1 - -

7 July 60 23 med 0 - - 2 - -

8 July 61 22 med 1 - - 3 - -

9 July 62 23 med 2 - - 4 - -

11 July 64 24 med 3 - - 5 - -

13 July 66 25 high 0 - - 6 - -

14 July 67 26 high 1 - - 7 561 extr

Another important usage is model validation. Although the refinement
process is based on validation against real data (target events), the resultant
model may need further validation due to changes in environmental domains
as well as in the target domain. This is a common situation both in biolog-
ical/ecological contexts and in socio-economic contexts. In ecological contexts
the environment changes due to natural degradation and human interventions
while populations get adapted to new environments. In socio-economic contexts
the continuous development of new technologies changes the environmental con-
ditions while the users of such technologies, on the one hand, get adapted to
them and, on the other hand, invent new ways to use them, often ways that the
designer themselves could not predict. In these continuously evolving contexts,
an important advantage of model mining is that the generated model can be
revised through further validation and, if the model is invalidated by the data,
then model mining may be run again on the initial plausible model or on a
revision of it.

The last possible usage of the generated model refinement is property check-
ing. This is possible by exploiting the model checking capabilities of the MAUDE
rewrite system by which plausible models are manipulated.

6 Conclusion and Future Work

We defined a formal framework (MMFF), based on rewriting logic and imple-
mented in the MAUDE rewrite system, for generating a data-validated model
starting from a plausible model defined a priori. We illustrated MMFF on a case
study from the field of ecology.

Refinement Mining: Using Data to Sift Plausible Models 39

As our future work, we are planning to apply MMFF to the various fields
mentioned in Sect. 2 and illustrated in Table 1, in particular to collaborative
learning, HCI and cognitive science. These applications will build on our previous
work and aim to investigate how refinement mining would scale to large datasets.
The initial plausible model may either be based on theoretical hypotheses or
be manually built through the observation of the dataset. In the former case
refinement mining can be used to verify such hypotheses. In the latter case,
however, the larger the dataset is the harder the definition of the plausible model
is, which possibly makes it difficult to apply refinement mining to big data.

In our previous work on the application of rewriting logic (also using the
MAUDE system) to HCI and cognitive science [4] we have characterised the
behaviour of a user that exploits a pre-defined mental model and compared two
interface designs with respect to the cognitive errors that may emerge during
interaction. We plan to use model mining to extend such work, on the one hand
by exploiting environmental events generated by the outcome of human tasks
carried out on a set of different interfaces and target events generated by the
interface states to identify the interfaces that support the successful completion
of the task and, on the other end, by extracting the mental model from event
logs produced by interactions between user and interface.

In our previous work on collaborative learning in OSS communities [11] we
analysed participants interaction and knowledge exchange in emails repositories
of OSS projects by retrieving data carrying information on the learning activities
that occur in distinct phases of the learning process to produce pre-processed
event logs. Such event logs were fed to a process mining tool to produce visual
workflow nets that represent the traces of learning activities in OSS as well as
their relevant flow of occurrence. However, such workflow nets consist of huge
numbers of states and interconnections between them, which make them hard to
interpret. To overcome this problem we plan to revisit our process mining work
and transfer our mining approach to MMFF.

Finally, we must note that there are situations in which target domains do
not directly correspond to observable events. This happens, for example, in social
contexts, when social relationships either are characterised from an introspective
point of view (e.g. friendship), which is not directly externalised through events
(e.g. friendship level, trust and reputation are not directly observable in events),
or evolve over a long time (e.g. learning process), with no events characterising
the change of values (learning stages are not directly observable in events). With
reference to Table 1 we can observe neither a target event of domain Friendship,
whose value directly describes a change in level of friendship or trust, nor a target
event of domain Learning Process, whose value directly describes a change of
learning stage. Since in these situations there are no observable target events,
refinement mining cannot be used.

Therefore, in our future work, we also plan to investigate the possibility
of directly constructing the model from the event logs, rather than extracting
it from a plausible model through refinement mining. We hope that this would

40 A. Cerone

allow model mining to both scale well with big data and deal with target domains
that do not feature observable events.

References

1. Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Rossi,
E.: Modelling the dynamics of an Aedes albopictus population. In: Proceedings of
AMCA-POP 2010, Electronic Proceedings in Theoretical Computer Science, vol.
227, pp. 37–58 (2010)

2. Cerone, A.: Learning and activity patterns in OSS communities and their impact
on software quality. In: Proceedings of OpenCert 2011, ECEASST, vol. 48 (2012)

3. Cerone, A.: Process mining as a modelling tool: beyond the domain of business
process management. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM
2015. LNCS, vol. 9509, pp. 139–144. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-49224-6 12

4. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of
interactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol.
9763, pp. 287–303. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41591-8 20

5. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter syn-
thesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone,
K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-12982-2 7

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 7

7. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Notices, A.S. (ed.) Proceedings of POPL 2011, vol. 46, pp. 317–330.
ACM (2011)

8. Koksal, A.S., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Automat-
ing string processing in spreadsheets using input-output examples. In: Notices, A.S.
(ed.) Proceedings of POPL 2013, vol. 48, pp. 469–482. ACM (2013)

9. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

10. Mukala, P.: Process models for learning patterns in FLOSS repositories. Ph.D.
thesis, Department of Computer Science. University of Pisa (2015)

11. Mukala, P., Cerone, A., Turini, F.: Mining learning processes from FLOSS mailing
archives. In: Janssen, M., Mäntymäki, M., Hidders, J., Klievink, B., Lamersdorf,
W., Loenen, B., Zuiderwijk, A. (eds.) I3E 2015. LNCS, vol. 9373, pp. 287–298.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25013-7 23

12. Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing
and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 343–357. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08867-9 23

13. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

14. Solar-Lezama, A., Rabbah, R.M., Bodik, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: Proceedings of PLDI 2005, ACM SIGPLAN
Notices, vol. 40, pp. 281–294. ACM (2005)

http://dx.doi.org/10.1007/978-3-662-49224-6_12
http://dx.doi.org/10.1007/978-3-662-49224-6_12
http://dx.doi.org/10.1007/978-3-319-41591-8_20
http://dx.doi.org/10.1007/978-3-319-12982-2_7
http://dx.doi.org/10.1007/3-540-44881-0_7
http://dx.doi.org/10.1007/978-3-319-25013-7_23
http://dx.doi.org/10.1007/978-3-319-08867-9_23
http://dx.doi.org/10.1007/978-3-319-08867-9_23

Refinement Mining: Using Data to Sift Plausible Models 41

15. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: Notices, A.S. (ed.) Proceedings of POPL 2010, vol. 45, pp. 313–326.
ACM (2010)

16. van der Aalst, W.M.P., de Beer, H.T., can Dongen, B.F.: Process mining, verifi-
cation of properties: an approach based on temporal logic, Beta Working Paper
Series WT, p. 136. Eindhoven University of Technology, Eindhoven (2005)

17. van der Aalst, W.M.P., Stahl, C., Processes, M.B.: A Petri Net-Oriented Approach.
The MIT Press, Cambridge (2011)

Towards Platform Independent Database
Modelling in Enterprise Systems

Martyn Ellison(B), Radu Calinescu, and Richard F. Paige

Department of Computer Science, University of York, York, UK
{mhe504,radu.calinescu,richard.paige}@york.ac.uk

Abstract. Enterprise software systems are prevalent in many organisa-
tions, typically they are data-intensive and manage customer, sales, or
other important data. When an enterprise system needs to be modernised
or migrated (e.g. to the cloud) it is necessary to understand the structure
of this data and how it is used. We have developed a tool-supported app-
roach to model database structure, query patterns, and growth patterns.
Compared to existing work, our tool offers increased system support and
extensibility which is vital for use in industry. Standardisation and plat-
form independence is ensured by producing models conforming to the
Knowledge Discovery Metamodel and Software Metrics Metamodel.

1 Introduction

Model driven engineering has been shown to aid the modernisation and re-
engineering of enterprise software systems [18]. Public clouds are a common
target platform for these systems, as investigated in the ARTIST [9] project and
CloudMIG [6]. However, this existing work gives minimal consideration to data
(and the database layer) despite this being the most valuable and irreplaceable
part of many systems [5]. Extensive work has been done on database modelling
[2,12] and reverse engineering [4,16], although this is disconnected from the work
on software modernisation and does not focus on the cloud.

In order to determine the costs of migrating and storing data in the cloud
the workload of the enterprise system’s database, i.e., query patterns and growth
patterns, must be known. Furthermore, the database structure must be known
to decide which tables or columns to migrate and whether any modernisation
tasks should be performed during migration (e.g., table merging). In this paper
we investigate how to model these properties in a platform independent way so
that further analysis and migration simulation is possible.

We have developed a prototype model extraction tool, called DBLModeller,
which transforms a schema dump and query log into a structure and a workload
model. These conform to the Knowledge Discovery Metamodel (KDM) and the
Structured Metrics Metamodel (SMM) respectively. Most existing model-driven
modernisation and cloud migration approaches use these metamodels, and the
range of existing tools mean they are an ideal choice for our work. Approaches
for obtaining these two inputs are also proposed.

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 42–50, 2016.
DOI: 10.1007/978-3-319-50230-4 4

Towards Platform Independent Database Modelling in Enterprise Systems 43

DBLModeller has been developed in partnership with Science Warehouse
(www.sci-ware.com), a UK-based e-business company that specialises in enter-
prise procurement software. They have provided access to their core system to
support the evaluation of DBLModeller. This is a large Java-based system that
business customers use to order and compare products from multiple suppliers.

One key challenge when modelling databases is heterogeneity, as a variety
of SQL dialects exist. This becomes an issue when developing a platform inde-
pendent tool which supports a wide range of systems. We have overcome this in
a number of ways: (1) our approach incorporates existing tools from database
providers, (2) a single grammar has been developed to support multiple SQL
dialects, and (3) a model-to-model transformation has been removed from the
model extraction process required to produce KDM and SMM models. These
changes increased the range of enterprise systems supported by DBLModeller
and improved extensibility compared to the state-of-the-art Gra2MoL SQL-to-
KDM tool [8].

The rest of the paper is structured as follows. Section 2 presents our
DBLModeller approach. Section 3 describes our evaluation of DBLModeller.
Section 4 concludes the paper with a brief summary and suggests future work
directions.

2 DBLModeller Approach

Our approach for producing the structure (KDM) and workload (SMM) models
is shown in Fig. 1. Step 1 (T1 & T2) is performed by existing external tools, such
as Oracle SQL Developer [15] for the schema and P6Spy [1] for the SQL trace.
Nearly all databases will have an accompanying management tool which can
produce a SQL schema dump, this is preferable to using any existing SQL scripts
in the organisation as these may be out of date. Similarly, several approaches
exist to capture a SQL trace (i.e., the SQL queries being sent to the database)
but we propose using a ‘spying’ library. These wrap the existing database driver
used by the system and save all queries to a log file, therefore code changes to
the system are not required.

DBLModeller can process the SQL traces produced by P6Spy into a sequence
of load measurements (Step 1 T3), if the SQL trace is captured via another
method then this must be done manually. The load measurements include: entity
count, entity reads, entity writes, unused entities, and database size. An ‘entity’
is the primary data artefact the database is storing and is selected by the user;
e.g. products in an e-commerce system or pages in a Wiki. Abstracting the
measurements in this way greatly simplifies the workload model extraction, and
makes the process more generic.

Steps 2 & 3 are fully automated and performed by DBLModeller. The text-
to-model transformation (Step 2) consists of two separate transformations, one
for each metamodel, as shown in Fig. 2. This uses grammar-to-model mapping
(the approach from [7]), with SQL and Metrics grammars (G1 & G2) that are
mapped to the KDM and SMM (MM1 & MM2) via a set of rules we developed.

http://www.sci-ware.com

44 M. Ellison et al.

Fig. 1. Overview of the DBLModeller approach

Traditionally when using a grammar-to-model approach a publicly available
grammar is reused, however for DBLModeller we developed our own multi-dialect
SQL grammar. Given that the source grammar and mapping rules are tightly
coupled, a new rule-set (i.e., R1 on Fig. 2) would be required for each grammar.
This would not be a scalable approach if a large number of SQL dialects were to
be supported. A multi-dialect grammar is feasible when the target metamodel
(KDM) is at a far higher level of abstraction than the source language, e.g., the
TEXT (in MySQL) and VARCHAR (in Oracle) types both map to the KDM
type String. Furthermore, support for a new dialect can be achieved by adding
the unsupported constructs to the grammar (many constructs will exist in both)
and without modifying the mapping rules, improving extensibility.

If a model is highly abstract or significantly different from a source text,
model extraction typically requires a model-to-model (M2M) transformation to
be combined with a text-to-model (T2M) transformation [8,13]. This is undesir-
able when designing a model extraction tool to be extensible, because the M2M
transformation is an additional code block to modify. In the case of KDM model
extraction, the M2M transformation is only needed to perform simple tasks
like moving elements or resolving references. We developed an annotation-based
model-extraction approach to remove simple M2M transformations.

In our approach three annotation types exist: Add, Move, and Reference.
These are inserted during the T2M transformation (Step 2) to produce an anno-
tated model, which is processed by a model refinement engine (Step 3). The user
will never see the annotated model and he/she will never have to consider which
annotations to use unless DBLModeller is being extended to support a new SQL
dialect or version. We have used annotations to support: ALTER statements,
CREATE INDEX statements, and to resolve references. These three use cases
require the model to be searched after the initial T2M transformation, e.g. an

Towards Platform Independent Database Modelling in Enterprise Systems 45

Fig. 2. Text-to-model transformations in DBLModeller

ALTER statement might add a primary key to a previously created table, this
model element must be found and modified.

3 Evaluation

The evaluation of DBLModeller is based around the following research questions:

RQ1 To what extent are the models produced by DBLModeller complete and
correct?

RQ2 How is the model extraction time impacted by the M2M transformation
replacement?

RQ3 How does the set of SQL keywords supported by DBLModeller compare
to those used in Oracle/MySQL dumps from real-world systems?

RQ4 What is the effect of a multi-dialect grammar and annotated T2M trans-
formation on extensibility?

3.1 Model Extraction

This section evaluates the completeness and correctness of the extracted models
(RQ1) and the performance of DBLModeller (RQ2). These research questions
have been examined together as they impact on each other. DBLModeller has
been compared to Gra2MoL’s PLSQL2KDM example [3] as this had the high-
est level of SQL support at the time of writing. We extracted KDM models
from the database schemas of four systems: Apache OFBiz, MediaWiki, Science
Warehouse, and a student record system [8]. With OFBiz and MediaWiki we
obtained Oracle and MySQL versions of the schema by installing them on both
databases. Additionally, SMM models were extracted from Wikipedia (using 6
months data from [10,19]) and Science Warehouse.

Model completeness was assessed by comparing the number of model ele-
ments and input elements, while for correctness the properties of the model ele-
ments and input elements were compared. We developed a small model checking
tool to automate this analysis. DBLModeller was able to extract models from
the 6 schemas successfully, and from the output of our tool we concluded: that
the input text and the output model had the same number of elements, all table,
column, and sequence names were correct, and relationships between tables were

46 M. Ellison et al.

Table 1. Model extraction times using DBLModeller and Gra2MoL

Schema Size (KLOC) Tool Mean (Secs.) Std. Dev. sec/KLOC

Oracle OFBiz 31.5 DBLM 174 2.35 6

10.3 G2M 237 3.4 24

Oracle MediaWiki 2 DBLM 7 0.23 4

0.8 G2M 14 0.68 18

Oracle Science Warehouse 1 DBLM 5 0.19 5

0.4 G2M 14 0.62 35

Oracle UoM Student System 0.3 DBLM 5 0.21 17

0.3 G2M 10 0.62 33

MySQL OFBiz 21.7 DBLM 104 2.13 5

9.5 G2M 230 9.73 24

MySQL MediaWiki 1 DBLM 5 0.24 5

0.4 G2M 13 0.53 33

correct. Furthermore, we confirmed the models conformed to KDM and SMM
using the Eclipse Modelling Framework.

The performance of DBLModeller was assessed by extracting a KDM model
for each schema and measuring the time taken. This process was repeated 20
times per schema. We expected that the removal of the M2M transformation
from the model extraction process will have significant performance gains. A
virtual machine on the Digital Ocean cloud platform with 4 GB of RAM and
two Ivy Bridge based Intel Xeon cores was used to perform the experiment.

The performance results are presented in Table 1, which shows that DBLMod-
eller can extract a KDM model in less time for every schema. As Gra2MoL
supports fewer SQL statements than DBLModeller, in order to obtain results
it was necessary to modify the schemas by removing unsupported content until
they could be processed by Gra2MoL. We used the metric “sec/KLOC” to sim-
plify comparison, based on this we conclude the model extraction time has been
reduced by up to 86% for Oracle schemas and up to 84% for MySQL.

3.2 RQ3: SQL Keyword Usage Study

Fully supporting every SQL dialect was impractical due to the number that
exist and the size of the language, therefore DBLModeller supports a subset of
two dialects (Oracle and MySQL). Whilst it is straightforward to identify which
dialects to support (many organisations report on the estimated market share),
it is harder to select statements and keywords to support within these. We have
re-used the 6 schemas from Sect. 3.1 and obtained 9 others, giving a sample size
of 15 (listed in Table 2). The additional schemas were obtained using the same
process, i.e., deploying an instance of the system then connecting to its database
with MySQL Workbench or Oracle SQL Developer.

Figure 3 shows the 25 most used keywords in our schema set. None of the
words which appear in the MySQL top 25 are unsupported, while only two in

Towards Platform Independent Database Modelling in Enterprise Systems 47

Fig. 3. Most frequent SQL keywords for the MySQL (left) and Oracle dialects (right)

Table 2. Database schemas used for keyword analysis

System Type Domain

Science Warehouse Oracle E-commerce

Record System [8] Oracle Record System

Apache OFBiz Oracle & MySQL Business Management & E-commerce

MediaWiki Oracle & MySQL Collaboration

Confluence Oracle & MySQL Collaboration

Joomla MySQL Website Management

Magneto MySQL E-commerce

SonarQube MySQL Software Engineering

Mantis MySQL Software Engineering

WordPress MySQL Website Management

Moodle MySQL Education

OrangeHRM MySQL Record System

SuiteCRM MySQL Business Management

RefBase MySQL Education

OpenMRS MySQL Record System

48 M. Ellison et al.

Table 3. Code changes to support the SharePoint schema

G2M new grammar DBL modeller extension

New LOC Updated LOC New LOC Updated LOC

Lexer 70 0 25 6

Parser 11 0 6 14

T2M 25 85 24 1

M2M 10 5 0 0

Total 116 90 55 21

the Oracle top 25 are unsupported: NVARCHAR2 and USING. NVARCHAR2 is
only used by Confluence (albeit extensively), however this means the data type
for NVARCHAR2 columns will be null. If necessary, support for NVARCHAR2
could be added by modifying one line of the SQL grammar (to map it to the
KDM:String data type). The lack of support for USING is not an issue because it
specifies whether an index is enabled or disabled in the Confluence schema, and
this detail is lost when abstracting to a KDM model. From the keyword analysis
data we can also conclude that DBLModeller supported 96% of the content in
the MySQL schemas and 99% of the content in the Oracle Schemas.

3.3 RQ4: Microsoft SQL Server Specialisation

Given the heterogeneity of schemas, databases, and SQL dialects, it is inevitable
that DBLModeller may need to be extended. A case study has been performed
where DBLModeller and the Gra2MoL SQL-to-KDM extraction tool [3,8] were
extended to support a Microsoft SharePoint schema.

A schema dump was obtained from a Microsoft SQL Server database used
by a Microsoft SharePoint 2013 instance. This instance was created specifically
for the case study by installing SharePoint (the schema rather than the data
is needed here, so the results are unaffected by the SharePoint instance not
being live/in-use). As SharePoint uses 16 schemas the largest was selected; this
contains 7 KLOC consisting of 136 tables, 5442 columns, and 61 indexes. The
goal here was not to select a schema which is representative of all Microsoft SQL
Server based databases, but rather to have a schema which is unsupported by
both tools in equal measure.

The changes needed to DBLModeller to support the schema were determined
by attempting to extract a model, then noting any errors produced. These were
then fixed incrementally and the number of modified lines of code were counted.
However, with Gra2MoL a new ANTLR grammar was developed to parse the
schema dump. This makes it possible to compare the work required to extend a
grammar against the work required to develop a new grammar.

Table 3 presents the results and shows that the extension of DBLModeller
required fewer code changes. The use of our annotated T2M transformation

Towards Platform Independent Database Modelling in Enterprise Systems 49

meant that no M2M rule changes were needed. The use of a multi-dialect gram-
mar meant it was unnecessary to write a new grammar for the Microsoft SQL
dialect, instead we modified various rules in our existing grammar. However,
when comparing the development time/effort in extending the two tools it is
important to consider whether a new LOC represents the same effort in each. As
identical technologies are used in the Gra2Mol PLSQL example and DBLMod-
dler (ANTLR for the Lexer/Parser, and the G2M DSL for the T2M rules), the
results should be comparable. Returning to RQ4, we conclude that the changes
made in DBLModeller have had a positive effect on extensibility. Furthermore,
the similarities between SQL dialects meant that extending the DBLModeller
was a straightforward task.

4 Conclusions and Future Work

We introduced DBLModeller, a tool-supported approach for modelling the data-
base layer of enterprise software systems. Using this we were able to extract a
structure model conforming to the KDM [17] and a workload model conforming
to the SMM [14]. These standardised metamodels ensured interoperability with
exiting modelling and cloud migration tools [9,11]. Previous database modelling
tools did not capture the properties which influence cloud migration costs, i.e.,
growth and query patterns. Furthermore, we decoupled the extraction of KDM
and SMM based models from their use (e.g. SMM was used within CloudMIG
[6] but the user is not able to access the model and other SMM models can not
be used as input).

We evaluated DBLModeller using database schemas and log files from multi-
ple real systems. Our experiments showed that DBLModeller can extract models
from a wider range of systems and can be extended with less effort than the lead-
ing existing tool (Gra2MoL [8]). These key benefits were achieved by removing a
model-to-model transformation from the model extraction process and by using
a single multi-dialect grammar instead of using a grammar for each dialect.

In the future we plan to use DBLModeller to extract models from other live
systems and to use these to simulate and optimise data migration from legacy
systems into the cloud. Other potential areas of future research include analyses
of the extracted models to identify design issues or anti-patterns, and to identify
suitable database types for the system being modelled. Finally, we envisage that
the use of annotations to avoid the need for multiple model transformations will
have applications in other areas of model-driven software engineering.

Acknowledgements. This work was funded by the UK EPSRC grant EP/F501374/1.
Science Warehouse Ltd granted access to their systems for evaluation purposes and
provided feedback on the industrial application of DBLModeller.

50 M. Ellison et al.

References

1. P6Spy Framework. http://p6spy.github.io/p6spy
2. Alalfi, M.H., Cordy, J.R., Dean, T.R.: SQL2XMI: Reverse engineering of UML-ER

diagrams from relational database schemas. In: Proceedings of the 15th Working
Conference on Reverse Engineering, pp. 187–191 (2008)

3. Canovas, J.: Gra2Mol: PLSQL2ASTM example project. https://github.com/
jlcanovas/gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2
ASTMModel

4. Davis, K.H., Alken, P.: Data reverse engineering: a historical survey. In: Seventh
Working Conference on Reverse Engineering, pp. 70–78. IEEE (2000)

5. Dı́az, O., Puente, G., Izquierdo, J.L.C., Molina, J.G.: Harvesting models from web
2.0 databases. Softw. Syst. Model. 12(1), 15–34 (2013)

6. Frey, S., Hasselbring, W.: Model-based migration of legacy software systems into
the cloud: the CloudMIG approach. Softwaretechnik-Trends 30(2), 84–85 (2010)

7. Izquierdo, J.L.C., Molina, J.G.: A domain specific language for extracting models
in software modernization. In: 5th European Conference on Model-driven Archi-
tecture Foundations and Applications (ECMDA-FA), pp. 82–97 (2009)

8. Izquierdo, J.L.C., Molina, J.G.: An architecture-driven modernization tool for cal-
culating metrics. IEEE Softw. 27(4), 37–43 (2010)

9. Menychtas, A., Konstanteli, K., Alonso, J., Orue-Echevarria, L., Gorroñogoitia, J.,
Kousiouris, G., Santzaridou, C., Bruneliere, H., Pellens, B., Stuer, P., Strauß, O.,
Senkova, T., Varvarigou, T.A.: Software modernization and cloudification using the
ARTIST migration methodology and framework. Scalable Comput. Pract. Expe-
rience 15(2), 131–152 (2014)

10. Mituzas, D.: Page view statistics for Wikimedia projects. http://dumps.wikimedia.
org/other/pagecounts-raw

11. Mohagheghi, P., Sæther, T.: Software engineering challenges for migration to the
service cloud paradigm: ongoing work in the REMICS project. In: IEEE World
Congress on Services (SERVICES), pp. 507–514 (2011)

12. Mori, M., Noughi, N., Cleve, A.: Mining SQL execution traces for data manipula-
tion behavior recovery. In: Joint Proceedings of the CAiSE 2014 Forum and CAiSE
2014 Doctoral Consortium Co-located with the 26th International Conference on
Advanced Information Systems Engineering (CAiSE 2014), Thessaloniki, Greece,
18–20 June 2014, pp. 41–48 (2014)

13. Normantas, K., Vasilecas, O.: Extracting term units and fact units from existing
databases using the knowledge discovery metamodel. J. Inf. Sci. 40(4), 413–425
(2014)

14. Object Management Group: Structured Metrics Metamodel (1 2012)
15. Oracle: SQL Developer. http://www.oracle.com/technetwork/developer-tools
16. Pérez-Castillo, R., de Guzmán, I.G.R., Caivano, D., Piattini, M.: Database schema

elicitation to modernize relational databases. In: 14th International Conference on
Enterprise Information Systems (ICEIS 2012), pp. 126–132 (2012)

17. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge discovery
Metamodel-ISO/IEC 19506: a standard to modernize legacy systems. Comput.
Stan. Interfaces 33(6), 519–532 (2011)

18. Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T., Gomez, E.,
Estekhin, O.: Architecture driven modernization in practice-study results. In: 14th
IEEE International Conference on Engineering of Complex Computer Systems, pp.
50–57. IEEE (2009)

19. Wikimedia: Wikimedia dump index. http://dumps.wikimedia.org/backup-index.
html

http://p6spy.github.io/p6spy
https://github.com/jlcanovas/gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2ASTMModel
https://github.com/jlcanovas/gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2ASTMModel
https://github.com/jlcanovas/gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2ASTMModel
http://dumps.wikimedia.org/other/pagecounts-raw
http://dumps.wikimedia.org/other/pagecounts-raw
http://www.oracle.com/technetwork/developer-tools
http://dumps.wikimedia.org/backup-index.html
http://dumps.wikimedia.org/backup-index.html

Audio Ergo Sum

A Personal Data Model for Musical Preferences

Riccardo Guidotti1,2(B), Giulio Rossetti1,2, and Dino Pedreschi1

1 KDDLab, University of Pisa, Largo B. Pontecorvo, 3, Pisa, Italy
{guidotti.riccardo,rossetti.giulio,pedreschi.dino}@di.unipi.it

2 KDDLab, ISTI-CNR, Via G. Moruzzi, 1, Pisa, Italy
{guidotti.riccardo,rossetti.giulio}@isti.cnr.it

Abstract. Nobody can state “Rock is my favorite genre” or “David
Bowie is my favorite artist”. We defined a Personal Listening Data Model
able to capture musical preferences through indicators and patterns, and
we discovered that we are all characterized by a limited set of musical
preferences, but not by a unique predilection. The empowered capacity
of mobile devices and their growing adoption in our everyday life is gen-
erating an enormous increment in the production of personal data such
as calls, positioning, online purchases and even music listening. Musical
listening is a type of data that has started receiving more attention from
the scientific community as consequence of the increasing availability of
rich and punctual online data sources. Starting from the listening of 30k
Last.Fm users, we show how the employment of the Personal Listening
Data Models can provide higher levels of self-awareness. In addition, the
proposed model will enable the development of a wide range of analysis
and musical services both at personal and at collective level.

1 Introduction

The unstoppable rise of smartphones joint with their increasing ability of col-
lecting individual information is creating a huge increment in the production
of personal data. Personal information like visited locations, web-searches, pur-
chases, phone calls and even music listening are collected and stored without
any clear benefit for the user. Consequently, it is being defined the need for a
personal model to manage and exploit these large amounts of data.

In the last years in the scientific community is taking place the idea of the
personal data store. A personal data store is a personal, digital identity manage-
ment service controlled by an individual where each user can choose at which
level she wants to share her own data [3]. In our context, we would like that
a personal data store could allow an individual not only the data storage and
management, but also the automatic extraction of systematic behaviors and the
providing of proactive suggestions on the basis of the user’s profile [7].

Since music is a pervasive dimension of our life, and due to the abundance
of online data sources like Spotify, iTunes and Last.Fm, we propose a Personal

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 51–66, 2016.
DOI: 10.1007/978-3-319-50230-4 5

www.Last.Fm
www.Last.Fm

52 R. Guidotti et al.

Listening Data Model (PLDM) able to capture the characteristics and the sys-
tematic patterns which are present in our musical listening behavior. The PLDM
is built on a set of personal listening represented by an abstract data type taken
as input. A listening is formed by the song listened, the artist of the song, the
album, the genre and the listening time-stamp.

A crucial component of the PLDM are the indicators extracted from the
listening features. They summarize the listener and explain her level of repeti-
tiveness in the listening. Moreover, in the PLDM we define some listening pat-
terns coming from the listening frequencies. These patterns are the top listened
genre, artist, album etc. and the most representative preferences. In addition,
the PLDM contains the frequent listening sequences. Those are the typical rep-
etitions followed by the user during a listening session. In short, the proposed
data model is an instance of the personal data store specialized for listening data
and equipped to provide an improved level of self-awareness.

We employed the PLDM to study Last.Fm users. Last.Fm is an online plat-
form, where people can listen music, share their own musical tastes and discover
new artists and genres on the bases of what they, or their friends, like. We
retrieved the last 200 listening of about 30k users resident in the UK. We calcu-
lated the PLDM for each user given their listening. The obtained PLDMs allowed
us to estimate how the Last.Fm audience is segmented in terms of repetitiveness
in their listening. There are some well defined classes: listeners systematic with
respect to the listening day or time hour, listeners which are predictable with
respect to the artists or with respect to the genre, and also “random” listeners.
Another finding is that the musical profile of each user is best outlined using a
limited set of distinct musical preferences, but not by a unique liking. Further-
more, we explain how the PLDM can enable the development of a broad range
of musical analysis and services both at personal and at collective level.

The paper is organized as follows. Section 2 surveys the works related to
personal data model and Last.Fm. Section 3 describes our model for analyzing
musical listening. In Sect. 4 are presented the analysis of the PLDM applied to
Last.Fm users, while Sect. 5 provides an outline of different possible applications.
Finally, Sect. 6 summarizes conclusion and future works.

2 Related Work

The need to handle individual data is leading to the development of personal
models able to deal with and summarize human behavior. These data models
can be generic or specific with respect to the type of data. In [3] is described
openPDS, a personal metadata management framework that allows individuals
to collect, store, and give fine grained access to their metadata to third parties.
openPDS is oriented to the protection of the metadata shared and on the privacy
of the data contained in the system. Similarly, in [9] the authors analyzed a
new personal data ecosystem centered around the role of Bank of Individuals
Data, i.e. a provider of personal data management services enabling people to
exploit their personal data. In [16] the authors presented My Data Store, a tool

www.Last.Fm
www.Last.Fm
www.Last.Fm
www.Last.Fm
www.Last.Fm

Audio Ergo Sum A Personal Data Model for Musical Preferences 53

allowing people to control and share their personal data. A test with a small set
of real users showed improvement over the users’ awareness of their personal data
and the perceived usefulness of the tool. My Data Store has been integrated in
[15] into a framework that permits the development of trusted and transparent
services and apps whose behavior can be controlled by the user, allowing the
growth of an eco-system of personal data-based services. Finally, the proposal
described in [1] is that each user can select which applications have to be run on
which data, facilitating in this way diversified services on a personal server. In
such a way, the personal server would contain all the user’s favorite applications
and all the user’s data that are currently distributed, fragmented, and isolated.

The majority of the works in the literature [1,3,9] focus their attention on
the architecture of the personal data store and on how to treat data sharing
and privacy issues. Hence, the main difference between the personal data model
proposed and those present in the literature is that our focus is to obtain an
added value from the personal data through the application of data mining tech-
niques. Indeed, we aim to apply the methodological framework proposed in [7]
for mobility data to analyze personal musical preferences. The authors proposed
a framework for personal mobility data able to automatically perform individual
data mining and to provide proactive suggestions for supporting decisions. An
application of this approach in mobility data can be found in the MyWay system
[14]. MyWay is a predictive system based on individual mobility profiles which
exploits systematic behaviors models to predict human movements.

To the best of our knowledge this work is the first attempt to define a data
model able to capture human listening behavior. We believe that the treat-
ment of musical listening is becoming valuable because in the last decade the
music world has started receiving more attention from the scientific community.
Last.Fm offers a privileged playground to study different phenomena related to
the online music consumption. Hence, by following the example of some recent
works, we decided to test our personal data model on this dataset. In [11] the
authors measured different dimensions of social prominence on a social graph
built upon 70k Last.Fm users whose listening were observed for 2 years. By
analyzing the width, the depth, and the strength of local diffusion trees, the
authors were able to identify patterns related to individual music genres. In [10]
the authors formally defined the effect of social influence providing new models
and evaluation measures for real-time recommendations with very strong tem-
poral aspects. The authors of [12] analyzed the cross-cultural gender differences
in the adoption and usage of Last.Fm: (i) men listen to more pieces of music
than women, (ii) women focus on fewer musical genres and fewer tracks than
men. Finally, in [2] the authors studied the topology of the Last.Fm social graph
asking for similarities in taste as well as on demographic attributes and local
network structure. Their results suggest that users connect to “online” friends,
but also indicate the presence of strong “real-life” friendship ties identifiable by
the multiple co-attendance to the same concerts.

www.Last.Fm
www.Last.Fm
www.Last.Fm
www.Last.Fm

54 R. Guidotti et al.

3 Personal Listening Data Model

In this section we formally describe the Personal Listening Data Model. By
applying the following definitions and functions it is possible to build for each
user a listening profile giving a picture of her habits in term of listening.

Definition 1 (Listening). Given a user u, we define Lu = {〈time-stamp, song,
artist, album, genre〉} as the set of listening performed by u.

Since a song can belong to more than a genre and can be played by more than an
artist, each listening l (see Fig. 1) is an abstraction of a real listening. However,
we can assume this abstraction without losing in generality.

Fig. 1. A listening l = {〈time-stamp, song, artist, album, genre〉} is a tuple formed by
the time-stamp indicating when the listening occurred, the song listened, the artist
which sings the song, the album the song belongs to, and the genre of the artist.

From the set of listening Lu, for each user we can extract the set of songs Su,
artists Au, albums Bu and genres Gu. Their sizes (| · |) are valuable indicators.

– Su = {song|〈·, song, ·, ·, ·〉 ∈ Lu}
– Au = {artist|〈·, ·, artist, ·, ·〉 ∈ Lu}
– Bu = {album|〈·, ·, ·, album, ·〉 ∈ Lu}
– Gu = {genre|〈·, ·, ·, ·, genre〉 ∈ Lu}

The user behavior can be summarized through frequency dictionaries indi-
cating the support (i.e. relative number of occurrences) of the listening features.

Definition 2 (Support). The support function returns the frequency dictio-
nary as a set of couples (item, support) where the support of an item is obtained
as the number of occurring items on the number of listening.

sup(X,L) = {(x, y)|y = |Y |/|L| ∧ x ∈ X ∧ Y ⊆ Ls.t.∀l ∈ Y, x ∈ l} (1)

We define the following frequency dictionaries: su = sup(Su, Lu), au = sup(Au,
Lu), bu = sup(Bu, Lu), gu = sup(Gu, Lu), du = sup(D,Lu) and tu = sup(T,Lu)
where D = {mon, tue, wed, thu, fri, sat, sun} contains the days of weeks, and
T = {(2−8], (8−12], (12−15], (15−18], (18−22], (22−2]} contains the time slots
of the day.

These dictionaries can be exploited to extract indicators and patterns.

Definition 3 (Entropy). Given dictionary X = {(x1, y1), . . . , (xn, yn)}, the
entropy function returns the normalized entropy defined as

entropy(X) =
−∑n

i=1 P(yi) log2 P(yi)
log2 n

∈ [0, 1] (2)

Audio Ergo Sum A Personal Data Model for Musical Preferences 55

Fig. 2. The raw listening of a user Lu can be turn into a Personal Listening Data Store
Pu extracting the songs Su, artists Au, albums Bu and genres Gu and by applying to
them the functions sup, top, repr, entropy, getseq and freqseq.

The entropy tends to 0 when the user behavior is systematic, tends to 1 when
the behavior is not predictable. These indicators are similar to those related
with shopping behavior described in [5]. We define the entropy for songs, artists,
albums, genres, days and time-slots as esu = entropy(su), eau

= entropy(au),
ebu = entropy(bu), egu = entropy(gu), edu

= entropy(du) and etu = entropy(tu).
The simplest pattern we consider is the most listened song, artist, genre, etc.

Definition 4 (Top). Given dictionary X = {(x1, y1), . . . , (xn, yn)}, the top
function returns the most supported item. It is defined as:

top(X) = argmax
(x,y)∈X

(y) (3)

We define the most listened songs, artists, albums and genres as ŝu = top(su),
âu = top(au), b̂u = top(bu) and ĝu = top(gu), respectively.

Moreover, we want to consider for each user the set of most representative,
i.e. significantly most listened, subsets of artists, albums and genres.

Definition 5 (Repr). Given dictionary X = {(x1, y1), . . . , (xn, yn)}, the repr
function returns the most representative supported items. It is defined as:

repr(X) = knee
(x,y)∈X

(y) = argmax
(x,y)∈X∗,y′∈X′

(|y − y′|) (4)

where X∗ is X sorted with respect to the supports y, X ′ = {y′|y′ = mx′ + n}
with m = (max(sup(X)) − min(sup(X)))/|X| and n = min(sup(X)).

The method repr(X) returns a set of preferences with a support higher than the
support of most of the other listening. For example if gu = {(rock, 0.4), (pop, 0.3),
(folk, 0.1), (classic, 0.1), (house, 0.1)}, repr(gu) returns {(rock, 0.4), (pop, 0.3)}.

This result is achieved by employing the knee method [13]. Given a dictionary
X, the knee method sorts the pairs (xi, yi) according to the supports generating
X∗. Then, it selects the point x∗

k on the support curve X∗ which has the maxi-
mum distance |y∗

k − y′
k| with the correspondent point x′

k in X ′, where X ′ is the
straight line passing through the minimum and the maximum point of the curve
described by X∗. In this way the knee x∗

k is different for each user because it is
driven by personal data. Finally, the method returns the pairs with a support
greater or equal than the support yk of the knee xk. We define the most rep-
resentative songs, artists, albums and genres as s̃u = repr(su), ãu = repr(au),

56 R. Guidotti et al.

b̃u = repr(bu) and g̃u = repr(gu), respectively. Obviously we have ĝu ⊆ g̃u ⊆ gu
that holds also for songs, albums and artists.

Finally, we want to define the frequent sequences of listening to capture the
typical sequences of the listeners. Given the set of listening Lu we can extract
for each day a sequence with respect to a certain feature.

Definition 6 (Listening Sequence). We define a listening sequence seq =
[i1, . . . , in] as a list built by concatenating the items of the listening L in a given
time window τ , ordered by time-stamp and describing a feature of the listening.

The function getseq(X,L) = Sequ = {seq1, . . . , seqm} orders the listening
by time-stamp, divide them in sequences and returns a set of ordered items
describing a certain feature, i.e. songs, albums, genres, artists. We name them
SeqSu = getseq(Su, L), SeqAu = getseq(Au, L), SeqBu = getseq(Bu, L), SeqGu =
getseq(Gu, L) respectively for songs, artists, albums and genres.

In order to extract the frequent pattern sequences we define the function.

Definition 7 (FreqSeq). The freqseq function returns the closed [13] most
frequent sequences with at least minsup occurrences. It is defined as

F = freqseq(Sequ,minsup) (5)

where F = {(seq1, sup1), . . . , (seqn, supn)} is a set containing the frequent sub-
sequences and their support, seqi is a sub-sequence properly contained or equals
to one of the sequences in Sequ, supi ≥ minsup is its support and minsup is
the minimum support, for 1 ≤ i ≤ n.

Byemploying theprevious functions onLu,we canobtain for eachuser the set of fre-
quent sequences FSu

= freqseq(SeqSu ,minsup), FAu
= freqseq(SeqAu ,minsup),

FBu
= freqseq(SeqBu ,minsup) and FGu

= freqseq(SeqGu ,minsup).
By applying the definitions and the functions described above on the user

listening Lu we can turn the raw listening data of a user into a complex per-
sonal data structure (see Fig. 2) that we call Personal Listening Data Model
(PLDM). The PLDM characterizes the listening behavior of a user by means of
its indicators, frequencies and patterns (see Fig. 3).

Definition 8 (Personal Listening Data Model). Given the listening Lu of
a user u we define the user personal listening data model as

Pu = 〈|Lu|, |Su|, |Au|, |Bu|, |Gu|, esu , eau
, ebu , egu , edu

, etu , indicators

su, au, bu, gu, du, tu, frequencies

ŝu, âu, b̂u, ĝu, s̃u, ãu, b̃u, g̃u, FSu
, FAu

, FBu
, FGu

〉 patterns

Fig. 3. The PLDM is formed by indicators (|Lu|, |Su|, |Au|, |Bu|, |Gu|, and entropy
values), by frequencies (the support dictionaries) and by patterns (most listened pref-
erence, most representative preferences and frequent sequences).

Audio Ergo Sum A Personal Data Model for Musical Preferences 57

It is worth to notice that according to the procedures in [6,8], the PLDM
can be extracted through a parameter free approach. The only parameter is
minsup, but we set minsup = 3 to capture all the meaningful frequent sub-
sequence: minsup = 1 is useless, minsup = 2 is too low because there may by a
repetition just by chance.

4 LastFM Case Study

In this section we show the benefits derivable from the application of the PLDMs
on the data extracted from a famous music website called Last.Fm. In particular,
we will show that the information which is generally reported on the main page of
many social network or web services (like the most listened song, artist or genre
in Last.Fm) are not good enough to represent the user’s preferences. Conversely,
a structured data model describing the user behavior like the PLDM can achieve
this goal, also providing to the user personal access to her data.

Last.Fm is an online social network, where people can share their own music
tastes and discover new artists and genres on the bases on what they, or their
friends, like. Each user produces data about her own listening. Through each
listening a user expresses a preference for a song, artist, album, genre and take
place in a certain time. Using Last.Fm APIs1 we retrieved the last 200 listening
of about 30, 000 users U resident in the UK. Given the listening Lu, we calculated
the PLDM Pu for each user u ∈ U .

4.1 Data Models Analysis

The first analysis we report is related to the indicators of the PLDMs {Pu}
extracted. In Fig. 4 are reported the distributions of the number of users which
have listened a certain number of songs |Su|, artists |Au|, albums |Bu| and genres
|Gu|. The first distribution is right-skewed, i.e. most of the users have listened
about 140 songs. This implies that some tracks have been listened more than
once. On the other hand, the other distributions are left-skewed: a typical user
listens about 60 artists, 70 albums and 10 genres.

Fig. 4. Distributions of the number of songs |Su|, artists |Au|, albums |Bu| and genres
|Gu| respectively. The black vertical lines highlight the means.

1 http://www.last.fm/api/, retrieval date 2016-04-04.

www.Last.Fm
www.Last.Fm
www.Last.Fm
www.Last.Fm
http://www.last.fm/api/

58 R. Guidotti et al.

Fig. 5. Distributions of entropy for artists eau , genre egu , day of week edu and time
of day etu respectively. The black vertical lines highlight the means.

Figure 5 depicts the distributions of the entropy2. It emerges that users are
much more systematic with respect to the listening time (day of week and time
of the day) than with respect to what they listen. This behavior is in opposition
to what happens in shopping [5]. Since the artist and genre entropy are right-
skewed, it seems that most of the users are not very predictable with respect to
the genre or to the artist. This is a first clue that is very unlikely that exists a
unique prevalence towards a unique artist or genre.

Figure 6 (left) shows the heat-map of the correlations among the indicators.
Some of them like |Au|, |Bu| and |Gu| are highly correlated3 (cor(|Au|, |Bu|) =
0.86, cor(|Gu|, |Bu| = 0.64)): the higher the number of artists or genres,
the higher the number of albums listened. Other interesting correlations are
cor(|Bu|, egu) = −0.33 and cor(|Bu|, eau

) = 0.55. Their density scatter plots
are reported in Fig. 6 (center, right). They tell us that the higher the number
of albums listened, the lower the variability with respect to the genre and the
higher the variability with respect to the artists. From this result we understand
that a user listening to many different albums narrows its musical preferences
toward a restricted set of genres, and that it explores these genres by listen-
ing various artists of this genre and not having a clear preference among these
artists.

Fig. 6. Correlation matrix (left)): the darker the more positively correlated, the lighter
the more negatively correlated. Scatter density plots of number of albums |Bu| and
genre entropy egu (center) and number of albums |Bu| and artists entropy eau (right).

2 Not all of them are reported due to lack of space.
3 The p-value is zero (or smaller than 0.000001) for all the correlations reported.

Audio Ergo Sum A Personal Data Model for Musical Preferences 59

4.2 Segmentation Analysis

The second analysis we propose investigate the existence of different groups of
listeners with respect to their indicators in the PLDMs {Pu}. We applied the
clustering algorithm K-Means [13] by varying the number of clusters k ∈ [2, 30].
By observing the trend of the sum of squared error [4] we decided to select 5 as
the number of clusters. In Fig. 7 are described the radar charts representing the
centroids while in Table 1 are reported the value of the centroids and the size of
the clusters.

Table 1. Centroids for the entropy and size of the clusters extracted.

etu edu esu eau ebu egu size
A 0.8067 0.8442 0.9744 0.8591 0.8794 0.8461 0.44
B 0.7092 0.7234 0.9305 0.7001 0.6732 0.8862 0.13
C 0.4672 0.3366 0.9254 0.7438 0.7717 0.8751 0.06
D 0.5568 0.7687 0.9748 0.8666 0.8855 0.8383 0.19
E 0.7484 0.5624 0.9775 0.8739 0.8918 0.8306 0.19

Fig. 7. Radar charts for the centroids of the clusters extracted on the PMDLs.

The most populated cluster is A. It contains the majority of the listeners. It
seems that these listeners use the web service without a specific listening schema
and that with a high probability they reproduce the tracks using the random
function. However, a peculiarity of these users, is that they are more repetitive
than users in the other clusters with respect to the genres.

In opposition with A, users in clusters B and C do not have a set of genres
which is clearly preferred on top of the others, but they are the most systematic
users in terms of albums and artists listened. This means that they like a concise
set of artists regardless of their genre and they keep listening only them. The
main difference between these two clusters is that users of cluster B are the most
systematic in terms of albums and artists, while those of clusters C are the most
regular with respect to the use of Last.Fm in specific days and time slots.

Finally, users in clusters D and E are similar to those in cluster A with
respect to the level of repetitiveness of listening of genres, artists and albums.
On the other hand, how is highlighted by the last two radars in Fig. 7, they are
complementary with respect to the day of the week and to time of listening.

www.Last.Fm

60 R. Guidotti et al.

Users in cluster D do not have a specific day of the week but use the service
constantly at the same time (e.g. during gym session or during specific working
areas). Conversely, users in cluster E do not have a specific time slot but use the
service periodically in specific days of the week (e.g. during the weekend).

We can conclude that exists a clear distinction among different groups of
listeners. From the clustering information originated from the PLDM, a user
could learn that is focusing too much on a certain genre or on certain artists and
that is not exploring what is outside her “musical confidence zone”.

4.3 Sequences Analysis

In this section we make use of the frequent sequences to give a first proof that
the most listened genre is not a good candidate to be representative for the user
preferences. We remark that a frequent sequence is, for example, a concatenation
of genres listened many times in a specific order.

We report in Table 2 the ten most listened genres and artists with the users
support, i.e. the percentage of users having that genre or artist as ĝu or âu. To
analyze the frequent sequences, for each PLDMs {Pu} we considered the most
listened genres {ĝu} and the most supported patterns in the genre frequent
sequences {FGu

} (i.e. the pattern with the highest support). Then, for each
genre g ∈ G we built two sets F ĝu

Gu
and ¬F ĝu

Gu
. F ĝu

Gu
contains the most supported

patterns of each user having g = ĝu and containing g into the pattern sequence,
while ¬F ĝu

Gu
contains the most supported patterns of each user having g = ĝu

and not containing g into the pattern sequence. Figure 8 shows the distribution
of the number of genres with respect to the ratio of this two sets |F ĝu

Gu
|/|¬F ĝu

Gu
|.

A ratio smaller than one indicates that the most listened genre is not present in
the most supported patterns, vice-versa a ratio greater than one means that the
most listened genre is present in the most supported patterns. The higher the
ratio the more present is ĝu in the most supported pattern in FGu

.

Table 2. Ten of most listened genres and artists
considering {ĝu} and {âu}.

Genre sup % Artist sup %

1 Rock 53.86 The Beatles 0.75

2 Pop 19.64 David Bowie 0.72

3 Hip Hop 5.05 Kanye West 0.56

4 Electronic 2.21 Arctic Monkeys 0.54

5 Folk 2.03 Rihanna 0.51

6 Punk 1.74 Lady Gaga 0.48

7 Indie Rock 1.65 Taylor Swift 0.47

8 Dubstep 0.90 Radiohead 0.43

9 House 0.85 Muse 0.38

10 Metal 0.84 Daft Punk 0.37

Fig. 8. Distribution of |G| with

respect to the ratio of |F ĝu
Gu

|/|¬F ĝu
Gu

|.

Audio Ergo Sum A Personal Data Model for Musical Preferences 61

What emerges is that when we consider patterns which have at least two
different genres in a sequence (e.g. rock, pop) (labeled with |T>1| in Fig. 8), then
for most of the genres the ratio is greater than 1.5. On the other hand, if we
consider patterns without any constraint in the number of different genres in a
sequence (e.g. rock, rock, rock) (labeled with |T>0| in Fig. 8), than we have that
the mode of the distribution is lower than 1.

This result implies that if we consider any kind of sequence, than the most
listened genre is among the genres in these patterns but it becomes a significant
genre only when patterns with more than a genre are considered. This means
that the most listened genre is frequently listened together with other genres.

4.4 Frequency Analysis

In this section we exploit the knowledge of the frequency vectors to demonstrate
that the most listened genre, album and artist considered alone do not represent
properly the preferences of the users. To this aim we look at the frequency vectors
au, gu, the top listened âu, ĝu, and the most representative ãu, g̃u. To simplify
the following discussion we will refer to the sets ãu and g̃u equivalently as x̃ and
to the artists and genres contained in such sets as preferences.

In Fig. 9 is depicted the result of this analysis for genre (top row) and artist
(bottom row)4. The first column shows the distribution of the number of users
with respect to the number of representative genres |g̃u| and artists |ãu|. In both
cases the smallest value is larger than 1 indicating that each user has more than
a preference. On the other hand, a large part of all the genres and artists listened

Fig. 9. Frequencies analysis for genre (top row) and artist (bottom row). First column:
distribution of number of users w.r.t the number of representative preferences. Second
column: distribution of number of users w.r.t the maximum difference in frequencies
between the listening preference. Third column: distribution of number of users w.r.t
the support given by the representative preferences. Last column: density scatter plot
between the representative preferences support and the ratio of their number on the
number of all the possible artists or genres.

4 Similar results are obtained for album but they are not reported due to lack of space.

62 R. Guidotti et al.

are removed when passing from x to x̃. Indeed, the mean for the genres decreases
from 10 to 3, the mean for the artist diminishes from 60 to 10.

The second column in Fig. 9 illustrates the distribution of the number of users
with respect to the maximum difference in frequencies between the listening
preference obtained as max(x̃) − min(x̃). Both for genres and artists the mode
of this value is close to zero. This proofs that the highest preferences are similar
in terms of listening for the majority of the users.

The third column shows the distributions of the users with respect to the most
listened artist support, mas, and most listened genre support, mgs, defined as:

mas = v s.t. (a, v) = âu, mgs = v s.t. (g, v) = ĝu

and the representative artist support, ras, and representative genre support,
rgs, defined as:

ras = sum(v|(a, v) ∈ ãu), rgs = sum(v|(g, v) ∈ g̃u)

From these distributions is evident the increase of the support when not only
the top but also all the representative preferences are considered.

The last column reports a density scatter plot of the representative prefer-
ences support (rgs and ras) and the ratio of their size on the size of Au and Gu,
i.e. |ãu|/|Au| and |g̃u|/|Gu| respectively. Since the higher concentration of points
tends to be ∼0.2 with respect to the x-axis and ∼0.5 with respect to the y-axis,
we have that for most of the users it is sufficient a limited number of preferences
(but more than one) to reach a very high level of support. This concludes that
each user can be described by few preferences that highly characterize her.

Finally, it is interesting to observe how the total support of the users and
consequently the ranks of the top ten artists and genres change when the pref-
erences in |g̃u| and |ãu| are considered instead of those in |ĝu| and |âu| (see
Table 3). We can notice how for the two most listened genres (rock and pop)
there is a significant drop in the total support, vice-versa the other genres gain
levels of support. The overall rank in the genre top ten is not modified very
much. On the other hand, a complete new rank appears for the artists with a
clear redistribution of the support out of the top ten. This last result is another
proof that user’s preferences are systematic but they are not towards a unique
genre or artist, while they are towards groups of preferences.

4.5 Storage Analysis

To enhance the portability of the PLDM, we report in Fig. 10 the boxplots of
the storage occupancy of the data model PLDMs (left) and for the raw listening
(right). The storage required by the data model is typically one third of the stor-
age required by the raw data. Moreover, the storage space of the data model will
not grow very much when storing more listening because the number of possible
genres, artists, albums, songs is limited, while the number of listening grows con-
tinuously. Thus, an average storage of 0.01 Mb together with a computational
time of max 5 sec per user, guarantees that the PLDM could be calculated and
stored individually without the need of a central service.

Audio Ergo Sum A Personal Data Model for Musical Preferences 63

Table 3. Top ten of the most listened genres
and artists considering {g̃u} and {ãu}.

Genre sup % Artist sup %

1 Rock 13.41 David Bowie 0.29

2 Pop 9.73 Arctic Monkeys 0.26

3 Hip Hop 5.16 Radiohead 0.24

4 Indie Rock 4.39 Rihanna 0.24

5 Folk 4.31 Coldplay 0.23

6 Electronic 4.26 The Beatles 0.22

7 Punk 4.07 Kanye West 0.21

8 House 2.63 Muse 0.19

9 R&B 2.53 Florence 0.19

10 Emo 2.11 Lady Gaga 0.19

Fig. 10. Data storage for the data
model (left) and for the raw data
(right).

5 Applications

The PLDM described can be easily applied for many purposes and for a wide
range of tasks. In this section we will try to structure some application proposals.
A first diversification can be made with respect to the main purpose: analysis and
services. Another categorization can be made with respect to the type of data
required: individual and collective. Before going forward it is worth to notice that
the computation needed to calculate the PLDM is very small and each user could
potentially have it calculated on her own personal device without requiring an
external service. Consequently, privacy issues in real applications can be treated
by adopting the frameworks in [3,15]: the PLDM only belongs to the user that
can decide if she wants or not to disclose it (or part of it) to other users.

The simplest example of individual analysis is the user self-awareness.
Through a smart visualization of the features of the PLDM the user can obtain
an unexpected new level of consciousness of her listening behavior. For example
a user could discover that is listening a great variety of artists but that they all
belong to the same genre and that she always listens to them following the same
pattern of songs. A possible reaction could be starting a new listening with an
unknown artist belonging to a different genre to enlarge her musical knowledge,
possibly discovering new musical preferences. Moreover, due to the continuously
growing size of the personal raw listening dataset, the PLDM can be recalculated
in different time windows so that the user can observe changes and/or stability
in the listening profile.

Nevertheless, sometimes only the self-awareness is not sufficient to realize
who we are if we do not compare ourselves with the others (collective analysis).
Thus, if a portion of users agrees to share some features of the PLDM it becomes
possible to understand how much we differ from the mass and where we are
positioned with respect to the others. For example we could discover that our

64 R. Guidotti et al.

most representative genres are the same of the mass but that we are much more
systematic than others.

In addition, there are very diversified categories of listeners and comparing
ourselves with all the others can be not meaningful. Users segmentation at a col-
lective level can reveal these categories. Then the knowledge of the membership
to a category and the comparison with the users belonging to the same category
can reveal more interesting results. As shown in Sect. 4.2, user segmentation can
be obtained by applying clustering techniques on the indicators, patterns and
frequencies. According to this, a third party collective service provider could
exploit shared PLDM to offer recommendations services for artists, song, genre
etc. Furthermore, different types of recommendations could be provided accord-
ing to the type of user in the diffusion process [11] and considering if a user is
good in discovery novel successful songs.

Finally, each user can make use of the PLDM for individual services. Some
examples are the creation of personal play-lists coming from the prediction of the
desire of the user for a certain genre or artist, and the automatic reproduction
in certain days and time of the day. According to the personal data store frame-
work these individual services can be integrated and extended with collective
knowledge bringing to the user an upgraded level of services.

6 Conclusion

The endless growing of individual data is requiring efficient models able to store
information and tools for automatically transforming this knowledge into a per-
sonal benefit. In this paper we have presented the Personal Listening Data Model
(PLDM). The PLDM is designed to deal with musical preferences and can
be employed for many applications. It is formed by indicators of the musical
behavior, listening patterns and vectors containing the listening frequencies. By
employing the PLDM on a set of 30k Last.Fm users we proved the potentialities
of this model. We have shown how the indicators of PLDM can be exploited to
produce a users segmentation able to discriminate between different groups of
listeners. Moreover, the patterns and frequency vectors of the PLDM have been
used to prove that information like the most listened genre or artist are not
enough to represent the musical preferences of a user. Finally, we have proposed
a wide set of applications of the PLDMs at individual and collective level both
for analytic purposes and for the development of novel services.

In the future, it would be interesting to consider in the Last.Fm PLDM also
the friendship dimension in order to estimate and evaluate the level of homophily
of each user with respect to different listening and musical aspects. In addition,
we would like to implement a real web service where a user can provide her
Last.Fm username and a personal dashboard exploiting all the features contained
in the PLDM is shown. The dashboard would allow self-awareness and self-
comparison with other users, with similar users or with the user’s friends. In this
way a user could enlarge her musical experience, try novel tracks and increase
her musical education because knowledge comes from listening.

www.Last.Fm
www.Last.Fm
www.Last.Fm

Audio Ergo Sum A Personal Data Model for Musical Preferences 65

Acknowledgements. This work was partially supported by the European Com-
munitys H2020 Program under the funding scheme “INFRAIA-1-2014-2015:
Research Infrastructures” grant agreement 654024 “SoBigData: Social Mining &
Big Data Ecosystem”, http://www.sobigdata.eu, and under the founding scheme
“FETPROACT-1-2014: Global Systems Science (GSS)”, grant agreement 641191
“CIMPLEX Bringing CItizens, Models and Data together in Participatory, Interac-
tive SociaL EXploratories”, https://www.cimplex-project.eu.

References

1. Abiteboul, S., André, B., Kaplan, D.: Managing your digital life. Commun. ACM
58(5), 32–35 (2015)

2. Bischoff, K.: We love rock ‘n’ roll: analyzing and predicting friendship links in
last.fm. In: Web Science 2012, WebSci 2012, Evanston, IL, USA. 22–24 June 2012,
pp. 47–56 (2012)

3. de Montjoye, Y.-A., Shmueli, E., Wang, S.S., Pentland, A.S.: openPDS: protecting
the privacy of metadata through safeanswers. PloS one 9(7), e98790 (2014)

4. Draper, N.R., Smith, H., Pownell, E.: Applied Regression Analysis, vol. 3. Wiley,
New York (1966)

5. Guidotti, R., Coscia, M., Pedreschi, D., Pennacchioli, D.: Behavioral entropy and
profitability in retail. In: IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pp. 1–10. IEEE (2015). 36678 2015

6. Guidotti, R., Trasarti, R., Nanni, M., Tosca: two-steps clustering algorithm for
personal locations detection. In: 23rd International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL 2015). ACM (2015)

7. Guidotti, R., Trasarti, R., Nanni, M.: Towards user-centric data management: indi-
vidual mobility analytics for collective services. In: MobiGIS Workshop Co-located
with ACM SIGSPATIAL 2015. ACM (2015)

8. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data min-
ing. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 206–215. ACM (2004)

9. Moiso, C., Minerva, R.: Towards a user-centric personal data ecosystem the role of
the bank of individuals’ data. In: 2012 16th International Conference on Intelligence
in Next Generation Networks (ICIN), pp. 202–209. IEEE (2012)

10. Pálovics, R., Benczúr, A.A.: Temporal influence over the last.fm social network.
Social Netw. Anal. Mining 5(1), 4:1–4:12 (2015)

11. Pennacchioli, D., Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F., Coscia,
M.: The three dimensions of social prominence. In: Jatowt, A., et al. (eds.) SocInfo
2013. LNCS, vol. 8238, pp. 319–332. Springer, Heidelberg (2013)

12. Putzke, J., Fischbach, K., Schoder, D., Gloor, P.A.: Cross-cultural gender differ-
ences in the adoption and usage of social media platforms - an exploratory study
of last.fm. Comput. Netw. 75, 519–530 (2014)

13. Tan, P.-N., Steinbach, M., Kumar, V., et al.: Introduction to Data Mining, vol. 1.
Pearson Addison Wesley, Boston (2006)

14. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: Myway: Location prediction
via mobility profiling. Inf. Syst. (2015)

http://www.sobigdata.eu
https://www.cimplex-project.eu

66 R. Guidotti et al.

15. Vescovi, M., Moiso, C., Pasolli, M., Cordin, L., Antonelli, F.: Trust management
IX. In: Damsgaard Jensen, C., Marsh, S., Dimitrakos, T., Murayama, Y. (eds.)
IFIPTM 2015. IAICT, vol. 454. Springer, Heidelberg (2015)

16. Vescovi, M., Perentis, C., Leonardi, C., Lepri, B., Moiso, C.: My data store: toward
user awareness and control on personal data. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, pp. 179–182. ACM (2014)

A High-Level Model Checking Language
with Compile-Time Pruning of Local Variables

Giovanni Pardini and Paolo Milazzo(B)

Dipartimento di Informatica, Università di Pisa,
Largo B. Pontecorvo, 3, 56127 Pisa, Italy

{pardinig,milazzo}@di.unipi.it

Abstract. Among Model Checking tools, the behaviour of a system is
often formalized as a transition system with atomic propositions asso-
ciated with states (Kripke structure). In current modelling languages,
transitions are usually specified as updates of the system’s variables to
be performed when certain conditions are satisfied. However, such a low-
level representation makes the description of complex transformations
difficult, in particular in the presence of structured data.

We present a high-level language with imperative semantics for mod-
elling finite-state systems. The language features are selected with the
aim of enabling the translation of models into compact transition sys-
tems, amenable to efficient verification via Model Checking. To this end,
we have developed a compiler of our high-level language into the mod-
elling language of the PRISM probabilistic model checker.

One of the main characteristics of the language is that it makes a very
different treatment of global and local variables. It is assumed that global
variables are actually the variables that describe the state of the modelled
system, whereas local variables are only used to ease the specification of
the systems internal mechanisms. In this paper we describe the procedure
for the pruning of local variables that is executed at compile time.

1 Introduction

Expressing the model of a system in order to analyze it by means of model
checking can require time. Modelling in itself is often a challenging task, since
it requires (i) understanding the mechanisms that govern the dynamics of the
system, (ii) performing suitable abstractions that allow such mechanisms to be
expressed in a concise way, and (iii) constructing an unambiguous representa-
tion of the system mechanisms at the chosen abstraction level, by exploiting a
notation that usually depends on the analysis method one wants to apply.

In the case of model analysis by means of model checking, the system dynam-
ics has usually to be formalized as a transition system. Often, such a transition
system has the form of a Kripke structure, namely it has atomic propositions
associated with states, which are used as the basis for the specification of prop-
erties to be verified. The way in which a transition system is expressed in the
input languages of model checking tools can vary significantly from tool to tool.
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 67–82, 2016.
DOI: 10.1007/978-3-319-50230-4 6

68 G. Pardini and P. Milazzo

In many cases the input language allows transitions to be specified as updates
of the system’s variables to be performed when certain conditions are satisfied
(as if-then clauses or rewrite rules). However, if-then clauses and rewrite rules
are often too low level as a modelling paradigm to express systems’ mechanisms
in a natural way. Such a low level nature often requires modellers to formu-
late complex expressions as transition conditions, or to introduce in the model
unnecessary variables and transitions just to represent intermediate values for
the computation of the next state reached by a transition. This situation is par-
ticularly frequent in the case of languages that offer no or few data structures.

The aim of this paper is to propose a new language, called Objective/MC, for
the specification of system models to be analysed by means of model checking.
We plan to include in Objective/MC rich data structures, object-oriented features
and concurrent processes. In this paper, however, we start with the definition of
a core version of the language with the main imperative constructs and a basic
notion of array and of object.

One of the main characteristics of the language is that it makes a very differ-
ent treatment of global and local variables. It is assumed that global variables are
actually the variables that describe the state of the modelled system, whereas
local variables are only used to ease the specification of the system’s internal
mechanisms. Hence, in this paper we focus on the problem of pruning local vari-
ables and generating transitions that correspond to updates of global variables.

The language is developed with the aim of allowing translation of Objec-
tive/MC models into the input language of an existing model checking tool.
Since in the long term we plan to allow probabilistic and stochastic systems to
be dealt with, we choose PRISM as the target model checking tool in this paper.
We also include in the language an operator to perform non-deterministic choices
that are translated into probabilistic choices in PRISM.

An implementation of the translator from Objective/MC into the modelling
language of the PRISM model checker is available [1]. The translator transforms
the model in order to make all local variables disappear. Hence, the generated
transition system will consist of transitions that correspond to the updates of
only the global variables used in the model.

Related Works. Among model checkers with an input language essentially based
on if-then clauses or rewrite rules we mention NuSMV [3], PRISM [8] and
UPPAAL [9]. In these cases the state of system is merely represented as a set of
variables or by simple data structures.

Maude [5] offers a declarative input language based on rewrite rules with the
possibility of using complex structures such as terms and objects. The Maude
language is presently richer than Objective/MC in terms of functionalities. Differ-
ently, Objective/MC is an imperative language and offers compile-time pruning
of local variables to combine the ease of specification with the generation of a
compact transition system. Moreover, Objective/MC is already designed with the
aim of extending it with rich data structures and object oriented features.

Other tools have rich modelling languages, the features of which are often
related with the specific kind of systems addressed. This is for instance the case

A High-Level Model Checking Language with Compile-Time Pruning 69

of Software Model Checkers (such as SPIN [7], CBMC [4] or Java Pathfinder [6])
that are based on rich languages for the specification of concurrent processes, or
can even executed directly on C or Java source code. In particular, as regards
SPIN (and its input language Promela), it includes high level imperative pro-
gramming constructs and concurrency features. The same holds for Rebeca
(Reactive Objects Language) [10], an actor-based language for modelling and
verification of reactive systems. With respect to these languages, Objective/MC
offers the novelty of the compile-time pruning of local variables.

We remark that the long-term aim of our work is to propose a new high-
level modelling language with imperative semantics. The definition of the local
variable pruning methodology is a step in this direction. For this reason, we have
defined the methodology on a new language rather than on an existing language.

2 The Core Objective/MC Language

In this section, we present a core version of the Objective/MC language, which
allows us to focus on the foundational aspects of the translation of models into
transition systems, in particular as regards the handling of global/local variables.
The core language provides only a limited support for object-oriented features;
an extensive treatment of those aspects will be the object of a future paper.

The syntax of the Objective/MC language is shown in Fig. 1. For conciseness,
we denote a sequence of symbols (of either a syntactical category or terminal
symbols) by using an overbar. The concrete syntax follows C-like conventions,
such as using semicolons as command terminators.

Fig. 1. Syntax of Objective/MC, where v denotes a value in Z ∪ {true, false}, opb ∈
{+,−, ∗, /, <,≤, >,≥,==, !=,&&, ||}, opu ∈ {+,−,¬}.

70 G. Pardini and P. Milazzo

A Model is composed of sequences of class declarations D, global vari-
ables declarations G, and procedure declarations M (akin to static methods).
In a procedure declaration, the notation Tv I denotes a sequence of pairs
T 1
v I1, . . . , T k

v Ik.
The language provides two basic data types: bounded integers, declared as

int(n . . . m) with n ≤ m, which can hold any integer value x in the range [n,m]1,
and booleans, declared as bool, holding values {true, false}. There are also
two compound types: fixed-length arrays, and classes. Each definition of a class
introduces a type (different from any other type) which is identified by the name
of the class itself. A class contains a number of fields F of any type. However,
only class types which have been declared previously may be referenced, thus
ruling out any recursive type.

Global variables are statically allocated, and they are meant to constitute
the global state of the system which is updated by the assignment statements
occurring in the program model. There are no restriction on the types of the
global variables; that is, any valid type according to the grammar, and referring
only to classes already declared, may be used. In particular, this allows objects
and arrays to be defined as global variables. On the other hand, objects/arrays
can be neither defined as local variables nor dynamically allocated. As regards
the declaration of procedures M , they may take any number of parameters, and
their types are restricted to the basic types.

The main entry point of the program model is the run command block.
Commands are executed sequentially, and the canonical control flow commands
(if, while, procedure calls) are provided by the language. Actually, there are two
different cycle construct: a standard while (E) {...} command which executes its
body as long as the guard E evaluates to true, and a times (E) {...} command
which instead executes the body for a fixed number of iterations, obtained by
evaluating the integral-type expression E. Recursion is not allowed.

Local temporary variables having basic type int/bool may be declared and
used, and they must be initialized at the same time of their declarations. The
syntax of expressions is quite standard, where the syntactical category Loc for
locations is used to access: (i) local/global variables from their identifier I, (ii)
elements of arrays as Loc[E], or (iii) object fields as Loc.f . A non-deterministic
construct select(n,m), with n,m ∈ Z, is also provided, which “generates” an
integral value in the range [n,m] every time the expression is evaluated.

An assignment of the form Loc = E may refer to either a global or local
variable, where E is an expression which evaluates to a basic type, and Loc
must refer to a variable of a compatible type. Formally, either both Loc and E
are expressions of type bool, or the type of the right hand side expression is
an integral type int(n2 . . . m2) with range fully contained in the range of the
left hand side variable int(n1 . . . m1), namely [n2,m2] ⊆ [n1,m1]. In order to
fulfil this requirement, the ascription construct E as int(n . . . m) may be used

1 The notation [n,m] indicates the integral range of values {x | n ≤ x ≤ m} ⊂ Z.

A High-Level Model Checking Language with Compile-Time Pruning 71

to force an expression to be considered in the type system as a different (stricter)
integral type than the one which can be derived from the subexpressions of E.2

Semantics. The semantics of a model M is a transition system, whose states
are characterized by the all and only global variables defined in the program
model (except for a hidden global “program counter” variable needed for the
translation of sequential commands). As a consequence, assignments to global
variables give rise to transitions in the resulting transition system. A special
command yield is used to generate a transition for which no declared global
variables are modified, and actually only the hidden program counter is updated.
Since the Objective/MC language is geared towards the model checking of the
resulting transition systems, in defining the semantics we strictly adhere to the
following principle:

No transitions may be implicitly introduced by the compilation process
beyond those transitions which correspond to updates to global variables.

The motivation for the above principle is that we want to avoid enlarging the
state space implicitly. Nevertheless, the modeller may always introduce global
variables if necessary to describe an intended behaviour, which explicitly enlarge
the state space. In the current definition of the language, each single assignment
to a global variable causes a transition in the resulting transition system.

The language allows local variables to be defined and used according to their
intuitive imperative semantics. However, rather than storing them in the global
state, the compiler instantiates each access to a local variable with an equivalent
expression containing only literal values and references to global variables. For
this reason, some limitations on their usage apply.

Constraints. Due to the semantics of Objective/MC, there are three constraints
on the usage of the language, exemplified by the following model fragments.

(a) A local variable cannot be read after the global variables it depends upon
may have been modified. In the example, at line 1, the local variable x is
initialized with the global variable g, and it is then accessed (i.e. read) at
line 7. However, since local variables are handled as unevaluated expressions
by the compiler, at line 7 its definition may have been invalidated due to the
assignment to the dependant global variable g at line 3. A possible solution

2 The formal definition of the type system is omitted due to lack of space.

72 G. Pardini and P. Milazzo

is to promote variable x into a global variable, thus allowing the previous
value of g + 1 to be retained across transitions.

(b) A local variable declared outside of a while loop cannot be reassigned in the
loop body. Since the loop may be executed an unbounded number of times,
it is generally impossible to know the value of a local variable which may
be reassigned inside the loop body. In the example above, the local variable
x may be assigned at line 4 hence (analogously to the previous case) when
it is read at lines 3 and 7, its value cannot be definitely known. Note that
times loops do not have this limitation.

(c) Each execution path inside the body of a while loop must contain at least one
global variable assignment or a yield. This constraint is useful to simplify
the translation, since it frees the compiler from the need to identify infinite
loops at compile-time, as in the example, for which an infinite loop occurs
if 0 < g ≤ q. A possible solution is to insert a yield command at line 5, in
such a way that a transition is generated for each branch of the if.

Constraints (a) and (b) avoid situations in which one or more transitions
in the semantics of the model make it impossible to reconstruct the value of
the local variable from current values of the global variables. This could be due
either, in case (a), to a change in a global variable upon which the local variable
depends, or, in case (b), to the impossibility of knowing the function that allows
the local variable to be computed from the global ones. Hence, these language
constraints reflect potential constraints arising from the model itself, namely
situations in which information needs to be included in the states of the model.

Example 1. Figure 2 contains a model of a job scheduler for a fixed number of
processors, which may execute jobs of different durations. A processor is char-
acterized by its load, modelled as an integer in the range [0, 10]. At line 1, an
array of 5 processors is declared as a global variable P. Each element of the array
is initialized by default at 0. At line 2, a global variable nextjob is declared,
representing the duration of the next job to be scheduled (initially 0).

At line 3, a procedure with no parameters is declared. Its purpose is to
decrease the load of each processor by one unit each time it is invoked, in order
to simulate the progress of the system. A temporary local variable i is used as the
index in the array of processors, and as such it will not appear in the translated
model. At each iteration of the times cycle, the current processor load P[i], if it
is not already nil, is decreased by the assignment at line 6.

The system executes an infinite loop where, at each iteration: (i) procedure
execute_step() is called, (ii) if there are no jobs waiting (nextjob = 0), the dura-
tion of the next job is selected non-deterministically in the range [0, 3] (line 12),
(iii) the index of the least-loaded processor (min_idx) is computed (lines 13–17),
and finally (iv) the new job is tentatively assigned to processor P[min_idx] if it
can accommodate it and, in this case, nextjob is reset (lines 18–21).

The yield command at line 21 is necessary in order to satisfy constraint (c),
since it might be the case that no assignments to global variables are executed
in an iteration of the while loop.

A High-Level Model Checking Language with Compile-Time Pruning 73

Fig. 2. An Objective/MC model of a job processor scheduler.

3 Control Flow Graph

The run block is translated into a Control Flow Graph (CFG), which allows
us to abstract from the syntactical representation of the model, and simplify
the definition of the subsequent transformations. Let Πin and Πout be countable
disjoint sets of input and output endpoints, respectively. A CFG G is a pair
(N(G),E(G)) composed of a set of nodes N(G) of the form [T]π0

π1,...,πk
, with

π0 ∈ Πin and {π1, . . . , πk} ⊂ Πout, and a set of edges E(G) ⊂ Πout × Πin such
that ∀(α, β1), (α, β2) ∈ E(G). β1 = β2. Assuming input([T]π0

π1,...,πk
) = π0 and

outputs([T]π0
π1,...,πk

) = {π1, . . . , πk}, we define, for any N ⊆ N(G): inputs(N) =⋃
x∈N{input(x)}; outputs(N) =

⋃
x∈N outputs(x); endpoints(N) = inputs(N)∪

outputs(N). For conciseness, we also define outputs(π0) = {π1, . . . , πk}.
Let G be a graph. Given π ∈ inputs(N(G)), its predecessors are defined as

predG(π) = {α | (α, π) ∈ E(G)}, while, given π ∈ outputs(N(G)), its successors
are defined as succG(π) = {α | (π, α) ∈ E(G)}. Note that |succG(π)| ≤ 1.

3.1 Construction of the Control Flow Graph

The types of nodes defined for the Control Flow Graph are the following.

[let I = E]π0
π1

[� ⇐ E]π0
π1

[yield]π0
π1

[if E]π0
π1,π2

[selectk]π0
π1,...,πk

[begin]π0
π1

[end]π0 [skip]π0
π1

74 G. Pardini and P. Milazzo

Fig. 3. Construction rules for the Control Flow Graph.

Fig. 4. While loop. Fig. 5. Times loop, when type(E) = int(3 . . . 5).

The first two nodes represent assignments to either a local variable I or a global
variable � ∈ Loc, respectively, while the third directly corresponds to the yield
command. The if node is used to translate both if and while commands, where
the output endpoints π1, π2 denote the branches to follow when the condition
E is either satisfied or not, respectively. The select node is parameterized by
the number of choices k ≥ 1. There is also a begin node, an end node (without
output endpoints), and a skip node for empty command blocks.

Given two graphs G1, G2, we define a union operation as G1+G2 = (N(G1)∪
N(G2),E(G1)∪E(G2)), provided that endpoints(N(G1)) ∩ endpoints(N(G2)) =
∅. Moreover, we define the addition of a set of edges E to a graph G as
G + E = (N(G),E(G) ∪ E), provided that E ⊆ outputs(N(G)) × inputs(N(G)).
Given G1, G2 such that N(G2) ⊆ N(G1) and E(G2) ⊆ E(G1), we define a
difference operation as G1 − G2 = (N ′, E′) where N ′ = N(G1)\ N(G2), and
E′ = (E(G1)\ E(G2)) ∩ (outputs(N ′) × inputs(N ′)).

A High-Level Model Checking Language with Compile-Time Pruning 75

Fig. 6. A random walk model.

The translation of (a sequence of) commands Com is obtained through
the relation �Com� �→ 〈G, in, out〉, where in ∈ inputs(N(G)) and out ⊆
outputs(N(G)) are the designated input endpoint and output endpoints of the
whole graph, respectively. Relation �·� is the smallest relation satisfying the rules
shown in Fig. 3 (brackets 〈 〉 are omitted for clarity) where, for conciseness, a
single node [T]π0

π1,...,πk
also denotes the graph composed of only such a node.

Moreover, we assume local variable names (including parameters) to be unique,
and distinct from the global ones (denoted Globals); decl(w) to denote the dec-
laration of a procedure w; and type(E) the type of E as inferred by the type
system. The definition is quite straightforward. We just point out the different
translation of while and times loops, depicted in Figs. 4 and 5 (the designated
input and output endpoints are depicted with symbols ◦ and •, respectively). In
the times case, the type of E determines the number of copies of the translated
loop body Gcom (obtained from �Com�) in the CFG. Finally, the resulting CFG
is obtained by connecting a begin node to the designated input endpoint in, and
by connecting the out endpoints to an end node. Given a graph G, we denote the
input endpoint of the begin and end nodes by begin(G) and end(G), respectively.

Example 2. Figure 6 shows an implementation of a one-dimensional random
walk.3 The position is modelled as a global variable pos, initialized at 0, which
can vary in the range [−50, 50]. The process goes on until the limits of the
allowed range for the position are reached. At each iteration of the while loop,
the position is either decreased or increased by 1, in a non-deterministic way,
according to the choice performed by the select(0,1) operation. Its CFG is
shown in Fig. 7a.

3.2 Transformations

The first transformation consists in the elimination of the skip nodes; that is, for
all nodes x = [skip]π0

π1
∈ N(G), we apply G� G − x+ (predG(π0) × succG(π1)).

The second transformation concerns the expansion of select operators, and
consists in replacing each node containing one or more select(n,m) operators

3 In this example, we have assumed that global variable pos can be initialized inline.

76 G. Pardini and P. Milazzo

Fig. 7. Various transformations of the CFG in the random walk example.

with an explicit [selectk] node, with k = m − n + 1. We introduce the func-
tion alt : E → P(E) which expands an expression E into a set of expressions,
one for each different combination of values which can be generated by the
all select operators appearing in E. We define alt(v) = {v}, alt(I) = {I},
alt(select(n,m)) = {n, . . . , m} and, for any other expression operator ϕ �=
select, alt(ϕ(E1, . . . , En)) =

⋃{ϕ(E′
1, . . . , E

′
n) | E′

i ∈ alt(Ei), i = [1, n]}. The
actual transformations applied are shown in Fig. 8.

Normalization. The next transformations involve let nodes for local variables.
The aim is to obtain an equivalent normalized CFG, namely such that for any
node in which a local variable I is read, the definition of I is univocally deter-
mined. To this purpose, two different transformations are needed, which are
based on the duplication of parts of the CFG.

A High-Level Model Checking Language with Compile-Time Pruning 77

Fig. 8. Transformation rules for the expansion of select operators.

We define, for each π ∈ endpoints(N(G)), the relation RDπ ⊆ I ×
inputs(N(G)) such that (I, α) ∈ RDπ implies that there exists a path from π to
an ancestor α of the form [let I = E]αβ , with no other intervening definitions
of I along the path. We write RDπ(I) = {α | (I, α) ∈ RDπ}. Formally, RD is
defined by the following equations derived from the nodes of the CFG:

[begin]π0
π1

�−→ RDπ1 = RDπ0 = ∅
[let I = E]π0

π1
�−→ RDπ1 = (RDπ0 \{(I, α) ∈ RDπ0}) ∪ {(I, π0)}

[� ⇐ E]π0
π1

, [yield]π0
π1

�−→ RDπ1 = RDπ0

[if E]π0
π1,π2

�−→ RDπ1 = RDπ2 = RDπ0

[selectk]π0
π1,...,πk

�−→ RDπ1 = RDπ2 = · · · = RDπk
= RDπ0

while ∀π ∈ inputs(N(G)) �−→ RDπ =
⋃{RDπ′ | π′ ∈ predG(π)}. We also

assume a function usedG(π) = {I1, . . . , Ik} giving, for all π ∈ inputs(N(G)), the
set of local variable names read in any node reachable from π (including itself).

Definition 1. A Control Flow Graph G is normalized iff, for all [T]π0
π1,...,πk

∈
N(G) and I ∈ usedG(π0): |RDπ0(I)| = 1.

To obtain a normalized CFG, for all nodes x = [T]π0
π1,...,πk

violating the above
condition, namely such that |RDπ0(I)| > 1, two cases need to be considered.

– Case 1. This case allows duplicating one node at a time. Given α ∈ RDπ0(I),
let Bα = {β ∈ predG(π0) | RDβ(I) = {α}}. Then, if |RDβ(I)| = 1 for all
β ∈ predG(π0), the following transformation can be applied:

G� G − (Bα × {π0}) + x′ + (Bα × {γ0}) +
∑k

i=1({γi} × succG(πi))

where x′ = [T]γ0
γ1,...,γk

is a duplicate of x. This transformation detaches parent
β from x and attaches it (as the only parent) to x′. The output endpoints of

78 G. Pardini and P. Milazzo

the duplicate node are connected to the same children of x, in the same man-
ner. This transformation is applied in a maximal way, until its applicability
condition is no longer satisfied by any node.

– Case 2. After Case 1, if there are still nodes for which |RDπ0(I)| > 1, it implies
that, for some node identified by π0, its predecessors predG(π0) can be parti-
tioned into two (non-empty) sets B(1), B(2) such that ∀β ∈ B(1). |RDβ(I)| = 1,
and ∀γ ∈ B(2). RDγ(I) = RDπ0(I). Note that Bα ⊆ B(1). Then the following
transformation can be performed:

G� G − (Bα × {π0}) + N ′ + E′ + (Bα × {γ0})

which duplicates a subgraph of G which includes x. In particular, N ′, E′, γ0
are obtained through the function cloneG(x, π0) = (N ′, E′, γ0), where: N ′ are
the duplicated nodes, E′ are the duplicated edges (which may also point to
old nodes still present in G), and γ0 is entry node of the cloned subgraph,
corresponding to π0.

In order to define the clone function, let us assume a one-to-one mapping
α �→ α̃ between endpoints such that ∀α, β. α �= β̃. Moreover, let us consider
the subgraph G′ of G restricted to the nodes N(G)\B(1), and let N0 ⊆ N(G)
be the Strongly Connected Component (SCC) of G′ containing node x (i.e.
π0 ∈ inputs(N0)). Assuming Ec = E(G) ∩ (N0 × N0) and Ec = E(G)\Ec, we
define cloneG(x, α) = (N ′, E′, α̃), where:

N ′ =
{

[T]
˜β2
π̃1,...,π̃k

∣∣∣ [T]β2
π1,...,πk

∈ N0 ∧ ∃β1. (β1, β2) ∈ Ec

}
;

E′ =
{
(β̃1, β̃2)

∣∣ (β1, β2) ∈ Ec

} ∪
{
(β̃1, β2)

∣∣ (β1, β2) ∈ Ec ∧ β̃1 ∈ outputs(N ′)
}
.

Normalization Algorithm. The algorithm alternates between the maximal appli-
cation of Case 1 and a single application of Case 2, until they are no longer
applicable. This alternation is necessary since the transformation performed for
one case may enable the application of the other case, for some nodes. Moreover,
before the application of each case, the compiler performs a constant propagation
phase, by instantiating each occurrence of any local variable with its defining
expression, whenever such a definition is univocally determined. Precisely, given
a node [T]π0

π1,...,πk
, the instantiation is carried out for each variable I being read

in T such that |RDπ0(I)| = 1, which is replaced by an expression containing no
references to local variables. At the end, a normalized CFG is obtained, that
is then simplified by removing all let nodes, and also any if node for which its
condition has been already reduced to a truth value.

Example 3. Figure 7 shows a few transformation of CFG for the random walk
model from Example 2. After the initial construction (Fig. 7a), the first trans-
formation consists in the expansion of the select operator present in node
[let x = select(0, 1)], giving Fig. 7b. The original let node is being replaced by a
select node followed by two new let nodes, one for each possible outcome 0 and 1.

A High-Level Model Checking Language with Compile-Time Pruning 79

Fig. 9. Example of while loop duplication.

Then node [if x == 0] is duplicated according to Case 1 of the normalization
algorithm, and the subsequent constant propagation causes both occurrences of
the local variable x in the if nodes to be instantiated, as shown in Fig. 7c. The
graph obtained after the final simplification step is shown in Fig. 7d.

Example 4. Consider the model fragment from Fig. 9 (left), in which a variable x

is non-deterministically selected and then accessed by the guard of a while loop.
In the CFG (after the expansion of select) the definition of x in the [if g < x]
node cannot be univocally determined; in fact, both definitions of x can be traced
back through the backward edge eb coming from the end of the loop body. Hence,
only Case 2 can be applied, which duplicates the SCC composed of the [if g < x]
and [g ⇐ (g + 1) . . .] nodes, yielding the CFG depicted in Fig. 9 (right).

4 PRISM Translation

A normalized Control Flow Graph (see Definition 1), containing only assignments
to global variables [� ⇐ E], yield nodes, if nodes, and select nodes, is taken as
input for the generation of the PRISM model. In the current paper we consider
only PRISM models for Discrete Time Markov Chains (DTMC).

Definition 2 (PRISM syntax). Let Var be a countable set of variables’
names. The syntax of a subset of PRISM is defined by the following grammar:

PModel ::= Decl Rule

Decl ::= Var : Tv init v

Rule ::= Expr A (p1 : Upds1 ⊕ · · · ⊕ pn : Updsn)
Upds ::= Upd1 & . . . & Updk
Upd ::= Var ′ = Expr

Expr ::= v
∣∣ Var

∣∣ Expr opb Expr
∣∣ opu Expr

∣∣ Expr ? Expr : Expr

where Tv, v, opb, opu are as defined for Objective/MC (see Fig. 1).

80 G. Pardini and P. Milazzo

A PRISM model consists of a collection of variables Decl , and a number of
rule schemata Rule describing the transitions of the DTMC. Allowed variable
types are bounded integers and booleans, analogous to the corresponding types
of Objective/MC. Rules are of the form: guard A (p1 : alt1 ⊕ · · · ⊕ pn : altn)
where guard is a boolean condition over the global variables determining the
applicability of the rule, and alt1, . . . , altn are the possible probabilistic alter-
natives chosen when the rule can be applied, where each pi ∈ R

+ denotes the
probability of the corresponding alternative. Each alternative is composed of a
collection Upds of updates of the form Var ′ = Expr , one for each global variable
Var to be updated. Any global variable may occur at most once in the left hand
side of any update in Upds. Moreover, rule guards must all be disjoint.

As regards the semantics, the resulting DTMC is obtained from a PRISM
model by instantiating its rules for each possible state in the complete state space
of the model as determined by the global variables. Since the core Objective/MC
language does not currently provide operators for probabilistic choice, in the rest
of the paper we assume constant probabilities among rule alternatives, namely
for all rules p1, . . . , pn = 1/n, and thus omit them from the model descriptions.

Since PRISM only allows variables to be declared as basic types (either inte-
gers or booleans), without any structure, the first step in the translation consists
in flattening the Objective/MC (structured) global variables into a collection of
basic PRISM variables. An array a with type(a) = T [n] is translated into a set
of PRISM variables a[0], . . . , a[n − 1]. Similarly, each object o declared among
global variables (including those in arrays) is translated into a set of PRISM
variables o.I1, . . . , o.In, where I1, . . . , In are the instance variables of o. Such a
translation of objects into PRISM variables is possible since in Objective/MC
objects cannot be created dynamically.

First of all, we determine the nodes of the CFG which give rise to transitions
in the resulting PRISM model. They are the begin, assignment and yield nodes,
and, together with the end node, constitute the set States .

We also introduce a special global variable pc (program counter) of type
int(−1 . . . N) where −1 = err denotes an error state used to catch violations of
integral ranges allowed in expression ascriptions, and N = |States |. We assume
a one-to-one mapping between States and pc values in {0, . . . , N − 1}. For sim-
plicity, we refer to pc values with their corresponding endpoints from States.

A PRISM rule is generated for each α ∈ States. This requires determining the
set of states next(α) = {β1, . . . , βk} ⊆ States which are directly reachable from α
in the CFG, namely those states which are reachable through a path containing
only if and select nodes. The generated rules have the following form, for each
state α (except for end and error):

pc == α A

(⊕k
i=1

{ U & (pc′ = Casc ? E : err)
})

while a deadlock transition pc==αA (pc′ = α) is generated for the end and error
states. As regards the first case, each alternative is composed of (i) a number
of global assignments U , implementing the assignment described in the current
node α, and (ii) an update of variable pc.

A High-Level Model Checking Language with Compile-Time Pruning 81

The different alternatives to be considered (for i ∈ {1, . . . , k}) emerge from
the presence of select nodes in the subtree between α and the nodes in next(α).
As regards the update (pc′ = Casc ? E : err) of the program counter, Casc rep-
resents the conditions obtained from the ascriptions in the subtree, and E is a
conditional expression that evaluates to the new program counter from the set
next(α), which is obtained from the if nodes present in the subtree.

Example 5. Consider the CFG of Fig. 7d, and let pc = 0 denote the begin node, 1
the left assignment node, and 3 the end node. Let Cif = (pos !=−50&&pos !=50)
be the condition of the if node; the rules generated for nodes 0 and 1 are:

pc == 0 A (pc′ = Cif ? 1 : 3) ⊕ (pc′ = Cif ? 2 : 3)

pc == 1 A (pos′ = C−1
asc ? pos − 1 : pos) & (pc′ = (C−1

asc ? (C−1
if ? 1 : 3) : err) ⊕

(pos′ = C−1
asc ? pos − 1 : pos) & (pc′ = (C−1

asc ? (C−1
if ? 2 : 3) : err)

where C−1
if is used to evaluate, from the assignment node 1, the condition Cif as

if the current assignment (pos′ = pos − 1) would be already performed, while
C−1
asc checks the ascription in the assignment expression; formally: C−1

if = (pos −
1 != −50 && pos − 1 != 50), C−1

asc = (−50 ≤ pos − 1 && pos − 1 ≤ 50).

Discussion. An implementation of the compiler for the core Objective/MC lan-
guage into PRISM models is available [1]. We have used the compiler to automat-
ically generate a PRISM model of the job scheduler from Fig. 2, which contains
19 transition specifications. The DTMC built by PRISM (in 0.125 s) consists
of 256 states and 343 transitions. Verification of properties can be performed
by model checking temporal logic formulas on the variables of the generated
PRISM model. A hand-made PRISM model of the job scheduler example is
available at [1]. It consists of 5 variables P 0, . . . , P 4 representing processors, a
nextjob variable to store the value of the next processing job to be executed,
and a state variable for the sequential execution of the steps. The model built
by PRISM in this case (in 0.035 s) consists of 264 states and 312 transitions.

In terms of DTMC dimension, the PRISM model obtained from the transla-
tion of the Objective/MC model turns out to be similar in size to the hand-made
PRISM models. This suggests that the pruning of local variables performed at
compile time has actually avoided too many useless states to be introduced by
the translation. Note also that in the hand-made PRISM model, changing the
range of possible values for the next processing job to be executed requires man-
ually modifying a number of transition specifications in the model source code.
Instead, in the Objective/MC model in Fig. 2, the same modification could be
done by simply changing the value of the select expression at line 12.

5 Conclusions

We have proposed an early version of an object-oriented language, called Objec-
tive/MC, for the specification of models to be analysed by model checking.

82 G. Pardini and P. Milazzo

In particular, we have focused on the imperative constructs of the language
and on the handling of global and local variables. As future developments, we
plan to formally define the semantics of the language and prove the correctness
of the transformations performed on the models. Moreover, we will extend the
language with richer object oriented features (methods and inheritance), with
richer data structures and operations on them (array filters and a notion of
graph) and with probabilistic/stochastic operations (even with uncertain rates
[2]). Finally, we plan to add some features to deal with concurrency aspects.

References

1. ObjMC: The Objective/MC compiler. http://www.di.unipi.it/msvbio/ObjMC
2. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of

biological systems with uncertain kinetic rates. Theor. Comput. Sci. 419, 2–16
(2012)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 29

4. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci.
285(2), 187–243 (2002)

6. Havelund, K., Pressburger, T.: Model checking Java programs using Java
Pathfinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000)

7. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279
(1997)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

9. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. (STTT) 1(1), 134–152 (1997)

10. Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385–410 (2004)

http://www.di.unipi.it/msvbio/ObjMC
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Probabilistic Modelling of Station Locations
in Bicycle-Sharing Systems

Daniël Reijsbergen(B)

University of Edinburgh, Edinburgh, UK
dreijsbe@inf.ed.ac.uk

Abstract. We present a simulation methodology for generating the
locations of stations in Bicycle-Sharing Systems. We present several
methods that are inspired by the literature on spatial point processes.
We evaluate how the artificially generated systems compare to existing
systems through a case study involving 11 cities worldwide. The method
that is found to perform best is a data-driven approach in which we
use a dataset of places of interest in the city to ‘rate’ how attractive
city areas are for station placement. The presented methods use only
non-proprietary data readily available via the Internet.

1 Introduction

Bicycle-Sharing Systems1 (BSSs) are an increasingly popular phenomenon, as
witnessed by the worldwide number of operational systems growing from roughly
350 such systems [7] in 2010 to almost 1,000 at the time of writing [18]. Due
to this strong increase, the question of choosing station locations in a new BSS
is of increasing relevance to planners, operators, and scientists. A well-studied
approach is to optimise some measure of coverage of ‘interesting’ parts of the
city. The choice of Geographic Information System (GIS) dataset to identify
interesting locations in the target city depends on the context—e.g., residential
and commercial area density are of interest to a commuting-oriented BSS, and
proximity to landmarks and restaurants to a BSS focussing on tourism and
leisure. In the literature, the best station locations are then typically chosen using
some form of deterministic optimisation—e.g., the methods implemented in the
geographic analysis tool ArcGIS [10] or the optimisation tool suite XPRESS [8].
This approach will typically return a single optimal solution. In some cases, the
user is required to manually determine a set of candidate locations beforehand.

In this paper, we will consider the use of stochastic simulation to generate
BSS station locations as an alternative to deterministic optimisation. The prob-
abilities informing the simulation procedure are inspired by the literature on
spatial point processes. We will discuss the use of two baseline approaches—
in particular the Poisson and Ginibre point process—and compare these to a
simulation procedure that incorporates GIS information. The main criterion is
correspondence to real-world BSSs, including several major systems such as the
1 Alternatively called Bicycle-Sharing Plans.

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 83–97, 2016.
DOI: 10.1007/978-3-319-50230-4 7

84 D. Reijsbergen

Bicing BSS in Barcelona. The simulation procedure provides insight into how
stations are distributed across space - this can inform models of bicycle move-
ment, provide feedback to operators of existing systems, and aid designers of new
systems. Executing this approach several times will result in different outcomes,
which is typically more informative to planners than the single solution returned
by a deterministic optimisation procedure. After all, the GIS data informing the
optimality criterion is itself prone to subjectivity and inaccuracies. Additionally,
the approach discussed in this paper only uses non-proprietary data and the
programming code for the experiments is written in Java and available upon
request.

The outline of this paper is as follows. We begin with a discussion of related
work and the data sources used in this paper in Sect. 2. We then fix notation
and discuss basic simulation procedures in Sect. 3. In Sect. 4, we zoom in on
the various techniques to generate station locations. We present the results of a
simulation experiment involving a comparison with real-world BSSs in Sect. 5.
Section 6 concludes the paper.

2 Background and Data

Before we present this paper’s specific contributions, we first elaborate on its
position within the wider scientific and societal context. We begin with a dis-
cussion of the background and the related scientific literature in Sect. 2.1, and
discuss the data sources used to generate the results of this paper in Sect. 2.2.

2.1 Background and Related Work

The recent wave of attention for BSSs from the scientific community is largely
due to vast amount of data collected by third-generation systems [7]. Third-
generation systems combat the theft and vandalism that plagued the previous
two generations by employing technologies that allow for bikes and users to be
uniquely identified. Data regarding bike availability at stations is collected as
a by-product of such systems, and in many cases made available to third-party
users, including researchers. One popular research area involves the analysis
of bicycle usage patterns [9,11,13,20]. Another area, one that is particularly
relevant to his paper, involves the development of algorithms for the positioning
of station locations [10,24]. These algorithms can be validated against real-world
systems using the station location coordinates that are often provided alongside
bike availability data. In the following we present a brief overview of related
work concerning both the evaluation of existing systems in terms of their station
locations and the design of new systems.

A comprehensive comparison of 38 BSSs worldwide is presented in [21].
Although some of the metrics considered in [21] correspond to usage patterns,
some of the metrics solely deal with the geographic position of the stations -
two of these metrics will also be considered in Sect. 5. Another research ques-
tion involves the clustering of stations with similar usage patterns—case studies

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 85

include Barcelona [9], London [16], and Paris [4]. Of particular interest to this
paper is the question of where to position the stations, given a GIS dataset to
identify interesting locations: [10] does this for a proposed system in Madrid. The
used GIS datasets include the road network, building usages in terms of popu-
lation and jobs, ‘transport zones’, and locations of other public transportation
hotspots. In [3], a methodology for adding new stations to BSSs is discussed and
applied to two BSSs (Washington DC and Hangzhou)—the used GIS datasets
here include the Google Places API for identifying Points of Interests (POIs),
Location Based Social Network check-in obtained via the Foursquare API, and
a demographical dataset. The potential introduction of a BSS in Helsinki, Fin-
land is studied in [15], with a particular focus on open data. A potential BSS
in Coimbra, Portugal is studied in [8]. The BSS in New York is studied in [17];
one of the GIS datasets used to identify locations of interest corresponds to taxi
GPS transactions. A case study involving data provided by the municipality
of Milan is presented in [5]. Naturally, the techniques used to optimise station
locations can be applied in many other contexts a well—e.g., placement of defib-
rillators [22], fire watchtowers [2] or electric taxi charging stations [23]—see also
the overview presented in the section on location-allocation models in [10]. For a
general overview of location-allocation modelling of bike sharing systems can be
found in [24]. Finally, in [12], a methodology for automatically learning patterns
in a spatial context is discussed.

2.2 Data

Two main data sources are used in this paper. We use the OpenStreetMap
project [14] as a source of geographical information, and use the CityBikes API
[1] to obtain data about the locations of bicycle-sharing stations around the
world. Both are discussed in more detail below.

OpenStreetMap. OpenStreetMap (OSM) is a project in which users collab-
orate to create a dataset of roads and places that forms the basis of a non-
proprietary map of the world. The database consists of four types of entries:
nodes, ways, relations and tags. The nodes are single latitude-longitude coor-
dinates indicating, e.g., points of interest or corners of larger areas. Ways are
sequences of nodes, denoting paths and polygons that determine, e.g., the shapes
of parks and roads. Relations are ordered lists of nodes, ways and other rela-
tions, and are used to denote larger geographic entities such as cycling routes
or large motorways. The tags are used to store metadata about the other three
data types. A tag can be used to, for example, indicate that a node corresponds
to a convenience store or highway traffic lights.

We use the OSM database for two purposes. First of all, we use it to identify
places that are unsuited for BSS station placement, as we discuss in Sect. 3.1.
A second purpose for the OSM database is that we use it to collect data about
places of interest. In particular, we are interested in nodes that are tagged as a
‘shop’ or ‘amenity’. Note that the latter category is relatively broad, and includes

86 D. Reijsbergen

park benches among others. Still we use this as a way of identifying locations of
interest, as we discuss in greater detail in Sect. 4.4. The idea behind this choice
is that those locations indicate areas that are interesting from a leisure-oriented
point of view.

CityBikes. To obtain data about the station locations of existing BSSs, we use
the API for the website citybik.es. The project behind this website started as
an Android app named CityBikes which helped users plan journeys in a BSS by
displaying information about station occupancies. The data used by the app has
been made available through a publicly-accessible API. Their system features
information about BSSs worldwide, although we will only consider a fraction of
those in this paper.

3 Preliminaries

This section combines several topics underlying all of the BSS station placement
algorithms of Sect. 4. The structure of this section is as follows. In Sect. 3.1, we
discuss the choice of a target area given that a city has been selected. We discuss
ways to denote and characterise a configuration of BSS station locations—from
now on referred to as a topology—in this city in Sect. 3.2, and then discuss a
generic simulation procedure for generating a BSS in Sect. 3.3.

3.1 Target Areas and Valid Station Placement Locations

Given a choice of city, the first step in obtaining a BSS topology is determining
the target area, i.e., the area within the city in which BSS stations can be placed.
Initially, this will be (roughly, considering the approximately ellipsoidal shape of
the face of the earth) a rectangle [λmin, λmax, φmin, φmax] where λmin and λmax

are the minimum and maximum longitudes respectively and φmin and φmax the
minimum and maximum latitudes. The choice of target area has an impact of the
accuracy of the method—as we discuss below, we discretise space by projecting
the (approximate) rectangles spanning the city onto pixels in an image file. Since
we are limited by memory constraints, there is a trade-off between the zoom level
(i.e., how big the rectangles are—smaller rectangles capture more detail) and the
size of the target area. Since we compare simulation procedures to existing BSSs
in this paper, we choose the initial target areas to match the bounding boxes of
the existing BSS’s station locations, with a margin of 1 km added. If one were
interested in designing a BSS for a city that does not currently have one, manual
selection of a rectangle as a target area, possibly informed by opening OSM in
a web browser, would be the most straightforward approach.

Within a typical initial target area, not all areas will be suited for station
placement—particularly bodies of water, parks/forests, and farmland/desert. To
identify those areas, we download the pre-generated 256-by-256-pixel tiles used to
display OSM maps in a browser. The tiles in the full OSM dataset span the whole
world and are generated for each of 20 zoom levels, where level 0 corresponds

http://citybik.es

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 87

(a) (b) (c)

Fig. 1. Original and filtered versions of the OSM map of the target area in Barcelona.
The figure on the far right includes the convex hull spanned by 100m circles around
the stations in the Bicing BSS.

to capturing the entire face of the planet in a single 256-by-256-pixel tile and
each subsequent level zooms in further by a factor 2. Given an initial target area
in the form of a rectangle, we first identify the tiles corresponding to this area,
and obtain an appropriate zoom level. This is done by specifying a maximum
of number of pixels in the final image, and then determining the highest zoom
level such that the resulting map still has fewer pixels than the maximum. When
this is done, we amalgamate all the needed tiles in a single PNG image file—
see Fig. 1a for an example involving the Bicing BSS in Barcelona. Finally, we
identify the pixels corresponding to bodies of water in the following way: we
identify pixel colours ranges2 that tend to correspond to water bodies, then we
identify for each pixel whether it falls inside that range, and finally mark a
pixel as ‘water’ if there are 8 of those pixels within a circle with a radius of 3
pixels around it. These pixels are marked as blue in the filtered image depicted
in Fig. 1b. We apply a similar pictures with green pixels for parks/forests and
yellow pixels for desert/farmland. The remaining white pixels are then valid
for station placement. An alternative to this approach would be to project the
generated station locations onto roads, which would also avoid stations being
placed in the middle of a building block. Furthermore, as can be seen in Fig. 2,
stations are also sometimes placed in tunnels or on islands (e.g., the Holland
Tunnel in New York, and Liberty Island), which is also something that can be
avoided. This is currently left as future work as the current filtering procedure
is accurate enough for illustrative purposes.

Note that the choice to use the pre-generated tiles means that the image files
include place names, which causes some distortions—for example, the names of
the hilltops in the top-left corner of Fig. 1a result in small patches of white pixels
in the top left corner of Fig. 1b. This could be remedied by rendering the tiles
2 In terms of their RGB (Red, Green, Blue) values.

88 D. Reijsbergen

manually using open source software such as, for example, Mapnik3. Again, this
is left as future research.

After filtering out the invalid areas, a further refinement would be to exclude
areas that are otherwise not part of the target area. For example, the area
across the river Besòs in the top-right corner of Fig. 1b is not part of Barcelona
but of a neighbouring city (Santa Coloma de Gramenet), and the existing BSS
does not cover this area even though its city centre would have a fairly large
attractiveness rating (as per Sect. 4.4). Hence, we restrict the target area further
by instead considering the convex hull spanned by the 100 m areas around the
existing BSS stations (in the discretised pixel map). Without this step, several
simulation techniques would do considerably worse, in particular the regular grid
of Sect. 4.1 and the Poisson point process of Sect. 4.2.

3.2 Topology and Characteristics

A BSS topology can be characterised in many different ways: here, we only dis-
cuss characteristics that are purely spatial. A complete spatial characterisation
of a BSS topology with N stations is a set of points

(γ1,γ2, . . . ,γN) = ((φ1, λ1), (φ2, λ2), . . . , (φN , λN)) ,

where φi is the latitude of station i and λi its longitude. Since we are mostly
interested in these locations as projected onto a map of I×J pixels (see Sect. 3.1),
we will also consider

(c1, c2, . . . , cN) = ((x1, y1), (x2, y2), . . . , (xN , yN))

where

xi =
⌊
J

λi − λmin

λmax − λmin

⌋
and yi =

⌊
I

φi − φmin

φmax − φmin

⌋

We choose the centre point c0 = (x0, y0) of the BSS to be the point
⎛

⎝ 1
N

N∑

i=1

xi,
1
N

N∑

j=1

yj

⎞

⎠ .

If an existing topology is not available one can alternatively take (�J/2�, �I/2�).
Given two stations’ latitude/longitude coordinates γi = (φi, λi) and γj =

(φj , λj), the distance between them is given by the Haversine formula, com-
puted as

d(γi,γj) = 2R arcsin

(√

sin2

(
Δφ

2

)
+ cos(φi) cos(φj) sin2

(
Δλ

2

))
, (1)

where Δφ = φj − φi, Δλ = λj − λi, and R is the radius of the earth, i.e.,
approximately 6 371 km.
3 http://mapnik.org/.

http://mapnik.org/

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 89

In Sect. 5, we discuss several more abstract metrics that characterise station
topologies, all of which involving the distance between stations. In particular,
we will consider the following two measures from [21]:

– δ: the average distance over all stations of the distance from a station to its
nearest neighbour, given by

δi = min
j∈{1,...,N}

j �=i

d(γi,γj), and

– the compactness ratio: the ratio between the area of the convex hull to that
of a circle with the same circumference.

Additionally, we use the following measures:

– σδ: the standard deviation of the nearest neighbour distances,
– t̄: the average edge length in the (Euclidean) minimum spanning tree of all

the station locations, and
– maxt: the maximum edge length in the (Euclidean) minimum spanning tree

of all the station locations.

We consider the minimum spanning tree to identify BSSs that are ‘disconnected’
is the sense that there exist clusters of stations such that the stations within the
clusters may be close together but the clusters themselves are far apart—this
information is not captured by the nearest-neighbour distance δ.

3.3 Simulation Methodology

As mentioned earlier, we consider a city map consisting of I × J pixels, with I
representing the height of the image file and J the width. The final number N
of stations is assumed to be fixed a priori, and equal to the size of the city’s
existing BSS in Sect. 5. Each pixel corresponds to a (roughly) rectangular area in
the city. The first step of the procedure is to assign to each pixel i, j a probability
weight wij , with a higher weight corresponding to a larger probability of being
selected. We also define ∀i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, the cumulative weights

cij =
∑

(k,l):
k < i, or

k = i ∧ l ≤ j

wkl

We then generate a (pseudo-)random number u on [0, 1) using (for example)
Java’s built-in random number generator, and find the first pixel for which
cij/cIJ > u. The centre of the rectangle corresponding to this pixel is then
selected as the next station’s location. We repeat this procedure until we have
N stations, and allow the weights to change depending on the locations of the
previously sampled stations. For specific applications, this is not necessarily the
most efficient procedure, but its appeal is its generality—we apply this procedure
for all procedures except the deterministic procedure of Sect. 4.1. In Sect. 4, we
discuss various ways to obtain weights wij . Note that although these processes
are typically treated as continuous-space processes in the literature, we evaluate
their probabilities on the discrete grid of the pixel map.

90 D. Reijsbergen

4 Topology Generation Models

In this section we discuss the procedure for obtaining station configurations.
We discuss four methods: the regular grid (Sect. 4.1), the Poisson point process
(Sect. 4.2), the Ginibre point process (Sect. 4.3) and the rating-weighted Poisson
process (Sect. 4.4). All procedures except the first can be fully described in terms
of the weights wij that inform the simulation methodology of Sect. 3.3.

4.1 Regular Grid

The idea behind the regular grid is straightforward: we place the stations on a
square or hexagonal grid in order to optimise the coverage of the target areas.
In principle, this means that each station has 4 or 6 nearest neighbours, with
distances δ usually the same across all stations (this is typically not true due to
the presence of invalid areas such as water bodies and parks). Given a choice for
a square or hexagonal grid, a BSS topology can be defined uniquely using a single
value for δ if we require that a station must be placed at the centre point (x0, y0).
The question is then how to choose δ such that there are N stations in the target
area. A complication here is the fact that we want to avoid placing stations in
the invalid locations discussed in Sect. 3.1. One possibility is an approach based
on bisection: we initialise δmax to be some large value (e.g., the length of the
diagonal in the bounding box of the target area) and initialise δmin = 0, then
check how many stations are placed within the target area for

δ =
1
2
(δmax − δmin).

If this number is too large, we set δmax = 1
2 (δmax − δmin), else set δmin =

1
2 (δmax − δmin) and repeat until the new value of δ yields exactly N stations.
One complication is that if the target area is not convex, N is not monotonously
decreasing as a function of δ. Even if we use the convex hull to narrow the target
area as displayed in Fig. 1c, the exclusion of invalid areas such as water bodies
will often result in non-convexity. Hence, this approach is approximative at best.
When this is finished it is possible to add random noise (e.g., Gaussian noise)
to make the topology look less artificial (we will not do this in Sect. 5).

4.2 Poisson Point Process

The Poisson point process is the most straightforward simulation procedure—
the idea is to draw station locations uniformly within the target area. In terms
of the procedure of Sect. 3.3, this amounts to fixing a constant k > 0 and setting
wij ≡ k ∀i ∈ {1, . . . , I}, j ∈ {1, . . . , J}. In continuous space, this approach
is called the Poisson point process because the ordered sequence of longitudes
forms a realisation of a Poisson process conditional on it having N points within
the box, and similarly for the latitudes. To avoid stations being drawn outside the
target area or in invalid locations (as discussed in Sect. 3.1), we set wij to zero for

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 91

each point (i, j) corresponding to such a pixel. This results in a Poisson process
that is inhomogeneous across the bounding box. In fact, the two approaches in
the remainder of Sect. 4 can also be seen as discrete versions of inhomogeneous
Poisson point processes.

4.3 Ginibre Point Process

The origins of the Ginibre point process lie in physics, where it is used to model
the locations of particles in a cloud. It has recently been applied in the context
of telecommunications systems, namely to model locations of base stations in
a cellular network [19]. It can be defined iteratively using the following density
(see, e.g., [6]):

f(zk|zk−1 . . . z1) =
1
k!

· 1
π

e−|zk|2 ·
k−1∏

j=1

|zk − zj |2 (2)

Generating a sample (z1, . . . ,zN) from the standard Ginibre point process is
straightforward: let A and B be N × N matrices filled with realisations of ran-
dom variables with a normal distribution with mean 0 and variance 1

2 . Then if
λ1, . . . , λN are the eigenvalues of the complex matrix A + iB, then

(
(Re(λ1), Im(λ1)), . . . , (Re(λN), Im(λN))

)
(3)

is a realisation of the standard Ginibre point process. It is scale-invariant : mul-
tiplying the points of a standard Ginibre point process by a constant yields a
Ginibre point process generated by normally distributed random variables with
a different variance. Again, we do not want stations to be placed in rivers or
farmland. Our approach is to use (2) to inform the weights wij , setting wij to
zero for invalid pixels. An alternative approach would be to draw, using (3),
a topology of size larger than N , and try to find a scale such that N stations
are within the target area and in valid areas. However, this approach does not
fit into our general methodology. Note that the procedure based on (2) can be
computationally expensive compared to one based on (3) as the weights have to
be recomputed each time a station is drawn. This is done efficiently by multiply-
ing the elements of the current matrix by a factor that depends on the distance
between each pixel and the station location sampled in the current iteration.

4.4 Rating-Weighted Scheme

The idea behind this approach is to incorporate geographical information into
the weights. This is done in the following way. We use a matrix ρij to denote
the attractiveness of pixel (i, j)—this is initially set to 0. We then download a
list of amenities and shops in the target area from the OSM website as discussed
in Sect. 2.2. This is followed by going through this list and increasing ρij by 5 if

92 D. Reijsbergen

the Euclidean distance between the location of the element of the list and the
centre of the rectangle corresponding to pixel i, j is smaller than 50 m—if this
distance is between 50 and 200 m we increase ρij by 2, and if it is between 200
and 1000 m we increase ρij by 1. Of course, this is but one of many ways to
incorporate the information in the list of places.

Additionally, inspired by the Ginibre point process we will also discourage
stations being placed within close proximity of each other. Given that n station
locations have already been drawn, let γij be the latitude-longitude coordinate
corresponding to the centre of pixel (i, j)—we then set

wij = ρij

n∏

k=1

(
1 − exp

(−(d(γij ,γk))2

σ

))
.

Like the Ginibre approach, this approach can be computationally expensive:
the rating needs to be computed for each pixel, and if we want to let the rating
depend on the locations of the stations sampled thus far (to avoid clustering), we
need to recompute it after each successful sample. Efficiency can be improved by
aggregating pixels, or by using an estimate of ρmax rather than the exact value.

5 Analysis and Results

In this section we will provide an overview of simulation experiments done using
the methodology presented earlier. The case study will feature a selection of 11
cities. The difference between the methods and the real systems will be illustrated
using several metrics, to be discussed below.

We begin with an overview of the characteristics discussed in Sect. 3.2 for a
number of cities, presented in Table 1. We have made a selection from the close to
400 BSSs available on the citybik.es website, based on a number of basic metrics.
First of all, the BSSs of Barcelona, Paris, London, and New York were considered
because of their (large) size. Furthermore, the New York BSS has the interesting
property that the station density is much higher in Manhattan and Brooklyn
than in New Jersey. Brussels has a very compact BSS, whereas Nice is much
more strip-like, as evidenced by the high and low compactness ratios respectively.
Melbourne has a very disconnected BSS, with several southern stations that
are very far away from the others, as evidenced by its large value for maxt,
the largest edge length in the minimum spanning tree. Finally, we also include
Dublin, Glasgow, Pisa and Tel Aviv.

In general, there is some degree of variety in terms of the inter-spacing, as
evidenced by δ̄ and t̄, which are strongly correlated. For example, the average
distance to the nearest other station is twice as high in Brussels as it is in London
and Paris. There are also considerable differences between the ratios of σδ to δ̄,
and indication of the standard deviation relative to the mean. For Brussels this
ratio is very low (about 1

3), and much higher for Nice (about 2
3), meaning that

the stations are more evenly spread out in Brussels than they are in Nice. This
is also evident if one compares Fig. 2a–b.

http://citybik.es

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 93

Table 1. Comparison of the systems under consideration in terms of the characteristics
discussed in Sect. 3.2.

City # stations δ̄ σδ t̄ maxt Compactness

Barcelona 465 168.79 99.53 218.61 597.01 .83

Brussels 343 387.11 120.82 431.42 915.01 .93

Dublin 101 196.30 63.95 232.55 438.52 .83

Glasgow 41 420.75 222.77 512.70 1203.02 .79

London 733 213.40 90.65 253.13 700.89 .81

Melbourne 49 431.63 206.95 530.79 1905.63 .80

New York 511 247.98 117.41 283.82 1425.83 .78

Nice 176 237.20 150.86 274.16 1531.63 .55

Paris 1225 218.84 101.94 252.27 1301.27 .88

Pisa 15 644.04 376.21 708.41 1687.53 .75

Tel Aviv 196 339.49 127.04 389.96 1151.84 .73

In Tables 2 and 3, we compare the performance of the topology generation
methods in terms of the degree to which their results match the real systems
across a range of simulation experiments. In particular, this is done using two
different metrics: the coverage overlap and the mean absolute difference. The for-
mer metric (the coverage overlap) is calculated as follows: given a city, a coverage
radius D, and a topology generation method, we apply the following procedure
in each simulation run: we create an image such that each pixel corresponding to
an area within D meters of a generated BSS station is marked as ‘covered’ (e.g.,
by colouring it pink as in Fig. 2). We also do that for the original BSS, and then
check for how many pixels within the target area (the convex hull mentioned
earlier, minus the invalid areas) the original and generated BSS give the same
result. This is divided by the total number of pixels in this target area to give
an overlap score. A comparison in terms of this metric is done in Table 2, for a
radius D of 200 m.

For the latter metric (the mean absolute difference), we compute a coverage
‘score’ for each pixel based on how many stations are in its vicinity. In particular,
each station adds a score of 5 to all pixels whose centre is at most 50 m away
from it, a score of 2 to all pixels between 50 and 200 m and a score of 1 to all
pixels between 200 m and 1 km. The metric is then computed as the absolute
difference between the scores for the real system and the generated one, averaged
over all pixels (again restricted to the target area). The results in terms of this
metric are displayed in Table 3.

In both tables, the numbers are the averages of 10 of such scores, ±1.96×
the standard deviation of the estimator, which gives a rough indication of the
accuracy of the estimates in terms of a (rough) 95% confidence interval. Note
that high scores are desirable for the coverage overlaps, whereas low values are

94 D. Reijsbergen

desirable for the mean absolute differences. The methods which yielded the best
results for a given city have been made bold in both tables.

For the 200 m coverage overlaps, the rating-weighted scheme is nearly always
the best choice, with Barcelona, Dublin, and Pisa the only exceptions. One possi-
ble explanation for the low overlap in Dublin is that its BSS is more commuting-
than leisure-oriented. The regular grid does fairly well in all cases. For the mean
absolute difference, the rating-weighted method is the best choice in all cases,

Table 2. Comparison of the topology generation methodologies in terms of cover-
age overlap as discussed in Sect. 5. High values indicate a large overlap—the best-
performing methods are marked in bold for each city.

City Reg. grid Poisson Ginibre Rated

Barcelona .64 .56± .01 .59 ± .01 .63± .01

Brussels .54 .57± .01 .57± .01 .60± .01

Dublin .61 .54± .01 .55± .01 .59± .02

Glasgow .63 .64± .02 .66± .01 .69± .02

London .56 .52± .01 .48± .01 .59± .01

Melbourne .62 .64± .02 .64± .01 .68± .01

New York .53 .52± .01 .49± .01 .67± .01

Nice .52 .53± .02 .56± .01 .67± .02

Paris .62 .55± .01 .56± .01 .66± .01

Pisa .73 .72± .02 .72± .02 .72± .03

Tel Aviv .54 .55± .01 .58± .01 .61± .01

Table 3. Comparison of the topology generation methodologies in terms of the mean
absolute difference as discussed in Sect. 5. Low values indicate a small difference—the
best-performing methods are marked in bold for each city.

City Reg. grid Poisson Ginibre Rated

Barcelona 17.55 18.98± .84 24.51± .08 12.29± .47

Brussels 5.88 7.08± .33 6.92± .06 5.38± .24

Dublin 9.51 11.07± 1.68 15.69± .27 9.06± .43

Glasgow 4.54 5.71± .75 4.43± .16 3.23± .24

London 14.39 15.02± .39 24.57± .03 9.59± .25

Melbourne 3.69 4.57± .33 4.82± .08 3.67± .29

New York 14.39 14.83± .54 20.00± .04 5.44± .15

Nice 11.75 13.04± .49 18.63± .07 6.55± .29

Paris 19.03 19.42± .54 25.69± .04 13.05± .33

Pisa 3.03 3.59± .45 4.18± .20 2.93± .38

Tel Aviv 7.71 8.26± .42 10.67± .06 5.43± .22

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 95

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 2. Left to right: Nice, Brussels, New York. Top to bottom: real system, regular
grid (without noise), Poisson, Ginibre, rating-weighted.

96 D. Reijsbergen

although in many cases (e.g., Melbourne and Pisa) the difference between the
regular grid and the rating-weighted scheme is small. The rating-weighted scheme
is particularly good in cities where the BSS stations are more unevenly distrib-
uted across the city, like New York and Nice. The rating-based scheme also does
reasonably well for London, Paris and Tel Aviv. It should be noted that there
is still substantial room for parameter tuning for some methods (particularly
Ginibre).

6 Conclusions

In this paper, we have introduced a new approach for generating station topolo-
gies. Of the four methods proposed, the one whose generated topologies matched
the existing systems in the best manner was the data-driven approach, in which
areas of the city were ‘rated’ according to popularity.

In future work, we are planning to compare the simulation results to ‘optimal’
results obtained by the deterministic optimisation methods discussed in Sect. 2.1,
e.g., the ones presented in [10]. We are also planning to consider a broader variety
of rating methods: e.g., closeness to railway stations for a commuting-oriented
BSS, or greater weight to landmarks for a tourism-oriented system. Additionally,
we hope to link our methodology to bike movement models: classifying stations
in terms of their typical usage behaviour (e.g., during peak hours or weekends)
based on their location. The programming code used for the experiments will
be posted online in the near future. Finally, there are some minor adjustments
mentioned in the texts: e.g., generating bespoke OSM tiles using Mapnik, or
projecting station locations onto roads.

Acknowledgments. This work has been supported by the EU project QUANTICOL,
600708. The author would like to thank Vashti Galpin and Jane Hillston for their helpful
feedback on an earlier version of this paper.

References

1. CityBikes API. http://api.citybik.es/v2/. Accessed 28 Aug 2015
2. Bao, S., Xiao, N., Lai, Z., Zhang, H., Kim, C.: Optimizing watchtower locations

for forest fire monitoring using location models. Fire Saf. J. 71, 100–109 (2015)
3. Chen, L., Zhang, D., Pan, G., Ma, X., Yang, D., Kushlev, K., Zhang, W., Li,

S.: Bike sharing station placement leveraging heterogeneous urban open data. In:
Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pp. 571–575. ACM (2015)

4. Côme, E., Oukhellou, L.: Model-based count series clustering for bike sharing sys-
tem usage mining: a case study with the Vélib’ system of Paris. ACM Trans. Intell.
Syst. Technol. (TIST) 5(3), 39 (2014)

5. Croci, E., Rossi, D.: Optimizing the position of bike sharing stations. The Milan
Case (2014)

6. Decreusefond, L., Flint, I., Vergne, A.: Efficient simulation of the Ginibre point
process. arXiv preprint arXiv:1310.0800 (2013)

http://api.citybik.es/v2/
http://arxiv.org/abs/1310.0800

Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems 97

7. Fishman, E.: Bikeshare: a review of recent literature. Transp. Rev. 36, 92–113
(2016)

8. Frade, I., Ribeiro, A.: Bike-sharing stations: a maximal covering location approach.
Transp. Res. Part A Policy Pract. 82, 216–227 (2015)

9. Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city
through shared bicycling. IJCAI 9, 1420–1426 (2009)

10. Garćıa-Palomares, J.C., Gutiérrez, J., Latorre, M.: Optimizing the location of
stations in bike-sharing programs: a GIS approach. Appl. Geogr. 35(1), 235–246
(2012)

11. Gast, N., Massonnet, G., Reijsbergen, D., Tribastone, M.: Probabilistic forecasts
of bike-sharing systems for journey planning. In: The 24th ACM International
Conference on Information and Knowledge Management (CIKM 2015) (2015)

12. Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis
in reaction diffusion systems. In: 2014 IEEE 53rd Annual Conference on Decision
and Control, pp. 108–113. IEEE (2014)

13. Guenther, M.C., Bradley, J.T.: Journey data based arrival forecasting for bicycle
hire schemes. In: Dudin, A., Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp.
214–231. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39408-9 16

14. Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Perva-
sive Comput. 7(4), 12–18 (2008)

15. Jäppinen, S., Toivonen, T., Salonen, M.: Modelling the potential effect of shared
bicycles on public transport travel times in Greater Helsinki: an open data app-
roach. Appl. Geogr. 43, 13–24 (2013)

16. Lathia, N., Ahmed, S., Capra, L.: Measuring the impact of opening the London
shared bicycle scheme to casual users. Transp. Res. Part C Emerg. Technol. 22,
88–102 (2012)

17. Liu, J., Li, Q., Qu, M., Chen, W., Yang, J., Hui, X., Zhong, H., Fu, Y.: Station
site optimization in bike sharing systems

18. Meddin, R., DeMaio, P.: The bike-sharing world map. https://www.google.com/
maps/d/viewer?mid=zGPlSU9zZvZw.kmqv ul1MfkI. Accessed 28 Jan 2015

19. Miyoshi, N., Shirai, T., et al.: A cellular network model with Ginibre configured
base stations. Adv. Appl. Probab. 46(3), 832–845 (2014)

20. Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing
systems: analysis of Vélib’. Int. J. Sustain. Transp. 7(1), 85–106 (2013)

21. O’Brien, O., Cheshire, J., Batty, M.: Mining bicycle sharing data for generating
insights into sustainable transport systems. J. Transp. Geogr. 34, 262–273 (2014)

22. Tsai, Y.S., Ko, P.C.I., Huang, C.Y., Wen, T.H.: Optimizing locations for the instal-
lation of automated external defibrillators (AEDs) in urban public streets through
the use of spatial and temporal weighting schemes. Appl. Geogr. 35(1), 394–404
(2012)

23. Tu, W., Li, Q., Fang, Z., Shaw, S.I., Zhou, B., Chang, X.: Optimizing the locations
of electric taxi charging stations: a spatial-temporal demand coverage approach.
Transp. Res. Part C Emerg. Technol. 65, 172–189 (2016)

24. Zhang, Y., Zuidgeest, M., Brussel, M., Sliuzas, R., van Maarseveen, M.: Spatial
location-allocation modeling of bike sharing systems: a literature search. In: Pro-
ceedings of the 13th World Conference on Transportation Research (2013)

http://dx.doi.org/10.1007/978-3-642-39408-9_16
https://www.google.com/maps/d/viewer?mid=zGPlSU9zZvZw.kmqv_ul1MfkI
https://www.google.com/maps/d/viewer?mid=zGPlSU9zZvZw.kmqv_ul1MfkI

GCM

On the Definition of Parallel Independence
in the Algebraic Approaches to Graph

Transformation

Andrea Corradini(B)

Dipartimento di Informatica, Università di Pisa, Pisa, Italy
andrea@di.unipi.it

Abstract. Parallel independence between transformation steps is a
basic and well-understood notion of the algebraic approaches to graph
transformation, and typically guarantees that the two steps can be
applied in any order obtaining the same resulting graph, up to isomor-
phism. The concept has been redefined for several algebraic approaches
as variations of a classical “algebraic” condition, requiring that each
matching morphism factorizes through the context graphs of the other
transformation step. However, looking at some classical papers on the
double-pushout approach, one finds that the original definition of paral-
lel independence was formulated in set-theoretical terms, requiring that
the intersection of the images of the two left-hand sides in the host graph
is contained in the intersection of the two interface graphs. The relation-
ship between this definition and the standard algebraic one is discussed
in this position paper, both in the case of left-linear and non-left-linear
rules.

1 Introduction and Background

Graph transformation (GT) is a well-developed computational model suited to
describe the evolution of systems. System states are represented by graphs, and
rules typically describe local changes of part of the state. One central topic in the
theory of GT has been the identification of conditions that guarantee that two
transformation steps from a given state are independent, and thus can be applied
in any order generating the same result. Interestingly, two transformation steps
commute (have the so-called diamond property) even if their matches overlap,
provided that they overlap only on items that are preserved by both.

In this short paper we start comparing two classical definitions of parallel
independence of transformation steps proposed for the Double-Pushout (DPO)
approach to graph transformation. Not surprisingly, we show that they are equiv-
alent for linear rules. But if rules are non-left-linear, as allowed for example in
the [Reversible] Sesqui-Pushout ([R]SqPO) approach where rules can specify
the cloning of items, they are not equivalent anymore: The equivalence can be
recovered by reinforcing one of the two definitions with an additional condition.

The reader is assumed to be familiar with the DPO approach and recent cate-
gorical development of its theory, including the definition and some properties of
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 101–111, 2016.
DOI: 10.1007/978-3-319-50230-4 8

102 A. Corradini

adhesive categories. We briefly recall in the rest of this introductory section a few
definitions (final pullback complement, DPO and (Reversible) Sesqui-Pushout
approaches).

In order to fix the terminology, let us recall the standard definition of Double-
Pushout transformation [13] in a generic category C.

Definition 1 (Double-Pushout transformation). A production ρ = (L l←
K

r→ R) is a span of arrows in C. Production ρ is left-linear if l is mono,
right-linear if r is mono, and linear if both l and r are monos. A match for a
production ρ in an object G is an arrow m : L → G. If the diagram in (1) can be
constructed in C, where both squares are pushouts, then we say that there is a
transformation step from G to H via (ρ,m), and we write G ⇒(ρ,m) H. In this
case we call the pair (ρ,m) a redex in G, and we call it (left-, right-) linear if so
is ρ. We write G ⇒ρ H if there is a match m for ρ in G such that G ⇒(ρ,m) H.

L

m

��

K
l�� r ��

n

��

R

p

��
G D

g�� h �� H

(1)

Therefore if (ρ,m) is a redex in G we know that ρ can be applied to match m
in G. In diagram (1), K is called the interface and D the context.

The definition of (Reversible) Sesqui-Pushout transformation [5,7] is very
similar to DPO transformation, the only difference being the properties that the
left and right squares of diagram (1) have to satisfy. We first recall the definition
of final pullback complement.

Definition 2 (final pullback complement). In diagram (2), K
n→ D

a→ G

is a final pullback complement of K
l→ L

m→ G if
1. the resulting square is a pullback, and
2. for each pullback G

m← L
d← K ′ e→

D′ f→ G and arrow K ′ h→ K such
that l◦h = d, there is a unique arrow
D′ g→ D such that a◦g = f and g◦e =
n ◦ h. (2)

Definition 3 ((Reversible) Sesqui-Pushout transformation). Under the
premises of Definition 1, we say that there is an SqPO transformation step from
G to H via (ρ,m) if the diagram in (1) can be constructed in C, where the left
square is a final pullback complement and the right square is a pushout. Similarly,
there is a Reversible SqPO transformation step from G to H via (ρ,m) if the
diagram in (1) can be constructed in C, where both the left and the right squares
are both final pullback complements and pushouts.

On the Definition of Parallel Independence in the Algebraic Approaches 103

2 Comparing Definitions of Parallel Independence: The
Left-Linear Case

The Local Church-Rosser Problem is presented in the following way in [6]:

Find a condition, called parallel independence, such that two alternative
direct derivations H1 ρ1⇐ G ⇒ρ2 H2 are parallel independent iff there are
direct derivations H1 ⇒ρ2 X and H2 ⇒ρ1 X such that G ⇒ρ1 H1 ⇒ρ2 X
and G ⇒ρ2 H2 ⇒ρ1 X are equivalent.

Deliberately we leave this statement at a pretty informal level, avoiding to define
formally the notion of equivalence of derivation sequence: For the interested
reader, several kinds of such equivalences are discussed in [4] and in Sect. 3.5 of
[6], the most relevant of which are based on the classical shift equivalence [14].
Also, for the sake of simplicity, we do not consider the related notion of sequential
independence of two consecutive transformation steps.

Relevant for the present discussion is the observation that the above state-
ment fixes a standard pattern for addressing the Local Church-Rosser Problem
in the various approaches to algebraic graph transformation: first, a definition
of parallel independence for transformation steps has to be provided, next a
Local Church-Rosser Theorem proves that given two parallel independent trans-
formation steps from a given graph, they can be applied in both orders obtain-
ing the same result (up to isomorphism). Disregarding the proofs of the Local
Church-Rosser Theorems, in the following we aim at relating and comparing a
few definitions of parallel independence.

In [9], a standard reference for the DPO approach, two definitions of parallel
independence are presented. The first one is stated in a set-theoretical way for
the category Graph of graphs and graph homomorphism, and for linear pro-
ductions. It says that two linear redexes are parallel independent if they satisfy
Condition 1.

Condition 1 (preservation of intersection of matches). In category
Graph, (ρ1,m1) and (ρ2,m2) are two redexes in a graph G, as in diagram (3).
The intersection of matches m1 and m2 in G is preserved along the interfaces,
that is,

m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2))

or equivalently, since the reverse inclusion always holds,

m1(L1) ∩ m2(L2) = m1(l1(K1)) ∩ m2(l2(K2)).

104 A. Corradini

R1

p1

��

K1
��r1�� �� l1 ��

n1

��

L1

m1

���
��

��
��

��
L2

m2

����
��
��
��
�

K2
��l2�� �� r2 ��

n2

��

R2

p2

��
H1 D1

h1

��
g1

�� G D2g2
��

h2

�� H2

(3)

This definition conveys the precise intuition that two redexes are independent
if each preserves the items needed by the other; therefore the match in G of, say,
ρ1 is still available in the result of the transformation step G ⇒(ρ2,m2) H2.

Immediately after, a different characterization is presented: two linear redexes
are parallel independent if they satisfy Condition 2.

Condition 2 (factorization of matches). In a category C, (ρ1,m1) and
(ρ2,m2) are two redexes in an object G, as in diagram (4). The matches m1 and
m2 factorize through the context, that is, there exist arrows m1d : L1 → D2 and
m2d : L2 → D1 such that g2 ◦ m1d = m1 and g1 ◦ m2d = m2.

R1

p1

��

K1
��r1�� �� l1 ��

n1

��

L1

m1

���
��

��
��

��
m1d

��

� � � � � � 	
 � � � �

L2

m2

����
��
��
��
�

m2d

��

�������������

K2
��l2�� �� r2 ��

n2

��

R2

p2

��
H1 D1

h1

��
g1

�� G D2g2
��

h2

�� H2

(4)

The equivalence of Conditions 1 and 2 for linear redexes and for the category
of graphs is proved for example in [8] and in Fact 3.18 of [10], by exploiting
specific properties of pushouts in Graph. The motivation for introducing Con-
dition 2 is pragmatical: it is easier to use in the proof of the Local Church-Rosser
Theorem, heavily based on diagrammatic constructions.1

In subsequent developments of the DPO approach to categories different from
graphs (including High Level Replacement (HLR) systems first [11] and DPO
transformation in adhesive categories next [15]), Condition 2 has always be taken
as the reference definition of parallel independence. But it is obvious that Con-
dition 2 is not a direct translation in categorical terms of the set-theoretical
Condition 1, as the authors of [11] implicitly state when they write “For HLR-
systems it is easier to define independence directly by conditions 1 and 2 above
(i.e. Condition 2), because this avoids to require general pullback constructions
generalizing intersections”. Indeed, a direct categorical formulation of Condi-
tion 1 would read as follows.

1 The definitions of parallel independence based on Conditions 1 or 2 date back to
the mid seventies of last century. Besides of [8] they also appear in [12]. In [17]
parallel independence is defined set-theoretically (see diagram (3)) as m1(L1) ⊆
g2(D2) ∧ m2(L2) ⊆ g1(D1), a variant of Condition 2.

On the Definition of Parallel Independence in the Algebraic Approaches 105

Condition 3 (preservation of pullback of matches). In a category C,
(ρ1,m1) and (ρ2,m2) are two redexes in an object G. The pullback of the matches
m1 and m2 in G is preserved along the interfaces, that is, in diagram (5), where
both squares are pullbacks, the mediating arrow i : K1×GK2 → L1×GL2 is an
isomorphism.

K1×GK2

��
πK
2

��

πK
1

��

		

i
�

�

�
�

K2

l2
��

L1×GL2

πL
2 ��

πL
1

��

��
L2

m2

��
K1 l1 �� L1 m1 �� G

(5)

Therefore Condition 3 is another candidate for a definition of parallel inde-
pendence, provided that the reference category C has the needed pullbacks. To
my knowledge, the equivalence of Conditions 2 and 3 was not discussed in the lit-
erature. Let us show that the two conditions are indeed equivalent for left-linear
productions, and assuming that category C is adhesive.

Proposition 1 (matches extend iff their pullback is preserved). Let
C be an adhesive category. Then for left-linear redexes Conditions 2 and 3 are
equivalent.

Proof. Condition 2 implies Condition 3. Suppose that two left-linear
redexes (ρ1,m1) and (ρ2,m2) satisfy Condition 2 and consider diagram (6). We
show that the large square is a pullback, from which L1×GL2

∼= K1×GK2 follows
(and thus Condition 3). Therefore given an object X with arrows f : X → L2

and g : X → L1 such that m2 ◦ f = m1 ◦ g, we have to show that there exists a
unique arrow h : X → K1×GK2 such that l2 ◦ πK

2 ◦ h = f and l1 ◦ πK
1 ◦ h = g.

X

f

fg

��
gf

��
g

��

h

�
�

�

�
�

�

K1×GK2 πK
2

��

πK
1

��

1©

K2 l2 ��

n2

��

2©

k2

��

L2

m2d

��
m2

��

K1

l1

��

n1
��

3©
k1

��

D1

g1

��
L1 m1d

��

m1

��D2 g2
�� G

4©

(6)

106 A. Corradini

Existence. Square 2© + 4© is a pushout by construction, and by adhesivity it
is also a pullback, because l2 is mono by hypothesis. Since X

f→ L2
m2→ G =

X
m1d◦g−→ D2

g2→ G and 2©+ 4© is a pullback, there is a unique arrow fg : X → K2

such that l2 ◦ fg = f and n2 ◦ fg = m1d ◦ g. For symmetric reasons, since also
3© + 4© is a pullback there is a unique arrow gf : X → K1 such that l1 ◦ gf = g
and n1 ◦ gf = m2d ◦ f .

Next observe that by definition K1
πK
1← K1×G K2

πK
2→ K2 is the pullback of

K1
k1→ G

k2← K2, where k1 and k2 are the diagonals of squares 3©+ 4© and 2©+ 4©,
respectively. Thus since we have k2 ◦ fg = m2 ◦ l2 ◦ fg = m2 ◦ f = m1 ◦ g =
m1 ◦ l1 ◦ gf = k1 ◦ gf , we deduce that there is a unique arrow h : X → K1×GK2

such that πK
2 ◦ h = fg and πK

1 ◦ h = gf , and thus we obtain l2 ◦ πK
2 ◦ h = f and

l1 ◦ πK
1 ◦ h = g, as desired.

Uniqueness. Suppose that there are arrows h1, h2 : X → K1×GK2 such that
l2◦πK

2 ◦h1 = f = l2◦πK
2 ◦h2 and l1◦πK

1 ◦h1 = g = l1◦πK
1 ◦h2. Since l1 and l2 are

mono, we obtain πK
2 ◦h1 = πK

2 ◦h2 and πK
1 ◦h1 = πK

1 ◦h2. Then h1 = h2 follows
because K1×GK2 is a pullback object, and k1 ◦ πK

1 ◦ hi = m1 ◦ l1 ◦ πK
1 ◦ hi =

m1 ◦ g = m2 ◦ f = m2 ◦ l2 ◦ πK
2 ◦ hi = k2 ◦ πK

2 ◦ hi, for i ∈ {1, 2}.

Condition 3 implies Condition 2. Vice versa, assume that (ρ1,m1) and
(ρ2,m2) satisfy Condition 3. By Proposition 12 of [5] since l2 : K2 � L2 is
mono and C is adhesive, , is a final pullback complement of

. Thus in diagram (7) the left square is a final pullback com-
plement, the outer square is a pullback by definition, and the upper triangle
commutes by (5). By the universal property of final pullback complements there
is a unique arrow m1d : L1 → D2 making the right square and the bottom trian-
gle commute. Therefore we have g2 ◦ m1d = m1, and by a symmetric argument
there exists an arrow m2d : L2 → D1 such that g1 ◦ m2d = m2. Thus the two
redexes satisfy Condition 2.

L2

m2

��

K2��
l2��

n2

��

L1×GL2πk
2 ◦i−1��

πL
1

��

πL
2

��

G D2g2
�� L1

m1d
��� � � � � � �

m1

��

(7)

3 The Non-linear Case

The theory of the DPO approach was developed only for left-linear rules, because
the construction of the pushout complement of arrows l and m in the left square
of (1) is not uniquely determined if l is not mono, even in well-behaved situa-
tions like adhesive categories. In more recent times, the Sesqui-Pushout approach
provided a conservative extension of the DPO one, allowing to handle in a deter-
ministic way also non-left-linear rules. In fact as recalled in Definition 3 the left

On the Definition of Parallel Independence in the Algebraic Approaches 107

square of a transformation step in this case is a final pullback complement of
arrows l and m, which (if it exists) is unique up to isomorphisms because it
is characterized by a universal property. A definition of parallel independence
for SqPO transformation for linear productions only has been proposed in [5]
by using Condition 2 and assuming adhesivity (and existence of final pullback
complements, required for SqPO transformation). Thus by Proposition 1 we now
know that Condition 3 would have been equivalent.

More interestingly, in the framework of Reversible SqPO the authors of [7]
have considered the Local Church-Rosser Problem for non-linear rules. We con-
sider here only the case of possibly non-left-linear, but right-linear rules, i.e. we
assume that morphism r : K → R is mono. In this case, the definition of [7] can
be rephrased as follows: two right-linear redexes are parallel independent if they
satisfy both Conditions 2 and 4.

Condition 4 (reflection of matches). In a category C, (ρ1,m1) and (ρ2,m2)
are two redexes in an object G, as in diagram (4), which satisfy Condition 2. They
are reflected identically along the context, that is, the two squares in diagram (8)
are pullbacks.

L1
�� idL1

m1

��

L1

m1d

��

��

G D2g2��

L2 idL2
��

m2d

��

��
L2

m2

��
D1 g1 �� G

(8)

Essentially, as observed in [7], if productions are non-left-linear, the commu-
tativity requirements for arrows m1d and m2d of Condition 2 are not sufficient
and have to be reinforced with the pullback requirements of Condition 4.2 The
same condition is also implied by the definition of parallel independence pro-
posed in [16] in the more general framework of rewriting in categories of spans,
where the required pullbacks arise from span composition.

A simple example can clarify this situation. Let ρ1 = (L1 ← K1 → R1) and
ρ2 = (L2 ← K2 → R2) be the productions depicted in the following figure, where
ρ1 adds a second loop to a preserved node with a loop, while ρ2 duplicates the

2 The conditions for parallel independence for non-linear rules in the context of
RSqPO, presented in [7], are even stronger. First, besides Condition 2, making refer-
ence to diagram (4) it is required that (ρ2, h1 ◦m2d) and (ρ1, h2 ◦m1d) are (RSqPO-)
redexes. Furthermore, and more interestingly for the present discussion, since pro-
ductions can also be non-right-linear, besides Condition 4 it is also required that the
squares in (9) are pullbacks.

L1 idL1
��

m1d

��

��
L1

h2◦m1d

��
D2 h2 �� H2

L2
�� idL2

h1◦m2d

��

L2

m2d

��

��

H1 D1h1��

(9)

.

108 A. Corradini

node but not the incident loop. Both can be applied using SqPO transformation
to the same graph G made of a node with a loop. There are (unique) morphisms
L1 → D2 and L2 → D1 satisfying Condition 2, but the two transformation
steps do not enjoy the diamond property, and thus should not be considered as
parallel independent. In fact, applying ρ1 to H2 one gets a graph with two nodes,
one of which has two loops and the other none. Instead applying ρ2 to H1 one
gets a graph with two nodes, one with two loops and the other with one loop.

It is easy to show that the depicted redexes do not satisfy neither Condition 3
nor 4. In fact, we show that in the case of non-left-linear productions, Condition 3
is equivalent to the conjunction of Conditions 2 and 4. The last part of the
proof exploits results to appear in [3], and requires an additional condition on
category C, namely that it has a partial maps classifier (or equivalently, since
C is assumed to have final pullback complements, a subobject classifier). We
refer to [1] for the definition of partial maps classifiers and the relationship with
subobject classifiers, and to [2] for their use in the AGREE approach to graph
transformation.

Proposition 2 (matches factorize and are reflected identically iff their
pullback is preserved). Let C be an adhesive category with final pullback com-
plements and with a sub-object classifier. Then the conjunction of Conditions 2
and 4 is equivalent to Condition 3 for SqPO and RSqPO transformation.

Proof. Conditions 2 and 4 imply Condition 3. Suppose that two redexes
(ρ1,m1) and (ρ2,m2) satisfy Conditions 2 and 4. We proceed as in the proof of
Proposition 1 showing that the square of diagram (6) is a pullback.

Given an object X with arrows f : X → L2 and g : X → L1 such that
m2 ◦ f = m1 ◦ g, the existence of an arrow h : X → K1 ×G K2 such that
l2 ◦ πK

2 ◦ h = f and l1 ◦ πK
1 ◦ h = g can be shown as in the proof above,

considering that squares 2© + 4© and 3© + 4© are now pullbacks by construction,
since we consider [R]SqPO transformation. For the uniqueness part, since l1 and
l2 are not monic in general, we exploit Condition 4.

Thus, making still reference to diagram (6), suppose that there are arrows
h1, h2 : X → K1×GK2 such that l2 ◦πK

2 ◦h1 = f = l2 ◦πK
2 ◦h2 and l1 ◦πK

1 ◦h1 =
g = l1 ◦ πK

1 ◦ h2.

On the Definition of Parallel Independence in the Algebraic Approaches 109

(10)

Consider the cube in diagram (10): the bottom face is a pullback by Con-
dition 4, the front-left face is a pullback by construction, the back-right face is
trivially a pullback, and the front-right and back-left squares commute. There-
fore by pullback splitting also the top face is a pullback. By symmetry, also a
similar square with indexes 1 and 2 exchanged is a pullback. We exploit these
squares in diagram (11): since the outer squares commute by hypothesis, by the
pullback property we deduce that πK

2 ◦ h1 = πK
2 ◦ h2 and πK

1 ◦ h1 = πK
1 ◦ h2.

Then h1 = h2 follows by the same argument as in the proof of Proposition 1.

X

h1

��

h1

πK
1 ◦h2

��

K1×GK2 id ��

πK
1

��

K1×GK2

l1◦πK
1

��
K1 l1 �� L1

X

h1

��

h1

πK
2 ◦h2

��

K1×GK2 id ��

πK
2

��

K1×GK2

l2◦πK
2

��
K2 l2 �� L2

(11)

Condition 3 implies Conditions 2 and 4. The proof that Condition 3
implies Condition 2 is identical, and even more direct, than the corresponding
proof for Proposition 1, because the left square of diagram (7) is a final pullback
complement by construction.

For Condition 4, the fact that the squares in (8) are pullbacks is proved in
Lemma 1 of [3] by exploiting Condition 3 and an additional condition involv-
ing the partial maps classifier, and formulated for the more general framework
of AGREE transformation. The latter condition, instantiated to SqPO trans-
formation, requires that the left square of (12) is a pullback. But this follows
easily by the observation that the right square of (12) is a pullback thanks to
Condition 3, and that the partial maps classifier functor T : C → C preserves
pullbacks [1].

T (L1×GL2) T (πk
1 ◦i−1) ��

id

��

��
T (K1)

T (l1)

��
T (L1×GL2) T (πL

1) �� T (L1)

L1×GL2 πk
1 ◦i−1 ��

id

��

��
K1

l1
��

L1×GL2 πL
1

�� L1

(12)

110 A. Corradini

4 Conclusions

The goal of this position paper was to introduce a categorical definition of paral-
lel independence based on pullbacks, thus corresponding directly to the original
set-theoretical definition, and to study its relationship with the standard defini-
tion based on the possibility of factorizing the matches through the context. The
pullback-based definition works, without changes, also for productions allowing
the cloning of structures. Anyway since the two alternative definitions are equiv-
alent (under suitable assumptions on the relevant category), the choice of one
over the other looks mainly a matter of taste or of convenience. In this respect,
I find Condition 3 slightly more elegant than Condition 2 because it makes ref-
erence only to the productions and to the corresponding matches, and not to
the context graphs obtained by the application of the productions. But Condi-
tion 2 is certainly more convenient in proofs based on diagram constructions and
chasing.

Acknowledgments. The idea of spelling out the relationship between the standard
algebraic and the pullback-based definitions of parallel independence maturated during
stimulating discussions with Dominque Duval, Frédéric Prost, Rachid Echahed and
Leila Ribeiro, during the work on the AGREE approach to GT. Hans-Jörg Kreowski
provided me some references to the early literature on parallel independence. During
the workshop where this work was presented, Michael Löwe suggested several technical
improvements, including a new version of the last part of the proof of Proposition 2
that does not need partial maps classifiers: this will be presented in a forthcoming
report.

References

1. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theor.
Comput. Sci. 294(1–2), 61–102 (2003)

2. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21145-9 3

3. Corradini, A., Duval, D., Prost, F., Ribeiro, L.: Parallelism in AGREE transforma-
tions. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 37–53.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-40530-8 3

4. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Abstract graph
derivations in the double pushout approach. In: Schneider, H.J., Ehrig, H. (eds.)
Graph Transformations in Computer Science. LNCS, vol. 776, pp. 86–103. Springer,
Heidelberg (1994). doi:10.1007/3-540-57787-4 6

5. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-Pushout rewriting.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). doi:10.1007/
11841883 4

6. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Foundations, vol. 1, pp. 163–246 (1997)

http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/978-3-319-40530-8_3
http://dx.doi.org/10.1007/3-540-57787-4_6
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/11841883_4

On the Definition of Parallel Independence in the Algebraic Approaches 111

7. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible Sesqui-
Pushout rewriting. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571,
pp. 161–176. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09108-2 11

8. Ehrig, H., Rosen, B.: Commutativity of Independent Transformations on Complex
Objects. IBM Thomas J. Watson Research Division (1976)

9. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73,
pp. 1–69. Springer, Heidelberg (1979). doi:10.1007/BFb0025714

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

11. Ehrig, H., Habel, A., Kreowski, H., Parisi-Presicce, F.: Parallelism and concurrency
in high-level replacement systems. Math. Struct. Comput. Sci. 1(3), 361–404 (1991)

12. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). doi:10.1007/3-540-07854-1 188

13. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, 15–17 October 1973, pp. 167–180. IEEE Computer Society (1973)

14. Kreowski, H.: Manipulation von Graphmanipulationen. Ph.D. thesis, Technische
Universität, Berlin (1977)

15. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theor. Inf. Appl.
39(3), 511–545 (2005)

16. Löwe, M.: Graph rewriting in span-categories. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 218–233. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15928-2 15

17. Rosen, B.K.: A Church-Rosser theorem for graph grammars. ACM SIGACT News
7(3), 26–31 (1975)

http://dx.doi.org/10.1007/978-3-319-09108-2_11
http://dx.doi.org/10.1007/BFb0025714
http://dx.doi.org/10.1007/3-540-07854-1_188
http://dx.doi.org/10.1007/978-3-642-15928-2_15

Approximating Parikh Images for Generating
Deterministic Graph Parsers

Frank Drewes1, Berthold Hoffmann2, and Mark Minas3(B)

1 Ume̊a Universitet, Ume̊a, Sweden
drewes@cs.umu.se

2 Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. The Parikh image of a word abstracts from the order of its
letters. Parikh’s famous theorem states that the set of Parikh images of a
context-free string language forms a semilinear set that can be effectively
computed from its grammar. In this paper we study the computation
of Parikh images for graph grammars defined by contextual hyperedge
replacement (CHR). Our motivation is to generate efficient predictive
top-down (PTD) parsers for a subclass of CHR grammars. We illustrate
this by describing the subtask that identifies the nodes of the input graph
that parsing starts with.

1 Introduction

The Parikh image of a word abstracts from the positions of letters in the word,
by just counting how often these letters occur. Parikh’s theorem states that the
set of Parikh images of a context-free string language forms a semilinear set
that can be effectively computed from its grammar [12]. Another way to put
this is to say that, if the order of symbols in strings is disregarded, in effect
turning every string into a multiset of symbols, then the context-free languages
are effectively equal to the regular ones. This theorem is useful for studying
properties of languages, e.g., for proving that some language is not context-free.

In this paper we study the computation of Parikh images for contextual
hyperedge replacement (CHR) grammars. Our motivation is the automated gen-
eration of efficient parsers for these grammars. In [4], we have devised predictive
top-down (PTD) parsers for a class of CHR grammars,1 a technique similar to
top-down LL(1) string parsing. The complexity of PTD parsing is quadratic in
general and linear in many practical cases, whereas that of general HR pars-
ing (and thus of CHR parsing as well) is known to be NP-complete. Parikh
images are the heart of the PTD parser generation, as they are used to make
rule selection deterministic: imagine that the parser is in a situation where it has
to expand a nonterminal hyperedge labelled A that is attached to a node v of

1 Due to space restrictions, that paper describes only the HR case.

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 112–128, 2016.
DOI: 10.1007/978-3-319-50230-4 9

Approximating Parikh Images for Generating Deterministic Graph Parsers 113

the input graph, and there are two rules p, p′ with the left-hand side A. Assume
further that we have determined the semilinear sets U, V of terminal edge labels
that derivations starting with p or p′ can attach to v, and that these sets are
disjoint. Then the parser can decide whether to apply p or p′ by inspecting the
part of the input still to be generated, and by checking whether the multiset of
labels of edges actually attached to v belongs to U or to V .

Unfortunately, the exact computation of the required Parikh images is com-
putationally far too expensive. Even more importantly, the resulting semilinear
expressions become so huge that they cannot be handled in a reasonably efficient
manner. Thus, one cannot hope to solve the problem by more efficient algorithms.
We therefore propose a procedure which computes an over-approximation of the
exact solution that is sufficiently close to the exact solution and sufficiently effi-
cient to be used for PTD parser generation. We illustrate its use by considering
the subtask of the parser generator that determines which nodes of the input
graph have to be matched when parsing starts.

The remainder of this paper is structured as follows. In Sect. 2, we recall
Parikh images, and discuss their exact computation for a given grammar. Since
this algorithm is too inefficient for grammars of the size occurring in practi-
cal applications, we devise procedures that over-approximate Parikh images, in
Sect. 3. That far, we discuss just the simple case of context-free string gram-
mars. In Sect. 4, we introduce CHR grammars, and explain how the start nodes
for PTD parsers of CHR grammars can be constructed with the help of the tech-
niques developed in the earlier sections. Finally we mention some related and
future work in Sect. 5.

2 Parikh Images and Grammar Graphs

Let Σ be a finite alphabet. We wish to count occurrences of terminal symbols
in strings over Σ, but disregard the order of the occurrences of symbols. Thus,
in effect, we want to work with finite multisets of elements of Σ rather than
with strings. Instead of the usual free monoid Σ∗ over Σ, we therefore consider
the free commutative monoid Σ� over Σ in which the monoid operator · is
commutative, i.e., a · b = b · a. In other words, · is the union of multisets. If no
confusion is likely to arise, we may drop the operator · in expressions, but the
reader should keep in mind that the order of the symbols a1, . . . , an in a1 · · · an

is irrelevant in this case, despite the string-like appearance of the expression.
Note that, as a special case of this notation, a denotes the singleton multiset
{a}. Finally, we define the partial ordering � on Σ� to be multiset inclusion,
i.e., u � v if v contains every symbol at least as many times as u does.

In the following, let Γ = 〈Σ,N , P, S〉 be a fixed context-free Chomsky gram-
mar with the sets Σ and N of terminal and nonterminal symbols, respectively,
Σ ∩N = ∅, P ⊆ N × (N ∪Σ)� the set of rules (or productions), and S ∈ N the
start symbol. Note that we interpret the right-hand sides of rules as elements of
(N ∪ Σ)� rather than as strings. Accordingly, the language L(Γ) is a subset of
Σ�, namely the Parikh image of the traditional string language generated by Γ .

114 F. Drewes et al.

In order to operate on languages L ⊆ Σ�, we make use of the so-called
counting semiring over such languages with the addition + of languages being
their union and multiplication · being the extension of multiset union · to lan-
guages of multisets, i.e., U · V = {u · v | u ∈ U, v ∈ V }. Thus, the additive and
multiplicative identities are the empty set and {ε}, respectively. Again, we write
ε instead of {ε}. Note that the counting semiring is isomorphic to the one on
sets of Parikh vectors counting occurrences of terminal symbols in words over
Σ. We define the Kleene operator � on languages L ⊆ Σ� as usual: L� is the
least set such that L� = ε + L · L�. Since the semiring is commutative as well
as idempotent, we have (K + L)� = K� · L� and (K · L�)� = ε + K · K� · L�.

Parikh’s Theorem [12] states that the commutative language L(Γ) generated
by Γ is semilinear, i.e., there are finitely many finite languages A1, . . . , An ⊆ Σ�

and B1, . . . , Bn ⊆ Σ� such that L(Γ) = A1B
�
1 + · · · + AnB�

n . The languages
A1, B1, . . . , An, Bn can be effectively computed, e.g., using a generalization of
Newton’s method [5] but, as explained in the introduction, complexity issues
prevent us from using this fact for PTD parser generation. Instead, we devise a
procedure that over-approximates the exact Parikh image.

The idea underlying the procedure is to consider all possible derivation trees
of Γ and to count the occurrences of terminal symbols in their leaves. We over-
approximate the set of derivation trees, thus computing a semilinear set that
contains the Parikh image of Γ but is sufficiently close to the exact solution.

A graph over our fixed context-free grammar Γ has a set Ġ of nodes. Each
node v ∈ Ġ is labelled with �(v) ∈ P ∪ N ∪ Σ, i.e., either a rule, a nonterminal,
or a terminal symbol of Γ . Instead of explicitly representing edges, each node
v ∈ Ġ is assigned a multiset children(v) ∈ Ġ� of children nodes. A tree over
Γ is just a graph over Γ that satisfies the usual requirements for trees. As a
shorthand notation for a tree t we write α(t1, . . . tn) if t has a root node v with
label α = �(v) and children(v) = v1 · · · vn such that vi is the root node of the
direct subtree ti, for i ∈ [n],2 or just α if v is a leaf.

The set D(α) of derivation trees of Γ with root label α ∈ Σ ∪ N ∪ P is
inductively defined. If α ∈ Σ, the tree consists only of the root as its only node.
If α ∈ N , the tree has a single direct subtree, being a derivation tree whose root
is labeled with a rule applicable to α. If α is a rule in P , for each occurrence of
a symbol in its right-hand side there is a subtree that is a derivation tree with
that symbol as its root label. Formally,

D(α) =

⎧
⎨

⎩

{α} if α ∈ Σ
{α(t) | ∃p = (α, r) ∈ P : t ∈ D(p)} if α ∈ N
{α(t1, . . . , tn) | ∀i ∈ [n] : ti ∈ D(ai)} if α = (A, a1 · · · an) ∈ P.

We now define the Parikh image Ψ(t) of a derivation tree t as the multiset of the
terminal labels of its leaf nodes and the Parikh image ψ(α) of every α ∈ Σ∪N ∪P
as the set of Parikh images of all derivation trees with root label α:

2 [n] denotes the set {1, . . . , n}.

Approximating Parikh Images for Generating Deterministic Graph Parsers 115

Ψ(t) =
{

a if t = a and a ∈ Σ
Ψ(t1) · . . . · Ψ(tn) if t = α(t1, . . . , tn) and α ∈ N ∪ P

ψ(α) = {Ψ(t) | t ∈ D(α)}.

By this, ψ(S) is obviously L(Γ).
In order to approximate the set of all derivation trees, we encode the rules

of Γ in a graph GΓ over Γ , called grammar graph of Γ : GΓ has Σ ∪ N ∪ P
as its node set, and each node is labelled with itself, �(v) = v for each node v.
The multiset of children of a nonterminal node A consists of just the rules with
left-hand side A (in any order), while the multiset of children of a rule node is
simply the right-hand side of that rule, and the multiset of children of a terminal
node is the empty multiset ε:

children(v) =

⎧
⎪⎪⎨

⎪⎪⎩

p1 · · · pn if v ∈ N and p1 · · · pn is the multiset of all rules
with left-hand side v

a1 · · · an if v = (A, a1 · · · an) ∈ P
ε if v ∈ Σ

Clearly, for all α ∈ Σ∪N ∪P the derivation trees with root α can be read off GΓ

by starting at the node α and recursively selecting one of its children if α ∈ N
(thus choosing a rule for α) or all of them if α ∈ P (thus building sub-derivations
that correspond to the nonterminals in the right-hand side of α).

Our aim is to compute L(Γ) = ψ(S) by counting terminal leaves of the
derivation trees with root S. Recall that the strongly connected components
(SCCs) of the grammar graph are just the maximal subgraphs in which every
node can be reached from every other node on a directed path. Thus, nodes
belonging to the same cycle are in the same SCC. We identify an SCC with the
set C of its nodes. The problem of counting terminal leaves of complete derivation
trees can thus be broken down into the simpler problem of considering each SCC
of the grammar graph separately, solving the problem for the (possibly infinite)
set of all partial derivation trees that can be “read off” this individual SCC, and
combining these solutions to obtain one for the derivation trees of Γ .

We now define how to read off trees from C. These trees are called the
component trees of C. For this, let us call a node v a successor of an SCC C if
v is a child of a node u ∈ C but v �∈ C. We denote the set of all successors of C
by succ C. Note that successors can be terminals, nonterminals, as well as rules.
The set treesC(v) of all component trees that can be read off an SCC C starting
at v ∈ C ∪ succ C is defined as follows:

treesC(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{v} if v ∈ Σ ∩ C or v ∈ succ C
{v(t) | t ∈ treesC(vi) for some i ∈ [k]}

if v ∈ N ∩ C and children(v) = v1 · · · vk

{v(t1, . . . , tk) | ti ∈ treesC(vi) for each i ∈ [k]}
if v ∈ P ∩ C and children(v) = v1 · · · vk

A derivation tree t can be composed from component trees t1, t2 if t1 has a
leaf v with the same label as the root r of t2, i.e., �(v) = �(r) = u ∈ C2 ∩ succ C1

for SCCs C1, C2. Then t is obtained from t1 and t2 by merging v and r.

116 F. Drewes et al.

Fig. 1. Grammar graph of the
grammar in Example 1 with
indicated strongly connected
components.

Fig. 2. Derivation tree of a2b5.

Example 1. As an example we consider the grammar with Σ = {a, b},
N = {S,A,B, T}, and rules p1 = 〈S, TT 〉, p2 = 〈T,AS〉, p3 = 〈T,B〉, p4 =
〈A, aa〉, p5 = 〈B, bB〉, p6 = 〈B, b〉. Figure 1 shows its grammar graph with indi-
cated strongly connected components and Fig. 2 shows a derivation tree of a2b5.
The derivation tree is made up of (copies of) the following nine component
trees: t1 ∈ treesC1(b), t2 ∈ treesC2(p6), t3,1, t3,2 ∈ treesC3(B), t4 ∈ treesC4(p3),
t5 ∈ treesC5(a), t6 ∈ treesC6(p4), t7 ∈ treesC7(A), and t8 ∈ treesC8(S). ♦

The procedure for computing Parikh images (and approximated Parikh
images later) of derivation trees runs in three basic steps:

1. The SCCs of the grammar graph are computed.
2. A DAG of SCCs is obtained by contracting each SCC to a single node.
3. This DAG is evaluated in a bottom-up fashion, processing each SCC in turn

as described in the following.

The processing of a SCC results in a Parikh image ψ(v) associated with each node
v of the SCC. Let C be the next SCC to be processed, assuming that all SCCs
containing children of C have already been processed. We determine ψ(v) for
each v ∈ C. If v is terminal then C = {v} and ψ(v) is a singleton. Hence, the case
of v ∈ Σ∩C does not need to be considered anymore below. For v ∈ (N ∪P)∩C,
we can determine ψ(v) by collecting the Parikh images of all component trees
of C, letting the successor nodes of C act as terminal symbols. Clearly, this

Approximating Parikh Images for Generating Deterministic Graph Parsers 117

component-specific Parikh image of a component tree t ∈ treesC(v) is

ΨC(t) =
{

a if t = a ∈ succ C
ΨC(t1) · . . . · ΨC(tk) if t = α(t1, . . . , tk) and α ∈ (N ∪ P) ∩ C.

The set of component-specific Parikh images of a node v ∈ C is then defined as

ψC(v) = {ΨC(t) | t ∈ treesC(v)}.

The actual Parikh image ψ(v) for a node v ∈ C can then be obtained from ψC(v)
by substituting each occurrence of any node u ∈ succ C by ψ(u), which has been
determined previously.

One can compute ψC(v) by interpreting the subgraph induced by C ∪ succ C
as a system of equations to be solved. Nodes in succ C are constants representing
given Parikh images (that have been determined previously in the bottom-up
process). Each node v ∈ (N ∪ P) ∩ C with its children v1, . . . , vk stands for a
variable defined by an equation. If v is a rule, the equation is v = v1 · . . . · vk,
otherwise it is v = v1 + · · · + vk.

Example 2. The system of equations for SCC C3 of the grammar graph shown
in Fig. 1 is

B = p5 + p6 p5 = bB.

It has the solution B = p6b
�, p5 = p6bb

�. The system of equations for C8 is

S = p1 p1 = TT T = p2 + p3 p2 = AS

with the solution S = p1 = p3p3(Ap3)�, T = p3(Ap3)�, p2 = Ap3p3(Ap3)�. ♦
Such a system of equations is called linear if there are no products (by ·)

of more than one variable, i.e., if no rule node in C has more than one child
in C (e.g., C3 in the example above). Therefore we call such an SCC linear, too.
Each linear system of equations corresponds to a finite automaton and can be
algebraically solved using Brzozowski’s method [1]. If it is non-linear, i.e., if there
is a term involving a product of two variables (e.g., C8 in the example above),
one can solve it using a generalization of Newton’s method [5].

3 Approximating Parikh Images

Let us call a tree repetitive if there are two distinct but equally labeled nodes on
a path from the root to a leaf, and non-repetitive otherwise. We now show how
to compute approximated Parikh images ψ′(v) instead of ψ(v) by computing
ψ′

C(v) as an approximation of ψC(v) according to (1) when SCC C is processed:

ψ′
C(v) = AC(v) · (repC)� (1)

where

AC(v) = {ΨC(t) | t ∈ treesC(v) and t is non-repetitive} (2)

repC =

⎧
⎨

⎩

∅ if |C| = 1
(succ C)\P if |C| > 1 and C is linear
succ C if |C| > 1 and C is not linear

(3)

118 F. Drewes et al.

Table 1. Approximated Parikh images for the grammar graph in Fig. 1.

v SCC type repC non-repetitive trees AC(v) ψ′
C(v) ψ′(v) ψ′′(v)

b C1 elem. ∅ {b} b b b b

p6 C2 elem. ∅ {p6(b)} b b b b

B C3 linear {b} {B(p6)} p6 p6b� bb� bb�

p3 C4 elem. ∅ {p3(B)} B B bb� bb�

a C5 elem. ∅ {a} a a a a

p4 C6 elem. ∅ {p4(a, a)} aa aa aa aa

A C7 elem. ∅ {A(p4)} p4 p4 aa aa

S C8 non-lin. {A, p3} {S(p1(T (p3), T (p3)))} p3p3 p3p3A�p�
3 bb(aa)�b� bba�b�

Example 3. Table 1 summarizes the results when applying the procedure of com-
puting the approximated Parikh images for the grammar in Example 1. The table
shows in each row a node v of the grammar graph in Fig. 1, its SCC C and the
type of C where linear SCCs are distinguished from non-linear and elementary
ones, the latter being those with |C| = 1. Set repC of the SCC and the set of
all non-repetitive component trees with root label v follow. The three remaining
entries are the sets AC(v), ψ′

C(v), and ψ′(v), written as algebraic terms. ψ′(v) is
obtained from ψ′

C(v) by substituting each occurrence of any node u ∈ succ C by
ψ′(u), which has been determined previously. (The last column will be explained
in Example 4 below.)

Note that the computed approximated Parikh image is ψ′(S) = bb(aa)�b� =
{a2ibj | i � 0 ∧ j � 2} whereas the exact set, as one can see, is ψ(S) =
bb(aab)�b� = {a2ibi+j | i � 0 ∧ j � 2}, i.e., ψ′(S) = ψ(S) + aa(aa)�(aab)�. ♦

We now examine how precise the approximation is. It is immediately clear
that ψC(v) = ψ′

C(v) if C is elementary, i.e., |C| = 1. We now show that the
exact component-specific Parikh images are subsets of their approximations
(Lemma 1). But the approximation does not contain elements completely unre-
lated to the exact solution; instead, each approximated element can be extended
to one contained in the exact Parikh image (Lemma 2).

Lemma 1. ψC(v) ⊆ ψ′
C(v) for each SCC C and v ∈ C.

Proof. We presume an arbitrary SCC C, node v ∈ C, and tree t ∈ treesC(v),
and show that ΨC(t) ∈ AC(v) · (rep C)�. The proof is by induction on the size
of t. Thus, assume that ΨC(t′) ∈ AC(v) · (rep C)� for all t′ ∈ treesC(v) such that
t′ is smaller than t. We distinguish three cases.

Case 1 (t is non-repetitive). The proposition follows from ΨC(t) ∈ AC(v).

Case 2 (t is repetitive and C is linear). As t is repetitive, there are two nodes
v1 and v2 on a path in t such that �(v1) = �(v2). This decomposes t into three
trees t1, t2, t3 as shown in Fig. 3. By the linearity of C all leaves of t2 except v2
are in (succ C)\P = repC, which means that ΨC(t2) ∈ (rep C)�. Moreover, the

Approximating Parikh Images for Generating Deterministic Graph Parsers 119

Fig. 3. Construction for Lemma 1 Fig. 4. Construction for Lemma 2

tree t′ obtained from t1 and t3 by identifying v1 and v2 is in treesC(v) and is
smaller than t. Hence, the induction hypothesis yields

ΨC(t) = ΨC(t′) · ΨC(t2) ∈ AC(v) · (repC)� · (repC)� = AC(v) · (repC)�.

Case 3 (t is repetitive and C is not linear). Decompose t as in the previous case.
Again, ΨC(t2) ∈ (repC)�, this time because all leaves of t2 except v2 are in
succ C = repC. Consequently, the same argument as above applies. ��

Lemma 2. For each SCC C, v ∈ C, and α ∈ ψ′
C(v), there are ′α, α′ ∈ ψC(v)

such that ′α � α � α′.

Proof. We presume an arbitrary SCC C, node v ∈ C, and α ∈ ψ′
C(v). By (1)

and (2), there is a non-repetitive tree t̃ ∈ treesC(v) and a β ∈ (repC)� such that
α = ΨC(t̃) · β and, therefore, ΨC(t̃) � α. In other words, ′α � α for ′α = ΨC(t̃).
It remains to be shown that there is a tree t ∈ treesC(v) such that α � ΨC(t).
We distinguish the three cases in Eq. (3) above.

Case 1 (|C| = 1). In this case α ∈ AC(v), and thus α = ΨC(t) for a tree
t ∈ treesC(v).

Case 2 (|C| > 1 and C is linear). C is strongly connected, i.e., C has a cycle
containing each node in C. By following this cycle once, starting at v, one creates
a tree t′ with both the root and a leaf labelled by v, and such that each node
v ∈ repC occurs as the label of at least one node. For each i � 0, construct ti ∈
treesC(v) from t̃ and i isomorphic copies of t′ as shown in Fig. 4. By choosing i to
be the maximum multiplicity of elements in β, one obtains α = ΨC(t̃)·β � ΨC(ti)
because β ∈ (repC)� and repC � ΨC(t′).

Case 3 (|C| > 1 and C is not linear). Let n be the maximum multiplicity of
elements in α, i.e., α � (succ C)n. By the non-linearity of C, there is a path
from v to a rule node r having two distinct nodes u, u′ ∈ C among its children.
But there is also a path from u′ back to v, which by iteration yields a path
starting at v and containing k occurrences of r, for any k. Moreover, again since
C is strongly connected, there are t1, . . . , tk ∈ treesC(u) (for a sufficiently large k)
such that every node in succC occurs in at least n of the ti. Putting these pieces
together, we obtain a tree t ∈ treesC(v) such that α � (succ C)n � ΨC(t). ��

120 F. Drewes et al.

Fig. 5. Parikh images for the grammar in Examples 1–4

The following corollary is an immediate consequence of Lemmas 1 and 2:

Corollary 1. For each v ∈ Σ ∪ N ∪ P , the following holds:

– ψ(v) ⊆ ψ′(v)
– For each α ∈ ψ′(v), there are ′α, α′ ∈ ψ(v) such that ′α � α � α′.

In particular, each least element of ψ′(v) is also a least element in ψ(v).
Approximating ψ(v) by ψ′(v) has turned out to be still too inefficient when

used for generating parsers for CHR grammars. The most expensive operation
is to compute ψ′(v) from ψ′

C(v) by substituting ψ′(u) for each occurrence of any
node u ∈ succ C. This, however, becomes manageable when semilinear sets are
approximated by simple semilinear sets. We call a semilinear set M simple if
there are finitely many finite sets A1, . . . , An ⊆ Σ� and B1, . . . , Bn ⊆ Σ such
that M = A1B

�
1 + · · · + AnB�

n . (Note that, in contrast to general semilinear
sets, B1, . . . , Bn are now subsets of Σ rather than of Σ�.)

Our approximation of Parikh images using simple semilinear sets now works
exactly as before, except for an additional simplification step that lets us compute
simple semilinear sets ψ′′(v) instead of ψ′(v): first, in ψ′

C(v), substitute each
occurrence of any node u ∈ succ C by the recursively computed ψ′′(u). Since
· distributes over +, we can write the resulting expression in the form A1C1 +
· · ·+AnCn, where the Ai are products not containing � and the Ci are products
and sums of expressions of the form E�. Finally, ψ′′(v) = A1B

�
1 + · · · AnB�

n ,
where Bi = {a ∈ Σ | aoccurs inCi}. One can now verify that Lemmas 1, 2, and
Corollary 1 still hold if ψ′ is replaced by ψ′′.

Example 4. The last column in Table 1 above summarizes the results when
applying the procedure of computing the Parikh images for the grammar in
Example 1 approximated by simple semilinear sets.

Note that the approximated Parikh image of the generated language is now
ψ′′(S) = bba�b� = {aibj | i � 0 ∧ j � 2} = ψ′(S) + abb(aa)�b�, where
ψ′(S) = bb(aa)�b� and ψ(S) = bb(aab)�b� (see Example 3). Figure 5 shows
elements of the Parikh images in the (a, b) plane. ♦

Approximating Parikh Images for Generating Deterministic Graph Parsers 121

4 Application to Deterministic Graph Parsing

In order to illustrate how the approximation of Parikh images can be used to
generate predictive top-down (PTD) graph parsers, we recall contextual hyper-
graph replacement (CHR) as far as it is needed to understand the example. (See
[3,4] for details of CHR grammars and PTD parsing, resp.)

We consider a ranked labeling alphabet Σ that comes with an arity function
arity : Σ → N. A hypergraph G = 〈Ġ, Ḡ, attG, �G〉 over Σ (graph, for short)
consists of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short)
respectively, a function attG : Ḡ → Ġ∗ that attaches sequences of nodes to edges,
and a labeling function �G : Ḡ → Σ so that |attG(e)| = arity(�G(e)) for every
edge e ∈ Ḡ. The set of all graphs over Σ is denoted by GΣ . For a graph G and
an edge e ∈ Ḡ, we denote by G − e the graph obtained by removing e from G.

For graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ preserving labels and attachments: �H ◦
m̄ = �G, and attH ◦ m̄ = ṁ∗ ◦ attG; m is injective if both ṁ and m̄ are injective.

We consider edges labeled with a distinguished subset X ⊆ Σ as nontermi-
nals. A contextual rule (rule, for short) L :: = R consists of graphs L and R
over Σ such that (1) the left-hand side L contains exactly one edge x, which is
required to be a nonterminal (i.e., L̄ = {x} with �̄L(x) ∈ X) and (2) the right-
hand side R is a supergraph of L − x. Nodes in L that are not attached to x
are the contextual nodes of L (and of r); r is context-free if it has no contextual
nodes.

Let r be a contextual rule as above, and consider some graph G. If there
is an injective morphism m : L → G, the replacement of m(x) by R (via m) is
given as the graph H obtained from the disjoint union of G − m(x) and R by
identifying every node v ∈ L̇ with m(v). We then write G ⇒r H.

Let R be a finite set of contextual rules. We write G ⇒R H if G ⇒r H for
some rule r ∈ R, and denote the transitive-reflexive closure of ⇒R by ⇒∗

R.
A contextual hyperedge-replacement graph grammar (CHR grammar, for

short) is a triple Γ = 〈Σ,R, Z〉 consisting of a finite labeling alphabet Σ, a
finite set R of contextual rules, and a start graph Z ∈ GΣ consisting of a sin-
gle nonterminal without any attached nodes. The language of terminal graphs
generated by Γ is given by L(Γ) = {G ∈ GΣ\X | Z ⇒∗

R G}.
Below, following [4], we denote graphs as multisets of literals a(v1, . . . , vk).

Such a literal represents an edge that carries a k-ary label a ∈ Σ and connects
nodes v1, . . . , vk. An isolated node x (such as a context node) is represented by
the literal (x).

Example 5 (Flowcharts). A flowchart graph represents the control flow of a
program, where nodes (circles) represent program states that are connected
by edges representing decisions (diamonds), activities (rectangles), and gotos
(thick arrows). An example is the graph in Fig. 6 which, if represented by
means of edge literals as introduced above, would be denoted textually as
dec(a, b, c) goto(b, d) act(c, d). (Recall that this should be read as a multiset
of literals, despite its string-like appearance.)

122 F. Drewes et al.

Fig. 6. A flowchart graph.

Now consider the rules

S()
i

:: = D(x) D(x)
a

:: = act(x, y) D(y) D(x)
h

:: = (x)

D(x)
b

:: = dec(x, y, z) D(y) D(z) D(x) (y)
g

:: = goto(x, y)

The context-free rules i, a, b, h generate flow trees of decisions and activities;
the contextual rule, g, inserts gotos to a program state generated elsewhere.
Note that these rules can generate unstructured “Spaghetti code”; this cannot
be achieved by context-free rules alone.

The flowchart in Fig. 6 is generated as follows:

S() ⇒i D(a)
⇒b dec(a, b, c) D(b) D(c)
⇒a dec(a, b, c) D(b) act(c, d) D(d)
⇒h dec(a, b, c) D(b) act(c, d)
⇒g dec(a, b, c) goto(b, d) act(c, d)

Note that the derivation using rule h does not produce an isolated node d.
Therefore, literal (d) is omitted. ♦

One obvious task a graph parser must be able to perform is to identify the
nodes at which the processing starts, i.e., which nodes correspond to those in
the right-hand side of the initial rule applied. For PTD parsing some (or all) of
these nodes – they are called start nodes in the following – must be determined
in a syntactically correct graph by their neighborhood, i.e., their incident edges.
We now describe how this can be done using approximated Parikh images.

Let us introduce the notion of neighborhoods first. Given a graph H and any
node v (not necessarily of H), the neighborhood of v in H is obtained by merging
all nodes except v into one. When H is represented by literals, this neighborhood
graph [H]v is obtained by replacing each occurrence of v in a literal by a unique
new node •, and all other nodes by a “don’t care” node ◦. Isolated nodes are
removed, i.e., only edge literals are kept.

It is important to note that the set of literals a(v1, . . . , vk) that appear in
[H]v (for a given CHR grammar) is finite, because a is taken from the finite set
of terminal edge labels and v1, . . . , vk ∈ {•, ◦}. Thus we can view the set of these
literals as a complex but finite alphabet Δ, and every [H]v as an element of Δ�.

Approximating Parikh Images for Generating Deterministic Graph Parsers 123

Hence every set of such graphs [H]v becomes a commutative language over Δ,
which allows us to apply the results of Sects. 2 and 3 to these languages.

Example 6. The neighborhood of node d in the graph H shown in Fig. 6 is [H]d =
dec(◦, ◦, ◦) goto(◦, •) act(◦, •). It represents the fact that d has just one incoming
goto edge and one incoming act edge, and there is just one dec edge which is not
incident with d. ♦

Given a syntactically correct graph H, we want to determine for each v ∈ Ḣ,
by just considering its neighborhood, which rule p = (L :: = R) has generated
v in the derivation Z ⇒∗ H. If p generates not just a single node, we also want
to know which node u ∈ Ṙ\L̇ actually corresponds to v. This can sometimes be
done by computing, for each rule p = (L :: = R) and node u ∈ Ṙ\L̇,

nh(p, u) = {[H]v ∈ Δ� | H is terminal, Z ⇒∗ G ⇒p G′ ⇒∗ H,

v ∈ Ḣ, and v is the image of u created in G ⇒p G′}.

The set nh(p, u) contains all possible neighborhoods of copies v of u created by
applying p in a derivation of a syntactically correct graph.

The parser can identify node v ∈ Ḣ as a start node corresponding to a
node u in start rule p if [H]v ∈ nh(p, u), but [H]v /∈ nh(p′, u′) for each (p′, u′) �=
(p, u). The parser can identify the corresponding start node of every syntactically
correct graph if nh(p, u) ∩ nh(p′, u′) = ∅ for each (p′, u′) �= (p, u).

In order to compute neighborhoods, we use the fact that each CHR derivation
corresponds to a derivation of neighborhoods. To see this, let [p]u, for any CHR
rule p = (L :: = R) and for any node u (not necessarily in L̇∪Ṙ), be the context-
free rule [L]u :: = [R]u over Δ. It is clear that [p]u is context-free because [L]u
is a single literal, and that, for all graphs G,G′ with G ⇒p G′ and each node
v, there is a node x and a multiset α of literals such that [G]v = α[L]x and
[G′]v = α[R]x, i.e., a context-free derivation [G]v ⇒[p]x [G′]v.

Define sets of mapped rules P ◦ = {[p]x | p = (L :: = R) ∈ R and x /∈ Ṙ} and
P • = {[p]x | p = (L :: = R) ∈ R and x ∈ L̇}. Thus, P ◦ consists of all rules not
containing • at all and P • consists of those containing • in both the left-hand
side and right-hand side (except for contextual rules where a contextual node x
is mapped to •, as in this case [p]x contains • only in its right-hand side).

Now, consider any CHR rule p = (Lp :: = Rp) and any node u ∈ Ṙp\L̇p.
Let G,G′ be graphs such that Z ⇒∗ G ⇒p G′ and v ∈ Ġ′ a node that has
been created in the last step, being the image of u ∈ Ṙ\L̇. Then this means
that there is a multiset α of literals, called a vicinity multiset of [Lp]u, such that
[Z]v ⇒∗

P ◦ [G]v = α[Lp]u. A neighborhood of v is obtained when G′ is derived
to a terminal graph H and [G′]v = α[Rp]u is derived in a corresponding way.
Clearly, for every terminal graph H with G′ ⇒∗ H, there are multisets α′, α′′

such that [G′]v = α[Rp]u ⇒∗
P ′ α′α′′ = [H]v with α ⇒∗

P ′ α′ and [Rp]u ⇒∗
P ′ α′′

using the set of rules P ′ = P ◦ ∪ P •. Note that the crucial middle step, which
uses the rule [p]u to create • is not covered by the rules in P ′.

124 F. Drewes et al.

Example 7. The sets P ◦ and P • of context-free rules for the flowcharts rules
shown in Example 5 are

P ◦ =

⎧
⎪⎪⎨

⎪⎪⎩

S()
[i]◦
:: = D(◦)

D(◦)
[a]◦
:: = act(◦, ◦) D(◦) D(◦)

[b]◦
:: = dec(◦, ◦, ◦) D(◦) D(◦)

D(◦)
[g]◦
:: = goto(◦, ◦) D(◦)

[h]◦
:: = ε

⎫
⎪⎪⎬

⎪⎪⎭

P • =

⎧
⎪⎪⎨

⎪⎪⎩

D(•)
[a]x
:: = act(•, ◦) D(◦) D(•)

[b]x
:: = dec(•, ◦, ◦) D(◦) D(◦)

D(•)
[g]x
:: = goto(•, ◦) D(◦)

[g]y
:: = goto(◦, •)

D(•)
[h]x
:: = ε

⎫
⎪⎪⎬

⎪⎪⎭

Let us consider rule a and its generated node y in the example derivation shown
in Example 5. Rule a is applied to graph G = dec(a, b, c) D(b) D(c), resulting in
graph G′ = dec(a, b, c) D(b) act(c, d) D(d) and, after continuing the derivation,
in graph H = dec(a, b, c) goto(b, d) act(c, d), i.e., node y in rule a corresponds to
node d in G′ and also in H. The neighborhood of d in H, therefore, is derived
as follows:

S() ⇒[i]◦ D(◦)
⇒[b]◦ dec(◦, ◦, ◦) D(◦)︸ ︷︷ ︸

α

D(◦)︸ ︷︷ ︸
[La]y

⇒[a]y dec(◦, ◦, ◦) D(◦)︸ ︷︷ ︸
α

act(◦, •) D(•)︸ ︷︷ ︸
[Ra]y

⇒[h]x dec(◦, ◦, ◦) D(◦) act(◦, •)
⇒[g]y dec(◦, ◦, ◦) goto(◦, •)︸ ︷︷ ︸

α′

act(◦, •)︸ ︷︷ ︸
α′′

Note the correspondence of applied context-free rules and the CHR rules applied
in Example 5. Note also that the vicinity multiset α = dec(◦, ◦, ◦) D(◦) does not
contain •, but its derived multiset α′ = dec(◦, ◦, ◦) goto(◦, •) does. This is so
because rule g uses d as a context node in the CHR derivation. ♦

We now show that the set of all possible vicinity multisets α of [Lp]u is actu-
ally a context-free language. To see this, we consider the context-free derivation
sequence [Z]v ⇒∗

P ◦ [G]v = α[Lp]u. [Z]v and [Lp]u are nonterminal literals. There-
fore, there is a context-free derivation sequence A0 ⇒P ◦ α1A1 ⇒P ◦ α1α2A2 ⇒P ◦

· · · ⇒P ◦ α1 · · · αnAn with nonterminal literals A0, . . . , An and A0 = [Z]v as well
as An = [Lp]u, (Ai :: = αi+1Ai+1) ∈ P ◦ for each i, and α1 · · · αn ⇒∗

P ◦ α. We
introduce a new nonterminal symbol Av for each nonterminal literal A and define
the set P v of vicinity rules as

P v = {(Bv :: = γAv) | (A :: = γB) ∈ P ◦ and B is nonterminal} ∪ {[Z]v◦ :: = ε}.

Note once more that γB is a multiset, so B may be any nonterminal in the
right-hand side of A :: = γB. Intuitively, if a derivation tree t over P contains a

Approximating Parikh Images for Generating Deterministic Graph Parsers 125

nonterminal node u labelled by B, then P v allows to derive from B the “context”
of u in t, yielding the multiset that consists of all literals generated by t, except
for the subtree rooted at u.

One can now verify that the set of all vicinity multisets just consists of each
multiset α such that [Lp]vu ⇒∗

P ′′ α with P ′′ = P ◦ ∪ P v, and, therefore

nh(p, u) = {α | [Rp]u[Lp]vu ⇒∗
P s α and α contains terminal literals only}

where P s = P ◦ ∪ P • ∪ P v. The set of all neighborhoods can thus be computed
as the Parikh image of a new nonterminal symbol Su

p

nh(p, u) = ψ(Su
p)

using the set P s ∪ {Su
p :: = [Rp]u[Lp]vu} of rules.

Example 8. The set P v of vicinity rules for flowcharts (Example 5) is

P v =

{
S()v :: = ε D(◦)v

av

:: = act(◦, ◦) D(◦)v

D(◦)v
iv

:: = S()v D(◦)v
bv

:: = dec(◦, ◦, ◦) D(◦) D(◦)v

}

The only rules in Example 5 that generate any nodes are rules i, a, and b,
generating nodes x (rule i), y (rules a and b), and z (rule b). Therefore, we must
determine nh(i, x), nh(a, y), nh(b, y), and nh(b, z), which requires the additional
nonterminals Sx

i , Sy
a , Sy

b , and Sz
b together with the following rules:

Sx
i :: = D(•) S()v Sy

b :: = dec(◦, •, ◦) D(•) D(◦) D(◦)v

Sy
a :: = act(◦, •) D(•) D(◦)v Sz

b :: = dec(◦, ◦, •) D(◦) D(•) D(◦)v

The approximated Parikh images over-approximate the corresponding sets of
possible neighborhoods:

ψ′′(Sx
i) = ε + goto(•, ◦) +

(
dec(•, ◦, ◦) + act(•, ◦)

) · U

ψ′′(Sy
a) = act(◦, •) · Q

ψ′′(Sy
b) = dec(◦, •, ◦) · Q

ψ′′(Sz
b) = dec(◦, ◦, •) · Q

where

Q =
(
ε + goto(•, ◦) + dec(•, ◦, ◦) + act(•, ◦)

) · U

U = goto(◦, •)�dec(◦, ◦, ◦)�goto(◦, ◦)�act(◦, ◦)�

A careful look at these sets reveals that ψ′′(Sx
i)∩(

ψ′′(Sy
a)∪ψ′′(Sy

b)∪ψ′′(Sz
b)

)
= ∅,

i.e., the start node for parsing H is the unique node v ∈ Ḣ whose neighborhood
is contained in ψ′′(Sx

i). It is the node which has no other incoming edges than
goto edges. ♦

126 F. Drewes et al.

In general, an analysis such as the one above can easily be made automatically
once the simple semilinear sets have been computed, because expressions using
union and intersection of such sets can easily be checked for emptiness. If the
intersection is nonempty, PTD parsing is not possible, because the parser cannot
determine unique start nodes for every input graph.

The neighborhood of a node v contains a literal for each edge in the graph,
even for those edges that are not incident with v and, therefore, do not con-
tain • in their literals (e.g., act(◦, ◦) in Example 8). At the expense of loosing
some information, one can omit such literals from the neighborhood and use this
modified definition of neighborhoods instead. For the flowchart example, there-
fore, one can determine the start node of a graph as the node with the following
approximated set of (modified) neighborhoods, obtained from ψ′′(Sx

i):

ε + dec(•, ◦, ◦)goto(◦, •)� + act(•, ◦)goto(◦, •)� + goto(•, ◦).

This simple semilinear set determines the start node as the node without any
incident edges (first subterm), as the node with a leaving act or dec edge, any
number of incoming goto edges, but no other edge (second and third subterm), or
as the node that has a leaving goto edge, but does not have any other incident
edge (fourth subterm).3 The parser can actually determine all start nodes in
linear time in the number of edges and nodes of the graph when using modified
neighborhoods and when storing graphs with adjacency lists. This is so because
the parser must check for each node whether it is one of the start nodes. To
this end it must visit each of the incident edges and compute the neighborhood
by counting the occurrences of literals. Using the resulting representation of the
multiset as a tuple of natural numbers, membership of the neighborhood in a
simple semilinear set can be checked in constant time. The proposition follows
from the fact that each edge is visited as often as indicated by its arity.

5 Conclusions

In this paper we have devised a procedure for approximating Parikh images, and
we have shown how this can be used to find the start nodes for PTD parsers of
CHR grammars; the procedure is also used for another property of PTD parsers,
called neighbor-determined rule choice in [4].

Semilinear sets are studied and applied in various fields such as complex-
ity and computational theory [9,11], formal verification [13], and program
analysis [5]. The membership problem for a fixed semilinear set is of lin-
ear time complexity [6], but the constants involved would become huge even
for small grammars. In fact, the uniform membership problem for semilinear

3 Note that a node with just a leaving goto edge can actually not be a starting node
although this is indicated by ψ′′(Sx

i). The reason for this over-approximation is that
rule [g]x can be be applied to D(•) even if there is no additional node that could be
used as a context node, which is actually necessary for applying CHR rule g.

Approximating Parikh Images for Generating Deterministic Graph Parsers 127

sets is NP-complete [8] even if the sets are represented explicitly in the form
A1B

�
1 + · · · + AnB�

n . Furthermore, extracting this explicit form from a context-
free Chomsky grammar creates an exponential blow-up in itself. This makes
further simplifications mandatory. In practice, it seems that simple approxi-
mated Parikh images provide a reasonable compromise between generality and
computational efficiency (cf. the experimental evaluation reported in [4]).

Early work on parsing graphs has used little static analysis of grammars
[7,10], and the parser generator for positional grammars [2] defers many decisions
to parser execution time, and leaves the determination of start nodes to the users
of the parsers.

The results of this paper will not only allow us to give a precise definition of
the parser generation for CHR grammars; it will also be essential for our future
work on generating deterministic bottom-up parsers for CHR grammars, which
work analogously to LR(1) string parsers.

Acknowledgements. We thank the anonymous reviewers for the valuable comments.

References

1. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
2. Costagliola, G., Chang, S.K.: Using linear positional grammars for the LR parsing

of 2-D symbolic languages. Grammars 2(1), 1–34 (1999)
3. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica

52(6), 497–524 (2015)
4. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyper-

edge replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT
2015. LNCS, vol. 9151, pp. 19–34. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21145-9 2

5. Esparza, J., Kiefer, S., Luttenberger, M.: Newton’s method for Omega-continuous
semirings. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 14–
26. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 2

6. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter lan-
guages. Math. Syst. Theor. 2, 265–283 (1968)

7. Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2),
175–201 (1978)

8. Huynh, T.-D.: The complexity of semilinear sets. In: Bakker, J., Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg (1980). doi:10.
1007/3-540-10003-2 81

9. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-
way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6), 1291–
1305 (2012)

10. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl,
M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol. 291,
pp. 326–342. Springer, Heidelberg (1987). doi:10.1007/3-540-18771-5 62

http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-540-70583-3_2
http://dx.doi.org/10.1007/3-540-10003-2_81
http://dx.doi.org/10.1007/3-540-10003-2_81
http://dx.doi.org/10.1007/3-540-18771-5_62

128 F. Drewes et al.

11. Lavado, G.J., Pighizzini, G., Seki, S.: Converting nondeterministic automata and
context-free grammars into Parikh equivalent deterministic automata. In: Yen,
H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 284–295. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31653-1 26

12. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
13. To, A.W.: Model checking infinite-state systems: generic and specific approaches.

Ph.D. thesis, School of Informatics, University of Edinburgh, August 2010

http://dx.doi.org/10.1007/978-3-642-31653-1_26

SPO-Rewriting of Constrained Partial Algebras

Michael Löwe(B)

FHDW Hannover, Freundallee 15, 30173 Hannover, Germany
michael.loewe@fhdw.de

Abstract. Recently, single-pushout rewriting (SPO) has been applied
to arbitrary partial algebras (PA). On the one hand, this allows a sim-
ple and straightforward integration of (base type) attributes into graph
transformation. On the other hand, SPO-PA-rewriting comes equipped
with an easy-to-check application condition, namely that an operation
cannot be defined twice on the same set of arguments. This provides very
natural termination criteria for example in model transformation.

In this paper, we generalise this approach to constrained partial alge-
bras. We allow two different types of constraints, namely (i) requiring
some operations to be total and (ii) enforcing some consistency condi-
tions on the algebras by suitable conditional equations. We show that this
generalisation again induces an easy to check application condition and
provides considerably more expressive power: For example, constraints
allow a straightforward algebraic model for the object-oriented concept
of inheritance with runtime specialisation and generalisation of objects.

1 Introduction

In [18,20], we introduced single-pushout rewriting (SPO) in categories of partial
morphisms over partial algebras (PA) wrt. arbitrary signatures. Therefore, we
gave up the usual restriction of SPO-rewriting to graph structures which are
signatures with unary operation symbols only, compare [13]. Categories of par-
tial morphisms constructed over graph structures have an initial object and all
pushouts, which means that all finite co-limits can be constructed. This property
leads to a rich theory, compare again [13]. This is no longer the case if we admit
constants and operation symbols with more than one argument even if we pass
from total to partial algebras.

Partial algebras, however, allow a simple reduction to total graph structures
which are constrained by a set of Horn-formulas. The reduction provides an
easy to check and characterising condition for the existence of pushouts of par-
tial morphisms, namely that the pushout of partial algebras coincides with the
pushout constructed in the underlying graph structure.1

In this paper, we discuss which types of additional constraints on categories of
partial algebras preserve this property that the operational semantics is just well-
known rewriting of graph structures. We present two types of such constraints.
The first type uses arbitrary conditional equations, which can for example be
1 For details compare [18].

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 129–144, 2016.
DOI: 10.1007/978-3-319-50230-4 10

130 M. Löwe

used to specify that some operations are injective or that different composi-
tions of operations lead to the same result if applied to the same argument.2

The second type of constraints discussed in this paper specifies that some unary
operations shall be total, i.e. defined for all arguments. Total and injective opera-
tions can be used to model the object-oriented concept of inheritance by sub-type
inclusions, compare Sect. 5.

The paper is structured as follows. In Sect. 2, we recapitulate our notion
of partial algebra and the reduction to hierarchical graph structures. Section 3
presents and generalises the results of [18] concerning existence and characterisa-
tion of pushouts in categories of partial morphism over partial algebras. On the
basis of these results, the main Sect. 4 introduces new constraints which preserve
the operational semantics of SPO-rewriting for graph structures and, therefore,
can be interpreted as global application conditions. Section 5 demonstrates the
gain in expressive power which we obtain by using constrained partial algebras.
Finally, Sect. 6 discusses related word and future research issues.

2 Partial Algebras and Hypergraphs

A signature Σ = (S,O) consists of a set of sort names S and a domain- and
co-domain-indexed family of operation names O = (Ow,v)w,v∈S∗ . A partial Σ-
algebra A =

(
AS , OA

)
is a family AS = (As)s∈S of carrier sets together with a

partial map oA : Aw → Av for every operation symbol o ∈ Ow,v with w, v ∈ S∗.3

A homomorphism h : A → B between two partial algebras A and B wrt. the
same signature Σ = (S,O) is a family of mappings h = (hs : As → Bs)s∈S ,
such that, for all operation symbols o ∈ Ow,v, the following condition is satis-
fied: If oA(x) is defined in A for x ∈ Aw, then oB(hw(x)) is defined in B and
hv

(
oA(x)

)
= oB (hw(x)).4 A homomorphism h = (hs : As → Bs)s∈S is closed, if

we have for every operation o ∈ Ow,v: Whenever oB is defined for hw(x) there
is x′ ∈ Aw with hw(x) = hw(x′) and oA is defined for x′.5

The category of all partial Σ-algebras and all homomorphisms between them
is denoted by AΣ . By AΣ we denote the subcategory of all total Σ-algebras. Note
that all homomorphisms in AΣ are closed.

A (constructive) Σ-contraint is given by an epimorphism c : P � C from a
Σ-algebra P , called the premise, to a Σ-algebra C which is called the conclusion.
A homomorphism h : P → A solves the constraint c : P � C, written h |= c, if
there is homomorphism h∗ : C → A such that h∗ ◦ c = h. An algebra A satisfies

2 Commutativity in the categorical sense.
3 By this definition, an operation symbol o ∈ Ow,ε is interpreted in an algebra A as a

partial operation into an one-element-set, i.e. oA : Aw → {∗}, which means that oA

singles out a sub-set of Aw only, namely the sub-set where it is defined. Hence, oA

is a predicate.
4 Given a sort indexed family of mappings (fs : Gs → Hs)s∈S , fw : Gw → Hw is

recursively defined for every w ∈ S∗ by (i) f ε = {(∗, ∗)}, (ii) fw = fs if w = s ∈ S,
and (iii) fw = fv × fu, if w = vu.

5 This means that definedness in B stems from definedness in A.

SPO-Rewriting of Constrained Partial Algebras 131

a constraint c : P � C, written A |= c, if every morphism h : P → A solves
c. Given a set C of Σ-constraints, AΣ,C denotes the full sub-category of AΣ of
all algebras that satisfy all the constraints c ∈ C. Such a category specified by
Σ-constraints is called a quasi-variety. It is well-known that a full sub-category
of AΣ is a quasi-variety, if and only if it is an epi-reflective sub-category of
AΣ .6 Typically, a constraint is syntactically presented as an implication from
a syntactical presentation of the premise to a syntactical presentation of the
conclusion.

By contrast to total algebras, epimorphisms in categories of partial algebras
need not be surjective in each component.7 Thus, constraints can express some
definedness requirements. Consider as an example the (unconditional) clause
x ∈ S : f(f(x)) = f(x) for a signature Σ with an operation symbol f : S → S. It
requires f to be idem-potent and total.

Given a signature Σ = (S,O), Σu = (Su, Ou) denotes the underlying graph
structure which is defined on sorts by:

Su = S �
⊎

w,v∈S∗
Ow,v.

For every operation symbol o ∈ Os1...sj , sj+1...sj+k
in Σ with j, k ≥ 0, Ou

o,si

contains an operation symbol do
i for 1 ≤ i ≤ j and Ou

o,sj+i
contains an operation

symbol co
i for 1 ≤ i ≤ k.8 There are no other operation symbols in Ou.

Note that the signature Σu = (Su, Ou) constitutes a hierarchical graph struc-
ture in the sense of [13].9 In Su, the sorts in S are on level 0 and the sorts in⊎

w,v∈S∗Ow,v are on level 1. All operations in Ou are unary and map from sorts
on level 1 to sorts on level 0. Thus, a total algebra wrt. Σu = (Su, Ou) can be
interpreted as a hypergraph having vertices typed in Su and hyperedges typed
in Ou.

Let GΣ denote the category of all total Σu-algebras and Σu-homomorphisms,
i.e. GΣ is short for AΣu .10 Then there is a full and faithful functor γ : AΣ → GΣ

mapping each partial algebra A ∈ AΣ to γ(A) ∈ GΣ by setting

1. for each sort s ∈ S: γ(A)s = As and
2. for each operation o ∈ Os1...sj , sj+1...sj+k

with j, k ≥ 0:
(a) γ(A)o = oA and

6 A category S is an epi-reflective sub-category of a category C, if it is a sub-category
of C, i.e. S ⊆ C, and for every object C ∈ C there is a C-epi-morphism ηC : C � S
such that S ∈ S and for every morphism f : C → S′ with S′ ∈ S, there is a unique
morphism f∗ : S → S′ with f∗◦ηC = f . For the results about epi-reflection, compare
[21] for the total case and [1] for the partial case. They can also be found in [14].

7 Compare [1,14].
8 do

i and co
i are short for i-th domain respectively co-domain of operation o.

9 A signature Σ = (S, O) is a graph structure, if it contains unary operation symbols
only, i.e. Ow,v = ∅, if |w| = 0 or |w| ≥ 2. It is hierarchical, if there is no family
(oi ∈ Osi,vi)i∈N

, such that, for all i ∈ N, vi = xisi+1yi with xi, yi ∈ S∗.
10 It is well-known that GΣ is complete and co-complete.

132 M. Löwe

(b) for all (x, y) = ((x1, . . . , xj) , (y1, . . . , yk)) ∈ oA, 1 ≤ m ≤ j, 1 ≤ n ≤ k:11

i. (do
m)γ(A) (x, y) = xm and

ii. (co
n)γ(A) (x, y) = yn

and each homomorphism h : A → B in AΣ to γ(h) : γ(A) → γ(B) by setting

1. for each sort s ∈ S: γ(h)s = hs and
2. for each operation o ∈ Ow,v with w, v ∈ S∗: γ(h)o (x, y) = (hw(x), hv(y)).

Proposition 1 (Preservation of Epimorphisms). If γ : AΣ → GΣ is the
full and faithful functor from partial Σ-algebras to the underlying hierarchical
Σu-graph-structures, then γ(h) : γ(A) → γ(B) is epimorphism, if and only if
h : A → B is a closed epimorphism.

Proof. “⇐”: Every closed epimorphism is surjective on all sorts and, by definition
of closedness, also on “operations”. “⇒”: Suppose γ(h) : γ(A) → γ(B) is epi-
morphism, i.e. is surjective in each component. Then hs = γ(h)s is surjective for
each sort s. Thus, h is epimorphism. If oB is defined for hw(x), (hw(x), y) ∈ oB .
Since γ(h)o is surjective for every operation o, (hw(x), y) = γ(h)o (x′, y′) which
means that hw(x) = hw(x′) and oA is defined for x′. Therefore, h is closed.
�
Unfortunately, the functor γ is not isomorphism-dense12, such that AΣ and GΣ

are not equivalent. We have to further restrict GΣ by the following family of
constraints which formalises uniqueness of partial maps:

U =
(
∀e1, e2 ∈ o : (do

i (e1) = do
i (e2))1≤i≤|w| =⇒ e1 = e2

)

w,v∈S∗,o∈Ow,v

(1)

By CU , we denote the constraints (epimorphisms) presented by the implications
U . Figure 1 illustrates the correspondence between U and CU for the sample
signature Σf2. Since there is only one operation, namely f : S, S → S, CU contains
a single epimorphism only, which is depicted in Fig. 1 by the dotted arrows.13

In the following, PΣ ⊆ GΣ denotes the quasi-variety of all algebras in GΣ

satisfying all the constraints in U , i.e. PΣ = AΣu,CU . Since PΣ is an epi-reflection
of the category GΣ , we obtain a pair (F (A) ∈ PΣ , ηA : A � F (A)) for every
A ∈ GΣ such that for every other pair (X ∈ PΣ , f : A → X), there is a unique
f∗ : F (A) → X with f∗ ◦ ηA = f . Since every image of γ is in PΣ and γ is
isomorphism-dense wrt. PΣ , we have:

11 Note that all operations in γ(A) are just projections!
12 A functor γ : A → B between categories A and B is isomorphism-dense, if for every

B ∈ B there is A ∈ A such that γ(A) ∼= B.
13 Note that this visualisation suggests that the constraints in U can be interpreted as

total and non-injective SPO graph rewriting rules. Indeed, applying these rules until
every further application leads to an identity trace, provides a constructive way to
“execute” the reflection from GΣ to AΣ .

SPO-Rewriting of Constrained Partial Algebras 133

Fig. 1. Example for a uniqueness constraint

Fact 2 (Partial Algebras as Hypergraphs). AΣ and PΣ are equivalent.

Therefore, partial algebras can be considered as special hypergraphs which
do not allow multiple edges of the same type between the same domain vertices.

Since AΣ and PΣ are equivalent, all results we obtain for PΣ in the following
are also valid in AΣ . Since PΣ is an epi-reflection of GΣ , PΣ is closed wrt. sub-
objects and products. Thus, pullbacks in PΣ coincide with pullbacks in GΣ .
Pushouts in PΣ are quotients of pushouts in GΣ in the following sense: The
pushout of (f : A → B, g : A → C) in PΣ is given by (ηD ◦g∗ : B → D′, ηD ◦f∗ :
C → D′) where (g∗ : B → D, f∗ : C → D) is the pushout of f and g in GΣ and
ηD : D � D′ is the epi-reflector that transfers the GΣ-object D into PΣ .

3 Partial Morphisms for Algebras and Hypergraphs

The single-pushout approach to rewriting uses partial morphisms as rules, total
morphisms as matches, and pushouts in categories of partial morphisms as direct
derivations. Therefore, we have to proceed from the categories GΣ and PΣ with
total morphisms to the categories GP

Σ and PP
Σ of hypergraphs and partial algebras

with partial morphisms.
A concrete partial morphism in GP

Σ is a span of GΣ-morphisms (p : K �
P, q : K → Q) such that p is monic. Two concrete partial morphisms (p1, q1)
and (p2, q2) are equivalent and denote the same abstract partial morphism if
there is an isomorphism i such that p1 ◦ i = p2 and q1 ◦ i = q2; in this
case we write (p1, q1) ≡ (p2, q2) and [(p, q)]≡ for the class of spans that are
equivalent to (p, q). The category of partial morphisms GP

Σ over GΣ has the
same objects as GΣ and abstract partial morphisms as arrows. The identities
are defined by idGP

Σ

A =
[
(idGΣ

A , idGΣ

A)
]

≡
and composition of partial morphisms

[(p : K � P, q : K → Q)]≡ and [(r : J � Q, s : J → R)]≡ is given by

[(r, s)]≡ ◦GP
Σ

[(p, q)]≡ = [(p ◦GΣ
r′ : M � P, s ◦GΣ

q′ : M → R)]≡

134 M. Löwe

L K R

P D P ∗

Q K∗ H

(1)

l r

(2)p

q

l

q

p

r

p∗

q∗
(3)

l∗ r∗

(4)

Fig. 2. Pushout in GP
Σ

where (M, r′ : M � K, q′ : M → J) is pullback of q and r. Note that there is
the faithful embedding functor ι : GΣ → GP

Σ defined by identity on objects and
(f : A → B) �→ [idA : A � A, f : A → B] on morphisms. We call [d : A′ � A, f :
A′ → B] a total morphism and, by a slight abuse of notation, write [d, f] ∈ GΣ ,
if d is an isomorphism. From now on, we mean the abstract partial morphism
[f, g]≡ if we write (f : B � A, g : B → C). If the monic component in a partial

morphism is an inclusion, we also write g : A
B��� C for (f : B ↪→ A, g : B → C).

We omit the annotation of the arrow, if the sub-object of the partial morphism
is irrelevant or uniquely determined by some universal properties.

It is well-known that GP
Σ is complete and co-complete.14

Construction 3 (Pushout in GP
Σ). For partial morphisms r : L

K��� R and

q : L
P��� Q, the pushout morphisms r∗ : Q

K∗
��� H and q∗ : R

P ∗
��� H are

constructed as follows, compare Fig. 2:

1. D is the largest sub-algebra in K ∩ P satisfying:
(a) r(x) = r(y) ∧ x ∈ D =⇒ y ∈ D and
(b) q(x) = q(y) ∧ x ∈ D =⇒ y ∈ D.

2. l : D ↪→ P and p : D ↪→ K are the corresponding inclusions.
3. P ∗ and K∗ are the largest sub-algebras in R − r(K − D) resp. Q − q(P − D).
4. p∗ : P ∗ ↪→ R and l∗ : K∗ ↪→ Q are the corresponding inclusions.
5. r : D → P ∗ is defined by d �→ r(d) and q : D → K∗ by d �→ q(d).
6. (q∗, r∗) is the pushout of (q, r) in GΣ .

Remark. Construction 3 leads to the four commutative squares (1)–(4) in Fig. 2.
They possess the following properties:

1. Squares (2) and (3) are pullbacks such that r∗ ◦ q = q∗ ◦ r.
2. Squares (1)–(3) make up a final triple in the sense of [19].
3. Square (4) is hereditary pushout in GΣ since all pushouts in GΣ are hereditary,

compare Definition 4 below.

Therefore, Construction 3 provides a pushout in GP
Σ due to the following general

fact: A diagram as in Fig. 2 is pushout of partial morphisms over an arbitrary
category C, if and only if (1)–(3) make up a final triple in C and (4) is hereditary
pushout in C, compare [19,20].
14 Compare for example [13].

SPO-Rewriting of Constrained Partial Algebras 135

Fig. 3. Hereditary pushout

Definition 4 (Hereditary Pushout). A pushout (p′, q′) of (p, q) in an arbi-
trary category is hereditary, if for each commutative cube as in Fig. 3, which has
pullback squares (qi, i0) and (pi, i0) of (i1, q) and (i2, p) resp. as back faces with
monic i1 and i2 the following compatibility between pushouts and pullbacks holds:
In the top square, (q′

i, p
′
i) is pushout of (pi, qi), if and only if, in the front faces,

(p′
i, i1) and (q′

i, i2) are pullbacks of (i3, p′) and (i3, q′) resp. and i3 is monic.15

PP
Σ is the full sub-category of GP

Σ determined by the object inclusion of PΣ ⊆
GΣ . PP

Σ does not possess all pushouts. PΣ has all final triples but not all pushouts
in PΣ are hereditary. Final triples are constructed as in GΣ , since steps (1)–(5)
of Construction 3 produce sub-objects D, P ∗, and K∗ which satisfy all Horn-
formulae in U (compare (1) on p. x), if L, R, and Q do. Hereditariness of pushouts
in PΣ is characterised by an easy to check condition.

Fact 5 (Hereditrary Pushouts in PΣ). A pushout in PΣ is hereditary, if
and only if it is pushout in GΣ.

The proofs for this fact are provided by the proofs for Proposition 7 (⇐) and
Proposition 8 (⇒) in [18]. Since all arguments in these proofs do not refer to the
concrete structure of the formulae in U , the result can be generalised as follows:

Theorem 6 (Hereditary Pushouts in Reflective Sub-categories of GΣ).
For every epi-reflective sub-category CΣ of GΣ, we have:

1. Pushouts in CΣ are hereditary, if and only if they are pushouts in GΣ.
2. Let CP

Σ be the full sub-category of GP
Σ determined by the object inclusion of

CΣ ⊆ GΣ: If a pushout for a pair of morphisms in CP
Σ exists, then it coincides

with the pushout of the pair constructed in GP
Σ.

4 SPO-Rewriting of Constrained Partial Algebras

Fact 5 shows that SPO-rewriting in PP
Σ is just SPO-rewriting in graph structures

from the operational point of view. It only adds an application condition, namely
15 For details on hereditary pushouts see [11,12].

136 M. Löwe

Fig. 4. Examples for impossible rewrites

that rewriting a partial algebra (as a graph structure) must result in a graph
structure that represents a partial algebra.

Figure 4 presents three typical impossible rewrites in PP
Σf

. The mappings
of the rule morphisms, which are all total in the three examples, are depicted
by black straight arrows and the mappings of the match morphisms by dotted
arrows. In the situation (a), the rule tries to add a definition of f to an object
in the host graph that possesses a definition of f already. Situation (b) wants to
add a new object as the result of the application of f for two existing objects.
The match identifies the two existing objects. Rewriting in the underlying graph
structure produces two parallel “edges” between the old and the new object
which does not satisfy the uniqueness condition U , compare (1) on p. x. Situation
(c) is kind of symmetric to situation (b). Here two existing objects have the same
result under application of f. The rule tries to merge these two objects, which
again leads to two parallel “edges” violating U .

If we add more constraints on partial algebras that are subject to SPO-
rewriting, we want to preserve this fundamental property, i.e.:

Operational Semantics. Every SPO-rewrite of a constrained partial
algebra coincides with the SPO-transformation of the underlying graph
structure.

Theorem 6 provides a first sort of constraints that satisfy this criteria: namely
arbitrary constraints wrt. GΣ .16 But these constraints do not one-to-one cor-
respond to general constraints on PΣ . Constraints on partial algebras can for-
mulate conditional equalities and definedness requirements, since epimorphisms
in categories of partial algebras need not be surjective. Therefore, we have to
restrict the constraints to those that do not implicitly formulate definedness
requirements. By Proposition 1, these constraints are exactly characterised by
the epimorphism that are closed. We call a constraint of this type conditional
equation, since its conclusion in the syntactical presentation as an implication
consists of equalities between variables only. Note that the set of constraints
presented by U on p. x is a set of conditional equations.

Corollary 7 (Conditional Equation). If AΣ is a category of partial alge-
bras and E a set of conditional equations wrt. Σ, then every pushout in AP

Σ,E

coincides with the pushout constructed in GP
Σ.

Conditional equations provide a rich supply for useful constraints on partial
algebras which are subject to rewriting, for example:
16 Recall that GΣ is the underlying graph structure of PΣ .

SPO-Rewriting of Constrained Partial Algebras 137

Singleton: x = x′,
Injectivity: f(x) = f(x′) =⇒ x = x′,
Joint-Injectivity: f1(x) = f1(x′), . . . , fn(x) = fn(x′) =⇒ x = x′,
Commutativity: f(g(x)) = z, h(x) = z′ =⇒ z = z′,
Inverse: f(x) = z, g(z) = x′ =⇒ x = x′, and
Mutual Inverse: f(x) = z, g(z) = x′, f(x′) = z′ =⇒ x = x′, z = z′.

Note that the last five examples require equalities only in situations where the
operations are “defined enough”, i.e. the premises can be satisfied.

Up to this point, we do not have any means to require some sort of defined-
ness. As it has been shown in [13], requiring definedness of operation symbols
having more than one argument or none can lead to situations in which a final
triple does not exist, compare steps (1)–(5) of Construction 3. Even worse: If
operations with at least two arguments are required to be defined for a certain
range of arguments, there are no obvious conditions which decide whether or not
the final triple in Construction 3 exists.

Therefore, we restrict definedness requirements to unary operations here as
well. Unfortunately, we cannot be as liberal as we want to at this point. This
is due to the fact that even definedness requirements for unary operations may
heavily interact with other constraints in form of conditional equations in an
undesirable way.

Example 8 (Interference of Equations and Definedness). A good example for
such an interference is depicted in Fig. 5. The shown specification requires its
two unary operations f and i to be total, i.e. to be defined for all arguments.
We – here and in the following – indicate this requirement by underlining the
affected operations. Additionally, the operation i is forced to be injective.

The right part of the figure shows a pushout of two morphisms from L to R
and L to G indicated by the black straight and dotted arrows resp. Note that
the pushout does not coincide with the pushout constructed in the underlying
graph structure. But it is hereditary.

This is mainly due to the fact, that G admits five sub-algebras only, namely
the empty graph, G itself, and the three possible sub-graphs consisting of ele-
ments of the sort S′ only. Only three of them can occur in a commutative cube

Fig. 5. Operation cycles

138 M. Löwe

as in Fig. 3, namely the empty graph, G, and the sub-graph consisting of the two
S′-elements. And all these three cubes satisfy the hereditariness requirement.
�
Example 8 shows a situation that violates our requirement “Operational Seman-
tics” on p. y: We have hereditariness without coincidence of the pushout in the
constrained and the unconstrained category. This is mainly due to the cyclic
structure induced by the operation f. Therefore, we restrict definedness require-
ments of unary operations to those that do not lead to cycles, i.e. to those that
produce a hierarchical underlying graph structure.

Definition 9 (Constrained Category of Partial Algebras). A constrained
category R(Σ,C,T) of partial algebras is syntactically given by a triple (Σ,C, T),
where Σ = (S,O) is a signature, C is a set of conditional equations and T =
(Ts,w ⊆ Os,w)s∈S,w∈S∗ is a sub-set of the unary operations in O satisfying the
following hierarchy condition: There is no family (oi ∈ Tsi,wi

)i∈N
, such that, for

all i ∈ N, wi = visi+1ui with vi, ui ∈ S∗. The semantics of R(Σ,C,T) is the full
sub-category of AP

Σ,E of those algebras in which all operations in T are total.

As a generalisation of Propositions 7 and 8 in [18], we obtain:

Theorem 10 (Hereditariness in Constrained Categories). A pushout in
R(Σ,C,T) is hereditary, if and only if it is pushout in the underlying graph struc-
ture GΣ.

Proof. “⇐”: In addition to the arguments in the proof of Proposition 7 in [18], we
have to show that a pushout (f∗ : C → D, g∗ : B → D) in GΣ for (f : A → B, g :
A → C) satisfies the definedness requirements specified by T . So let o ∈ Ts,w

and x ∈ Ds. Then x = f∗(xc) or x = g∗(xb). Without loss of generality assume
the first. Since C satisfies the definedness requirements, oC(xc) is defined. Since
(f∗)w (oC(xc)) = oP (f∗

s (xc)) = oP (x), oP is defined for x.
“⇒” (Sketch): Here, we can repeat the arguments in the proof of Proposi-

tion 8 in [18]. Let (f : A → B, g : A → C) be given, (f∗ : C → D, g∗ : B → D)
the pushout in GΣ , and (f ′ : C → E, g′ : B → E) the pushout in R(Σ,C,T). Since
D satisfies all definedness requirements (see above), E is a quotient of D and
the two pushout morphisms (f ′, g′) are jointly surjective. If the two pushouts
are different, there are two elements x, y ∈ B �C which are mapped to the same
element z by f ′ and/or g′ in E and to different elements z1, z2 by f∗ and/or
g∗ in D. Now, we construct sub-algebras of A′ ⊆A A, B′ ⊆B B, and C ′ ⊆C C
by erasing x and recursively its minimal context in all three algebras such that
(⊆A, f|A′) becomes the pullback of (⊆B , f) and (⊆A, g|A′) becomes the pullback
of (⊆C , g). Since all total operations are hierarchical and x and y are not identi-
fied by f∗ and g∗, the element y remains in B′ or C ′ and we obtain z′ = f ′

|A′(y)
or z′ = g′

|A′(y) as an element in the pushout (E′, f ′
|A′ : C ′ → E′, g′

|A′ : B′ → E′

of (f|A′ , g|B′). The universal morphism u from E′ to E maps z′ to z. Now, we
have u(z′) = z and f ′(x) = z′ or g′(x) = z′. Since by construction, x is neither
in B′ nor in C ′, either (⊆B , g′

|A′) is not pullback of (u, g′) or (⊆C , f ′
|A′) is not

pullback of (u, f ′).
�

SPO-Rewriting of Constrained Partial Algebras 139

Having this result about hereditary pushouts, we can conclude:

Corollary 11 (Rewriting in Constrained Categories). Every pushout in
the category RP

(Σ,C,T) of partial morphisms wrt. a constrained category R(Σ,C,T)

coincides with the pushout constructed in the underlying graph structure GP
Σ.

Remark. Note that step (1) in Construction 3 on p. z needs a marginal modifi-
cation. Now we construct D as the largest sub-algebra satisfying all definedness
constraints in T with properties (1a) and (1b). This algebra always exists, since
all total operations are unary and the construction ends up in the standard
cascade-on-delete behaviour that is well-known from single-pushout rewriting.17

The results of this section offer better ways to specify the structures that
are subject to single-pushout rewriting. The appropriate framework is provided
by the notion of constrained category of partial algebras, compare Definition 9.
By Corollary 11, a simple operational semantics for rewrites in constrained cat-
egories is guaranteed. Therefore, there is a good chance to transfer some SPO-
theory from graph structures to partial algebras and even to constrained partial
algebras. This is subject of future research. In the rest of the paper, we want to
present the gain of expressive power for SPO-rewriting of constrained structures.

5 Inheritance – The Algebraic Way

SPO-rewriting in categories of constrained partial algebras provides mechanisms
to model many object-oriented concepts incl. inheritance in a straightforward
and appropriate way. The inheritance model which we introduce below goes
beyond all existing ones,18 since it provides easy means for “runtime” type-
specialisation and -generalisation of objects. Here is the general recipe how
object-oriented class and type models are translated into constrained categories
of partial algebras:

Immutable base types, like Integer and String, and the operations on these
base types, like concatenation (+) of strings and addition (+), subtraction (-),
multiplication (*), and division (/) of integers are just modelled as a part of the
underlying signature by appropriate sort and operation symbols. On the object-
level, i.e. on the level of the objects that are subject to SPO-transformation these
sort and operation symbols are interpreted by the standard carrier sets and par-
tial operations. Note that the interpretation as partial operations provides an
adequate model for overflow-situations or division-by-zero. In transforma-
tion rules, partial term algebras over a suitable set of variables are used. By

17 Cacade-on-delete is a notion well-known from relational databases: If a row in a
relation is deleted, all rows pointing directly or indirectly to it by foreign keys are
deleted as well. SPO-rewriting provides exactly the same effect: If a vertex is deleted
all edges adjacent to the vertex are deleted as well. In arbitrary graph structure this
effect can cascade as well, if we have more than 2 hierarchy levels, see [13] for details.

18 Compare [4,8,9,17] for the double-pushout, [6,16] for the single-pushout, and [15]
for the sesqui-pushout approach.

140 M. Löwe

contrast to total term algebras which are almost always infinite, the partial
term algebras used in rules can always be chosen as finite algebras.19

Classes are modelled by sorts. So all types (base or not) are modelled by
sorts.

An attribute a of base type T in a class C is modelled (i) by a partial oper-
ation a : C → T, if its multiplicity is zero or one (0...1), (ii) a total oper-
ation a : C → T,20 if its multiplicity is exactly one (1)21 (iii) by a predicate
a : C, T → {∗}, if its multiplicity is many incl. none (*) without double assign-
ments of the same value to the same object,22 and (iii) by an additional sort
symbol A and total operations ao : A → C and at : A → T, if its multiplicity is
many incl. none (*) and multiple assignments of the same value to the same
object are allowed.23

An association r between classes C and D is modelled as follows: If the
multiplicity of r at both ends is many incl. none (*), we devise a predicate
r : C, D → {∗} if multiple links between the same pair of objects are forbidden or
we add an additional sort R and two total operations rC : R → C and rD : R → D
otherwise. If the multiplicity at the D-end is zero or one (0...1), we provide a
partial map r : C → D which obtains an additional injectivity constraint of the
form c ∈ C : r(c) = r(c′) =⇒ c = c′, if the C-end has multiplicity 0...1 as well.
If the multiplicity at the D-end is exactly one (1), we can devise a total operation
r : C → D, as long as the signature remains hierarchical.24

A qualified association q between classes C and D using a T-typed attribute
or association a of D as “key” is modelled by a partial operation q : C, T → D.

If a set a1, . . . , an of 0...1-attributes and/or associations of the same class
C is a key to the objects of C, we add an injectivity constraint of the following
form:

c, c′ ∈ C : a1(c) = a1(c′), . . . , an(c) = an(c′) =⇒ c = c′

Inheritance S � G of sub-class S from super-class G, is modelled by a total
and injective operation iS,G : S → G and for every diamond-situation, defined by
S � G1, S � G2, G1 � G, and G2 � G, we add a commutativity constraint like:

x ∈ S; y, y′ ∈ G : iG1,G(iS,G1(x)) = y, iG2,G(iS,G2(x)) = y′ =⇒ y = y′

Let us apply this recipe to the class model for file systems in Fig. 6. We obtain
the signature and constraints File System below. Note the seamless integration
19 For example, the total term algebra is infinite, if we have a single sort (Nat) with a

constant (zero) and an unary operation (successor). In partial algebras, the con-
stant need not be defined and the unary operation need not be defined everywhere.
Thus, we can define them as far as they are used in the rule (e. g. to denote constants)
and leave them undefined for all values that are not mentioned in the rule.

20 Note that we indicate the constraint that an operation is total by underlining the
operation name.

21 Note that the attribute automatically becomes final, if we model it by a total
operation.

22 Set semantics.
23 Multi-set semantics.
24 Note again that the association becomes final, if we model it by a total operation.

SPO-Rewriting of Constrained Partial Algebras 141

Fig. 6. Class model for file systems

of the “base type” String: On the one hand, it is used as “value-provider” for
attributes name and contents. On the other hand, it is integrated in “graphi-
cal” structures as in contains. The constraints a1 and a2 specify the injectivity
of the sub-type embeddings. Constraint a3 specifies the multiple inheritance of
Directory and the diamond situation wrt. Component. Constraint a4 specifies
that the index, that is used by a Container to manage its Containees, is con-
sistent with the naming of the contained Components. Constraint a5 stems from
the 0...1-multiplicity at the container-end of the contains-association.

On the basis of the specification File System, operations that change the
system’s structure can be specified by SPO rewrite rules. Figure 7, for exam-
ple, specifies the operation that moves a Containee (2) from Container (1) to

142 M. Löwe

Fig. 7. Rewrite rule: move containee

Fig. 8. Rewrite rule: convert to file/convert to link

Container (4). Note that this operation fails, if the receiving container already
contains a containee named y. This is due to the fact that the index “contains”
is specified as a partial operation that needs to be unique.

The rules in Fig. 8 demonstrate the ability of the chosen inheritance model
to change the types of objects at “runtime”.25 The rule read from left to right
converts a Link (2) to a File (1) into a file with the same contents as (1). This
is possible by exchanging the Link-part of object (2) by a File-part.26 The rule
read from right to left has the inverse effect, namely it converts a file (2) that
happens to have the same contents as another file (1) into a link to the file (1).
Note that the context (other contains- and references-connections) of the
manipulated entity on the Containee-level is not change, since all Containee-
parts are preserved.

25 Runtime means here: In the rewrite process.
26 Note that the rule first generalises the manipulated object by deleting the Link-part.

Afterwards it specialises the manipulated object by adding a new File-part.

SPO-Rewriting of Constrained Partial Algebras 143

6 Related Work and Future Research

There are only a few articles in the literature that address rewriting of partial
algebras, for example [3] and [2] for the double- and single-pushout approach
resp. But, both papers stay in the framework of signatures with unary operation
symbols only and aim at an underlying category of partial morphisms that is
co-complete. Aspects of partial algebras occur in all papers that are concerned
with relabelling of nodes and edges, for example [10], or that invent mechanisms
for exchanging the attribute value without deleting and adding an object, for
example [7]. Most of these approaches avoid “real” partial algebras by completing
them to total ones by some undefined-values.

Thus, the approach presented in [18] and further developed in this paper is
original. It proposes to start with partial algebras in the first place and to require
total operations where needed.27 This is the other way around as most other
approaches do: they start with total algebras and add some partiality where
needed. Future research will show which approach is more suitable. Another
topic for future research is the transfer of SPO-theory to the presented con-
strained framework. And finally, bigger case studies must be elaborated in order
to confirm practical applicability.

References

1. Burmeister, P.: Introduction to Theory and Application of Partial Algebras - Part
I. Mathematical Research, vol. 32. Akademie-Verlag, Berlin (1986)

2. Burmeister, P., Monserrat, M., Rosselló, F., Valiente, G.: Algebraic transformation
of unary partial algebras II: single-pushout approach. Theor. Comput. Sci. 216(1–
2), 311–362 (1999)

3. Burmeister, P., Rosselló, F., Torrens, J., Valiente, G.: Algebraic transformation of
unary partial algebras I: double-pushout approach. Theor. Comput. Sci. 184(1–2),
145–193 (1997)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

5. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): ICGT 2012. LNCS,
vol. 7562. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6

6. Lüdtke Ferreira, A.P., Ribeiro, L.: Derivations in object-oriented graph gram-
mars. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT
2004. LNCS, vol. 3256, pp. 416–430. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30203-2 29

7. Golas, U.: A general attribution concept for models in M-adhesive transformation
systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2012. LNCS, vol. 7562, pp. 187–202. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33654-6 13

27 Note that standard SPO-Rewriting on multi-graphs turns out to be a special case
of the set-up presented in this paper: The underlying category is defined by a
signature with two sorts, i.e. vertives V and edges E, and two unary operations
source,target:E→V that are required to be total.

http://dx.doi.org/10.1007/978-3-642-33654-6
http://dx.doi.org/10.1007/978-3-540-30203-2_29
http://dx.doi.org/10.1007/978-3-540-30203-2_29
http://dx.doi.org/10.1007/978-3-642-33654-6_13
http://dx.doi.org/10.1007/978-3-642-33654-6_13

144 M. Löwe

8. Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theor. Comput. Sci. 424, 46–68 (2012)

9. Guerra, E., de Lara, J.: Attributed typed triple graph transformation with inheri-
tance in the double pushout approach. Technical report UC3M-TR-CS-06-01, Uni-
versidad Carlos III de Madrid (2006)

10. Habel, A., Plump, D.: M, N -Adhesive Transformation Systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 218–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6 15

11. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 250–265. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15928-2 17

12. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 490–504. Springer, Heidelberg (1991). doi:10.1007/BFb0017408

13. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

14. Löwe, M.L: Algebraic systems, June 2015. http://ux-02.ha.bib.de/daten/Lowe/
Master/TheorieInformationssystem/Algebra20150606.pdf

15. Löwe, M.: Polymorphic sesqui-pushout graph rewriting. In: Parisi-Presicce, F.,
Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 3–18. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-21145-9 1

16. Löwe, M., König, H., Schulz, C.: Polymorphic single-pushout graph transforma-
tion. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 355–369.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54804-8 25

17. Löwe, M., König, H., Schulz, C., Schultchen, M.: Algebraic graph transformations
with inheritance and abstraction. Sci. Comput. Program. 107–108, 2–18 (2015)

18. Löwe, M., Tempelmeier, M.: On single-pushout rewriting of partial algebras. In:
ECEASST, vol. 73 (2016)

19. Monserrat, M., Rossello, F., Torrens, J., Valiente, G.: Single pushout rewriting in
categories of spans I: The general setting. Technical report LSI-97-23-R, Depart-
ment de Llenguatges i Sistemes Informtics, Universitat Politcnica de Catalunya
(1997)

20. Tempelmeier, M., Löwe, M.: Single-pushout transformation partieller algebren.
Technical report 2015/1, FHDW-Hannover (2015). (in German)

21. Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on
Theoretical Computer Science, vol. 25. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.1007/978-3-642-15928-2_17
http://dx.doi.org/10.1007/BFb0017408
http://ux-02.ha.bib.de/daten/Lowe/Master/TheorieInformationssystem/Algebra20150606.pdf
http://ux-02.ha.bib.de/daten/Lowe/Master/TheorieInformationssystem/Algebra20150606.pdf
http://dx.doi.org/10.1007/978-3-319-21145-9_1
http://dx.doi.org/10.1007/978-3-642-54804-8_25

Attributed Graph Transformation via Rule
Schemata: Church-Rosser Theorem

Ivaylo Hristakiev and Detlef Plump(B)

University of York, York, UK
detlef.plump@york.ac.uk

Abstract. We present an approach to attributed graph transformation
which requires neither infinite graphs containing data algebras nor aux-
iliary edges that link graph items with their attributes. Instead, we use
the double-pushout approach with relabelling and extend it with rule
schemata which are instantiated to ordinary rules prior to application.
This framework provides the formal basis for the graph programming
language GP 2. In this paper, we abstract from the data algebra of
GP 2, define parallel independence of rule schema applications, and
prove the Church-Rosser Theorem for our approach. The proof relies
on the Church-Rosser Theorem for partially labelled graphs and adapts
the classical proof by Ehrig and Kreowski, bypassing the technicalities
of adhesive categories.

1 Introduction

Traditionally, the theory of graph transformation assumed that labels in graphs
do not change in derivations (see, for example, [2]). But in applications of graph
transformation it is often necessary to compute with labels. For instance, finding
shortest paths in a graph whose edges are labelled with distances requires to
determine the shorter of two distances and to add distances.

Graphs in which data elements of some fixed algebra are attached to nodes
and edges have been called attributed graphs since [12], the first formal approach
to extend graph transformation with computations on labels. In that paper,
graphs are encoded as algebras to treat graph structure and algebra data uni-
formly. With a similar intention, the papers [6,9] go the other way round and
encode the data algebra in graphs. Each data element becomes a special data
node and auxiliary edges connect ordinary nodes and edges with the data nodes.

The latter approach has become mainstream but has some serious drawbacks
(bemoaned as the akwardness of attributes in [17]). Firstly, the way attributes
are attached to edges leads to the situation of edges having other edges as
sources. This requires non-standard graphs and makes the model unusual. Sec-
ondly, and more importantly, there is typically an infinite number of data nodes
because standard data algebras (such as integers or lists) have infinite domains.

Supported by a Doctoral Training Grant from the Engineering and Physical Sciences
Research Council (EPSRC) in the UK.

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 145–160, 2016.
DOI: 10.1007/978-3-319-50230-4 11

146 I. Hristakiev and D. Plump

This means that attributed graphs are usually infinite, leading to a discrepancy
between theory and practice as graphs are stored using finite representations.
In the approach of [6], even rules are normally infinite because they consist of
graphs containing the complete term algebra corresponding to the data algebra.

In this paper, we propose an alternative approach to attributed graph
transformation which avoids both infinite graphs and auxiliary attribute edges.
Instead of merging graphs with the data algebra, we keep them separate. Host
graph items simply get labelled with data elements and rule graph items get
labelled with terms. To make this work, rules are instantiated by replacing terms
with corresponding data values and then applied as usual. Hence our rules are
actually rule schemata whose application can be seen as a two-stage process.

In order to modify attributes, it is crucial that interface items in rules can be
relabelled. We therefore use the double-pushout approach with partially labelled
interface graphs as a formal basis [7]. This approach is also the foundation of the
graph programming language GP 2 [15]. The fixed data algebra of GP 2 consists
of integers, character strings, and heterogeneous lists of strings and integers. In
this paper, we abstract from this particular algebra and consider an arbitrary
data algebra (see Subsect. 2.2).

In Sect. 3, we define parallel independence of rule schema applications and
prove the so-called Church-Rosser Theorem for our setting. Roughly, this result
establishes that independent rule schema applications can be interchanged and
result in the same graph. Our proof nicely decomposes into the Church-Rosser
Theorem for the double-pushout approach with relabelling plus a simple exten-
sion to rule schemata (see Subsect. 3.2).

The Church-Rosser Theorem for the relabelling setting was obtained in [8]
as a corollary of an abstract result for M,N -adhesive transformation systems.
However, we deliberately avoid the categorical machinery of adhesiveness, van
Kampen squares, etc. which we believe is difficult to digest for an average reader.
Instead, we merely adapt the classical proof of Ehrig and Kreowski [5] to partially
labelled graphs, essentially by replacing properties of pushouts and pullbacks in
the unlabelled case by properties of natural pushouts in the setting of partially
labelled graphs. (A pushout is natural if it is also a pullback.)

The rest of this paper is organized as follows. In Sect. 2, we describe the
general idea of our approach. In Sect. 3, we present the notions of parallel and
sequential independence and formalize the Church-Rosser Theorem at the rule
schema level. Section 4 contains the relevant proofs. A conclusion and future
work are given in Sect. 6.

We assume the reader to be familiar with basic notions of the double-pushout
approach to graph transformation (see [3]). An extended version of this paper,
along with complete proofs, can be found in [10].

2 Attributed Graph Transformation via Rule Schemata

In this section, we present our approach to transforming labelled graphs by rule
schemata. We begin by briefly reviewing labelled graphs and the double-pushout
approach to graph transformation with relabelling (see [7] for details).

Attributed Graph Transformation via Rule Schemata 147

2.1 Double-Pushout Approach with Relabelling

A partially labelled graph G over a (possibly infinite) label set L consists of finite
sets VG and EG of nodes and edges, source and target functions sG, tG : EG →
VG, a partial node labelling function lG,V : VG → L, and a partial edge labelling
function lG,E : EG → L. Given a node or edge x, we write lG(x) = ⊥ to express
that lG(x) is undefined1. Graph G is totally labelled if lG,V and lG,E are total
functions. The classes of partially and totally labelled graphs are denoted by
G⊥(L) and G(L), respectively.

A premorphism g : G → H consists of two functions gV : VG → VH and
gE : EG → EH that preserve sources and targets: gV (sG(e)) = sH(gE(e) and
gV (tG(e)) = tH(gE(e)) for all edges e. Premorphism g is a graph morphism if it
preserves labels, that is, if lG(x) = lH(g(x)) for all items x such that lG(x) is
defined.

A graph morphism g preserves undefinedness if it maps unlabelled items in
G to unlabelled items in H. We call g an inclusion if g(x) = x for all items
x. Note that inclusions need not preserve undefinedness. Finally, g is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it is
injective, surjective and preserves undefinedness.

Partially labelled graphs and graph morphisms constitute a category (which
is M,N -adhesive [8] if one picks M to be the injective morphisms and N to be
the injective morphisms that preserve undefinedness). In this category, pushouts
need not exist as can be observed in Fig. 2(a).

A rule r = 〈L ← K → R〉 over L consists of two inclusions K → L and
K → R such that L and R are graphs in G(L) and K is a graph in G⊥(L).

Definition 1 (Direct derivation). A direct derivation between graphs G and
H in G⊥(L) via a rule r = 〈L ← K → R〉 consists of two natural pushouts2 as
in Fig. 1, where g : L → G is an injective graph morphism.

We denote such a derivation by G ⇒r,g H. The requirement that the
pushouts in Fig. 1 are natural ensures that the pushout complement D in Fig. 1
is uniquely determined by rule r, graph G and morphism g [7, Theorem 1].
Figure 2(b) demonstrates that non-natural pushout complements need not be
unique. It is worth noting that in the traditional setting of double-pushout graph
transformation with totally labelled graphs, the pushouts are automatically nat-
ural by the injectivity of L ← K and K → R.

Operationally, the application of rule r to graph G proceeds as follows:
(1) match L with a subgraph of G by means of an injective graph morphism
g : L → G satisfying the dangling condition: no node in g(L) − g(K) is incident
to an edge in G − g(L); (2) obtain a graph D by removing from G all items in
g(L) − g(K) and, for all unlabelled items x in K, making g(x) unlabelled; (3)
add disjointly to D all items from R−K, keeping their labels, to obtain a graph
H; (4) for all unlabelled items x in K, lH(g(x)) becomes lR(x).
1 We do not distinguish between nodes and edges in statements that hold analogously

for both sets.
2 A pushout is natural if it is also a pullback.

148 I. Hristakiev and D. Plump

L K R

G D H

g NPO NPO

Fig. 1. A direct derivation

b

c

(a)

b

b

b

b

NPO NPO

b

bb

(b)

b

b

PO PO

Fig. 2. (a) Pushouts need not exist. (b) A natural and a non-natural double pushout.

In [7] it is shown that if G is totally labelled, then the resulting graph H is
also totally labelled. Moreover, unlabelled items in the interface graph K have
unlabelled images in the intermediate graph D by the naturalness condition for
pushouts.

2.2 Rule Schemata

Rule schemata for attributed graph transformation were introduced in the con-
text of the graph programming language GP [16]. We first review signatures and
algebras (details can be found, for example, in [3, Appendix B]).

Consider a signature Σ consisting of a set S of sorts and a family of operation
symbols OP = (OPw,s)(w,s)∈S∗×S . A Σ-algebra A consists of a family of carrier
sets (As)s∈S containing data values, and a set of functions implementing the
operations of Σ. A term algebra TΣ(X) is built up from terms consisting of
constants and variables, where X is a family of variables that is disjoint from
OP .

An assignment α : X → A is a family of mappings (αs : Xs → As)s∈S , giving
a value to each variable in X. Its unique extension α∗ : TΣ(X) → A evaluates
terms according to α.

We assume a fixed Σ-algebra A whose elements are used as host graph labels,
and a corresponding term algebra TΣ(X) whose terms are used as labels in rule
schemata. To avoid an inflation of symbols, we sometimes equate A or TΣ(X)
with the union of its carrier sets.

Definition 2 (Rule schema). A rule schema r = 〈L ← K → R〉 consists of
two inclusions K → L and K → R such that L and R are graphs in G(TΣ(X))
and K is a graph in G⊥(TΣ(X)).

Attributed Graph Transformation via Rule Schemata 149

1

1

2

2

0

Lα

1

2

2

Kα

3

1

2

2

1

Rα

1 2

3

0

0 0

G

2

3

0 0

D

3 2

3

1

0 0

H

x

1

y

2

0

L

1

y

2

K

x+y

1

y

2

1

R

NPO NPO

Fig. 3. Example of a rule schema direct derivation

To apply a rule schema r to a graph, the schema is first instantiated by
evaluating its labels according to some assignment α : X → A.

Definition 3 (Rule schema instance and direct derivation). Consider
a graph G in G⊥(TΣ(X)) and an assignment α : X → A. The instance Gα is
the graph in G⊥(A) obtained from G by replacing each label l with α∗(l). The
instance of a rule schema r = 〈L ← K → R〉 is the rule rα = 〈Lα ← Kα → Rα〉.

A rule schema direct derivation via r between graphs G and H in G⊥(A) is
a direct derivation G ⇒rα,g H via the instance rα according to Definition 1.

We write G ⇒r,g,α H if there exists a direct derivation from G to H with
rule schema r, graph morpshism g and assignment α. Note that we use ⇒ for
the application of both rule schemata and rules.

Figure 3 shows an example of a rule schema direct derivation, where we
assume that algebra A contains the integers with addition (+). The variables x
and y are of sort int and are mapped by assignment α to 1 and 2, respectively.
This allows for the relabelling of node 1 to 3. Note that this rule schema gives
rise to infinitely many instances because the carrier set of integers is infinite.

Given an injective premorphism g : L → G and an assignment α : X → A, a
graph morphism g′ : Lα → G is induced by g and α if g′

V = gV and g′
E = gE . In

other words, the application of α to L must turn g into a label-preserving graph
morphism. The following proposition gives a necessary and sufficient condition
for a rule schema with left-hand side L to be applicable with a morphism induced

150 I. Hristakiev and D. Plump

by g and α. The proof relies on a result in [7] about the existence and uniqueness
of direct derivations in the double-pushout approach with relabelling.

Proposition 1 (Existence and uniqueness of direct derivations). Con-
sider a rule schema r = 〈L ← K → R〉, an injective premorphism g : L → G with
G in G⊥(A), and an assignment α : X → A. Then there exists a direct derivation
G ⇒r,g′,α H such that g′ is induced by g and α, if and only if g satisfies the
dangling condition and each item x in L satisfies

lG(g(x)) = α∗(lL(x)).

Moreover, in this case H is determined uniquely up to isomorphism.

Proof. “If”: By assumption, each item x in L satisfies lG(g(x)) = α∗(lL(x)) =
lLα(x) and hence g′ : Lα → G with g′

V = gV and g′
E = gE is a graph morphism.

Moreover, it is clear that g′ satisfies the dangling condition with respect to
rα because g satisfies the dangling condition with respect to r. Thus, by [7, The-
orem 1], there is a direct derivation G ⇒rα,g′ H where H is determined uniquely
up to isomorphism by rα and g′. Since rα and g′ are uniquely determined by r,
α and g, it follows that H is uniquely determined by r, α and g, too.

“Only if”: Suppose that G ⇒r,g′,α H where g′ is induced by g and α. Then,
by definition, G ⇒rα,g′ H. Hence, by [7, Theorem 1], g′ satisfies the dangling
condition. Since g′

V = gV and g′
E = gE , it is clear that g satisfies the dangling

condition with respect to r. Moreover, since g′ is label-preserving, each item x
in L satisfies lG(g(x)) = lG(g′(x)) = lLα(x) = α∗(lL(x)). �	

As indicated above, a rule schema r = 〈L ← K → R〉 may have infinitely
many instances. Even if one restricts to instances that are compatible with a
given premorphism g : L → G, there may be infinitely many instances to choose
from. For example, consider a premorphism that maps a node in L labelled with
x + y to a node in G labelled with the integer 3 (assuming the conventions of
Fig. 3). There are infinitely many assignments meeting the labelling condition of
Proposition 1 because the equation x + y = 3 has infinitely many solutions over
the integers.

Example 1 (GP 2 rule schemata). Labels in the graph programming language
GP 2 [1,15] are integers, character strings or heterogeneous lists of integers and
character strings. Lists are constructed by concatenation: given lists x and y,
their concatenation is written x:y.

Expressions in the left-hand side L of a GP 2 rule schema are syntactically
restricted to ensure that at most one instance of the schema is compatible with
a given premorphism g : L → G. To this end, left-hand expressions must neither
contain arithmetic operators (except unary minus) nor repeated list variables,
and all variables occurring on the right-hand side of a rule schema must also
occur on the left-hand side.

Figure 4 shows the declaration of a GP 2 rule schema inc. Its left-hand
labels contain typed variables which are instantiated with concrete values during

Attributed Graph Transformation via Rule Schemata 151

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a
x:i

1

y:i+1

2

a⇒

Fig. 4. Declaration of a GP 2 rule schema

graph matching. By convention, the interface of the rule schema consists of two
unlabelled nodes. The effect of inc is to increment the rightmost element in the
list of node 2.

In this paper we are not concerned with implementation issues and do not
impose any restrictions on rule schemata. Abstracting from GP 2’s label alge-
bra, other possible data types for labels include (multi)sets, stacks, queues and
records.

3 Church-Rosser Theorem

In this section, we present the notion of parallel independence for direct deriva-
tions with relabelling and then extend it to applications of rule schemata.

3.1 Independence of Direct Derivations with Relabelling

Let each of the diagrams in Fig. 5 represent two direct derivations according to
Definition 1.

Definition 4 (Parallel and sequential independence). Two direct deriva-
tions H1 ⇐r1,m1 G ⇒r2,m2 H2 as in Fig. 5(top) are parallel independent if there
exist morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1 and
f1 ◦ j = m2.

Two direct derivations G ⇒r1,m1 H1 ⇒r2,m2 H2 as in Fig. 5(bottom) are
sequentially independent if there exist morphisms i : R1 → D2 and j : L2 → D1

such that f2 ◦ i = m′
1 and f1 ◦ j = m2 .

It will turn out that parallel and sequential independence are related: two
direct derivations H1 ⇐r1,m1 G ⇒r2,m2 H2 are parallel independent if and only
if the direct derivations H1 ⇒r−1

1 ,m′
1

G ⇒r2,m2 H2 are sequentially independent,
where r−1

1 denotes the inverse rule of r1 and m′
1 is the comatch of m1.

Lemma 1 (Characterization of parallel independence). Two direct
derivations H1 ⇐r1,m1 G ⇒r2,m2 H2 are parallel independent if and only if
for all items x1 ∈ L1 and x2 ∈ L2 such that m1(x1) = m2(x2),

– x1 ∈ K1 and x2 ∈ K2, and
– lK1(x1) = ⊥ and lK2(x2) = ⊥.

152 I. Hristakiev and D. Plump

G

L1K1R1 L2 K2 R2

D1 D2H1 H2

m1 m2

NPO NPO NPO NPO

f1 f2
ij

H1

R1K1L1 L2 K2 R2

D1 D2G H2

m′
1 m2

NPO NPO NPO NPO

f1 f2

m1

ij

Fig. 5. Parallel and sequential independence (top and bottom, respectively)

The first condition states that every common item is an interface item. The
second condition states that no common item is relabelled by either derivation.

Example 2 (Counterexample to parallel independence). Figure 6 shows two direct
derivations H1 ⇐ G ⇒ H2 that use instances of the rule schema of Fig. 3. The
derivations are not parallel independent: there are no morphisms L1 → D2 and
L2 → D1 with the desired properties. The problem is that node 1 gets relabelled,
breaking the second independence condition.

1 3
0

L2

3

K2

4 3
1

R2

1 2

3

0

0 0

G

2

3

0

0

D2

4 2

3

0

1 0

H2

1 2
0

L1

|

2

K1

3 2
1

R1

2

3

0 0

D1

|

3 2

3

1

0 0

H1

Fig. 6. Counterexample to parallel independence

Our main result (Theorem 2) will show that rule schema direct derivations
that are parallel independent can be interchanged to obtain a common result
graph. First, we state the Church-Rosser theorem for plain rules in the sense
of Definition 1. This has been proved in [8] as a corollary of the Church-Rosser
theorem for M,N -adhesive transformation systems. However, we obtain the
result directly without using the notions of adhesiveness and van Kampen square.

The proof follows the original Church-Rosser proof of [5]. At specific points
it will be necessary to show that the results for NPO decomposition apply to
the given setting. See Sect. 4 for the complete proof.

Attributed Graph Transformation via Rule Schemata 153

Theorem 1 (Church-Rosser theorem for plain rules). Given two parallel
independent direct derivations G ⇒r1,m1 H1 and G ⇒r2,m2 H2, there are a
graph H̃ and direct derivations H1 ⇒r2,m′

2
H̃ and H2 ⇒r1,m′

1
H̃. Moreover,

G ⇒r1,m1 H1 ⇒r2,m′
2

H̃ as well as G ⇒r2,m2 H2 ⇒r1,m′
1

H̃ are sequentially
independent.

3.2 Church-Rosser Theorem for Rule Schema Derivations

This subsection lifts the previous independence result to rule schema applica-
tions. The main idea is to simply add instantiation on top of plain direct deriva-
tions.

Definition 5 (Parallel independence of rule schema derivations). Two
rule schema direct derivations G ⇒r1,m1,α1 H1 and G ⇒r2,m2,α2 H2 are par-
allel independent if the plain derivations with relabelling G ⇒r

α1
1 ,m1

H1 and
G ⇒r

α2
2 ,m2

H2 are parallel independent according to Definition 4.

G

Lα1
1Kα1

1Rα1
1

L1K1R1

Lα2
2 Kα2

2 Rα2
2

L2 K2 R2

D1 D2H1 H2

m1 im2j
f1 f2

Theorem 2 (Church-Rosser theorem for rule schemata). Given two par-
allel independent rule schema direct derivations G ⇒r1,m1 H1 and G ⇒r2,m2 H2,
there is a graph H̃ and rule schema direct derivations H1 ⇒r2,m′

2
H̃ and

H2 ⇒r1,m′
1

H̃. Moreover G ⇒r1,m1 H1 ⇒r2,m′
2

H̃ as well as G ⇒r2,m2

H2 ⇒r1,m′
1

H̃ are sequentially independent.

Proof. From Theorem 1, we know that independence of the plain derivations
with relabelling G ⇒r

α1
1 ,m1

H1 and G ⇒r
α2
2 ,m2

H2 implies the existence of a
graph H̃ and direct derivations H1 ⇒r

α2
2 ,m2

H̃ and H2 ⇒r
α1
1 ,m1

H̃. This is
illustrated in Fig. 7.

The direct derivations G ⇒r
α1
1 ,m1

H1 and G ⇒r
α2
2 ,m2

H2 use instances of the
rule schemata r1 and r2, and therefore there are rule schema direct derivations
H1 ⇒r2,m′

2
H̃ and H2 ⇒r1,m′

1
H̃. With Theorem 1 follows that both G ⇒r

α1
1 ,m1

H1 ⇒r2,m′
2

H̃ and G ⇒r
α2
2 ,m2

H2 ⇒r1,m′
1

H̃ are sequentially independent. �	

4 Proof of Theorem1

The proof follows the original Church-Rosser proof of [5]. At specific points it
will be necessary to show that the results for NPO decomposition apply to the

154 I. Hristakiev and D. Plump

G

Lα1
1

Kα1
1

Rα1
1

D1

H1

m1

L1

K1

R1
Lα2

2

Kα2
2

Rα2
2

D2

H2

m2

L2

K2

R2

H̃

D̄2 D̄1

Rα2
2 Rα1

1

Kα2
2 Kα1

1

Lα1
2 Lα2

1

m′
2 m′

1

Fig. 7. Church-Rosser theorem for rule schemata

given setting. This is because for partially labelled graphs, pushouts need not
always exist, and not all pushouts along injective morphisms are natural. These
facts have been observed in Fig. 2.

Using the definition of parallel independence (Definition 4), we start by
decomposing the derivations as shown in Fig. 8.

G

L1K1 L2 K2

D1 D2

m1 m2

D2 D1

i j

D0 D0

(1) (1)

(2) (3)

Fig. 8. First decomposition diagram

The graph D0 is obtained as a pullback of (D1 → G ← D2). The universal
property of pullbacks gives us that K1 → D1 and K2 → D2 decompose into
K1 → D0 → D1 and K2 → D0 → D2 respectively. We also have that (1+2) and
(1 + 3) are NPOs because they are left-hand sides of derivations. Furthermore,
D1 → G and D2 → G are injective and jointly surjective which makes (1) an
NPO ([10, Lemma 4]).

Attributed Graph Transformation via Rule Schemata 155

D1 → G and D2 → G injective imply that D0 → D2 and D0 → D1 are
also injective. The subsequent parts of the proof contain four claims which are
proven afterwards.

Claim 1. The squares (2) and (3) are NPOs.

Next, the pushouts D1 of (D0 ← K1 → R1) (5) and D2 of (D0 ← K2 → R2)
(6) are constructed. These exist by the following claim:

Claim 2. In Fig. 9, the pushouts D1 of (D0 ← K1 → R1) (5) and D2 of (D0 ←
K2 → R2) (6) exist.

Again using uniqueness, the morphisms R1 → H1 and R2 → H2 decompose
into R1 → D2 → H1 and R2 → D1 → H2. We also have that (5 + 7) and (6 + 8)
are NPOs because they are right-hand sides of derivations.

G

L1K1R1 L2 K2 R2

D1H1 D2 H2

m1 m2

D2 D1

i j

D0 D0

(1) (1)

(2) (3)

D1 D2

(7) (8)

(5) (6)

Fig. 9. Second decomposition diagram

Also, (7) and (8) become NPOs by the NPO Decomposition Lemma [10,
Lemma 5.3].

Claim 3. In Fig. 9, the squares (7) and (8) are NPOs.

The graph H̃ is constructed as a pushout of (D1 ← D0 → D2) (4). (See
square (4) in Fig. 10.)

Claim 4. The pushout of (D1 ← D0 → D2) exists.

This pushout becomes NPO by [10, Lemma 3] and the arguments in the proof
of Claim 4. Furthermore, the graph H̃ is totally labelled due to the way D0, D1

and D2 are constructed - D1 can contain unlabelled items only from D0 − K1

which are labelled in D2, and vice versa.
The pushouts can be rearranged as in Fig. 10 to show that G ⇒r1,m1

H1 ⇒r2,m′
2

H̃ as well as G ⇒r2,m2 H2 ⇒r1,m′
1

H̃ are sequentially independent.
Note that the graph H̃ is totally labelled.

This concludes the proof of the Church-Rosser theorem. �	
Next, we present the proofs of the above claims.

156 I. Hristakiev and D. Plump

G

L1 K1 R1

D1 H1

L2 K2 R2

D1 H̃

m1 m′
2D0 D0D2 D1

i j

(1) (7)

(2) (3)

D1 D2

(7) (4)

(5) (6)

Fig. 10. Rearranged pushouts

Proof of Claim 1. We need to show that the conditions of the NPO Decomposi-
tion Lemma [10, Lemma 5.2] hold for the following diagrams.

K1 D0 D1

L1 D2 G

(2) (1)

K2 D0 D2

L2 D1 G

(3) (1)

D0 → D1 is injective because D2 → G is injective by definition and (1)
is PB. (1) has already been proven to be NPO (at the start of this section).
Pushout exists over (L1 ← K1 → D0) as L1 is totally labelled, both morphisms
are injective and K1 → D0 preserves undefinedness, all by the definition of direct
derivation with relabelling. The square K1L1D0D2 commutes because (1 + 2)
and (1) are NPOs. Therefore, all conditions of the NPO Decomposition Lemma
[10, Lemma 5.2] hold.

The proof for the second diagram is analogous.
This concludes the proof that the squares (2) and (3) are NPOs. �	

Proof of Claim 2. As in the previous proof, R1 and R2 are totally labelled, all
morphisms are injective and both K1 → D0 and K2 → D0 preserve undefined-
ness, all by the definition of direct derivation with relabelling. Therefore, the
pushouts (5) and (6) exist by [10, Lemma 2.2]. �	
Proof of Claim 3. In the context of Fig. 11, we need to show that the conditions
of the NPO Decomposition Lemma [10, Lemma 5.3] hold.

D0 → D1 has already been established as injective. We need that there exists
unique NPO complement of K1 → R1 → D1. We have that K1 → R1 is injective
by definition. R1 → D1 is injective because K1 → D0 and L1 → D2 are
injective. The pushout (5+7) is a right-hand side of a derivation and R1 → H1 =
R1 → D1 → H1. Consequently, R1 → D1 satisfies the dangling condition w.r.t.
K1 → R1, thus the existence of a unique NPO complement is given by [10,
Lemma 2.3]. The proof for the second diagram is analogous.

This concludes the proof that the prerequisites for the NPO Decomposition
Lemma [10, Lemma 5.3] hold. Hence, squares (7) and (8) become NPOs. �	

Attributed Graph Transformation via Rule Schemata 157

K1 D0 D1

R1 D1 H1

(5) (7)

K2 D0 D2

R2 D2 H2

(6) (8)

Fig. 11. Pushouts (5), (6), (7) and (8).

D0

D1

K1

R1

D2

K2

R2

H̃

(4)

(5) (6)

Proof of Claim 4. For a pushout to exist, D1 and D2 have to agree on the labels
of the unlabelled nodes of D0 ([10, Lemma 2.2]).

D1 is constructed as the pushout of (R1 ← K1 → D0) with R1 being totally
labelled. Its node and edge sets and labelling function is as defined in [10,
Lemma 2.2]. Moreover, R1 → D1 and D0 → D1 are injective and jointly sur-
jective.

There are 3 main cases for an item x to be labelled in D1:

– the item is created by the first derivation x ∈ R1 − K1. This means it does
not exist in D1, D2 or G. Consequently, this item does not have a preimage
in D0 by pullback construction ([10, Lemma 2.1]). Therefore, it cannot be a
source of conflict for pushout existence.

– the item is relabelled by the first derivation, meaning its preimage in D1 (and
D0) is unlabelled x ∈ K1 and lK1(x) = lD1(x) = lD0(x) = ⊥. By the definition
of parallel independence, no common items are relabelled making the item
not have a preimage in R2. Therefore it is unlabelled in D2 (by definition of
pushout), making it a non-conflict w.r.t. pushout existence.

– the item is in D1 −R1, i.e. a labelled item of D0 −K1. We have that D0 → D1

and D0 → D2 are label preserving, so the label of x in D2 is the same as in
D1.

In all cases, the labels of D1 are preserved by the second derivation. The argu-
ment for the labelled items of D2 is analogous.

This concludes the proof that the pushout (4) over (D1 ← D0 → D2)
exists. �	

158 I. Hristakiev and D. Plump

5 Related Work

We have adapted the classical Church-Rosser proof of Ehrig and Kreowski [5] to
partially labelled graphs and extended the result to rule schemata, essentially
by replacing properties of pushouts and pullbacks in the unlabelled case by
properties of natural pushouts in the setting of partially labelled graphs.

In [6], the theory of attributed graph transformation is developed in the
framework of so-called adhesive HLR categories. Among other results, the
Church-Rosser Theorem is proved in this setting. The approach is further studied
in [4] by adding nested application conditions and proving the previous results
for this more expressive approach. Both are a generalized version of the Church-
Rosser Theorem of [9].

So-called symbolic graphs are attributed graphs in which all data nodes are
variables, combined with a first-order logic formula over these variables. In [13]
it is shown that this approach can specify and transform classes of ordinary
attributed graphs that satisfy the given formula. The underlying graph structure
is the same as in [6], hence the approach shares the issues described in the
introduction.

Recently, a generalised Church-Rosser theorem for attributed graph trans-
formation has been proved in [11] by using symbolic graphs. A notion of parallel
independence is used that takes into account the semantics of attribute opera-
tions, in order to reduce the number of “false positives” in conflict checking.

6 Conclusion

In this paper, we have presented an approach to attributed graph transforma-
tion based on partially labelled graphs and rule schemata which are instantiated
to ordinary rules prior to application. We have defined parallel independence of
rule schema applications and have proved the Church-Rosser theorem for our
approach. The proof relies on the Church-Rosser theorem for graph transfor-
mation with relabelling and adapts the classical proof by Ehrig and Kreowski,
bypassing the technicalities of adhesive categories.

Future work includes establishing other classical graph transformation results
in our setting, such as embedding and restriction theorems. Furthermore, we
aim at studying critical pairs and confluence both for the particular case of
the GP 2 language and for attributed graph transformation over arbitrary label
algebras. In particular, we plan to give a construction of critical pairs (labelled
with expressions) that guarantees the set of critical pairs is both finite and
complete. Completeness would mean that all possible conflicts of rule schema
applications can be represented as embeddings of critical pairs.

Attributed Graph Transformation via Rule Schemata 159

References

1. Bak, C.: GP 2: efficient implementation of a graph programming language. Ph.D.
thesis, Department of Computer Science, University of York (2015). http://etheses.
whiterose.ac.uk/12586/

2. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73,
pp. 1–69. Springer, Heidelberg (1979). doi:10.1007/BFb0025714

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

4. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. Part 1: parallelism, concurrency
and amalgamation. Math. Struct. Comput. Sci. 24(4) (2014)

5. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). doi:10.1007/3-540-07854-1 188

6. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph
transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30203-2 13

7. Habel, A., Plump, D.: Relabelling in graph transformation. In: Corradini, A., Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 135–
147. Springer, Heidelberg (2002). doi:10.1007/3-540-45832-8 12

8. Habel, A., Plump, D.: M, N -adhesive transformation systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 218–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6 15

9. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002).
doi:10.1007/3-540-45832-8 14

10. Hristakiev, I., Plump, D.: Attributed graph transformation via rule schemata:
Church-Rosser theorem (long version) (2016). http://www.cs.york.ac.uk/plasma/
publications/pdf/HristakievPlump.16.Full.pdf

11. Kulcsár, G., Deckwerth, F., Lochau, M., Varró, G., Schürr, A.: Improved conflict
detection for graph transformation with attributes. In: Proceedings of Graphs as
Models (GaM 2015). Electronic Proceedings in Theoretical Computer Science, vol.
181, pp. 97–112 (2015)

12. Löwe, M., Korff, M., Wagner, A.: An algebraic framework for the transformation
of attributed graphs. In: Sleep, R., Plasmeijer, M., van Eekelen, M. (eds.) Term
Graph Rewriting: Theory and Practice, pp. 185–199. Wiley, New York (1993)

13. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. In: Graph and Model Transformation. Electronic Communications of the
EASST, vol. 30 (2010)

14. Plump, D.: Confluence of graph transformation revisited. In: Middeldorp, A., Oost-
rom, V., Raamsdonk, F., Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on
the Road to Infinity: Essays Dedicated to Jan Willem Klop on the Occasion of His
60th Birthday. LNCS, vol. 3838, pp. 280–308. Springer, Heidelberg (2005). doi:10.
1007/11601548 16

http://etheses.whiterose.ac.uk/12586/
http://etheses.whiterose.ac.uk/12586/
http://dx.doi.org/10.1007/BFb0025714
http://dx.doi.org/10.1007/3-540-07854-1_188
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/3-540-45832-8_12
http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://dx.doi.org/10.1007/3-540-45832-8_14
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.16.Full.pdf
http://www.cs.york.ac.uk/plasma/publications/pdf/HristakievPlump.16.Full.pdf
http://dx.doi.org/10.1007/11601548_16
http://dx.doi.org/10.1007/11601548_16

160 I. Hristakiev and D. Plump

15. Plump, D.: The design of GP 2. In: Proceedings of the Workshop on Reduction
Strategies in Rewriting and Programming (WRS 2011). Electronic Proceedings in
Theoretical Computer Science, vol. 82, pp. 1–16 (2012)

16. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol.
3256, pp. 128–143. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30203-2 11

17. Rensink, A.: The edge of graph transformation — graphs for behavioural spec-
ification. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B.
(eds.) Graph Transformations and Model-Driven Engineering: Essays Dedicated to
Manfred Nagl on the Occasion of His 65th Birthday. LNCS, vol. 5765, pp. 6–32.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17322-6 2

http://dx.doi.org/10.1007/978-3-540-30203-2_11
http://dx.doi.org/10.1007/978-3-642-17322-6_2

HOFM

Visual Notation and Patterns for Abstract
State Machines

Paolo Arcaini1, Silvia Bonfanti2,3(B), Angelo Gargantini2,
and Elvinia Riccobene4

1 Faculty of Mathematics and Physics, Charles University in Prague,
Prague, Czech Republic

arcaini@d3s.mff.cuni.cz
2 Department of Economics and Technology Management,

Information Technology and Production,
Università degli Studi di Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it

3 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
4 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. Formal models are a rigorous way to specify informal sys-
tem requirements. However, they are not widely used in practice, since
they are considered difficult to develop and understand. Visualization is
often considered a good means for people to communicate and to get a
common understanding. We here make a proposal of a visual notation
for Abstract State Machines (ASMs), and we introduce visual trees that
visualize ASM transition rules. In addition to these graphical compo-
nents that are based only on the syntactical structure of the model, we
also present visual patterns that permit to visualize part of the behavior
of the machine. A tool is also available to graphically represent ASM
models using the proposed notation.

1 Introduction

Formal models are in principle accepted as the only way to specify in a precise
and rigorous way the informal system requirements: they help to understand
what has to be developed and to prove properties already at the early stages of
the system development. However, formal specification languages are not widely
used in industry, and practitioners largely consider formal methods “too hard
to understand and use in practice”. Limiting factors are the lack of simplic-
ity, learnability, readability, easiness of use of formal notations [24]. All these
qualities are fundamental to achieve easiness of development and comprehension

The research reported in this paper has been partly supported by the Charles Uni-
versity research funds PRVOUK, and by the Austrian Ministry for Transport, Inno-
vation and Technology, the Federal Ministry of Science, Research and Economy, and
the Province of Upper Austria in the frame of the COMET center SCCH.

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 163–178, 2016.
DOI: 10.1007/978-3-319-50230-4 12

164 P. Arcaini et al.

of models, particularly for large, complex software systems. Requirement mod-
els should act as a communication medium among customers, users, designers,
developers, and this common understanding is fundamental for the success of
the system realization. However, since the mathematical notation is not always
intuitive, and the size of the specification often consists of several pages of rules
and formulas, model comprehension is threatened.

Visualization is considered as a good means for people to communicate and to
get a common understanding. Indeed, the use of diagrams and graphical blocks
is at the base of the mostly used notations in industry, as FSMs (and their
extensions) or UML, the latter nowadays accepted as the industrial standard for
system design. However, their shortcomings, as limited expressiveness for FSM
w.r.t. other formal notations [5] or semantics lack for UML [6], are well-known.

Ever since UML appeared, many modeling approaches have been developed
which try to use UML (or one of its profiles or domain-specific UML-like nota-
tions) as front-end of the requirements specification and formal notations as
back-end of the process, to provide rigor and preciseness to lightweight models
and make model validation and verification possible [13,19,21–23].

Abstract State Machines (ASMs) are an extension of FSMs, obtained by
replacing unstructured control states by states comprising arbitrarily complex
data [5]. ASMs have been widely used as requirement specification formalism.
Despite of their mathematical foundation, a practitioner needs no special training
to use the method since ASMs can be correctly understood as pseudo-code (or
virtual machines) working over abstract data structures. Furthermore, to ease
its use by non-experts, a series of integrated tools (for editing, validation, and
verification) have been developed around ASMs [4].

Although the ASM textual notation [10] has been designed with readability
in mind, our experience in trying to build and read very large system speci-
fications [1,3] has shown that the complexity of the behavior being described
overwhelms the reader, and most users (even the authors of the specification)
need help in navigating and understanding it. This also happened while we were
developing the ABZ 2016 case study [2], that motivated the current work. We
tried, at first, to directly specify the ASM models from the textual description
of the requirements. Although the refinement process helped us in managing the
complexity of the case study, we still had some problems in discussing among us
about the solution. So, we started making some drawings, whose notation was
inspired by different sources: control flow graphs, UML state machines, sequence
diagrams, etc. The lack of a way to graphically represent ASM models was clear.

A further observation we have made is that most of the new ASM users start
developing ASM models as control state ASMs, a particular frequent class of
ASMs – proposed by Börger in [5] – useful to model system modes (or control
states). Control state ASMs have an intuitive graphical representation by means
of FSM-like state diagrams. However, when the system to model is very complex,
the resulting control state is too complicated and fails in achieving its main aim,
i.e., easily communicating the behavior of the system. Moreover, a systematic
use of control state ASMs is missing, and there is no algorithmic support to
build or reconstruct such machines from models written in textual notations.

Visual Notation and Patterns for Abstract State Machines 165

Starting from the motivations that (a) formality is important but also under-
standing and communicating among stakeholders is fundamental, (b) visualiza-
tion of formal models can surely aid the understanding of model structure and
behaviors, (c) visual editing is often used to help designers and developers to
graphically build complex models [8], we here propose a graphical notation for
ASMs. The overall visualization of a model is given in terms of a graph. In addi-
tion, we define structural patterns, useful to visualize the structure of a model
in a more compact way, and semantic patterns to be used when additional infor-
mation on the machine workflow can be inferred from the model.

The paper is organized as follows. Section 2 gives a brief background on
ASMs. In Sect. 3, we introduce our proposal of a visual notation for ASMs,
whose basic constituents (i.e., visual trees) are defined in Sect. 4. Section 5 shows
that ASM models usually contain particular recurring patterns of ASM rules
that can be visualized in a proper way: some patterns are simply structural,
whereas others permit to infer some of the behavioral semantics of the ASM.
Section 6 presents the prototypical implementation of a tool supporting the pro-
posed visual notation. Section 7 describes a preliminary evaluation of the tool.
Section 8 discusses some related work, and Sect. 9 concludes the paper.

2 Abstract State Machines

Abstract State Machines (ASMs) [5] are an extension of FSMs, where unstruc-
tured control states are replaced by states with arbitrary complex data. Although
the method has a rigorous mathematical foundation, a practitioner can simply
understand ASMs as pseudo-code working over abstract data structures.

ASM states are algebraic structures, i.e., domains of objects with functions
and predicates defined on them. An ASM location, defined as the pair (function-
name, list-of-parameter-values), represents the abstract ASM concept of basic
object container. The couple (location, value) represents a machine memory unit.
Therefore, ASM states can be viewed as abstract memories.

Values of locations can be changed by firing transition rules. They express the
modification of functions interpretation from one state to the next one. Location
updates are the basic units of rules construction and are given as assignments of
the form loc := v, where loc is a location and v its new value. The description of
all basic ASM transition rules is given in Table 1.

An ASM computation is a finite or infinite sequence S0, S1, . . . , Sn, . . . of
states of the machine, where S0 is an initial state and each Sn+1 is obtained
from Sn by firing the unique main rule which can fire other transitions rules.

There exists a classification of ASM functions that, however, is not relevant
for understanding the current work and, therefore, is here skipped.

The ASM modeling process is supported by tools of the ASMETA frame-
work1 [4] that are strongly integrated in order to permit reusing information
about models during different development phases. ASMETA provides function-
alities for ASM models creation and manipulation (as editing using the AsmetaL
1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

166 P. Arcaini et al.

textual syntax [10], storage, interchange, etc.), and supports model analysis tech-
niques (as validation, (runtime) verification, testing, requirements analysis, etc.).

3 A Visual Notation for ASMs

In this section, we introduce the meaning, the goals, and the possible usage
scenarios of the proposed visual notation for ASM models.

The proposed visual notation is defined in terms of a set of construction
rules and schemas that give a graphical representation of an ASM and its rules.
We assume that the graphical information is represented by a visual graph in
which nodes represent syntactic elements (like rules, conditions, rule invocations)
or states, while edges represent bindings between syntactic elements or state
transitions. We do not introduce a graphical representation for the signature
(functions and domains) and properties, since we believe that they can be already
easily understood from the textual model.

In the following sections, we propose a set of procedures that allow to auto-
matically derive a visual graph from an ASM model. Section 4 introduces pro-
cedures that recursively visit the ASM rules and build a visual tree represent-
ing the syntactical structure of the model. In Sect. 5, we introduce some visual
patterns that permit to identify recurring graphical schemas, and to obtain a
more compact and meaningful representation, possibly capturing some behav-
ioral information. Such representation may be no longer a tree, but a general
graph.

The final goal is to have a textual representation together with a graphical
visualization as shown in Fig. 1. To be more precise, we have devised two possible
usage scenarios of the proposed visual notation.

(a) Textual representation (b) Graphical representation

Fig. 1. Visual notation

Visual Notation and Patterns for Abstract State Machines 167

Visualization – From Textual to Graphical Representation. The first
usage scenario consists in writing an ASM model in a textual representation
(AsmetaL) and then derive a graph from it. Such approach can be used when
the modeler is familiar with the ASM syntax, but (s)he wants to have a graphical
representation of the model for its better understanding and communication. If
the ASM model is syntactically correct, also the produced graph is correct. In the
visualizer, the user can activate some optimizations (presented in the following
sections), in order to have different views of the same model: structural (with
different levels of optimization), or semantic (behavioral).

Visual Editing – From Graphical to Textual Representation. The sec-
ond usage scenario consists in graphically specifying the ASM by drawing the
graph. In this way, the modeler can focus on the high level structure of the model,
similarly to what is done in code with control flow graphs. Note that the usage
of semantic patterns allows the user to also graphically model some evolutions of
the system, which are usually difficult to get by writing textual ASM models (at
least without simulating it). Of course, the graph produced by the developer is
not complete, as it does not specify the signature; moreover, it could also be not
correct. Some trivial syntactical violations can be automatically detected on the
graph by checking some consistency rules, but other faults may be more difficult
to find. Once the modeler has produced the graph, a translator can translate
the graph in an AsmetaL textual model. The produced model contains (most of)
the transition rules, and the modeler is only required to add the signature (and
the initialization). Then, the AsmetaL parser may find some faults that passed
undetected during graph validation.

4 Visual Trees

We here introduce the relevant concepts which bring to a graphical representa-
tion of an ASM model in terms of a navigable forest of tree structures, i.e., a
forest of trees connected by navigation links.

Definition 1. The visual notation for ASMs is given by the bijective function
visT between an ASM rule and a visual tree.

Definition 2. The function visT is given by Table 1.

1. For basic rules (update, skip and macro call) the function simply returns a
tree with only one node (the root).

2. For compound rules (conditional, block, forall, choose, let), one must apply the
schema given in Table 1 and recursively call the function visT on component
rules.

Table 1 describes the semantics of ASM transition rules, and shows the pro-
posed graphical representation and the AsmetaL textual notation. The function
visT is only based on the syntactical structure of the ASM and it can always be

168 P. Arcaini et al.

applied. Tree leaves are always skip, update, or call rules, and they are shown
in boxes. Note that a call rule invokes a macro rule that has its own tree that,
however, is not part of the main tree. At the end, one can obtain a tree for every
rule declaration by applying visT to its definition. The visualization of an ASM
is given by the forest compound of all the trees of the declared rules. To navigate
this visual view, the entry point is the tree for the main rule and, from every call
rule, one can navigate to the tree of the invoked macro rule by a virtual naviga-
tion link, which is not visualized in the graphical representation. By considering
the navigation links in the visualization, the resulting structure is a graph, as a
macro rule can be called by different call rules.

Example 1. For explanation purposes, we use the Hemodialysis Machine Case
Study [2]. It describes a hemodialysis device which goes through three phases:
the preparation in which the device is prepared and the patient is connected,
the initiation in which the hemodialysis is performed (i.e., the patient’s blood
is cleaned), and the ending in which the therapy terminates and the patient is
disconnected. We can abstractly describe the device using the ASM model shown
in Code 12. Using the visT function, the model can be represented as shown in
Fig. 2. Note that the three macro rules r preparation, r initiation, and r ending
have their own tree representations that are not part of the tree generated from
the main rule, but are connected to their corresponding call rules by navigation
links (here rendered as dashed arrows only for presentation purposes).

asm Hemodialysis GM

signature:
enum domain PhasesTherapy = {PREPARATION |

INITIATION | ENDING}
controlled phaseTherapy: PhasesTherapy

definitions:
macro rule r preparation =
phaseTherapy := INITIATION

macro rule r initiation =
phaseTherapy := ENDING

macro rule r ending =
skip

main rule r Main =
par
if phaseTherapy = PREPARATION then
r preparation[]

endif
if phaseTherapy = INITIATION then
r initiation[]

endif
if phaseTherapy = ENDING then
r ending[]

endif
endpar

default init s0:
function phaseTherapy = PREPARATION

’

Code 1. Hemodialysis case study – AsmetaL model

5 Visual Patterns

We here introduce the notion of visual pattern for ASM visual trees. A pattern
is a schema of connected tree nodes that is recurring and conveys a structural
or semantic (i.e., behavioral) information. Therefore, identifying a pattern and
substituting the entities belonging to it with a simplified structure is of interest.
2 Note that the complete formalization of the case study consists of a sequence of

refined models, each one specifying more details of the therapy.

Visual Notation and Patterns for Abstract State Machines 169

Table 1. visT: mapping from ASM transition rules to visual trees

Rule Visual tree AsmetaL notation

Skip rule

do nothing
skip skip

Update rule

update f to v
f := v f := v

Macro call rule r rule[] r rule[]

invoke rule r rule with
arguments v (if any)

r rule[v] r rule[v]

Conditional rule guard visT (rule1)

if guard then
rule1

endif

execute rule1 if guard
holds, otherwise exe-
cute rule2 (if given)

guard visT (rule1)

visT (rule2)

true

false

if guard then
rule1

else
rule2

endif

Block rule

execute rule1 . . . rulen
in parallel

visT (rule1)

visT (rule2)
...

visT (rulen)

par

par
rule1
rule2
...
rulen

endpar

Forall rule

execute rule1 with all
values v ∈ V for which
d(v) holds

forall d(v)
v ∈ V

visT (rule1[v])

forall v ∈ V with d(v) do
rule1[v]

Choose rule choose d(v)
v ∈ V

visT (rule1[v])
choose v ∈ V with d(v) do
rule1[v]

execute rule1 with a
v ∈ V for which d(v)
holds. If no such v ex-
ists, execute rule2 (if
given)

choose d(v)
v ∈ V

visT (rule1[v])

visT (rule2)
ifnone

choose v ∈ V with d(v) do
rule1[v]

ifnone
rule2

Let rule

execute rule1 substi-
tuting t for x

let visT (rule1[x])
x = t

let(x = t) in
rule1[x]

endlet

5.1 Structural Patterns

We identify the following structural pattern that permits to obtain a more com-
pact representation of the model structure.

Nested Guards Pattern. The pattern regards the use of nested conditional
rules. Suppose that you have a conditional rule as shown in Fig. 3a. By applying
the visual trees in Table 1, one would obtain the tree shown in Fig. 3b. However,
one can visualize the rule in a more compact way as shown in Fig. 3c.

170 P. Arcaini et al.

phaseTherapy =
PREPARATION

r preparation[]

phaseTherapy =
INITIATION

r initiation[]

phaseTherapy =
ENDING

r ending[]

par

phaseTherapy :=
INITIATION

phaseTherapy
:= ENDING

skip

r Main[]

r preparation[]

r initiation[]

r ending[]

navigation link

navigation link

navigation link

Fig. 2. Hemodialysis case study – visual trees

if a then
rule1

else
if b then
rule2

else
rule3

endif
endif

(a) Nested
conditional rules

a visT (rule1)

b visT (rule2)

visT (rule3)

true

false
true

false

(b) Visual tree

a,b visT (rule1)

visT (rule2)visT (rule3)

true,-

false,truefalse,false

(c) Pattern

Fig. 3. Structural pattern – nested guards pattern

The pattern is applicable to any depth of nested conditional rules. One just
has to collect all the guards g1, . . . , gn, and create only one decision node compris-
ing all the guards separated by commas. The decision node has as many exiting
arcs as the number of conditional branches not containing another nested con-
ditional rule, but a different rule rulei; each arc is labeled with the evaluations
of the guards that permit to take that particular arc and fire rule rulei. Evalu-
ations of guards that are not relevant for the firing of a rule rulei are depicted
with symbol “–”. The decision node has up to n + 1 exiting arcs. Note that the
pattern does not necessarily produce a tree that is more clear to understand,
but it always provides a more compact representation of the nested conditional
rules. For this reason, we let the modeler decide if (s)he wants to apply it.

Example 2. Figure 4b shows the application of the pattern to macro rule
r priming (shown in Fig. 4a) of the hemodialysis machine case study.

5.2 Semantic Patterns

Any ASM model can be always represented using visual trees and possibly opti-
mized by applying structural patterns. The resulting tree visualizes the structure
of the ASM. However, sometimes it is possible to infer from the model also some
hints on the behavior of the machine. For this reason, we introduce semantic

Visual Notation and Patterns for Abstract State Machines 171

macro rule r priming =
if bp status der = STOP then
bp status := START

else
if bp fill fluid and bp rate rinsing 150 then
par
bp status := STOP
tubingPhase := CONNECT AV ENDS

endpar
endif

endif

(a) Nested conditional rules

bp status der = STOP,
bp fill fluid and
bp rate rinsing 150

bp status
:= START

par

bp status
:= STOP

tubingPhase :=
CONNECT AV ENDS

true,-

false,true

(b) Pattern

Fig. 4. Hemodialysis case study – nested guards pattern

patterns that can be applied when it is possible to infer from the model some
information on the workflow of the machine.

We identify here three semantic patterns: mutual exclusive guards, state, and
state flow patterns.

Mutual Exclusive Guards Pattern. In case of parallel conditional rules
having mutual exclusive guards, it could be useful to represent that the workflow
of the machine follows only one of the possible parallel execution paths.

The mutual exclusive guards pattern has been defined for this purpose. It is
applicable when the rule guards check the current value of a given location that
can assume disjoint values. This guarantees mutual exclusion among the guards
of the conditional rules.

par
if x = 1 then
rule1

endif
if x = 2 then
rule2

endif
if x = 3 then
rule3

endif
endpar

(a) Parallel
conditional rules

x = 1 visT (rule1)

x = 2 visT (rule2)par

x = 3 visT (rule3)

(b) Visual tree

x visT (rule1)

visT (rule2)visT (rule3)

1

2
3

(c) Pattern

Fig. 5. Semantic pattern – mutual exclusive guards pattern

Consider, for example, the ASM rule in Fig. 5a. It fires the parallel execution
of three conditional rules guarded by the current value of the location x. Applying
the visual tree in Table 1 to this rule, we obtain the representation given in
Fig. 5b. However, one can understand that the three conditions on x are mutually

172 P. Arcaini et al.

phaseTherapy r preparation[]

r initiation[]r ending[]

PREPARATION

INITIATION
ENDING

Fig. 6. Hemodialysis case study – mutual exclusive guards pattern

exclusive and, therefore, visualize the rule in a more compact way as in Fig. 5c,
showing that the machine workflow follows only one of the three possible paths3.

Example 3. The application of the mutual exclusive guards pattern to the main
rule of Code 1 is shown in Fig. 6.

State Pattern. Often, it could be desirable to represent the machine behavior
as a flow of activities along a sequence of states of control, i.e., configurations (or
modes) in which the machine can be. Therefore, we enrich our visual notation
with a special node (an ellipse) representing information about the (control)
state in which a given rule can be executed.

Suppose the model is as shown in Fig. 7a, where rulei is a macro call rule
that might call (directly or indirectly) the update rule state := sj. Using only
the visual trees defined in Table 1, the rule would be represented by the schema
shown in Fig. 7b. However, supposing the modeler wants to use the function
state to identify states of control, if rulei changes the state from si to sj, one can
build the graph as shown in Fig. 7c to explicitly represent the state change. In
case rulei can bring to different states (e.g., states sj and sk), the pattern is as
shown in Fig. 7d. Instead, if rule rulei leaves the mode unchanged, the pattern is
as shown in Fig. 7e. Note that rule rulei will be represented as a macro call rule,
if this is not already the case.

Example 4. The application of the state pattern to the hemodialysis machine
case study (see Code 1) is shown in Fig. 8.

State Flow Pattern. The definition of the state pattern can be extended
to graphically represent a flow of activities along a sequence of control states.
Suppose to have the code reported in Fig. 9a and that rulei contains the update
rule state := sj and rulej contains the update rule state := sk. By applying the
state pattern explained above, one would obtain the visual graph in Fig. 9b.
However, the evolution of the system from state si to sj and then to sk can
be made explicit, and the graph can be rewritten as in Fig. 9c. Note that if rule
rulej does not update state, the flow ends with rulej. Instead, if rule rulej updates
3 Note that the pattern can be detected by a simple static analysis of the model

because of the particular guard structure we consider. If we would like to handle any
type of guard, detecting the pattern would require to use a logical solver.

Visual Notation and Patterns for Abstract State Machines 173

if state = si then
rulei[]

endif

(a) Conditional rule

state = si

rulei[]

(b) Visual tree

state = si

rulei[]

state = sj

(c) Pattern with state change

state = si

rulei[]

state = sj state = sk

(d) Pattern with multiple state change

state = si

rulei[]

(e) Pattern without state change

Fig. 7. Semantic pattern – state pattern

phaseTherapy =
PREPARATION

r preparation[] phaseTherapy = INITIATION

phaseTherapy =
INITIATION

r initiation[] phaseTherapy = ENDING

phaseTherapy =
ENDING

r ending[]

par

Fig. 8. Hemodialysis case study – state pattern

state to si, the resulting structure is a graph as shown in Fig. 9d. Note that if
the state flow pattern is applicable, also the mutual exclusive guards pattern is
applicable.

Example 5. The application of the state flow pattern to the hemodialysis
machine case study (see Code 1) is shown in Fig. 10.

6 Tool

We have developed a prototypical tool, called AsmetaVis, that permits to rep-
resent the visual trees and some of the visual patterns we have presented. At
the current stage of development, the tool supports the first usage we devised in
Sect. 3 for our visual notation, i.e., model visualization, that permits to obtain
the graphical representation of a specification written in AsmetaL. The tool is
currently able to visualize the ASM in two modes:

– basic visualization in which the ASM is visualized using only the visual trees
presented in Sect. 4; structural patterns (see Sect. 5.1) are not yet supported;

174 P. Arcaini et al.

par
if state = si then
rulei[]

endif
if state = sj then
rulej[]

endif
endpar

(a) Parallel
conditional
rules

par

state = si rulei[] state = sj

state = sj rulej[] state = sk

(b) State pattern

state = si

rulei[]

state = sj

rulej[]

state = sk

(c) Pattern
as tree

state = si

rulei[]

state = sj

rulej[]

(d) Pattern
as graph

Fig. 9. Semantic pattern – state flow pattern

phaseTherapy
=

PREPARATION
r preparation[]

phaseTherapy
=

INITIATION
r initiation[]

phaseTherapy
=

ENDING
r ending[]

Fig. 10. Hemodialysis case study – state flow pattern

– semantic visualization in which information on the workflow of the model is
visualized using semantic patterns (see Sect. 5.2). Note that the tool automat-
ically identifies the semantic patterns without any hint from the user. It first
tries to apply the state and state flow patterns; if these are not applicable, it
tries to apply the mutual exclusive pattern.

At the beginning, the tool loads the AsmetaL model and shows the graph of
the main rule. A double-click on a macro call rule node causes the visualization
of the corresponding macro rule graph; in this way, we provide the navigation
links described in Sect. 3.

The tool is integrated in the ASMETA framework as eclipse plugin4 and it
uses Zest for implementing the visualization features5.

Example 6. Figure 11 shows the basic and the semantic visualizations of the
model of the hemodialysis machine case study in AsmetaVis (see Code 1). In
both cases, the main window represents the main rule and the other smaller
windows depict the called macro rules.

7 Preliminary Evaluation

We conducted a preliminary experiment to evaluate whether the proposed visual
notation can help in understanding a model. We interviewed 15 students who
attended a course on formal system modeling and verification at the University
of Milan (ten lectures on ASMs), and 11 who attended a course on principles of
4 http://asmeta.sourceforge.net/download/asmetavis.html.
5 https://www.eclipse.org/gef/zest/.

http://asmeta.sourceforge.net/download/asmetavis.html
https://www.eclipse.org/gef/zest/

Visual Notation and Patterns for Abstract State Machines 175

(a) Basic visualization (b) Semantic visualization

Fig. 11. AsmetaVis tool – hemodialysis case study

programming languages at the University of Bergamo (six lectures on ASMs).
We took the (last refined) textual model of the hemodialysis case study [2], that
consists of 163 macro rules and 1880 lines of code. We gave the textual model
to half of the students and its graphical representation to the other half. Then
we asked them a question in order to evaluate their understanding of the model
(UQ: Which are the phases of the hemodialysis treatment and in which order are
they executed?). We measured the time taken for answering the question. After
this experiment, we gave them also the other representation (the textual one for
those having the graphical one, and vice versa) and we asked them to identify the
same elements in both representations. Then we asked them a question regarding
their satisfaction about the notation they used at the beginning (SQ: Are you
satisfied with the notation you used at the beginning?).

Table 2 shows the results of the experiment. By UQ, we observe that the
graphical notation permits to understand the model semantics better in less
time than the textual notation. Regarding the level of satisfaction (SQ), all the
students who used the graphical notation were satisfied and they would not have
preferred using the textual one. Instead, only 7.6% of those using the textual
notation were satisfied and 92.4% of them said that they would have preferred
using the graphical one.

8 Related Work

The need of having visualization techniques for easing the work of the modeler is
felt in the formal methods community [8,18,25]. Different experiences show that
the adoption of such visualization techniques makes the use of formal methods
feasible also for non-experts [18], and also helps in teaching formal methods [17].

Table 2. Experimental results

Group UQ (% correct answers) Avg. time (s) SQ (% affirmative answers)

Graphical 92.3 135 100

Textual 76.9 226 7.6

176 P. Arcaini et al.

Several graphical notations based on a formal semantics have been defined for
modeling system behavior. Examples are Statecharts [12] for modeling reactive
systems, and SDL [11] mainly used in telecommunications.

Regarding the visualization of formal notations, some approaches (as in [7,
13]) focus on model visualization, while others (as in [15,16]) provide a visual
representation of the model execution (or model animation). In [13], graphical
notations are used as an alternative representation of Z specifications, and a
mechanical translation from Z models to diagrams is supported. They share with
us the idea of using visualization in two ways. A similar approach is proposed for
VDM in [7] where the authors propose two kinds of diagrams: Entry-Structure
Diagrams modeling the system state, and Operation-State Diagrams modeling
the behavior. ProB [15] allows automatic animation of B models, and can be used
for error and deadlock checking, and test-case generation. B-Motion Studio [16]
allows to create visualizations for B/Event-B models by using controls, which
graphically represent some aspects of the model, and observers linking controls
to the model state and invoking the animator ProB. ViBBA [9] was a tool for
building an animator for ASMs. Although very powerful, the approach required
a great effort in order to build the animator panel (by adding, from a palette,
labels for controlled variables and input widgets, like buttons, for monitored
variables) and to connect it to the model. We plan in the future to integrate the
animation of behavior in AsmetaVis, but we would like to make the process of
building animators as automatic as possible.

Our state flow pattern is a conservative generalization of the visualization for
control state machines, which are an ASMs class with an intuitive (informally
defined by examples in [5]) graphical representation in FSM-like diagrams. Our
tool automatically provides a correct and precise visualization of those machines.

Other directions of model visualization concern the use of UML notation
as modeling front-end, due also to the wide use of the UML in industry. For
example, UML-B [23] uses the B notation as an action and constraint language
for the UML, and defines the semantics of UML entities via a translation into
B. Similarly, in [19], transforming rules are given from UML models to Object-
Z constructs; therefore, the semantics of UML models is directly expressed in
the formal language Object-Z. The tool OZRose has been developed to auto-
mate the transforming process. Furthermore, in [21], ArchiTRIO is defined as a
formal language which complements UML 2.0 concepts with a logic-based nota-
tion to state system properties, both static and dynamic, including real-time
constraints. In [22], a framework has been proposed for modeling and execut-
ing service-oriented applications. It uses the SCA (Service Component Archi-
tecture) notation to express the components architecture, and the ASMs to
model services behavior, interactions, orchestration, compensation, and context-
awareness. In [14], the method SPACE and its supporting tool Arctis are pre-
sented for the development of reactive services. In this method, services are
composed of collaborative building blocks that encapsulate behavioral patterns
expressed as UML 2.0 collaborations and activities.

Visual Notation and Patterns for Abstract State Machines 177

Combined approaches have also been studied. In [20], for example, an integra-
tion of UML-B and Object-Z has been proposed to define a software development
process where UML-B is used as visual modeling notation at early conceptual
modeling stage, and Object-Z later when requirements are better understood.

9 Conclusions

With this work we have tried to satisfy a request, felt from long time, to have
a way, and a supporting tool, to graphically represent ASM models, from a
structural and from a behavioral point of view. We have proposed a graphical
notation for ASMs, and we have defined visual patterns that capture, in a concise
way, different recurring ASM rule patterns. The representation concerns only the
transition rules and not the signature of the model.

As future work, we plan to define visual trees for all the turbo rules, and iden-
tify new visual patterns. Regarding the tool, we plan to implement the second
usage we devised in Sect. 3 for our visual notation, i.e., the visual editing that
should allow a modeler to graphically specify the ASM using the visual compo-
nents (visual trees and visual patterns) we have proposed. Finally, we plan to
better evaluate the possible advantages of using the proposed visual notation by
means of a controlled experiment.

References

1. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Formal
validation and verification of a medical software critical component. In: Proceedings
of MEMOCODE 2015, pp. 80–89. IEEE, September 2015

2. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33600-8 29

3. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process of a
safety-critical system: from ASM models to Java code. Int. J. Softw. Tools Technol.
Transf. 1–23 (2015)

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41, 155–166
(2011)

5. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

6. Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Chal-
lenges and directions in formalizing the semantics of modeling languages. Comput.
Sci. Inf. Syst. 8(2), 225–253 (2011)

7. Dick, J., Loubersac, J.: Integrating structured and formal methods: a visual app-
roach to VDM. In: Lamsweerde, A., Fugetta, A. (eds.) ESEC 1991. LNCS, vol.
550, pp. 37–59. Springer, Heidelberg (1991). doi:10.1007/3540547428 42

8. Dulac, N., Viguier, T., Leveson, N., Storey, M.-A.: On the use of visualization in
formal requirements specification. In: Proceedings of the 2002 IEEE Joint Interna-
tional Conference on Requirements Engineering, pp. 71–80. IEEE (2002)

http://dx.doi.org/10.1007/978-3-319-33600-8_29
http://dx.doi.org/10.1007/3540547428_42

178 P. Arcaini et al.

9. Gargantini, A., Riccobene, E.: ViBBA: a toolbox for automatic model driven ani-
mation. In: Proceedings of SIMVIS 2005, pp. 101–114. SCS Publishing House
(2005)

10. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for Abstract State Machines. J. UCS 14(12), 1949–1983 (2008)

11. Glässer, U., Gotzhein, R., Prinz, A.: The formal semantics of SDL-2000: status
and perspectives. Comput. Netw. 42(3), 343–358 (2003)

12. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The STATE-
MATE Approach. McGraw-Hill Inc., New York (1998)

13. Kim, S.-K., Carrington, D.: Visualization of formal specifications. In: Proceedings
of APSEC 1999, pp. 102–109. IEEE (1999)

14. Kraemer, F.A., Sltten, V., Herrmann, P.: Tool support for the rapid composition,
analysis and implementation of reactive services. J. Syst. Softw. 82(12), 2068–2080
(2009)

15. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models
with B-Motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS
2009. LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04570-7 17

16. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From Animation
to Data Validation: The ProB Constraint Solver 10 Years On, pp. 427–446. Wiley,
Hoboken (2014)

17. Leuschel, M., Samia, M., Bendisposto, J.: Easy graphical animation and formula
visualisation for teaching B. In: The B Method: From Research to Teaching (2008)

18. Margaria, T., Braun, V.: Formal methods and customized visualization: a fruitful
symbiosis. In: Margaria, T., Steffen, B., Rückert, R., Posegga, J. (eds.) Services
and Visualization Towards User-Friendly Design. LNCS, vol. 1385, pp. 190–207.
Springer, Heidelberg (1998). doi:10.1007/BFb0053506

19. Miao, H., Liu, L., Li, L.: Formalizing UML models with Object-Z. In: George, C.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 523–534. Springer, Heidelberg
(2002). doi:10.1007/3-540-36103-0 53

20. Najafi, M., Haghighi, H.: An integration of UML-B and Object-Z in software devel-
opment process. In: Elleithy, K., Sobh, T. (eds.) Innovations and Advances in Com-
puter, Information, Systems Sciences, and Engineering. Lecture Notes in Electrical
Engineering, vol. 152, pp. 633–648. Springer, New York (2013)

21. Pradella, M., Rossi, M., Mandrioli, D.: ArchiTRIO: a UML-compatible language
for architectural description and its formal semantics. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 381–395. Springer, Heidelberg (2005). doi:10.1007/
11562436 28

22. Riccobene, E., Scandurra, P.: A formal framework for service modeling and proto-
typing. Formal Asp. Comput. 26(6), 1077–1113 (2014)

23. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

24. Spichkova, M.: Design of formal languages and interfaces: “formal” does not mean
“unreadable”. In: Emerging Research and Trends in Interactivity and the Human-
Computer, Interface, pp. 301–314 (2014)

25. Spichkova, M.: Human factors of formal methods. CoRR, abs/1404.7247 (2014)

http://dx.doi.org/10.1007/978-3-642-04570-7_17
http://dx.doi.org/10.1007/978-3-642-04570-7_17
http://dx.doi.org/10.1007/BFb0053506
http://dx.doi.org/10.1007/3-540-36103-0_53
http://dx.doi.org/10.1007/11562436_28
http://dx.doi.org/10.1007/11562436_28

Visualization of Formal Specifications
for Understanding and Debugging

an Industrial DSL

Ulyana Tikhonova(B), Maarten Manders, and Rimco Boudewijns

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{u.tikhonova,m.w.manders}@tue.nl, r.c.boudewijns@alumnus.tue.nl

Abstract. In this work we report on our proof of concept of a generic
approach: visualized formal specification of a Domain Specific Language
(DSL) can be used for debugging, understanding, and impact analysis
of the DSL programs. In our case study we provide a domain-specific
visualization for the Event-B specification of a real-life industrial DSL
and perform a user study among DSL engineers to discover opportunities
for its application. In this paper, we explain the rationale behind our
visualization design, discuss the technical challenges of its realization and
how these challenges were solved using the Model Driven Engineering
(MDE) techniques. Based on the positive feedback of the user study, we
present our vision on how this successful experience can be reused and
the approach can be generalized for other DSLs.

Keywords: Event-B · Visualization · Domain specific language · User
study

1 Introduction and Motivation

Domain-Specific Languages (DSLs) are a central concept of Model Driven Engi-
neering (MDE). A DSL is a programming language specialized to a specific
application domain. It captures domain knowledge and supports the reuse of
such knowledge via common domain notions and notation. In this way, the DSL
raises the abstraction level for solving problems in the domain. DSLs are consid-
ered to be very effective in software development and are being widely adopted
by industry nowadays.

DSL semantics is usually implemented as a translation from the domain
concepts to a programming language for an execution platform. From a seman-
tics point of view, the gap bridged by this translation can be quite wide. The
DSL translation usually includes complex design solutions and algorithms, which
employ both high-level concepts of the DSL and low-level concepts of the exe-
cution platform. In traditional MDE, all details of the DSL translation reside
in model transformations and code generators. So, to understand how a DSL
program works one can either examine the source code of the DSL translation,
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 179–195, 2016.
DOI: 10.1007/978-3-319-50230-4 13

180 U. Tikhonova et al.

or the source code generated from the DSL program. This poses undesirable
challenges when developing, understanding, and debugging DSL programs.

A thorough mathematical-based formal specification of a DSL can make
the DSL translation more accessible, by expressing the translation on a higher
abstraction level than model transformations and code generators [14]. Moreover,
tools supporting this formal specification can enhance understanding, devel-
oping, and debugging of DSL programs. For example, DSL programs can be
explored and debugged by execution (simulation) of their specification using ani-
mation tools. However, practical realization of these benefits requires adaptation
of the formal specification and supporting tools to the needs and background of
engineers who develop or use the DSL.

In this work, we provide a domain-specific visualization for the formal specifi-
cation of a real-life industrial DSL. This visualization mimics the original graph-
ical notation of the DSL and runs on top of the animation of the DSL specifica-
tion. As a result, the DSL specification can be used by DSL engineers who are
not familiar with the formal notation of the specification. We implemented this
visualization by means of model transformations from the DSL to the visualiza-
tion platform. Thus, a visualization is generated automatically for each concrete
DSL program. Furthermore, we investigated the needs and perception of DSL
engineers by means of a user study performed with this visualization. The user
study indicated that there is a need for such visualization of DSL models; and
that it might be challenging to keep the DSL specification consistent with the
actual implementation of the DSL, which evolves over time. This challenge is
addressed in a framework that we propose as our vision on how successful spec-
ification solutions and their visualizations can be reused for other DSLs in the
form of specification and visualization templates.

2 Related Work

There exist various approaches for visualizing a formal specification and its exe-
cution (animation). It can be a visualization of a state space, or wrapping a
formalism into the (standard) graphical notation of UML (such as [10]). In our
work we focus on a domain-specific visualization – on a graphical representation
tailored for a specific (engineering or application) domain. A number of case stud-
ies have proven that a domain-specific visualization of a formal specification can
be very useful for creating, validating, and applying the specification by humans,
especially by domain experts. For example, in [4] Hansen et al. state that graph-
ical representation of their Event-B specification of a landing gear system was
crucial for its development and validation. In [7] Mathijssen and Pretorius use
a visualization of their mCRL2 specification of an automated parking garage to
discover and fix a number of bugs in the specification. They conclude that the
visualized simulation is more intuitively clear and easy to understand, and thus,
helps to identify issues that may not have been noted otherwise.

In [12] Stappers specifies the behavior of an industrial wafer handler using
mCRL2, obtains a trace to a deadlock state using the mCRL2 toolset, and visu-
alizes this trace using a CAD (Computer Aided Design) model of the wafer

Visualization of Formal Specifications for Understanding and Debugging 181

handler in a kinematic 3D visualizer. In other words, the visualization animates
the 3D virtual model of the physical system by moving its parts along the prede-
fined motion paths. As a result, engineers of the wafer handler could identify the
problem that leads to the deadlock state and find a proper solution. Stappers
presents his approach from a general point of view, describing the components
that are required to realize such a visualization and their architecture. For our
work we draw inspiration from his motivation on how system development can
benefit from formal specifications and their visualization, and from his overview
of how various technological fields connect and interact with each other in order
to implement these benefits.

While most of domain-specific visualizations are implemented in an ad-hoc
way (for example, a traffic light system presented in [8] is visualized in a proto-
type simulator developed in Java specifically for this case study); recent devel-
opments facilitate the creation of visualizations using dedicated graphical edi-
tors integrated with a formalism toolset. For instance, in BMotion Studio [5]
(integrated with the ProB animator1) one can create an interactive domain-
specific visualization for a (single) B or Event-B specification. BMotion Studio
has been successfully applied to a number of case studies (see for example [4,6]).
In our work we lift this successful tool support to the level of DSLs, automating
the creation of BMotion Studio visualizations for multiple (or for a family of)
Event-B specifications.

To date, there is a lack of tool support for understanding and debugging
an executable DSL on the level of its domain rather than on the level of its
target execution platform (such as generated C or Java code). In [3] Chis et al.
recognize this problem and propose the Moldable Debugger framework for devel-
oping domain-specific debuggers. The Moldable Debugger allows for configuring
a domain-specific debugging view as a collection of graphical widgets, such as
stack, code editor, and object inspector. In order to visualize the execution of
a DSL program in such widgets, a DSL developer needs to specify so-called
debugging predicates (capturing an execution state) and debugging operations
(controlling the execution of a program). To realize this approach, the Moldable
Debugger builds on top of and extends an existing IDE (integrated development
environment). In our work we build on top of formal methods, making use of the
DSL formal specification. Moreover, we discuss how to design the visualization
of a DSL program (i.e. domain-specific graphical widgets) based on an explicit
definition of the DSL dynamic semantics.

In [2] Bandener et al. visualize behavior of a graphical language in the form of
the animated concrete syntax using the Dynamic Meta Modeling (DMM) tech-
nique. In DMM, a so-called runtime metamodel enhances the language meta-
model with concepts that express an execution state. The language behavior
(its dynamic semantics) is specified as a set of graph transformation rules for
deriving instances of the runtime metamodel. When applied to a program (i.e.
instance of the language metamodel), these rules iteratively generate a state
space representing the behavior of the given program. Each of these states is

1 http://www3.hhu.de/stups/prob/.

http://www3.hhu.de/stups/prob/

182 U. Tikhonova et al.

an instance of the runtime metamodel. Bandener et al. enhance the language
concrete syntax with the graphical representation of the runtime metamodel. As
a result, a graphical representation (i.e. a diagram) can be generated for each
state of the state space. Their front-end tool allows for choosing a path in such
a visualized state space. In our work we also strive for the effect of the animated
concrete syntax of the DSL.

3 Visualization of DSL Specifications

In our previous work [13], we employed the Event-B formalism for specifying
the dynamic semantics of an industrial DSL. The main motivation for choosing
Event-B rather than a formalism designed for specifying dynamic semantics of
programming languages (such as Action Semantics or Structural Operational
Semantics), was that the Rodin platform offers various supporting tools for
Event-B: editors, generator of proof obligations, automatic provers, animators,
etc. To be able to apply these tools to a DSL specification, we use Event-B
as a back-end formalism for defining the DSL dynamic semantics and develop
model-to-model transformations from the DSL to Event-B.

In this work, we apply one of the Rodin tools to Event-B specifications of
the DSL. Namely, we employ BMotion Studio for visualizing animation (i.e.
execution of specifications) of various DSL programs. In this way we help
DSL engineers to understand how their programs are executed, i.e. we real-
ize specification-based domain-specific debugging. For this, we automate the
construction of domain specific visualizations of Event-B specifications using
model-to-model transformations from the DSL to BMotion Studio. In what fol-
lows, we give an overview of our case study and of our approach to specify the
dynamic semantics of the DSL in Event-B (Sect. 3.1), and discuss how we design
and implement a visualization of DSL specifications (Sects. 3.2 and 3.3).

3.1 Specification of the LACE DSL

LACE (Logical Action Component Environment) is a mature industrial DSL,
developed by and used within ASML2, a world leading company that produces
wafer steppers. LACE is used for (automatic) generation of software that con-
trols ASML lithography machines and orchestrates their numerous subsystems
by invoking drivers in a synchronized and effective way. LACE has a graphical
notation based on UML activity diagrams. An example of a LACE program
is depicted in Fig. 1(a). Here, each column represents a subsystem driver, the
rectangles in the columns represent actions of these subsystems, and arrows rep-
resent the control (thick arrows) and data (thin arrows) flow. A LACE diagram
is translated into C-code, which is executed on a target machine (wafer stepper).
Such a translation bridges the wide semantic gap between high-level concepts of
the DSL and low-level concepts of the execution platform. Moreover, it includes

2 www.asml.com.

www.asml.com

Visualization of Formal Specifications for Understanding and Debugging 183

rather complicated design solutions and algorithms. We elicited these design
solutions and algorithms by specifying them using the Event-B formalism [1].
The resulting formal specification reveals the complexity of the DSL translation
and, thus, facilitates its management.

In Event-B a system is specified as a set of variables, that define the state
space, and a set of events, that define transitions between the states. While in
general such a formalism allows for specifying a system on any level of abstraction
(from requirements to an implementation), in practice, applying Event-B to
the DSL semantics results in a big specification, which is hard to understand,
maintain, and verify. There exist a number of techniques that tackle this problem
by building on top of Event-B and allowing for (de)composition of an Event-
B specification into/of separate Event-B specifications. We apply shared event
(de)composition [9] to modularize the specification of LACE.

In the MDE context a DSL resides in two abstraction levels: the DSL meta-
model and DSL models (programs). The DSL is designed and implemented on
the metamodel level, and it is used via instantiating DSL programs on the model
level. While a generic specification of the DSL on the metamodel level can be
created and analyzed once, Event-B specifications of many DSL programs need
to be constructed for and simulated by DSL users (engineers, who program in
LACE). We cannot expect DSL users to create Event-B specifications of their
DSL programs and to use Event-B tools themselves. Therefore, we generate such
Event-B specifications automatically by instantiating the LACE specification for
each concrete LACE program.

Thus, on the meta-model level, we define LACE as a set of separate Event-
B meta-specifications of different aspects of the semantics. For example, the
buffered execution on a subsystem driver is represented and specified as a queue;
the mutual dependency of driver operations (such as AdjustFrame and GrabA-
Frame in Fig. 1(a)) is represented and specified as a partial order. On the model
level, our DSL-to-Event-B model transformation instantiates and composes such
meta-specifications together using an input DSL program as a configuration
instruction. For example, for the LACE program depicted in Fig. 1(a) we gen-
erate four instances of the queue meta-specification (corresponding to the four
subsystems Laser, Sensor, Handler, and Projector, as they appear in Fig. 1(a))
and one instance of the partial order meta-specification; and compose these five
Event-B specifications together. As a result, an Event-B specification is gener-
ated automatically for each concrete DSL program, and the DSL semantics is
specified in a clear and modular way.

3.2 Visualization of the LACE DSL

In order to understand how LACE programs are executed, explore the LACE
semantics, and even debug the programs, we simulate LACE programs using
their Event-B specifications. The simulation of a LACE program is achieved
through the execution of the Event-B specification (generated for this program)
in an animation tool, for example in the ProB animator. However, DSL engineers

184 U. Tikhonova et al.

Fig. 1. An example of the LACE DSL program and its visualized animation in ProB
(Color figure online)

Visualization of Formal Specifications for Understanding and Debugging 185

are hardly familiar with the formal notation of Event-B employed by the ani-
mation tools. Moreover, they are hardly familiar with the semantics of the DSL
as it is specified in Event-B, and thus, cannot connect Event-B specifications
generated from their programs with their original programs.

For example, Fig. 1(c) shows a fragment of the screen shot of how the Event-B
specification, which is generated from the LACE program depicted in Fig. 1(a),
is executed in the ProB animator. This Event-B specification is composed of the
four instances of the same meta-specification representing a subsystem driver (for
Laser, Sensor, Handler, and Projector) and of one instance of the partial order
meta-specification. The events of these instantiated specifications and, moreover,
their combinations can be seen on the left side of Fig. 1(c) (tab “Events”). The
variables of the instantiated specifications and their values can be seen on the
right side of Fig. 1(c) (tab “State”). It is hard to trace these events and variables
back to the original LACE program without knowing the meta-specifications
and how they are instantiated and composed.

Consequently, while such a simulation might be useful for a designer who
creates Event-B specifications of the DSL; one cannot expect engineers, who
program using the DSL notation, to be able to use such a simulation. Therefore,
we create a domain-specific visualization for Event-B specifications of LACE. For
this we employ BMotion Studio, that provides a graphical editor for creating such
visualizations and uses Event-B notation for specifying various details, such as
predicate and value expressions.3 As BMotion Studio is integrated into ProB, a
visualization runs together with (or on top of) the ProB animator.

A visualization provides a graphical user interface (GUI) for animating an
Event-B specification. For creating such a GUI, BMotion Studio offers a palette
of various graphical elements (shapes, connectors, text fields, buttons, etc.) and
two concepts responsible for the animation: controls and observers. Controls are
used to execute events of the specification. Observers are used to visualize the
current state (i.e. current values of the variables). Below we discuss how such a
GUI can be designed for a DSL.

The main goal of our DSL visualization is to help a DSL user to grasp how
a DSL program is executed. For this, we start from what a user already knows:
the DSL concrete syntax. We add to it what a user aims to discover: the DSL
dynamic semantics. In other words, we base our visualization on the graphical
syntax of LACE; and we project the concepts of the LACE dynamic semantics
on it. In general, such concepts represent an execution state and operations that
can change this execution state. However, it is not obvious how such concepts
can be visualized on top of the graphical syntax of LACE.

For textual programming languages, such as C or Java, an established way
to visualize an execution state on the top of the program text is to highlight the
code line that is being executed. Moreover, additional views, such as call stack,
memory, variables, etc. allow for inspecting other aspects of the execution state.
The execution of a program is done step by step using various play-buttons.

3 In this work we use the first version of BMotion Studio. Currently the new version,
BMotionWeb, is available.

186 U. Tikhonova et al.

This way of visualizing a program execution directly links to the concepts that
are usually used in descriptions of the dynamic semantics of such languages:
execution of a program line-by-line, function calls, memory management.

An example of a graphical language is considered in [2]. In this work the
execution of a UML activity diagram is visualized by projecting its dynamic
semantics on the diagram. As the dynamic semantics of UML activity diagrams is
described using the concept of token (adopted from Petri nets), the visualization
consists of tokens (filled black circles) moving between activity nodes.

The dynamic semantics of LACE is defined as a set of meta-specifications (as
described in Sect. 3.1).4 Therefore, we visualize concepts defined in these meta-
specifications and project them on the LACE concrete syntax. This allows for
breaking down the visualization design and striving towards a modular solution,
by focusing on the visualization of meta-specifications rather than on the visu-
alization of the dynamic semantics as a whole. Below we demonstrate this app-
roach on the examples of two meta-specifications (briefly introduced in Sect. 3.1):
queue and partial order.

The queue meta-specification represents (models) the buffered execution of
subsystem actions on a subsystem driver. An action is enqueued as a result
of executing the LACE program, and dequeued when this action is actually
executed by the subsystem. We visualize a queue for each subsystem partici-
pating in a LACE program as a column showing all elements of the queue (see
(1) in Fig. 1(b)). We position the queues above the corresponding subsystems
and let them ‘grow’ downwards: a new element is added to the bottom of the
column, and all elements are shifted up when an old element is removed. In
the screen shot in Fig. 1(b), the queues of Laser and Projector are empty,
the queue of Sensor has one element, and the queue of Handler has two
elements.

The partial order meta-specification represents (models) a mutual depen-
dency between subsystem actions (imposed by the control or data flow of a
LACE program). Such a dependency influences the throughput of a program
and in the combination with the slow execution on a subsystem can cause a
bottleneck. Therefore, we visualize the partial order in the interaction with
the subsystem queues (where dequeuing can model such a slow execution).
For this visualization we use color highlighting ((2) in Fig. 1(b)): red rectan-
gles highlight subsystem actions that are blocked from the execution, and
green rectangles highlight subsystem actions that are being executed (i.e. are
situated at the front/top of the corresponding queues).

To be able to execute the underlying Event-B specification of a LACE pro-
gram we use buttons integrated into its visualization ((3) in Fig. 1(b)). Such
buttons get enabled and disabled based on the current state of the execution,
letting a DSL user “discover” the DSL semantics. Each button is attached to

4 Note, that although the graphical notation of LACE is based on UML activity dia-
grams, the dynamic semantics of LACE does not follow the semantics of UML activ-
ity diagrams.

Visualization of Formal Specifications for Understanding and Debugging 187

a graphical element of the LACE program in such a way that the user can
intuitively associate the enabled or disabled behavior with the corresponding
concept of the LACE semantics. For example, each subsystem in Fig. 1(b) has
two corresponding buttons attached to its graphical representation (column):
“Request SS action” (for enqueuing an action) and “Execute next SS action”
(for dequeuing an action).

3.3 Generating LACE Visualizations

The resulting visualization mimics an (arbitrary) LACE program, and thus,
needs to be constructed for each concrete LACE program. To make such a visu-
alization design feasible, we automate construction of LACE visualizations using
a model-to-model transformation from LACE to BMotion Studio. The transfor-
mation derives graphical elements and their layout from a DSL program and
generates the corresponding observers (buttons) and controls (shapes, labels,
and their attributes) of a visualization. Moreover, the LACE-to-BMS transfor-
mation connects elements of the visualization with elements of the underlying
Event-B specification.

A BMotion Studio visualization runs on top of an Event-B specification. This
means that controls and observers of the visualization query variables and events
of the underlying Event-B specification. As the visualization design is determined
(shaped) by the concrete syntax rather than by the dynamic semantics of the
DSL, querying data from the Event-B specification includes rather non-trivial
predicate and value expressions.

For example, to realize highlighting of subsystem actions in green and red
(as depicted in Fig. 1(b)), we need to specify two observers for each subsystem
action of a LACE diagram. Figure 2 shows the BMotion Studio wizard configur-
ing such observers: an observer sets the background color to red or green when
the corresponding predicate is true. The predicates check the mutual depen-
dency between subsystem actions and the execution state of the corresponding
subsystem queue. Obviously, writing such predicates manually for all subsystem
actions of the LACE program is quite tedious.

Fig. 2. Screen shot of the BMotion Studio wizard for configuring an observer

Buttons (controls) do not map one-to-one on the events either. As described
above, to make semantics of buttons intuitively clear to DSL users, we attach

188 U. Tikhonova et al.

them to the graphical elements of a LACE diagram. For example, in Fig. 1(b)
there are eight buttons attached to the four subsystem columns, and thus, repre-
senting behavior of the subsystems. However, due to another aspect of the LACE
semantics, which we do not discuss here, such a behavior of a subsystem can be
executed in multiple events and in the combination with the same behavior of
another subsystem.5 This means, that a subsystem button should be able to
trigger different events depending on the current execution state, and moreover,
some of these events should be triggered by a combination of multiple subsystem
buttons. In other words, we need to realize a many-to-many relation between
buttons and events.

The LACE-to-BMS transformation overcomes these technical challenges by
specifying the mapping between the concrete syntax (shaping the visualization)
and the dynamic semantics (driving the visualization) on the level of the LACE
metamodel. Thus, all predicate and value expressions and many-to-many rela-
tions between elements of the visualization and elements of the Event-B specifi-
cation are generated automatically for each concrete LACE program.

The scheme of the LACE-to-BMS transformation is depicted in Fig. 3. Within
the LACE development environment, a graphical LACE program is parsed into
the corresponding LACE essential model (i.e. abstract syntax tree, AST). This
model is used as an input for the LACE-to-Event-B transformation described
in Sect. 3.1 (the right part of Fig. 3). Besides a LACE model, the LACE-to-
Event-B transformation takes as an input a set of LACE meta-specifications.
As an output, this transformation generates an Event-B specification of the
LACE program (bottom right corner of Fig. 3) and the corresponding mapping
information. The latter is in fact the log of a transformation execution and
captures the links between the elements of the resulting Event-B specification
and of the original LACE model. The mapping information is necessary for
connecting LACE visualizations with the underlying Event-B specifications.

A LACE visualization is generated from the original graphical LACE pro-
gram (the left part of Fig. 3), as the essential model abstracts from (thus, leaves
out) the notation details of the LACE diagram. The LACE-to-BMS transforma-
tion uses an intermediate visualization model, which splits the transformation
into two separate steps. The first step captures graphical design of the visualiza-
tion: graphical elements and their layout. The second step takes care of the map-
ping between Event-B events and variables and BMotion Studio observers and
controls. For example, in the second step of the transformation concrete elements
of the Event-B specification are substituted into predicates of the observers and
controls. In this way we modularize the transformation and decouple the DSL
from the visualization platform, allowing for potential reuse of our approach for
employing other visualization platforms.

5 One can observe that in Fig. 1(c) “request ssa ss1” appears four times in different
combinations with other subsystems (“ss2” and “ss3”).

Visualization of Formal Specifications for Understanding and Debugging 189

Fig. 3. Transformations from LACE to Event-B and BMotion Studio

4 Discovering Opportunities: User Study

To validate the visualization design and to discover use cases for its applica-
tion, we performed a user study among LACE end-users (ASML engineers who
develop software using LACE). The user study consisted of interviews (with an
engineer) and of brainstorming sessions (with few engineers at once). During
such an interview or a brainstorming session, we would demonstrate our LACE
visualization by animating five existing LACE programs and then collect the
feedback using the questionnaire form and personal communication. Ten ASML
engineers participated in the user study,6 with different expertise in LACE and
from various application and/or system subdomains.

During the user study we were aiming to achieve the following goals:

– to validate our rationale for designing a DSL visualization;
– to assess how well the level of details is balanced;
– to discover opportunities for applying the visualization in the development

process.

Using the GQM (Goal, Question, Metric) method [11], we refine these goals
to a more operational level as a set of questions which we need to answer in order
to conclude on the results of the user study. Such questions allow for interpreting
the data collected during the study. In Table 1 these study questions are shown
in the second column next to the goals that they refine. The questions that were
asked to the LACE end-users correspond to the Metric category of the GQM
method. We show (examples of) these end-user questions in the third column
6 Note that as LACE is a programming language specialized to a specific domain, the

community of LACE users is not big. We estimate that the response rate for our
user study was 50%.

190 U. Tikhonova et al.

T
a
b
le

1
.
T

h
e

st
ru

ct
u
re

a
n
d

th
e

re
su

lt
s

o
f
th

e
u
se

r
st

u
d
y

G
o
a
ls

Q
u
e
st

io
n
s

(s
u
b
g
o
a
ls

)
M

e
tr

ic
s

(q
u
e
st

io
n
s

a
sk

e
d

to
th

e
e
n
d
-u

se
rs

)
O

u
tc

o
m

e
/
fe

e
d
b
a
ck

V
a
li
d
a
te

th
e

v
is

u
a
li
z
a
ti

o
n

d
e
si

g
n

D
e
si

g
n

is
in

tu
it

iv
e

a
n
d

u
n
d
e
rs

ta
n
d
-

a
b
le

D
o

y
o
u

u
n
d
e
rs

ta
n
d

th
e

v
is

u
a
li
z
a
ti

o
n

o
f

th
e

L
A

C
E

m
o
d
e
l?

Y
e
s

(3
.3

o
u
t

o
f
4
)

O
b
se

rv
e
rs

re
p
re

se
n
t

th
e

e
x
e
c
u
ti

o
n

st
a
te

Is
th

e
v
is

u
a
li
z
a
ti

o
n

in
tu

it
iv

e
to

fi
n
d

th
e

d
e
si

re
d

in
fo

rm
a
ti

o
n
?

Y
e
s

(2
.9

o
u
t

o
f
4
)

S
e
m

a
n
ti

c
s

o
f

c
o
n
tr

o
ls

(b
u
tt

o
n
s)

is

c
le

a
r

Is
th

e
v
is

u
a
li
z
a
ti

o
n

in
tu

it
iv

e
to

e
x
e
c
u
te

th
e

d
e
si

re
d

a
c
ti

o
n
s?

Y
e
s

(2
.9

o
u
t

o
f
4
)

C
h
o
ic

e
o
f
th

e
se

m
a
n
ti

c
s

c
o
n
c
e
p
ts

W
h
a
t

p
a
rt

o
f
L
A

C
E

sh
o
u
ld

b
e

v
is

u
a
li
z
e
d
?

tw
o

m
o
re

c
o
n
c
e
p
ts

w
e
re

p
ro

p
o
se

d

A
ss

e
ss

th
e

le
v
e
l

o
f

th
e

d
e
ta

il
s

O
v
e
rv

ie
w

o
f
a
n

a
n
im

a
te

d
d
ia

g
ra

m
A

re
y
o
u

h
a
p
p
y

w
it

h
th

e
le

v
e
l
o
f
d
e
ta

il
s?

R
a
th

e
r

n
o

th
a
n

y
e
s

(1
.8

o
u
t

o
f
4
)

In
si

g
h
ts

p
ro

v
id

e
d

b
y

th
e

v
is

u
a
li
z
a
-

ti
o
n

Is
h
ig

h
li
g
h
ti

n
g

o
f

b
lo

ck
e
d

a
n
d

q
u
e
u
e
d

a
c
ti

o
n
s

h
e
lp

fu
l?

Y
e
s

(3
o
u
t

o
f
4
)

D
o

q
u
e
u
e
s

h
e
lp

to
se

e
w

h
ic

h
a
c
ti

o
n
s

n
e
e
d

to
b
e

e
x
e
c
u
te

d
?

Y
e
s

(3
o
u
t

o
f
4
)

In
si

g
h
ts

m
is

si
n
g

in
th

e
v
is

u
a
li
z
a
-

ti
o
n

W
o
u
ld

y
o
u

fi
n
d

a
lo

g
o
f
a
ll

p
ro

c
e
ss

e
d

S
S

a
c
ti

o
n
s

h
e
lp

fu
l?

R
a
th

e
r

y
e
s

th
a
n

n
o

(2
.6

o
u
t

o
f
4
)

W
o
u
ld

y
o
u

fi
n
d

th
e

v
is

u
a
li
z
a
ti

o
n

o
f
th

e
d
a
ta

v
a
l-

u
e
s

h
e
lp

fu
l?

In
d
iff

e
re

n
t

(2
.1

o
u
t

o
f
4
)

D
is

c
o
v
e
r

o
p
p
o
rt

u
n
it

ie
s

fo
r

a
p
p
ly

in
g

th
e

v
is

u
a
li
z
a
ti

o
n

T
h
e
re

is
a

la
ck

o
f

su
p
p
o
rt

fo
r

u
n
d
e
rs

ta
n
d
in

g
th

e
L
A

C
E

se
m

a
n
-

ti
c
s

D
id

y
o
u

h
a
v
e

p
ro

b
le

m
s

le
a
rn

in
g

L
A

C
E

?
F
o
u
r

p
e
o
p
le

–
y
e
s

D
o

y
o
u

st
il
l
h
a
v
e

p
ro

b
le

m
s

u
n
d
e
rs

ta
n
d
in

g
so

m
e

L
A

C
E

m
o
d
e
ls

?

M
o
st

ly
n
o
t,

o
n
e

p
e
rs

o
n

–
y
e
s

T
h
e

v
is

u
a
li
z
a
ti

o
n

c
a
n

c
lo

se
th

is

g
a
p

W
o
u
ld

th
is

v
is

u
a
li
z
a
ti

o
n

h
e
lp

u
n
d
e
rs

ta
n
d
in

g

th
o
se

m
o
d
e
ls

?

Y
e
s

(2
.9

o
u
t

o
f
4
)

H
o
w

m
u
ch

ti
m

e
w

o
u
ld

th
is

k
in

d
o
f
v
is

u
a
li
z
a
ti

o
n

sa
v
e

y
o
u
?

1
5
–
2
0
%

W
h
a
t

a
re

p
o
te

n
ti

a
l

u
se

c
a
se

sc
e
-

n
a
ri

o
s?

H
o
w

w
o
u
ld

y
o
u

a
p
p
ly

th
e

v
is

u
a
li
z
a
ti

o
n

in
p
ra

c
-

ti
c
e
?

P
ro

to
ty

p
in

g
a
n
d

v
a
li
d
a
ti

o
n
,

im
p
a
c
t

a
n
a
ly

si
s,

re
p
la

y
o
f

e
x
e
c
u
ti

o
n

lo
g
s

a
n
d

p
re

d
e
fi
n
e
d

se
q
u
e
n
c
e
s

Visualization of Formal Specifications for Understanding and Debugging 191

of Table 1. The corresponding feedback of the users is presented in the rightmost
column. Most of the questions in our questionnaire form were closed questions
with a grade in the interval [0..4] to indicate the certainty and/or relevance of
an answer. In Table 1 we indicate the mean value of the answers, given by the
respondents to the corresponding question.

Based on the results of the user study presented in Table 1 and on other
feedback of the LACE users, we draw the following conclusions.

– The visualization design is in general acceptable, but can be improved using
the feedback provided by the LACE users.

– The approach would benefit from the possibility to configure the level of details
of the LACE visualization. For example, a LACE user might want to specify
such a configuration for the LACE-to-BMS transformation and in this way
adjust the level of details of the generated visualization.

– The LACE users believe that they can use the visualization for understand-
ing and testing behavior of their LACE programs; for replaying real-life sys-
tem executions; and for checking changes after LACE gets updated (impact
analysis).

Moreover, according to the LACE end-users, a crucial requirement of the pro-
posed approach is that the DSL formal specification should be consistent with
the actual implementation of the DSL. Without this consistency DSL end-users
cannot benefit from the visualized animation of DSL specifications. In Sect. 5 we
propose two ideas, that, among other things, allow for realizing this requirement.

5 Future Work: Applying and Reusing LACE
Visualizations

Following the positive and constructive feedback of the user study, in this section
we elaborate on the potential possibilities for (1) generalizing our approach and
making it reusable for other DSLs and for (2) applying our visualization to imple-
ment domain-specific debugging. In Sect. 5.1 we propose an idea of reusable spec-
ification and visualization templates. In Sect. 5.2 we describe the trace framework
that allows for bridging technologically diverse platforms (such as the animation
of an Event-B specification and the execution on an ASML machine) through
execution traces.

5.1 Specification and Visualization Templates

As described in Sect. 3.1, the dynamic semantics of LACE is defined as a set of
meta-specifications and as a model transformation that instantiates and com-
poses these meta-specifications for each concrete LACE program. Note that the
examples of such meta-specifications, a queue and a partial order, are not LACE-
specific and can be used for defining other DSLs. However, the LACE-to-Event-B
model transformation is LACE-specific. To be able to reuse our toolset for defin-
ing the dynamic semantics of other DSLs, we need to extract the LACE-specific

192 U. Tikhonova et al.

information from the LACE-to-Event-B model transformation. The extracted
LACE-specific information can be lifted until we find a suitable abstraction for
configuring a generic DSL-to-Event-B transformation. The resulting abstraction
will allow for defining the dynamic semantics of a DSL using existing meta-
specifications, identified as reusable and stored in a library. In analogy with
generic programming, we call such reusable meta-specifications specification tem-
plates. Defining the dynamic semantics of a DSL as a composition of such spec-
ification templates can facilitate construction of the DSL specification, which is
coherent with the actual implementation of the DSL.

In the same way, the BMotion Studio visualizations of the meta-specifications
that have been identified as specification templates, can be extracted, parame-
terized, and collected as their visualization templates. To be able to instantiate
and compose these visualization templates, we need to find a suitable abstraction
for configuring a generic DSL-to-BMS transformation.

An overview of the proposed generic framework is depicted in Fig. 4. This
architecture generalizes the transformation scheme depicted in Fig. 3. Here the
DSL visualization replaces the intermediate visualization model and specifies how visu-

alization templates can be positioned on the top of the DSL concrete syntax in order
to represent the DSL semantics definition. The feasibility of such a framework and
its applicability to various DSLs require further research.

5.2 Trace Framework

In order to offer DSL developers the means to quickly implement customizable
DSL tooling for inspecting execution traces of DSL programs, we propose a trace
framework. The trace framework uses two kinds of execution traces: action traces
– sequences of actions executed during the execution of a DSL program, – and
state traces – sequences of DSL program execution states. The framework defines

Fig. 4. A generic approach for reusing Event-B specifications and BMotion Studio
visualizations

Visualization of Formal Specifications for Understanding and Debugging 193

trace operations to (1) capture traces from execution logs (usually through pars-
ing of the execution logs) and to synthesize or edit traces; (2) to visualize, replay
and inspect traces; and (3) to compare traces. In order to implement DSL specific
tooling, trace operations can be customized and composed into trace applications.
To validate this approach, we implemented a number of such trace applications.
Two examples are briefly described below.

The visualization of LACE programs as described in Sect. 3.2 offers users the
possibility to manually play an execution scenario for a specific LACE program.
As the user study showed, one of the requested applications of the visualization
was the possibility to automatically replay LACE programs as they were exe-
cuted on a machine. Using our trace framework, we created a trace application
that reads an execution log of an actual LACE program and replays this log in
ProB using the Event-B specification of this LACE program. For this, the trace
application captures action traces from the LACE execution logs by parsing and
reordering the data contained in the log files; and then uses these action traces
to drive the ProB animator for the Event-B specification of the corresponding
LACE program.

Another trace application that was created using our trace framework allows
for comparing execution traces. This trace application can be used for several
purposes. (1) To find a specific, for instance erroneous, behavior during the exe-
cution of a DSL program by comparing an execution trace with a trace containing
the expected behavior. (2) Performing impact evaluation on two versions of the
same DSL program by comparing an execution trace from a DSL program with
an execution trace from a changed version of this program. (3) Finding bottle-
necks in the execution of a DSL program by comparing different executions of
a single DSL program. (4) To ensure that the Event-B specification of a DSL
program is coherent with the generated C code by comparing execution traces
obtained from ProB and from a machine.

6 Conclusion

In this work, we provide the domain-specific visualization of DSL formal specifi-
cations to support understanding and debugging of DSL programs via animation
of their specifications. In general, a design of such a visualization is not obvi-
ous and is based on a fine balance between representing the underlying seman-
tics specification in detail and being clear and intuitively understandable to
DSL users. Our visualization animates the DSL diagrams by projecting on them
the high-level semantics concepts, such as a subsystem buffer and an execution
dependency of subsystem actions, – in contrast with the low-level semantics con-
cepts commonly used in debugging, such as call stack, variables, and line-by-line
execution. The resulting visualization does not map one-to-one on the underlying
Event-B specification, which causes technical challenges in its implementation.
We overcome these challenges by developing a model transformation that auto-
matically generates a visualization (file) for each concrete DSL program.

194 U. Tikhonova et al.

Our user study confirms that a DSL-based development can benefit from
having a formal specification of the DSL with an appropriate domain specializa-
tion of supporting tools. Following the feedback provided by the DSL users, we
demonstrate that debugging of an actual DSL program (i.e. generated C code
running on the ASML machine) is possible by replaying the execution log in
ProB. As a future work, we describe our vision on how our approach can be
generalized and reused for other DSLs using libraries of specification templates
and the corresponding visualization templates.

Acknowledgements. We would like to thank Lukas Ladenberger (Heinrich-Heine
University, Düsseldorf, Germany) for his help with using BMotion Studio. We are very
grateful to all ASML engineers who participated in our user study. We also would
like to thank Tom Verhoeff and Tim Willemse (both from Eindhoven University of
Technology, The Netherlands) for their advice and feedback on this work and this
paper.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Bandener, N., Soltenborn, C., Engels, G.: Extending DMM behavior specifications
for visual execution and debugging. In: Malloy, B., Staab, S., Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 357–376. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19440-5 24

3. Chiş, A., Gı̂rba, T., Nierstrasz, O.: The moldable debugger: a framework for devel-
oping domain-specific debuggers. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 102–121. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-11245-9 6

4. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-07512-9 5

5. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models
with B-motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS
2009. LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04570-7 17

6. Ladenberger, L., Dobrikov, I., Leuschel, M.: An approach for creating domain
specific visualisations of CSP models. In: Canal, C., Idani, A. (eds.) SEFM
2014. LNCS, vol. 8938, pp. 20–35. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-15201-1 2

7. Mathijssen, A., Pretorius, A.J.: Verified design of an automated parking garage.
In: Brim, L., Haverkort, B., Leucker, M., Pol, J. (eds.) FMICS 2006. LNCS, vol.
4346, pp. 165–180. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70952-7 11

8. Mauw, S., Wiersma, W.T., Willemse, T.A.C.: Language-driven system design. Int.
J. Softw. Eng. Knowl. Eng. 14(6), 625–663 (2004)

9. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:
Aichernig, B.K., Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25271-6 7

http://dx.doi.org/10.1007/978-3-642-19440-5_24
http://dx.doi.org/10.1007/978-3-642-19440-5_24
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://dx.doi.org/10.1007/978-3-319-07512-9_5
http://dx.doi.org/10.1007/978-3-642-04570-7_17
http://dx.doi.org/10.1007/978-3-642-04570-7_17
http://dx.doi.org/10.1007/978-3-319-15201-1_2
http://dx.doi.org/10.1007/978-3-319-15201-1_2
http://dx.doi.org/10.1007/978-3-540-70952-7_11
http://dx.doi.org/10.1007/978-3-642-25271-6_7

Visualization of Formal Specifications for Understanding and Debugging 195

10. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

11. Solingen, R.V., Berghout, E.: Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development. McGraw-Hill, Cambridge
(1999)

12. Stappers, F.P.M.: Bridging formal models: an engineering perspective. Ph.d. dis-
sertation. Chapter 6: Disseminating Verification Results, pp. 109–125. Eindhoven
University of Technology (2012)

13. Tikhonova, U., Manders, M., van den Brand, M., Andova, S., Verhoeff, T.: Apply-
ing model transformation and Event-B for specifying an industrial DSL. In: MoD-
eVVa@MoDELS, pp. 41–50 (2013)

14. Watt, D.A., Muffy, T.: Programming Language Syntax and Semantics. Prentice
Hall International Series in Computer Science. Prentice-Hall, Englewood Cliffs
(1991)

Spatio-Temporal Models for Formal Analysis
and Property-Based Testing

Nasser Alzahrani(B), Maria Spichkova, and Jan Olaf Blech

RMIT University, Melbourne, Australia
s3297335@student.rmit.edu.au,

{maria.spichkova,janolaf.blech}@rmit.edu.au

Abstract. This paper presents our ongoing work on spatio-temporal
models for formal analysis and property-based testing. Our proposed
framework aims at reducing the impedence mismatch between formal
methods and practicioners. We introduce a set of formal methods and
explain their interplay and benefits in terms of usability.

1 Introduction

Specifying safety-critical systems, it is not enough to use controlled languages
and semiformal languages – the precise and easy-to-read formal specification is
essential to ensure that the safety properties of the system really hold. More-
over, the software development process should include aspects of human factors
engineering, to improve the quality of software and to deal with human factors
in a systematic way, cf. [26]. Human factor aspects usually cover the design of
human-computer interface of the software, human-related aspects of the develop-
ment process, as well as the corresponding automatisation. By the Engineering
Error Paradigm [20], humans are seen as a “component of the system” (almost
equivalent to software and hardware components in the sense of operation with
data and other components), which is the most unreliable in the system.

Software errors can cause wasting of resources [6,19]. An estimate of one tril-
lion US dollars was spent on IT hardware, software and services by governments
around the world. Software errors can also be fatal, and in many cases they
might be prevented by having a more human-oriented development process and
methods. As per statistics presented by Dhillon [8], humans are responsible for
30% to 60% the total errors which directly or indirectly lead to the accidents,
and in the case of aviation and traffic accidents, 80% to 90% of the errors were
due to humans. Thus, it is necessary to have human factors engineering as a
part of the software development process. One of the widely cited accidents in
safety-critical systems are the accidents involved massive radiation overdoses by
the Therac-25 (a radiation therapy machine used in curing cancer) that lead to
deaths and serious injuries of patients which received thousand times the normal
dose of radiation [16,17]. The causes of these accidents were software failures as
well as problems with the system interface. The error was improbable to repro-
duce because it required very specific sequence of commands in order to occur.
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 196–206, 2016.
DOI: 10.1007/978-3-319-50230-4 14

Spatio-Temporal Models for Formal Analysis and Property-Based Testing 197

The improbability of the sequence makes the error unlikely to be noticed with
manual testing because it is almost impossible to think of all combinations of
commands and edge cases. Automatisation might solve this problem, but the
challenge is to create an automatisation which is not only efficient but also easy-
to-use, i.e., is human-oriented.

One of the challenges in software engineering is to develop correct software.
The software should meet user requirements, its properties should satisfy the
model corresponding to design objective and the implementation should pass
all functional tests. Rigorous reasoning is the only way to avoid subtle errors
in algorithms, and it should be as simple as possible by making the underlying
formalism simple tools [14]. Formal methods (FMs) refer to a class of mathe-
matical techniques used in development of large scale complex systems. These
techniques can result in high-quality systems that can be implemented on-time,
within budgets and satisfy user requirements [4].

The value of FMs in real systems has far reaching consequences. For instance,
FMs help engineers get the code right by getting the design right in the first
place. Secondly, FMs help engineers gain a better understanding of the design.
Despite all advantages, formal methods are not widely used in large-scale indus-
trial software projects for many reasons [28]. One of the core obstacles is the
lack of readability and usability. The syntax of FMs is often too complicated
and unreadable for novices, which makes an impression that all the FMs require
huge amount of training. There also is a prejudice that the return of investment
is very minimal and only justified in critical systems such as medical devices,
what is generally not true [18].

Spatio-temporal aspects of safety-critical systems are crucial to verify and
to test a system, as in most cases the system properties should be analysed in
relation to the time and to the location. To analyse spatio-temporal phenomena,
we have to specify the corresponding spatial, temporal and event semantics for-
mally and in a human-oriented way. The goal of our work is to increase usability
of the analysis (in the sense of verification and testing) of the spatio-temporal
aspects on the base of the corresponding formal models.

Property based testing allows us to generate huge numbers of system opera-
tions (e.g. API calls or external events) and permute these operations in ways
that is difficult for humans to think of. These combinations are then used to
verify the system under test according to the spatio-temporal specification.

Contributions: The proposed framework will help to reduce the impedance mis-
match between formal methods and model-based representations and system
code, which in turn will help in increasing the adoption rate by practitioners.
Our framework aims at providing a set of application programming interfaces
(APIs) to map programming language constructs to the formal methods repre-
sentation. The usability of formal methods will be improved indirectly, as the
formal method constructs will be expressed in terms of system code.

198 N. Alzahrani et al.

2 Background

2.1 Formal Methods

Formal methods were introduced as a means of clearly specifying system require-
ments. Hinchey [10] argues that although formal methods are essential in the
development of critical systems, they have not achieved the level of acceptance,
nor level of use, that many believe they should. The uptake of formal methods
has been far from ideal because many still believe that formal methods are diffi-
cult to use and require great mathematical expertise [10]. Spichkova reports [23]
that in many cases simple changes of a specification method can make it more
understandable and usable. She argues that such a simple kind of optimisation
is often overlooked just because of its obviousness, and it would be wrong to
ignore the possibility to optimise the language without much effort. For exam-
ple, simply adding an enumeration to the formulas in a large formal specification
makes its validation on the level of specification and discussion with cooperating
experts much easier.

Hinchey [10] also assert that in addition to the benefits of abstraction, clar-
ification, and disambiguation, using formal methods at the formal specification
level are invaluable documentation that greatly assist future system mainte-
nance. This research incorporates specifications used in property-based testing
to further help in precisely documenting the system. Lamport [14] states two
reasons for using formal methods formulas instead of programming language
tailored to the specific problem:

– Specialized languages often have limited realms of applicability. A language
that permits a simple specification for one system require a very complicated
one for a different kind of system. The Duration Calculus seems to work well
for real-time properties; but it cannot express simple liveness properties. A
formalism like TLA+ that, with no built-in primitives for real-time systems
or procedures, can easily specify gas burner for example, it is not likely to
have difficulty with a different kind of gas burner.

– Formalisms are easy to invent. However, practical methods must have a precise
language and robust tools.

There are many examples where applying formal methods has lead to increasing
reliability of systems. For example, a model checker TLC was developed for TLA
formula was used to find errors in the cache coherence protocol for a Compaq
multiprocessor [27]. In addition, [4] includes many examples of successfully using
formal methods to design systems.

2.2 Property-Based Testing

There are many styles in testing software. One popular style is that of example
based testing. In this style, test cases requires one to provide an example scenario
for each feature. That is, each example may exercise one feature of the system
under test and the test runs only once with relevant input. Dually, property based

Spatio-Temporal Models for Formal Analysis and Property-Based Testing 199

testing allows for the use of randomly generated tests based on system properties
to test systems against their specifications and one test can run hundreds of times
with different input values. An example of such library in Haskell programming
language is QuickCheck. Hughes (inventor of QuickCheck) showed that using
this library allowed him to discover hundreds of bugs in critical systems such
as automobiles and the DropBox file sharing service [7]. However, QuickCheck
uses Haskell programming language specific constructs (such as arrays, integers)
and more complicated data types (such as algebraic data types) to model the
specification of a system. Therefore, this research will investigate the possibility
to have formal models (BeSpaceD, TLA+ or FocusST formulas) as specifications
instead of Haskell constructs, as well as applicability of this approach for property
based testing of real systems.

Hughes [12] asserts that Dijkstra was wrong when he claimed that testing can
never demonstrate the absence of bugs in software, only their presence. Hughes
argues that if we test properties that completely specify a function (such as the
properties of reversing a list) then property based testing will eventually find
every possible bug. In practice this is not true, since we usually do not have
a complete specification, but this style of testing is very effective in exploring
scenarios that no human can think of trying.

QuickCheck started as a testing framework for testing pure functional pro-
grams [7]. However, recent development in the area of property-based testing
[9,13] incorporates the state-fulness of systems. That allowed for the testing of
state-ful systems and even test programs written in imperative languages such
as C. Hughes assert that testing state-ful systems is challenging. He argues that
the state is an implicit argument to and result from every API call, yet it is not
directly accessible to the test code. Therefore, his solution was to model the state
abstractly and introduce state transition function that model the operations in
API under test.

However, the state transition in QuickCheck is modelled manually using pre,
post and next functions for every operation in the system under test. On the
other hand, our framework will generate these transitions automatically using
specification formulas.

3 Proposed Framework

Figure 1 depicts the proposed model that will allow for combining formal meth-
ods with property-based-testing. The first row (API calls) represents the actual
system under test. The second row represents the world in which the specifica-
tion formulas lives. The time between subsequent API calls is modelled through
a function of discreet time. Time functions are mapped to the corresponding
state transitions between states. The general idea is to start with specifying the
system using human-oriented modelling techniques founded on formal methods.
Then, to develop system software according to the specifications. Finally, to run
the test suite to verify that the system runs according to the specification. If a
test fails, it will be the judgment of the engineer to decide whether the errors

200 N. Alzahrani et al.

Fig. 1. Proposed framework

were in the system software or in the specification formulas for which the system
was not correctly specified.

The implementation language of choice is Scala programming language. It
was selected for many reasons. First of all, it is one of the most popular languages
on the Java virtual machine. The ecosystem will make it possible to find quick
answers for questions that are related to technical aspects. Secondly, BeSpaceD is
implemented in Scala. This will lower the impedance mismatch between research
model and BeSpaceD. Finally, Scala, is a functional language. This will make
working with the concepts of property based testing more natural and simple.

For the property-based testing, we are going to apply the ScalaCheck library.
However, since the research will investigate the substitution of the simplistic
state machine in ScalaCheck with formal methods, the use of this library might
be limited.

To relate the different modeling and abstraction layers to each other in the
proposed framework, we are using category theory. Category theory helps in
illuminating the relations of many aspects of the proposed ingredients that would
be unseen otherwise. Figure 1 relates the human actions (API call), system states
(state model) and results to each other. Our formal methods-based techniques
will only be applied to the State-model level. This will help to stair the direction
of future investigation of the proposed model.

4 Initial Set of Modeling Languages and Tools

To create the initial set of formal methods-based modeling languages and tools,
we have selected the following ingredients, which have a number of similarities
in syntax and semantics and are also covering spatio-temporal aspects of the
specifications:

Spatio-Temporal Models for Formal Analysis and Property-Based Testing 201

– TLA+: Temporal logic of actions (TLA) is a logic developed by Leslie Lam-
port, which combines temporal logic with a logic of actions. It is used to
describe behaviours of concurrent systems, cf. [15].

– FocusST : Formal language providing concise but easily understandable speci-
fications that is focused on timing and spatial aspects of the system behaviour,
cf. [24,25].

– BeSpaceD: A framework for modelling and checking behaviour of spatially
distributed component systems, cf. [2,3].

The FocusST language was inspired by Focus [5], a framework for formal
specification and development of interactive systems. In both languages, specifi-
cations are based on the notion of streams. However, in the original Focus input
and output streams of a component are mappings of natural numbers to sin-
gle messages, whereas a FocusST stream is a mapping from natural numbers to
lists of messages within the corresponding time intervals. Moreover, the syntax
of FocusST is particularly devoted to specify spatial (S) and timing (T) aspects
in a comprehensible fashion, which is the reason to extend the name of the lan-
guage by ST. The FocusST specification layout also differs from the original
one: it is based on human factor analysis within formal methods [21,22].

Design goals of BeSpaceD include:

– Ability to model spatial behaviour in a component oriented, simple and intu-
itive way

– Automatically analyse and verify systems and integration possibilities with
other modelling and verification tools.

Blech and Schmidt proposed a process for checking properties of models and
described the approach using different examples [3]. In our current work, we
only focus on the spatio-temporal aspects of BeSpaceD.

From a programming language perspective, we create BeSpaceD models by
using Scala case classes. During the specification process, this gives a functional
abstract datatype feeling with a domain specific language flavour. A typical
BeSpaceD formula is shown below

IMPLIES(AND(TimeInterval(300,605),Owner("AreaOfInterest")),

OccupyBox(1051,3056,1505,3603))

The language constructs comprise basic logical operators (such as AND and
IMPLIES). Furthermore special constructs for space, time, and topology are incor-
porated. In the example, OccupyBox represents a rectangular two-dimensional
space while constructs such as TimeInterval allow for the modeling of temporal
aspects possible. A variety of different operators exist which facilitates the rea-
soning about geometric and topological constraints. Furthermore, connections to
data sources from cyber-physical systems exists (e.g., lego-trains [11] and event
analysis for industrial automation facilities [1]) which facilitates the construction
of demonstrators and conduction of experiments.

In our work we are using FocusST and TLA+ for modelling the behaviour
of systems, whereas the BeSpaceD functionality is invoked at a lower level to
check and test properties of the specified systems.

202 N. Alzahrani et al.

To understand the workflow of the proposed model, we use the example of
Therac25 mentioned in the introduction. The machine included VT-100 terminal
which controlled the PDP-11 computer. The sequence of user actions leading to
the accidents was as follows:

– user selects 25 MeV photon mode
– user enters “cursor up”
– user select 25 MeV Electron mode
– previous commands have to take place in eight seconds

Therefore, we use algebraic data types to model the operations of the
machine. Then we provide formal specification formulas and feed them to the
framework.

sealed abstract class Operation

case object CursorUp extends Operation

case object Select25MevPhotonMode extends Operation

case object Select25MevElectronMode extends Operation

case object OtherKindOfOperation extends Operation

type Therac25 = Sut

val init: TLAInit = {.. some predicate ...}

val next: TLANext = {.. another predicate ...}

val correctBehaviours: List[TLAState] =

Therac25.correctBehaviours(init, next)

Therac25.checkAgainst(correctBehaviours, randoms(Operation))

The framework would generate large number of Operation combinations that
are more likely to catch the error that caused the fatal accidents. Frequencies
of generated commands can be tailored to match real system behaviour. The
example used TLA+ formulas. However, FocusST formulas could have been
used instead to specify the system.

To achieve that, we have partially implemented the code that is responsible
to generate random BespaceD constructs using techniques from functional pro-
gramming. The Invariant generator is composed of smaller generators such as
integer and string generators as shown in the code below:

trait Generator[+T] {

self =>

def generate: T

def map[U](f: T => S): Generator[U] = new Generator[U] {

def generate = f(self.generate)

}

}

Spatio-Temporal Models for Formal Analysis and Property-Based Testing 203

val integers = new Generator[Int] {

def generate = scala.util.Random.nextInt()

}

val booleans = integers.map(_ >= 0)

val strings = integers.map(_.toString)

def bSpaceD: Generator[Invariant] = for {

int1 <- integers

int2 <- integers

int3 <- integers

int4 <- integers

int5 <- integers

str <- strings

} yield IMPLIES(AND(TimeInterval(int1, int2),Owner(str)),

OccupyBox(int3, int4, int5, int6))

5 Evaluation

The evaluation is based on a case study that involves robotics that are installed
in the Virtual Experiences Lab(VXLab) at RMIT University, Australia.

Fig. 2. Interacting with robots from the VXLab at RMIT

The implemented model will be installed in the robotic arms or simulations
of them. For instance, assuming the existence of the function initialisePosition():
Future[Position] which is responsible to move a robotic arm to an initial position.
The Future data type is used because moving arms takes long time and we need
to verify the final position the arm reached after the API call. However, since
initialisePosition() is just returning the initial position, it will return instantly.
The framework will call this API function and simultaneously check whether it
is in accordance to the specified state. Failing tests for the intended framework
might indicate:

204 N. Alzahrani et al.

– Failure in the software of the system under test. This is one of the benefits
of property based testing. The found error may have never been discovered
otherwise.

– Wrong specification. The system under test may have been wrongly underspec-
ified. In this case, the engineer might change the formulas to reflect system
required properties.

Therefore, the input to the framework is formal-methods formulas and the
output is the correct behaviours specified by these formulas. The formulas are
written in host programming language (Scala in this research). For example,
the initial state for the aforementioned robotic example would be specified as
follows:

val position: TLAVariable = TLAVariable("Y")

val init: TLAInit = position

For this simple example (the next formula has been omitted for simplicity),
the only possible correct behaviour for this specification formula is that position
should equal to “Y”. The framework will then check whether the position was
indeed “Y” after the call to initialisePosition(), otherwise, it reports an error.

Table 1. Evaluating cases with TLA+ init formulas

API code Init formula Result Error?

initialisePosition() TLAVariable(“Y”) “Y” No

initialisePosition() TLAVariable(“Y”) “K” Yes

moveToQ() TLAVariable(“Q”) “Q” Yes

moveToR() TLAVariable(“Q”) “M” Yes

Table 1 shows some examples for the evaluation of the intended framework
using TLA+ formula (FocusST evaluation will follow similar pattern). The first
call to initialisePosition() is correctly specified and the actual result reflects the
specification (assuming arm initial position is “Y”), as a result, it is regarded as a
successful case. The second call to initialisePosition() is different from the actual
position, therefore, its was reported as an error. Although the result is expected
for the call to moveToQ() in the third case, the framework reports an error
because the specification is not correct (the arm can not logically move to its
current position). Finally, moveToR is reported as error because the actual result
(reached position) is not correct. The result column is calculated by getting the
value from the Future dataype that each API call returns through onComplete
callback as follows:

initialisePosition() onComplete {

case Success(position) => println(position)

case Failure(t) => println("An error has occured:" + t.getMessage)

}

Spatio-Temporal Models for Formal Analysis and Property-Based Testing 205

6 Conclusions

In this paper, we have presented ongoing work on the use of spatio-temporal
models for formal methods-based analysis and testing. We have described differ-
ent ingredients and their interplay: testing frameworks, TLA+, FocusST and
BeSpaceD. The overall goal of our research is the reduction of the impedance
mismatch between formal methods and practitioners.

References

1. Blech, J., Peake, I., Schmidt, H., Kande, M., Rahman, A., Ramaswamy, S.,
Sudarsan, S., Narayanan, V.: Efficient incident handling in industrial automation
through collaborative engineering. In: IEEE 20th Conference on Emerging Tech-
nologies Factory Automation (ETFA). IEEE Computer (2015)

2. Blech, J.O.: An example for BeSpaceD and its use for decision support in industrial
automation (2015)

3. Blech, J.O., Schmidt, H.: BeSpaceD: towards a tool framework and methodology
for the specification and verification of spatial behavior of distributed software
component systems (2014)

4. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods. IEEE Softw.
12(4), 34 (1995)

5. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2001)

6. Charette, R.N.: Why software fails [software failure]. IEEE Spectr. 42(9), 42–49
(2005)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing
of haskell programs. ACM SIGPLAN Not. 35(9), 268–279 (2000). doi:10.1145/
357766.351266

8. Dhillon, B.: Engineering Usability: Fundamentals, Applications, Human Factors,
and Human Error. American Scientific Publishers, Stevenson Ranch (2004)

9. Gerdes, A., Hughes, J., Smallbone, N., Wang, M.: Linking unit tests and properties.
In: Proceedings of the 14th ACM SIGPLAN Workshop on Erlang, pp. 19–26. ACM
(2015)

10. Hinchey, M.G.: Confessions of a formal methodist. In: Proceedings of the Seventh
Australian Workshop Conference on Safety Critical Systems and Software, SCS
2002, vol. 15, pp. 17–20, Australian Computer Society Inc. (2002)

11. Hordvik, S., Øseth, K., Blech, J.O., Herrmann, P.: A methodology for model-
based development and safety analysis of transport systems. In 11th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE)
(2016)

12. Hu, Z., Hughes, J., Wang, M.: How functional programming mattered. National
Sci. Rev. 2(3), 349–370 (2015)

13. Hughes, J.: Software testing with quickcheck. In: Horváth, Z., Plasmeijer, R., Zsók,
V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 183–223. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17685-2 6

14. Lamport, L.: Hybrid systems in TLA+. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 77–102. Springer, Hei-
delberg (1993). doi:10.1007/3-540-57318-6 25

http://dx.doi.org/10.1145/357766.351266
http://dx.doi.org/10.1145/357766.351266
http://dx.doi.org/10.1007/978-3-642-17685-2_6
http://dx.doi.org/10.1007/3-540-57318-6_25

206 N. Alzahrani et al.

15. Lamport, L.: The temporal logic of actions. ACM Trans. Prog. Lang. Syst. 16(3),
872–923 (1994)

16. Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. Computer
26(7), 18–41 (1993)

17. Miller, E.: The therac-25 experience. In: Conference on State Radiation Control
Program Directors (1987)

18. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

19. Patra, S.: Worst-case software safety level for braking distance algorithm of a train.
In: 2007 2nd Institution of Engineering and Technology International Conference
on System Safety, pp. 206–210. IET (2007)

20. Redmill, F., Rajan, J.: Human Factors in Safety-Critical Systems. Butterworth-
Heinemann, Oxford (1997)

21. Spichkova, M.: Human factors of formal methods. In: IADIS Interfaces and Human
Computer Interaction, IHCI 2012 (2012)

22. Spichkova, M.: Design of Formal Languages, Interfaces: Formal Does not Mean
Unreadable. IGI Global, Hershey (2013)

23. Spichkova, M.: Uman factors of formal methods. arXiv preprint arXiv:1404.7247
(2014)

24. Spichkova, M., Blech, J.O., Herrmann, P., Schmidt, H.W.: Modeling spatial aspects
of safety-critical systems with focus-st. In: MoDeVVa@ MoDELS, pp. 49–58, Cite-
seer (2014)

25. Spichkova M. et al.,: Specification and seamless verification of embedded real-
timesystems: FOCUS on Isabelle. Ph.D. thesis, Technical University Munich (2007)

26. Spichkova, M., Liu, H., Laali, M., Schmidt, H.W.: Human factors in software reli-
ability engineering. In: Workshop on Applications of Human Error Research to
Improve Software Engineering (WAHESE 2015) (2015)

27. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). doi:10.1007/3-540-48153-2 6

28. Zamansky, A., Rodriguez-Navas, G., Adams, M., Spichkova, M.: Formal methods
in collaborative projects. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering. IEEE (2016)

http://arxiv.org/abs/1404.7247
http://dx.doi.org/10.1007/3-540-48153-2_6

Towards a Developer-Oriented Process
for Verifying Behavioral Properties in UML

and OCL Models

Khanh-Hoang Doan(B), Martin Gogolla, and Frank Hilken

Computer Science Department, University of Bremen, 28359 Bremen, Germany
{doankh,gogolla,fhilken}@informatik.uni-bremen.de

Abstract. Validation and verification of models in the software develop-
ment design phase have a great potential for general quality improvement
within software engineering. A system modeled with UML and OCL can
be checked thoroughly before performing further development steps. Ver-
ifying not only static but also dynamic aspects of the model will reduce
the cost of software development. In this paper, we introduce an app-
roach for automatic behavioral property verification. An initial UML and
OCL model will be enriched by frame conditions and then transformed
into a (so-called) filmstrip model in which behavioral characteristics can
be checked. The final step is to verify a property, which can be added
to the filmstrip model in form of an OCL invariant. In order to make
the process developer-friendly, UML diagrams can be employed for var-
ious purposes, in particular for formulating the verification task and the
verification result.

Keywords: Validation and verification ·Model testing · UML and OCL
model · Behavior property verification

1 Introduction

In software development, Model-Driven Engineering (MDE) is playing now a
more and more important role. In recent years, the model-based approach has
been becoming accepted, in particular by combining the UML (Unified Modeling
Language) [15], the OCL (Object Constraint Language) [3] and some efficient
tools. Available techniques in tools can be employed for the verification and
validation of both static and dynamic properties of a software system.

As model validation and verification have been studied for a long time, a
variety of approaches have been introduced. Typical approaches following this
line have been discussed, e.g., the Dresden OCL tool [5], a toolset based on
Abstract State Machines [17], and the tool USE for UML and OCL model prop-
erty validation [7,9,19]. In [4] an approach for model consistency checking is
introduced, and several correctness properties are automatically checked in [2].
UML model properties such as consistency, independence and consequence are

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 207–220, 2016.
DOI: 10.1007/978-3-319-50230-4 15

208 K.-H. Doan et al.

validated in [9]. [13,16] present approaches for OCL constraint validation. How-
ever, many of these proposals concentrate on static aspects of the model, e.g.,
on consistency, independence, and consequences of and between OCL invari-
ants. In order to also validate dynamic aspects, the approach in [8] introduces
a transformation from UML and OCL models into so-called filmstrip models
that represent sequences of system snapshots in a single object diagram. This
filmstripping approach allows to check dynamic properties and will be applied
as a central step within the complete verification process as described here.

In technical terms, the context of our work is the tool USE (UML-based
Specification Environment) [7]. USE supports the description of a model in terms
of a UML class diagram (with e.g. classes, associations) and UML state machines
enriched by OCL constraints including class and state invariants as well as pre-
and postconditions for operations and transitions. USE can visually represent
class, object, sequence, statechart, and communication diagrams of a UML model
and animate the model behavior based on command sequences. Offering a precise
subset of UML and OCL can support the developer in employing a visual and
thus user-oriented language for formulating development artifacts, in particular
models and model properties. One central USE component is the so-called model
validator that supports the validation and verification of properties based on the
Kodkod relational logic [18]. A further USE component that we will employ is
the so-called filmstrip transformation. It transforms an application model (with
invariants and pre- and postconditions) into an equivalent so-called filmstrip
model (with invariants only). This filmstrip model will be checked and tested
with the model validator.

The remainder of the paper is organized as follows. Section 2 illustrates the
general idea of our approach for a process consisting of several steps, and a sim-
ple example is introduced. Details of each verification step are introduced from
Sects. 3 to 6. Particularly, Sect. 3 explains frame conditions and how to formu-
late and add them to the original model. Section 4 describes filmstrip models
and how to transform models with frame conditions into filmstrip models. The
step for verifying a behavior property is presented in Sect. 5, and in Sect. 6 we
introduce the final step, transforming the verification result back into a sequence
diagram of the original model. In Sect. 7 we discuss run-times of the verification
tasks given in this paper before ending this contribution with some concluding
remarks.

2 General Idea and Running Example

2.1 General Idea

Our approach for behavioral property verification can be divided into four steps
as illustrated in Fig. 1. The input is a UML model enriched by OCL constraints
and the output is a sequence diagram corresponding to a found scenario. The
general idea for the verification process can be described as follows:

Step 1: Starting from an application model that describes structure and behav-
ior of a system, add frame conditions. An application model is a UML model

Towards a Developer-Oriented Process for Verifying Behavioral Properties 209

Fig. 1. General idea for the proposed verification process

describing system structure and behavior completely in terms of OCL and con-
sisting of any number of classes, attributes, associations, and operations. The
class diagram is enriched by class invariants and operation pre- and postcon-
ditions in form of OCL constraints. A frame condition makes the frame of an
operation explicit. Particularly, it is a postcondition of an operation to assure
that everything that is not in the scope of the operation (the frame) remains
unchanged after the operation has been executed. Frame conditions will help the
model validator in Step 3 to construct a scenario in a correct way.

Step 2: Transform the frame-conditioned model into a filmstrip model. In a film-
strip model, a single object diagram will describe a sequence of system states and
operation calls between them. Roughly speaking, we can use an object diagram
of a filmstrip model to describe interactions between objects in sequential order
and the state transitions between the objects. Consequently, in the next step,
a dynamic property, which is related to state transitions, can be verified in the
context of the filmstrip model. The transformation step into the filmstrip model
is performed automatically using the filmstrip plugin of USE.

Step 3: Verify a behavioral property of the filmstrip model. A behavioral prop-
erty can be presented as an application model sequence diagram and can be
analyzed by automatically constructing a scenario (an object diagram of the
filmstrip model), in which a specified property is satisfied, or by showing that
a valid scenario cannot be constructed within a finite search space. This step is
performed automatically using the validator plugin of USE employing a config-
uration file describing the finite search space.

Step 4: Transform the generated object diagram from Step 3 (if the behavior
property was satisfied) into a corresponding sequence diagram in the context of
the application model. Presenting the verification result as a sequence diagram
of the application model will increase readability and understandability of the

210 K.-H. Doan et al.

verification process. The functionality of automatically transforming a filmstrip
object diagram to an application model sequence diagram will become part of
the USE tool.
These four steps will be discussed in detail in the later parts of this paper.

2.2 Running Example

In this section a small example application model is given in order to demonstrate
our approach. Its class diagram is presented in the left part of Fig. 2. The model
describes synchronized traffic lights with (a) three attributes: r for red, y for
yellow, g for green; (b) three operations: init() that initializes the values for a new
traffic light, switch() that switches the light to the next state; and connected()
that retrieves the connected light that is to be synchronized. Each traffic light
is connected with at most one other traffic light to achieve the synchronization.
The full model declaration including all invariants and pre- and postconditions is
presented in [6]. The listing below shows the OCL invariants and postconditions
of the switch() operation:

Fig. 2. Class diagram of example application model and switching phases.

context TrafficLight

inv Ryg_RYg_ryG_rYg:

(r=null and y=null and g=null) or

(r and not y and not g) or (r and y and not g) or

(not r and not y and g) or (not r and y and not g)

inv oneLight_onePair:

(left→size()=1 and right→isEmpty()) or (left→isEmpty() and

right→size()=1)

Towards a Developer-Oriented Process for Verifying Behavioral Properties 211

inv synchronize:

(r<>null and y<>null) and

(r and not y implies not connected().r and not connected().y) and

(r and y implies not connected().r and connected().y) and

(not r and not y implies connected().r and not connected().y) and

(not r and y implies connected().r and connected().y)

context TrafficLight::switch()

post Ryg_2_RYg_2_ryG_2_rYg_2_Ryg:

(r<>null and y<>null) and

(r@pre and not y@pre implies r and y) and

(r@pre and y@pre implies not r and not y) and

(not r@pre and not y@pre implies not r and y) and

(not r@pre and y@pre implies r and not y)

The first invariant Ryg RYg ryG rYg identifies the states (values of attributes
r, y and g) of a traffic light. In particular, a traffic light can only be in one of
four states: red (r, not y, not g), red-yellow (r, y, not g), green (not r, not y,
g), and yellow (not r, y, not g). The invariant synchronize determines how a
pair of traffic lights synchronizes. When the left traffic light changes its state, the
right light automatically changes its state respectively, e.g., a traffic light changes
from the green state to yellow state when the connected light changes from red to
red-yellow. As can be seen, the postcondition Ryg 2 RYg 2 ryG 2 rYg 2 Ryg only
defines the changes of the attributes r and y, but does not include the attribute g
for specifying the effect after the switch() operation has been executed. In a
postcondition, the tag @pre refers to the state given at precondition time. On the
other hand, we can see that the relationship between the r, y, and g attributes is
fully fixed by the invariant Ryg RYg ryG rYg. Consequently, the value of attribute
g is fully determined by the value of r and y. The change of attribute g would be
ambiguous if one would consider only the switch() postconditions. The question
that comes up now is: what happens to attribute g? How will it be changed by the
switch() operation? These questions will be answered by using the verification
technique introduced in Sect. 5.

3 Adding Frame Conditions to Application Models

Postconditions typically specify in a declarative way effects of an operation,
by expressing what they change. They often implicitly assume that everything
else (the frame) remains unchanged. For a verification engine the question comes
up how they can infer from postconditions which model elements are not allowed
to change during an operation execution. This problem is called “frame prob-
lem” [1] and can be addressed by adding so-called frame conditions in form
of OCL expressions. They indicate attributes and association ends that should
not be changed after an operation has been executed. To add a frame condi-
tion to a model, we formulate it as an OCL expression in form of a postcondi-
tion. Various approaches for determining and formulating frame conditions have
been introduced [11,12]. In this paper we apply the solution discussed in [14]
to specify which properties are not allowed to change during the execution of

212 K.-H. Doan et al.

the operations init() and switch(). Here we only explain how to formulate the
frame condition for operation switch(). As can be seen from the postcondition
Ryg 2 RYg 2 ryG 2 rYg 2 Ryg presented in Fig. 2, the properties r and y at post-
state (i.e., not marked with @pre) are referenced in this postcondition. Conse-
quently, properties r and y are variable to the switch() operation, which means
that these properties are allowed to change when switch() is executed. Property g
is not referenced in any postcondition, however it is referenced in the invariant
Ryg RYg ryG rYg with the connection to the variable properties r and y. There-
fore, property g is also classified as variable. On the other hand, the state of
the other traffic light objects, except the connected one, should not be changed.
As the result, the frame conditions of the switch() operation is formulated as
follows:

context TrafficLight::switch()

post trafficLightUnchangedExcept: let x=self in

TrafficLight.allInstances@pre=TrafficLight.allInstances and

TrafficLight.allInstances→forAll(t|

(t.left@pre = t.left) and (t.right@pre = t.right) and

(t<>x and t<>x.connected() implies t.r@pre=t.r) and

(t<>x and t<>x.connected() implies t.y@pre=t.y) and

(t<>x and t<>x.connected() implies t.g@pre=t.g))

In summary, this postcondition says: the switch() operation called on the traffic
light object ‘self’ is only allowed to change the attributes r, y and g of self and
its connected traffic light; everything else remains unchanged.

4 Transformation to Filmstrip Model

The application model enriched by frame conditions will be transformed into a
so-called filmstrip model. A filmstrip model can describe dynamic aspects of an
original application model, i.e., operations and state transitions, by static ele-
ments, i.e., UML classes and OCL invariants [10]. Particularly, each operation of
classes from the application model is transformed into an OperationCall class,
and a Snapshot object is created in the filmstrip model to represent the appli-
cation model state at a point of time. With a filmstrip model we can describe
information on the changes between the application model states and operation
calls in one object diagram. It offers many possibilities for validation and ver-
ification of dynamic aspects, e.g., behavioral properties. Some elements of the
application model are left unchanged, while others are converted with modifica-
tion compared to the application model [8]. More detail about fimstrip model
is introduced in [10]. The right part of Fig. 2 shows the class diagram of the
filmstrip model after transforming the frame-conditioned model.

Most importantly, pre- and postconditions from the application model are
transformed into invariants of the filmstrip model and realize behavioral prop-
erties, which are related to state transitions. These invariants can be checked in
a single filmstrip model object diagram. One example of a transformed postcon-
dition is presented as follows:

Towards a Developer-Oriented Process for Verifying Behavioral Properties 213

context switch_TrafficLightOpC

inv post_Ryg_2_RYg_2_ryG_2_rYg_2_Ryg:

(aSelf.succ.r<>null and aSelf.succ.y<>null) and

((aSelf.r and not aSelf.y) implies

(aSelf.succ.r and aSelf.succ.y)) and

((aSelf.r and aSelf.y) implies

(not aSelf.succ.r and not aSelf.succ.y)) and

((not aSelf.r and not aSelf.y) implies

(not aSelf.succ.r and aSelf.succ.y)) and

((not aSelf.r and aSelf.y) implies

(aSelf.succ.r and not aSelf.succ.y))

The postcondition Ryg 2 RYg 2 ryG 2 rYg 2 Ryg of the operation switch() is
renamed and altered to the invariant post Ryg 2 RYg 2 ryG 2 rYg 2 Ryg of the
new class switch TrafficLightOpC in the filmstrip model. aSelf is an attribute
of the TraffictLightOpC class, from which switch TrafficLightOpC inherits.
This attribute refers to the traffic light object on which the switch() operation is
called. And aSelf.succ is the successor of the aSelf object after the switch()
operation has been executed (i.e., the self object in the next snapshot).

Some new filmstrip invariants are generated by the filmstrip component.
These invariants prevent faulty executions that would have been possible and
thus bring the filmstripping model in line with execution of the operations in
UML and OCL. In other words, they ensure correct behavior of the filmstrip
model, e.g., by forbidding the snapshot object sequence to become a cycle (invari-
ant cycleFree). More details of the complete filmstrip model description can be
seen in [6].

5 Verifying Behavioral Properties

A behavioral property is a property related to a behavioral aspect of a design
model, typically in connection with the model operations. In other words, check-
ing a behavioral property is a type of verification task, that tries to prove whether
a specific property can be reached or not reached under specific conditions, for
example, with an operation call sequence. In our approach, first of all, an OCL
expression for a behavioral property is added to the filmstrip model. This can be
realized by the USE command constraints -load constraintFile, in which
constraintFile is name of the file that contains the added OCL expression.
Next, we execute the model validator from the USE GUI or on the CLI through
the command mv -validate propertyFile. The propertyFile specifies the
bounds for the search space of the model validator. For example, in the proper-
ties file the number of OperationCall objects, the number of Snapshot objects,
or the number of links are stated. The model validator tries to construct a valid
system state (object diagram) within the specified bounds. If successful, a sys-
tem state will be established, that means the property is proved. And if not, the
model validator reports that an object diagram cannot be found. This means
that the logically negated property has been proved within the given bounds.
Specifying proper bound numbers in the propertyFile for the model validator

214 K.-H. Doan et al.

system trafficlightA trafficlightB

trafficlightA.r = true and trafficlightB.g = true

trafficlightA.r = true and trafficlightB.g = true

loop

alt

?OpCallA

?OpCallB

[1..?Bound]

Fig. 3. Verification task for Example 1 as sequence diagram

is important. Bounds must be big enough so that the property can be proved,
but not too big so that the model validator can find answers within a small time
frame.

Example 1. In this example, the behavior property to be proved is: “Is it possible
to construct a scenario (starting in a valid state and having transitions to future
states only by operation calls) in which a pair of synchronized traffic light exists
that shows initially red and green and after a number of operation calls red and
green again?”. This property can be expressed with a UML sequence diagram
as in Fig. 3. The property can be made precise also with the following OCL
expression:

context TrafficLight inv rg_And_rg_Again:

TrafficLight.allInstances→exists(t|t.r and t.connected().g and

Set{t.succ}→closure(succ)→exists(t1|t1.r and t1.connected().g))

After loading this invariant to the filmstrip model by running the command
constraints -load, we execute the model validator with parameters specified
in a property file. Figure 4 presents the found object diagram [6]. The configu-
ration specifies that the generated object diagram has exactly 10 TrafficLight
objects, 5 Snapshot objects and 4 switch TrafficLightOpC objects. As can
be seen from the generated object diagram, a pair of synchronized traffic lights,
trafficlight1 and trafficlight10 (upper dashed oval), shows red-green and the later
incarnation, i.e., trafficlight3 and trafficlight8 (lower dashed oval), shows red-
green again. From this we can confirm the claim, that the property can be
satisfied for the running example. The protocol in Fig. 5 shows the detailed com-
mands and the result. The run-times for verifying the property are specified
within the outputs as well.

There are three run-times that the model validator shows in the result mes-
sage. The 1st ‘Translation time’ (1200 ms) is the time needed to translate the

Towards a Developer-Oriented Process for Verifying Behavioral Properties 215

Fig. 4. Generated object diagram for Example 1

class diagram into the relational logic of Kodkod. This translation is only per-
formed one time when executing the model validator the first time in a working
session. The validator needs 1212 ms (2nd ‘Translation time’) to translate the
relational formula and the configuration into SAT (this step is performed by
Kodkod), and 180 ms (validator ‘Solving time’) to solve the translated relational
formula by the underlying SAT solver. The total time for all verification tasks
in this example with the specified bounds parameters is 5941 ms.

Example 2. The behavior property to be checked in the second example is: “Is it
possible to construct a scenario in which one traffic light exists so that between
two green states we have less than four transitions?”. The following listing is the
OCL expression for this property:

context TrafficLight inv lessthan_4transitions_between_2G:

TrafficLight.allInstances→ exists (t | t.g and not t.succ.g and

Set{t.succ}→closure(succ)→exists(t1|t1.g and

Set{t}→closure(succ)→size() - Set{t1}→closure(succ)→size()<4))

To emphasize the important role of frame conditions for a verification task,
first we apply our process without Step 2 that adds the frame conditions to the
original application model. As the result, the validator finds a satisfying scenario
as shown in Fig. 6. The configuration requires exactly 16 TrafficLight objects,

216 K.-H. Doan et al.

Fig. 5. Detailed commands and result for verifying property 1

4 Snapshot objects and 3 switch TrafficLightOpC objects. It can be seen from
Fig. 6, trafficlight6 shows green (at the point of time corresponding to snapshot1)
and its latest reincarnation, trafficlight7, shows green again after three system
state transitions (in the later point of time corresponding to snapshot2). These
trafficlight objects are marked with the left and right dash ovals respectively in
Fig. 6. In this case, the validator can find a satisfying scenario, because, without
frame conditions, the attributes of one light can be changed when the switch()
operation is executed on another light, which is not connected to the considered
light. Here we have that trafficlight6 changes from the green to red when the
switch() operation is executed on trafficlight5. On the other hand, when we apply
our full process, with the same configuration, the validator answers ‘Unsatisfi-
able’. That means that such scenario cannot be constructed within the bounds.
Figure 7 shows the detailed commands and the result ‘Unsatisfiable’.

This example shows the importance of adding frame condition to the original
application model in the entire verification process. Frame conditions support
the validator to go not into the wrong direction when finding the answer.

6 Transforming Verification Results to Application
Model Sequence Diagrams

The result of the model validator, if the verification property is satisfied, is a
scenario in form of a filmstrip model object diagram. The ordinary developer,
who must not know all details of the filmstripping approach, may find it difficult
to understand and use the result in terms of the application model. Therefore, the
transformation of the filmstrip model object diagram to an equivalent application
model sequence diagram, which is more readable and practical, is helpful. The
test case generated by the validator may be used in the later phases of software
development. Figure 8 is the application model sequence diagram corresponding
to the generated filmstrip model object diagram for Example 1 in Sect. 5.

To built the sequence diagram from the filmstrip model object diagram,
firstly, each application object (i.e., an object from a class of the original model)
connected to the first snapshot object is considered as an initial object involved
in the interaction (here, trafficlight1, trafficlight10). Each OperationCall object
in the filmstrip model object diagram is turned into an operation call from the
system actor to one of the corresponding initial objects. The sequence diagram
is complete when the last operation call has been handled.

Towards a Developer-Oriented Process for Verifying Behavioral Properties 217

F
ig
.
6
.
G

en
er

a
te

d
o
b
je

ct
d
ia

g
ra

m
fo

r
E

x
a
m

p
le

2
w

it
h
o
u
t

fr
a
m

e
co

n
d
it

io
n
s

218 K.-H. Doan et al.

Fig. 7. Detailed commands and result for verifying property 2

system trafficlight1 trafficlight 10

switch()

switch()

switch()

switch()

trafficlight1.r = true and trafficlight10.g = true

trafficlight1.r = true and trafficlight10.g = true

There are other solutions as well.

Fig. 8. Application model sequence diagram for verification result of Example 1

7 Evaluation of Run-Times for the Verification Tasks

One of the biggest problem that any verification tool has to deal with is the
state-space explosion, i.e., the number of system states (the search space) may be
huge even for relatively simple systems, or easily exceed the available computer
memory. In our approach, the number of OperationCall objects (determining
system transitions) is a key element that affects the search space, and that
number corresponds to the run-time of a verification task.

We evaluate the run-time of our verification tasks by executing the model
validator for the filmstrip model using Example 1 with gradually increasing the
number of switch TrafficLightOpC objects. Table 1 shows the resulting times.
As can be seen from the table, the run-time of the verification tasks increases
rapidly when the number of OperationCall objects increases gradually. On the
other hand, from Fig. 7 we can see that the solving time for Example 2 is much
higher than those in Table 1 although there were only 3 OperationCall objects
configured for Example 2. In case of Example 2, the answer was “Unsatisfiable”,
and therefore the model validator had to test all possibilities within the given
bounds. Consequently, the solving time is high compared with the solving time
for Example 1, for which the answer was “Satisfiable”.

The results show that scenarios, i.e., sequence diagrams, with about 20 oper-
ation calls can be constructed in less than 10 min.

Towards a Developer-Oriented Process for Verifying Behavioral Properties 219

Table 1. Run-times of verification tasks

Number of operation objects Translation time [ms] Solving time [ms] Total time [m]

4 1 212 180 0.04

8 3 610 2 640 0.12

12 8 402 29 697 0.65

16 20 234 84 963 1.77

20 48 232 462 997 8.54

24 86 946 600 703 11.48

8 Conclusion and Future Work

This contribution has proposed a process for the verification of a behavioral prop-
erty of a UML model enriched by OCL constraints. The inputs are an application
model in form of a USE file and a property that needs to be verified in form of
an OCL invariant or in form of a UML sequence diagram; the output is typically
a test scenario in form of a sequence diagram. The idea of combining frame con-
ditions, the filmstrip model, and the model validator in a complete process for
behavior property verification together with sequence diagrams for verification
tasks and verification results has not been discussed before. The last step of our
process, the transformation of filmstrip object diagrams to a sequence diagram,
will increase the readability and understandability of the verification approach.
Most of the steps in our process are automatically performed by the USE tool
and its plugins. The process will be adjusted and optimized in later works.

Future work can be done in various directions. First of all, a functionality that
allows to automatically transform the generated filmstrip model object diagram
to an application model sequence diagram will be worked out. Secondly, the idea
for automatically formulating and adding frame conditions to a UML and OCL
model should be studied further and supported by tool options. Future work has
also to consolidate the approach with larger case studies and has to improve the
efficiency of the validator searching process in the presence of filmstrip models.

References

1. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. Softw. Eng. 21(10), 785–798 (1995)

2. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software Engineering,
pp. 547–548, ASE 2007, NY, USA. ACM, New York (2007)

3. Cabot, J., Gogolla, Martin: Object constraint language (OCL): a definitive guide.
In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol.
7320, pp. 58–90. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30982-3 3

http://dx.doi.org/10.1007/978-3-642-30982-3_3

220 K.-H. Doan et al.

4. Dan, C., Mihai, P., Adrian, C., Cristian, B., Sorin, M.: Ensuring UML models
consistency using the OCL environment. Electron. Notes Theor. Comput. Sci. 102,
99–110 (2004). Proceedings of the Workshop, OCL 2.0 - Industry Standard or
Scientific Playground?

5. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Russian-German WS Innovation Information Technologies: Theory and Practice
(2009)

6. Doan, K.H., Gogolla, M., Hilken, F.: Addendum to a complete process for behav-
ioral properties verification. University of Bremen, Technical report (2016). http://
www.db.informatik.uni-bremen.de/publications/intern/HOFM2016ADD.pdf

7. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007)

8. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.: From applica-
tion models to filmstrip models: an approach to automatic validation of model
dynamics. In: Modellierung (MODELLIERUNG 2014) (2014)

9. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and conse-
quences in UML and OCL models. In: Dubois, C. (ed.) Tests and Proofs. LNCS,
vol. 5668, pp. 90–104. Springer, Heidelberg (2009)

10. Hilken, F., Hamann, L., Gogolla, M.: Transformation of UML and OCL models into
filmstrip models. In: Di Ruscio, D., Varró, D. (eds.) Theory and Practice of Model
Transformations. LNCS, vol. 8568, pp. 170–185. Springer International Publishing,
Heidelberg (2014)

11. Kosiuczenko, P.: Specification of invariability in OCL. Softw. Syst. Model. 12(2),
415–434 (2011)

12. Krieger, M.P., Knapp, A., Wolff, B.: Automatic and efficient simulation of opera-
tion contracts. In: Proceedings of the Ninth International Conference on Genera-
tive Programming and Component Engineering, GPCE 2010, pp. 53–62, NY, USA.
ACM, New York (2010)

13. Kuhlmann, M., Gogolla, M.: Modeling and validating mondex scenarios described
in UML and OCL with USE. Formal Aspects Comput. 20(1), 79–100 (2007)

14. Niemann, P., Hilken, F., Gogolla, M., Wille, R.: Extracting frame conditions
from operation contracts. In: ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2015) (2015)

15. Object Management Group - OMG: Unified Modeling Language Specification, ver-
sion 2.5 (2013). http://www.omg.org/spec/UML/

16. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In: Evans,
A., Kent, S., Selic, B. (eds.) UML 2000 The Unified Modeling Language. LNCS,
vol. 1939, pp. 265–277. Springer, Heidelberg (2000)

17. Shen, W., Compton, K., Huggins, J.: A toolset for supporting UML static and
dynamic model checking. In: 2002 Proceedings of 26th Annual International on
Computer Software and Applications Conference, COMPSAC 2002 , pp. 147–152
(2002)

18. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

19. Ziemann, P., Gogolla, M.: Validating OCL specifications with the USE tool: an
example based on the BART case study. Electron. Notes Theor. Comput. Sci. 80,
157–169 (2003). Eighth International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2003)

http://www.db.informatik.uni-bremen.de/publications/intern/HOFM2016ADD.pdf
http://www.db.informatik.uni-bremen.de/publications/intern/HOFM2016ADD.pdf
http://www.omg.org/spec/UML/

Model-Based Generation of Natural Language
Specifications

Phan Thu Nhat Vo and Maria Spichkova(B)

RMIT University, Melbourne, Australia
s3220976@student.rmit.edu.au, maria.spichkova@rmit.edu.au

Abstract. Application of formal models provides many benefits for the
software and system development, however, the learning curve of formal
languages could be a critical factor for an industrial project. Thus, a
natural language specification that reflects all the aspects of the formal
model might help to understand the model and be especially useful for
the stakeholders who do not know the corresponding formal language.
Moreover, an automated generation of the documentation from the model
would replace manual updates of the documentation for the cases the
model is modified. This paper presents an ongoing work on generating
natural language specifications from formal models. Our goal is to gen-
erate documentation in English from the basic modelling artefacts, such
as data types, state machines, and architectural components. To allow
further formal analysis of the generated specification, we restrict English
to its subset, Attempto Controlled English.

1 Introduction

Model-based development (MBD) is a paradigm in which software and system
development focus on high-level executable models, cf. [34]. In the early develop-
ment phases, formal models allow a wide range of exploration and analysis using
domain-specific notations in order to simplify the system design, development or
verification/testing. Application of formal models provides many benefits for the
software and system development. In “40 years of formal methods” [5], Bjørner
and Havelund admit that the gap between academic research on formal methods
and its integration in large industrial projects is yet to be bridged. There are a
number of hindering factors for adoption of formal methods in industry [33]. As
crucial obstacles can be named lack of understandability and readability [29,32],
and our aim is to find appropriate ways to avoid these obstacles. Also, human
factors play a crucial role and have to be taken into account [28,31].

Application of formal models requires an interplay between formal and infor-
mal methods, which use different levels of formality in descriptions. A manual
solution to this problem was suggested many years ago: Guiho and Hennebert
reported a communication problem in the SACEM project [15] between the ver-
ifiers and other engineers, who were not familiar with the formal specification
method. The problem was solved by providing the engineers with a natural lan-
guage description derived manually from the formal specification. For a large-
scale projects, it would be too time-consuming to derive a natural language
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 221–231, 2016.
DOI: 10.1007/978-3-319-50230-4 16

222 P.T.N. Vo and M. Spichkova

specification (NLS) manually. In this paper, we propose a framework for auto-
mated generation of NLS from the basic modelling artefacts, such as data type
definitions, State Transition Diagrams (STDs), and architecture specifications.

Contributions: The proposed solution would serve not only increasing the
understandability of formal models, but also keeping the system documenta-
tion up-to-date. System documentation is an important part of the development
process, but it is often considered by industry as a secondary appendage to the
main part of the development – modelling and implementation. It is hard to keep
the documentation up-to-date if the system model is frequently changing during
the modelling phase of the development. Thus, system requirements documents
and the general systems description are not updated according to the system’s or
model’s modifications. Sometimes the updates are overlooked, sometimes they
are omitted on purpose. For example, it is because of timing or costs constraints
on the project. As a result, the system documentation is often outdated and does
not describe the latest version of the system model. The question is whether we
need to update the documentation manually, cf. [32].

Outline: The rest of the paper is organised as follows. Section 2 describes the
related work. Section 3 introduces the proposed framework and a small case study
to illustrate the ideas of the framework. In Sect. 4 we summarise the paper and
propose directions for future research.

2 Related Work

The research field of automated translation from formal modelling languages
to natural languages is almost uncovered, however, there are many approaches
on automated generation of (semi-)formal specifications from natural language
ones. Lee and Bryant [23] presented an approach automatically generate formal
specifications in an object-oriented notation from NLS. Cabral and Sampaio [9]
suggested to use a Controlled Natural Language (CNL), a subset of English
to analyse system characteristics represented by a set of declarative sentences.
CNL use restricted vocabulary, grammar rules in defined knowledge based for
the aim of formal models generation. This also allows to generate structured
models at different levels of abstraction, as well as provides formal refinement of
user actions and system responses.

Schwitter et al. [27] introduced ECOLE, an editor for a controlled language
called PENG (Process-able English), that defines a mapping between English
and First-Order Logic in order to verify requirements consistency, as well as
to help writing manuals and system specifications to improve documentation
quality, which is our goal of generated specifications in natural language.

As several attempts have been made to automate the requirement capture,
there is another approach for the automatic construction of Object-oriented
design model in UML diagram from natural language requirement specification.
Mala and Uma [24] present a methodology that utilizes the automatic reference

Model-Based Generation of Natural Language Specifications 223

resolution and eliminates the user intervention. The input problem statement is
split into sentences for tagging by sentence splitter in order to get parts of speech
for every word. The nouns and verbs are then identified by tagged texts based
on simple phrasal grammars. Reference resolver is used to remove ambiguity by
pronouns. The final text is then simplified by the normaliser for mapping the
words into object-oriented system elements. The result produced by the system
is compared with human output on the basic analysis of the text. The approach
is promising to introduce a method to restructure the natural language text into
modelling language in respect of system requirements specifications. Although
there is a shortage of the efficiency in the tagger and reference resolver that
result in unnatural expressions and misunderstandings, it can be improved by
building a knowledge base for the system elements generation.

Juristo et al. [20] introduced an approach to formalise the requirement analy-
sis process. The goal of this approach was to generate conceptual models in a
precise manner, which provides support for resolving difficulties of misunder-
standing the system requirements. The approach is based on examining the infor-
mation extraction at the beginning of the development process (i.e., describing
the problems in natural language sentences), and consists of two different activ-
ities: formalisation of the conceptual model and creation of the formal model.
The limitation of this approach is in the difficulties to retrieve the rigorous and
concise problem descriptions.

Gangopadhyay [14] suggested to design a conceptual model from a func-
tional model, expressed in natural language sentences. Although its application
is mainly for database applications, it can be extended to other design problems
such as Web engineering and data warehousing. In order to interpret natural
language expressions, Gangopadhyay applied the theory of Conceptual Depen-
dencies developed by Schank, cf. [26]. The main goal of this approach was to
identify data elements from functional model expressed in NLS, to locate miss-
ing information, as well as to integrate all individual data elements into an over-
all conceptual schema for data model establishment. A prototype system using
Oracle database management system has been implemented to contain a parser
for information collection. However, the lexicon in use is developed incremen-
tally and semi-automated, so domain specialists still need to manually categorise
words and phrases, to ensure non-relevant words are included in the system dur-
ing the development of the conceptual model and to prevent systematic bias.

Bryant [8] suggested the theory of Two-Level Grammar for natural language
requirements specification, in conjunction with Specification Development Envi-
ronment to allow user interaction to refine model concepts. This approach allows
the automation of the process of transition from requirements to design and
implementation, as well as producing an understandable document on which
software system will base on.

Ilieva and Ormandjieva [19] proposed an approach on transition of nat-
ural language software requirements specification into formal presentation. The
authors decided their method into three main processing parts: (1) the Linguistic
Component as the text sentences to be analysed; (2) the Semantic Network as

224 P.T.N. Vo and M. Spichkova

the formal NL presentation; and (3) modelling as the final phase of formal pre-
sentation of the specification. However, the approach of Ilieva and Ormandjieva
involves manual human analysis process, to break down problems into smaller
parts that are easily understood.

3 Framework

Figure 1 illustrates the general ideas of the suggested framework. To build a pro-
totype for generation of NLS from the basic modelling artefacts, we have selected
the AutoFocus3 modelling tool [4,16] as the basis for our models, because this
tool (1) embeds the basic modelling artefacts, (2) is open source, as well as (3)
has a well defined formal syntax behind all its modelling elements.

AutoFocus3 is developed on system models based on the Focus theory [7]
that allows to specify system on different levels of abstraction formally and
precisely. Source code of AutoFocus3 models are coded in XML, which makes it
easy to parse and to analyse. AutoFocus3 has many advantages and is constantly
evolving through last 10 years. The tool was applied as a part of tool chain
within a number of development methodologies, e.g., for safety-critical systems
in general [17,18,30], and for automotive-systems [10,11]. The tool can also be
successfully applied for service-oriented modelling [6], which gives us another
reason to select AutoFocus3 for the framework we develop.

To allow further formal analysis of the generated specification, we restrict
English to its subset, Attempto Controlled English (ACE), cf. [13]. Specifica-
tions written in ACE give the impression of being informal, though they are in
fact formal and machine executable. ACE provides a set of principles and recom-
mendations for the strategy: to reduce the amount of lexical resources and struc-
tural sentences for a specification text to be unambiguously represented, and
to fulfil the communication gap between domain specialist and software devel-
oper. Basically, the construct of ACE specification is the declarative sentence
that is expressive enough to allow both natural usage and computer-processed
purpose [12].

Fig. 1. Framework: generation of natural language specifications from formal models

Model-Based Generation of Natural Language Specifications 225

Implementation: We are currently implementing an automated translator from
the AutoFocus3 models to ACE sentences in the Python programming language.
Python was chosen as the development language due to its rapid prototyping
features, as well as due to its increasing uptake by researchers as a scientific
software development language because of good code readability and maintain-
ability. With regard to the Python performance, it is sufficient for many common
tasks and turns out to be very close to C language for parsing a file and a tree-like
structure, cf. [25]. For the execution environment, we will research on the instal-
lation of ACE parsing engine, cf. [21], to execute natural language sentences in
Prolog, cf. [3].

XML Code of AutoFocus3 Models. While parsing the XML code of an
AutoFocus3 model, we have to identify three core sections:

– Specifications of data types and functions/constants (introduced by the XML-
tag rootElements with the type Data Dictionary, cf. below for an example from
the SimpleTrafficLight case study).

– Specifications of the system and components architecture (introduced by the
XML-tag rootElements with the type ComponentArchitecture);

– Specifications of the state machines, used to describe the behaviour of system
components (introduced by the XML-tag containedElements with the type
StateAutomaton):

As each of these parts consists of XML representation of the AutoFocus3 ele-
ments, we can define a translation schema for each of these elements to generate
English sentences out of the XML code. The sentences should be conform to the
ACE rules. To validate that this constraint is fulfilled, we have to analyse syntax
and semantics of the generated sentences.

Translation Schema. Let us discuss the translation schema in more
details, focusing for simplicity on the specifications of data types and func-
tions/constants. The definition of each data type is provided within the XML-tag
typeDefinitions, where the keyword Enumeration indicates that this is an enu-
meration type. The name of the data type is coded within the attribute name.
The elements of the type are introduces with the tag members. For the case
of an enumeration type, we would have the following XML structure, where N
is a natural number representing a number of elements in the data type, and
i1, . . . , iN+1 are some natural numbers representing internal identifiers of Auto-
Focus3 elements:

<typeDefinitions xsi:type=“org-fortiss-af3-expression-definitions:Enumeration” id=“i1”

name=“TypeName”>

<members id=“i2” name=“MemberName1” />

. . .

<members id=“iN+1” name=“MemberNameN” />

</typeDefinitions>

226 P.T.N. Vo and M. Spichkova

To generate an ACE sentence from this structure, we define two templates:

– For the case we have only one element, i.e., N = 1, we would use the template
TypeName is a datatype. It consists-of one element that is MemberName1.

– For the case we have more than one element, i.e., N > 1, we would use the
template TypeName is a datatype. It consists-of N elements that are Member-
Name1, . . . , MemberNameN .

The definition of each function/constant is provided within the tag function,
where its name and value are coded within the attributes name and value. For
the case of constant function, we would have the following XML structure, where
j1, j2 are some natural numbers representing internal identifiers of AutoFocus3
elements:

<functions id=“j1” >

<function id=“j2” name=“ConstantName” />

<definition>

<statements xsi:type=“org-fortiss-af3-expression-terms-imperative:Return”>

<value xsi:type=“org-fortiss-af3-expression-terms:IntConst” value=“ConstantVaue”/>

</statements>

</definition>

<returnType xsi:type=“org-fortiss-af3-expression-types:TInt” />

</functions>

To generate an ACE sentence from this structure, we define the following
template:

ConstantName is a constant. It is equal to ConstantVaue.

Similar translation patterns apply for architecture specifications and state tran-
sition diagram sections.

ACE: Syntax Check. ACE supports declarative sentences, which includes
simple sentences, there is/are-sentences, boolean formulas, composite sentences,
interrogative sentences, imperative sentences. ACE construction rules determine
whether an English sentence is an ACE sentence, cf. [1]. Each ACE sentence is
an acceptable English sentence, but not every English sentence is justified as a
valid ACE sentence. Thus, to be conformed to ACE construction rules, an NLS
in English should be constructed from the following elements:

– Function words: determiners, quantifiers, coordinators, negation words, pro-
nouns, query words, modal auxiliaries, “be”, Saxon genitive marker’s;

– Fixed phrases: “there is”, “it is true that”;
– Content words: nouns, verbs, adjectives, adverbs, prepositions.

Model-Based Generation of Natural Language Specifications 227

The function words and fixed phrases are predefined and cannot be changed,
whereas content words can be modified by users within the lexicon format, cf. [2].
The content words cannot contain blank spaces. For instance, “interested in”
should be reformulated to “interested-in”.

ACE: Semantics Check. The mentioned above rules cannot remove all ambi-
guities in English. To avoid ambiguity, ACE provides a set of interpretation
rules. Thus, each ACE sentence can have only one meaning, based on its syntax
and on syntax of previous sentences.

The correctness of the generated sentences can be validated by the ACE query
sentences, cf. [12]. They can be subdivided into three forms that are yes/no-
questions (questions that require answer “yes” or “no”), wh-questions (questions
starting with the words “What”, “When”, “Where”, etc.), and how much/many-
questions, cf. [1]. For example, we could use the following questions to check the
definition of an enumeration data type XDataType:

– What is XDataType?
– How many elements does XDataType have?
– Is SomeElementName an element of XDataType?

Case Study: SimpleTrafficLight System. We present the core ideas of the
framework on example of a small case study, Simple Traffic Lights, introduced by
Lam and Teufl in [22]. In the Simple Traffic Lights case study, we the following
elements in the data definitions section:

– Functions tGreen, tRed, and tYellow that return a constant integer value to
represent the time in seconds for the active pedestrian or traffic light.

– Enumeration data types:

• pedastrianColor : pedestrian lights (Stop, Walk);
• TrafficColor : traffic lights (Green, Red, RedYellow, Yellow);
• Signal : one-element data type to represent the Present signal;
• IndicatorSignal : pedestrian requests to pass the street (Off, On).

Figure 2 illustrates the translation process from the AutoFocus3 data types and
the corresponding XML descriptions, to ACE sentences. After translation, we
check the definition of each data type as shown on Table 1 and in Fig. 3.

In a similar manner the natural language description of the system and
components architecture as well as of state machines, representing components
behaviour, are generated and checked.

228 P.T.N. Vo and M. Spichkova

Table 1. Validation the generated sentences using ACE-questions

Question Answer

What is IndicatorSignal? It is a data-type.

How many elements does IndicatorSignal have? It has 4 elements.

Is On an element of IndicatorSignal? Yes, it is.

Fig. 2. Mapping from AutoFocus 3 data types to ACE sentences

Model-Based Generation of Natural Language Specifications 229

Fig. 3. Validation the generated sentences using ACE-questions

4 Conclusions and Future Work

This paper introduces our ongoing work on NLS from formal models. The goal
of our current work is to generate documentation in English from the basic mod-
elling artefacts of the AutoFocus3 modelling language, that are data types, state
machines, and architectural components. This would allow to have an easy-to-
read and easy-to-understand specifications of systems-under-development, writ-
ten in English. To allow further formal analysis of the generated specification,
we restrict English to its subset, ACE. The proposed framework, in its current
version, can be applied to build a prototype for generation of ACE specifications
from the AutoFocus3 models.

The future work focuses on the implementation of an prototype translator
from AutoFocus3 to ACE, as well as on the extension of the framework to other
formal modelling languages.

References

1. ACE Construction Rules. http://attempto.ifi.uzh.ch/site/docs/ace
constructionrules.html. Accessed 28 July 2016

2. ACE Lexicon Specification. http://attempto.ifi.uzh.ch/site/docs/ace lexicon.html.
Accessed 28 July 2016

3. SWI-Prolog. http://www.swi-prolog.org. Accessed 28 July 2016
4. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: tooling

concepts for seamless, model-based development of embedded systems. In: Joint
proceedings of ACES-MB 2015-Model-based Architecting of Cyber-physical and
Embedded Systems, p. 19 (2015)

5. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9 4

http://attempto.ifi.uzh.ch/site/docs/ace_constructionrules.html
http://attempto.ifi.uzh.ch/site/docs/ace_constructionrules.html
http://attempto.ifi.uzh.ch/site/docs/ace_lexicon.html
http://www.swi-prolog.org
http://dx.doi.org/10.1007/978-3-319-06410-9_4

230 P.T.N. Vo and M. Spichkova

6. Broy, M., et al.: Service-oriented modeling of CoCoME with focus and AutoFocus.
In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Com-
ponent Modeling Example. LNCS, vol. 5153, pp. 177–206. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85289-6 8

7. Broy, M., Stólen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2001)

8. Bryant, B.R.: Object-oriented natural language requirements specification. In: 23rd
Australasian Computer Science Conference, pp. 24–30. IEEE (2000)

9. Cabral, G., Sampaio, A.: Formal specification generation from requirement docu-
ments. Electron. Notes Theor. Comput. Sci. 195, 171–188 (2008)

10. Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Scheidemann, K., Spichkova,
M., Trachtenherz, D.: A top-down methodology for the development of automotive
software, Technical report, TUM-I0902, TU München (2009)

11. Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Scheidemann, K., Spichkova,
M., Trachtenherz, D.: A refined top-down methodology for the development of
automotive software systems - the keylessentry system case study, Technical report,
TUM-I1103, TU München (2011)

12. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85658-0 3

13. Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). arXiv preprint
cmp-lg/9603003 (1996)

14. Gangopadhyay, A.: Conceptual modeling from natural language functional speci-
fications. Artif. Intell. Eng. 15(2), 207–218 (2001)

15. Guiho, G., Hennebert, C.: Sacem software validation. In: 12th International Con-
ference on Software Engineering, pp. 186–191. IEEE (1990)

16. Hölzl, F., Feilkas, M.: 13 AutoFocus 3 - a scientific tool prototype for model-
based development of component-based, reactive, distributed systems. In: Giese,
H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS 2007. LNCS, vol.
6100, pp. 317–322. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16277-0 13

17. Hölzl, F., Spichkova, M., Trachtenherz, D.: AutoFocus Tool Chain, Technical
report, TUM-I1021, TU München (2010)

18. Hölzl, F., Spichkova, M., Trachtenherz, D.: Safety-critical system development
methodology. Technical report, TUM-I1020, TU München (2010)

19. Ilieva, M.G., Ormandjieva, O.: Automatic transition of natural language software
requirements specification into formal presentation. In: Montoyo, A., Muńoz, R.,
Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 392–397. Springer, Heidelberg
(2005). doi:10.1007/11428817 45

20. Juristo, N., Morant, J.L., Moreno, A.M.: A formal approach for generating OO
specifications from natural language. J. Syst. Softw. 48(2), 139–153 (1999)

21. Kaljurand, K., Fuchs, N.E., Kuhn, T.: APE - ACE Parsing Engine. https://github.
com/Attempto/APE. Accessed 30 Mar 2016

22. Lam, P.S., Teu, S.: Simple Traffic Lights tutorial for AutoFocus 3. http://af3.
fortiss.org/docs/. Accessed 30 Mar 2016

23. Lee, B., Bryant, B.R.: Automated conversion from requirements documentation to
an object-oriented formal specification language. In: Proceedings of the 2002 ACM
symposium on Applied computing, pp. 932–936. ACM (2002)

http://dx.doi.org/10.1007/978-3-540-85289-6_8
http://dx.doi.org/10.1007/978-3-540-85658-0_3
https://arxiv.org/abs/cmp-lg/9603003
http://dx.doi.org/10.1007/978-3-642-16277-0_13
http://dx.doi.org/10.1007/11428817_45
https://github.com/Attempto/APE
https://github.com/Attempto/APE
http://af3.fortiss.org/docs/
http://af3.fortiss.org/docs/

Model-Based Generation of Natural Language Specifications 231

24. Mala, G.S.A., Uma, G.V.: Automatic construction of object oriented design models
[UML Diagrams] from natural language requirements specification. In: Yang, Q.,
Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 1155–1159. Springer,
Heidelberg (2006). doi:10.1007/978-3-540-36668-3 152

25. Sanner, M.F.: Python: a programming language for software integration and devel-
opment. J. Mol. Graph. Model. 17(1), 57–61 (1999)

26. Schank, R.C.: Conceptual dependency: a theory of natural language understanding.
Cogn. Psychol. 3(4), 552–631 (1972)

27. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE - a look-ahead editor for a con-
trolled language. In: EAMT-CLAW 2003, pp. 141–150 (2003)

28. Spichkova, M.: Human factors of formal methods. In: IADIS Interfaces and Human
Computer Interaction, IHCI 2012 (2012)

29. Spichkova, M.: Design of formal languages, interfaces: “formal” does not mean
“unreadable”. In: Blashki, K., Isaias, P. (eds.) Emerging Research and Trends in
Interactivity and the Human-Computer Interface. IGI Global (2013)

30. Spichkova, M., Hölzl, F., Trachtenherz, D.: Verified system development with the
AutoFocus tool chain. In: Workshop on Formal Methods in the Development of
Software (2012)

31. Spichkova, M., Liu, H., Laali, M., Schmidt, H.W.: Human factors in software reli-
ability engineering. In: Workshop on Applications of Human Error Research to
Improve Software Engineering (WAHESE 2015) (2015)

32. Spichkova, M., Zhu, X., Mou, D.: Do we really need to write documentation for a
system? In: International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2013) (2013)

33. Zamansky, A., Rodriguez-Navas, G., Adams, M., Spichkova, M.: Formal methods
in collaborative projects. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE). IEEE (2016)

34. Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, pp. 371–380. ACM (2006)

http://dx.doi.org/10.1007/978-3-540-36668-3_152

Human-Oriented Formal Modelling
of Human-Computer Interaction:

Practitioners’ and Students’ Perspectives

Antonio Cerone(B)

Department of Computer Science, Nazarbayev University, Astana, Kazakhstan
antonio.cerone@nu.edu.kz

Abstract. Practitioners and students tend to have a negative inclina-
tion towards formal methods and consider them hard to learn and unus-
able in practice. In this paper we analyse the perspectives of practition-
ers, computer scientists and students to show that a notation developed
for modelling interactive systems in previous work and its translations
into rewriting logic and process algebra represent an appropriate com-
promise among such perspectives.

Keywords: Human computer interaction · Formal methods applica-
tions · Computer science education

1 Introduction

Formal methods experts are often so much focussed on the investigation of theo-
retical aspects of formal notations rather than on their applications to real prob-
lems, that they often neglect the needs of practitioners. As a result, they produce
methods of little use in practice and have to resort to simplified, unrealistic, too
abstract versions of application-domain problems while they are also biased in
choosing the data that best illustrate the features and potential of their favourite
formal languages and analysis techniques [5]. Instead of focusing on usability, for-
mal analysis and the tools that realise it are more and more evolving towards
efficient, automatic rather than human-oriented proofs (theorem-proving) [1] or
the checking of rich extensions of temporal logic, which are hard to understand by
humans (model checking). Nothing of this is of any interest for a practitioner. In
addition, formal methods are often presented to students through dry syntax and
involved semantics rather than seen in a lively applicative context through lab
sessions that allow students to use appropriate, usable tools to experiment both
with learning-oriented, fun-making examples and, when familiarity is acquired,
with real world case studies [4].

In this paper we consider three human-oriented perspectives in which formal
methods can be used to model human-computer interaction.

First, the development of new approaches to the use of formal methods
and tools within a specific application domain should address the perspective
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 232–241, 2016.
DOI: 10.1007/978-3-319-50230-4 17

Human-Oriented Formal Modelling of Human-Computer Interaction 233

of and provide an effective support to the practitioner (who is normally a domain
expert) and should be tested on real case studies from the application domain.
This aspect is dealt with in Sect. 2, where modelling and analysis goals and
objectives, as well as description level, are established from the perspective of a
practitioner, who is, in our context, a cognitive psychologist/scientist. An intu-
itive but unambiguous notation to model cognitive processes, subset of a more
extensive notation presented in previous work [3], is illustrated in the context of
the practical use of the practitioner.

Second, the intuitive description of the problem given from a domain expert
perspective has to be translated or, technically speaking, implemented into an
appropriate formal language, which, on the one hand, is equipped with powerful
tools that support the accomplishment of the modelling and analysis objectives of
the domain expert, and, on the other hand, is close enough to the intuitive mod-
elling notation used by the domain expert. Section 3 provides another notation,
also from our previous work [3], with simple primitives to describe the behaviour
of interfaces, which reflects, in a simplified form, the formal methods perspective
of modelling a system in terms of transitions between states. Section 4 merges
the notations corresponding to the two perspectives into a modelling language
for interactive systems, which has been implemented using two distinct formal
methods, rewriting logic and process algebra.

Third, it essential to address learners’ and practitioners’ negative inclination
towards formal methods and provide the appropriate educational tools to allow
learners, as well as practitioners, to overcome the prejudice that “formal methods
are hard to learn and to use”. This should be done at the root, by making learning
formal methods motivating, appealing and involving for students. Therefore, in
Sect. 5 we discuss the role of our modelling language and its translations into
rewriting logic and process algebra in the context of an PhD course on applied
formal methods.

2 A Perspective from Cognitive Science

Cognitive science is an interdisciplinary field that comprises various research
disciplines, including psychology, artificial intelligence, philosophy, neuroscience,
linguistics, and anthropology [13]. Moreover, it adopts the so-called informa-
tion processing approach, whereby human cognitive processes are modelled as
processing activities that make use of input-output channels, to interact with
the external environment, and three main kinds of memory to store informa-
tion: sensory memory, where information perceived through the senses persists
for a very short time; short-term memory (STM), where the information that is
needed for processing activities is temporary stored; long-term memory (LTM),
where information is organised in structured ways for long-term use [6]. In this
sense computer scientists and cognitive scientists share the view of a process-
ing system with components for input, output and storage of information, and
information streams flowing between different components (computer analogy).

In spite of this important commonality, the perspective of a cognitive scientist
tends to be very different from the perspective of a computer scientist, especially

234 A. Cerone

if the computer scientist is a formal methods expert. In particular, a cognitive
scientist tends to see a model as conceptual rather than formal and give it
representations that are visual rather than mathematical and/or symbolic. Even
when a mathematical representation of the model is conceived, this is envisaged
as an operational tool to be used only for description or simulation purposes.
Furthermore, even cognitive scientists who work in the area of human-computer
interaction are not keen to use formal descriptions, but prefer to adopt instead
the scientific method and analyse and evaluate systems using empirical and
measurable evidence, systematic observation and usability experiments.

In terms of general goals a domain expert aims at

1. describing domain phenomena with a notation that represents them in an
intuitive way by providing a direct representation of the basic components
and processes of the domain;

2. using tools that can:
(a) automatically manipulate such notation to generate simulations of the

domain phenomena and map the results on the structure of the domain
components;

(b) extract global information and general properties from an extensive set
of simulations.

Therefore, the respective objective of a cognitive scientist are

1. a notation to define cognitive processes in terms of how the different com-
ponents of human cognition (perception, attention, memory, reasoning and
action) cooperate to process information, possibly with the support of a dig-
ital device or system through its interface, to accomplish specific goals of
human behaviour;

2. the availability of tools that:
(a) allow a simulation mapped on the various cognitive and non cognitive

components;
(b) provide analysis features to conduct in-silico experiments to overcome a

major difficulty in cognitive science field studies and lab experiments,
that is, that human behaviour, the main object of study, is characterised
by multiple aspects, such as unpredictability, ethical issues, individual
and cultural diversity, inaccessibility of introspective processes and slow
evolution, that hinder the design of the research plan and the validity of
the results.

In order to address these human-oriented objectives and link the two distinct
perspectives of a cognitive scientist and a computer scientist, we devised an intu-
itive, formal notation to describe the components of a cognitive system and the
information flow among them [3]. We consider only STM as a dynamic memory,
that is, supporting both storage and retrieval of information; LTM is, instead,
implicitly seen as a container of all knowledge needed for the processing activ-
ities, as already given rather than dynamically constructed, with only retrieval
and no storage (i.e. no transfer between STM and LTM); sensory memory is not
represented at all.

Human-Oriented Formal Modelling of Human-Computer Interaction 235

2.1 A Formal Notation for Human Cognition and Behaviour

Input and output occur in humans through senses. We give a general represen-
tation of input channels in term of perceptions, with little or no details about
the specific senses involved in the perception. We represent output channels in
term of actions. Actions are performed in response to perceptions.

Human behaviour is driven by goals. In order to accomplish a goal in a specific
domain of action, the human has to carry out a task, that is, an operation to
manipulate the concepts of the domain. This is done by performing actions. In
an interactive context, namely while interacting with an interface, each action is
normally executed as an automatic response to a specific perception (automatic
control or automaticity). For example, automaticity is essential in driving a car:
the driver is aware of the high-level tasks that are carried out, such as driving to
office, turning to the right and waiting at a traffic light, but is not aware about
low-level details such as changing gear, using the indicator and the colour of the
traffic light, amber or red, while stopping at a traffic light. A goal is associated
with a top-level task. A top-level task can be decomposed in a hierarchy of tasks
until reaching basic tasks, which cannot be further decomposed. We model a
basic task as a quadruple

infoi ↑ perch =⇒ acth ↓ infoj

where perception perch triggers the retrieval of information infoi from the STM,
the execution of action acth and the storage of information infoj in the STM.
We formally denote by none when there is no information to retrieve from or
store in the STM.

Information is kept promptly available, while it is needed to perform the
current top-level task, by storing it in the STM. For the purpose of our work
we consider only two kinds of information that can be stored in the STM: task
goal, represented as the action that directly accomplishes the goal, and action
reference, which refers to a future action to be performed. A task goal is formally
modelled as goal(act) where act is the action that directly accomplishes the goal.

As an example, a simple Automatic Teller Machine (ATM) task, in which
the user has only the goal to withdraw cash, is modelled by the following four
basic tasks

1. none ↑ cardR =⇒ cardI ↓ cardB
2. none ↑ pinR =⇒ pinI ↓ none
3. none ↑ cashO =⇒ cashC ↓ none
4. cardB ↑ cardO =⇒ cardC ↓ none

where: cardR denotes the perception that the ATM is ready to receive the card,
pinR that it has requested the pin, cashO that it has delivered the cash and
cardO that it has delivered the card; cardI denotes the action of inserting the
card, pinI inserting the pin, cashC collecting the cash and cardC collecting the
card; cardB is the action reference used as a memory for the card collection (it
refers to action cardC). The goal (“to withdraw cash”) is identified with the act
of collecting cash (action cashC) and is formally modelled as goal(cashC).

236 A. Cerone

3 A Perspective from Formal Methods

We consider one possible formal methods perspective in which the system behav-
iour is seen as a discrete sequence of state changes. We apply this perspective to
the context of a user interacting with an interface. Normally an interface provides
an output to the user and waits for the user action (i.e. reaction), which is seen
as an input that triggers a change of state. In some cases the current state stateh
is associated with a timeout: if user’s reaction acth occurs before the timeout
expires, then it triggers the change to state statek, otherwise, at the expiration
of the timeout, the state changes to state stater, which may be distinct from
statek. In order to associate timeouts with interface states, we decorate interface
states as follows.

state!0 state not associated with a timeout;
state!1 state associated with a timeout that is not expired;
state!2 state associated with a timeout that has already expired.

Thus we model a state change as a triple

stateh!m acth−→ statek!n

where interface state stateh, with possible timeout characterised by m, triggers
the execution of action acth with a change to state statek, whose possible timeout
is charcterised by n. The initial state of the interface is normally an idling state
(the interface is available for an interaction), thus it is not associated with a
timeout (state!0). If we have

stateh!1 acth−→ statek!nk

and the timeout associated with stateh expires, than stateh!1 changes to stateh!2
and the state change that occurs at the timeout expiration is modelled by

stateh!2 −→ stater!nr

where the absence of action denotes that there is no interaction with the user,
thus describing an autonomous action of the interface.

4 A Common Perspective

We have seen in Sect. 3 that an action act is performed through a cooperation
between the human (the subject performing the action) and the interface (which
changes its internal state as a consequence of the human action). Therefore, an
action belongs to both a task and an interface transition and represents the
basic form of interaction. In the context of an interactive system, a user per-
ception refers to a stimulus produced by an output of the interface with which
the human is interacting. We can thus identify the perception with such an out-
put. Moreover, since the output of the interface is associated with the interface

Human-Oriented Formal Modelling of Human-Computer Interaction 237

state that results from producing that output, we can take a step forward and
identify the user perception with the interface state associated with the out-
put that produced that perception. For example, the interface state associated
with the interface of a vending machine giving a change is identified with the
perception (sound of falling coins or sight of the coins) produced. Thus, in our
notation, interface state and corresponding human perception are denoted by
the same formal entity (which, assuming the cognitive scientist’s perspective, we
call “perception” rather than “state”). In this way our formal notation meets
Objective 2 presented in Sect. 2.

Identifying interface state and corresponding human perception allows us
to merge the two notations presented in Sects. 2 and 3 and attain a modelling
language for interactive systems. A state change is thus modelled as

perch!m acth−→ perck!n

where perch is the perception that triggers the user to perform action acth, which
causes the interface to change to the state corresponding to perception perck.
As an additional link between the two merged notations, we keep track of the
human action acth, if any, that produced the state perck by defining an interface
state as a pair acth � perck!n. The initial state becomes then � perc!0.

With reference to the ATM example introduced in Sect. 2.1, we model an old
interface that sequentially requests a card, requests a pin, delivers the cash and
returns the card, and a new interface that returns the card before delivering the
cash. The two interface models are as follows.

Old ATM: transitions

1. cardR!0 cardI−→ pinR!1
2. pinR!1

pinI−→ cashO!1
3. cashO!1 cashC−→ cardO!1
4. cardO!1 cardC−→ cardR!0
5. pinR!2 −→ cardO!1
6. cashO!2 −→ cardO!1
7. cardO!2 −→ cardR!0

New ATM: transitions

1. cardR!0 cardI−→ pinR!1
2. pinR!1

pinI−→ cardO!1
3. cardO!1 cardC−→ cashO!1
4. cashO!1 cashC−→ cardR!0
5. pinR!2 −→ cardR!0
6. cashO!2 −→ cardR!0
7. cardO!2 −→ cardR!0

For both interfaces the initial state is � cardR!0. In both interfaces, transitions
1–4 model the normal sequences of interactions for the specific design (old or
new).

The last three transitions model interface autonomous actions. If the timeout
expires after requesting a pin (transitions 5), then in the old ATM the card is
returned, whereas in the new ATM the control goes back to the initial state,
implicitly modelling that the card is confiscated by the ATM, and in both cases
the cash delivery is inhibited. If the timeout expires after delivering the cash
(transitions 6), then in the old ATM the card is returned, whereas in the new
ATM the control goes back to the initial state, so inhibiting a cash collection
action in both cases and implicitly modelling that the cash is taken back by
the ATM. Finally, in both interfaces, if the timeout expires after returning the

238 A. Cerone

card, then the control goes back to the initial state, so inhibiting a card col-
lection action and, as a result, implicitly modelling that the card is confiscated
(transitions 7), obviously, with no cash delivery in the new ATM.

Our modelling language for interactive systems has been translated into
rewriting logic [3] and implemented using the MAUDE rewrite system1, and
into the CSP (Communicating Sequential Processes) process algebra [2] and
implemented using the Process Analysis Toolkit (PAT)2. Both tools, MAUDE
and PAT, are equipped with model checkers, thus featuring the potential for
meeting Objective 2 from Sect. 2. In reality, the simulators and model-checkers
of the two tools produce results that refer to the low-level structures that imple-
ment the modelling language with no mechanisms to present the effect of such
results on the high-level cognitive and non cognitive components, which the
practitioner is familiar with. Therefore, implementing such mechanisms, such as
domain specific visualisations [9], would be necessary to accomplish Objective 2.

5 Students’ Perspective

There is an ongoing debate on the importance of formal methods to computer
science education. This debate links with the wider debate on the centrality
of mathematics and logic in computer science curricula: on the one side the
claim that rigorous mathematical knowledge is not necessary for computer sci-
ence practitioners [7] and, on the other side, the belief [14,15] and the empirical
evidences [10–12] that learning rigorous discrete mathematics and formal meth-
ods has an important impact on problem-solving and programming skills and is
perceived by students as useful in practical problems and helpful in improving
their mental processes [16].

We agree with the latter position but, in addition, we believe [4] that:

1. instead of tediously going through the semantics of each construct in a formal
language, students should be allowed to experiment with an appropriate tool
to discover the semantics by themselves;

2. tools for simulation visualisation are essential to allow students to understand
the behaviour associated with their models.

Moreover, in order to motivate students, formal methods should be presented in
a variety of realistic, applied contexts, not at all limited to computer science and
software engineering, and including, why not, examples that can bring some fun
[4] in an apparently very serious area. The recent application of formal methods
to several disciplines such as biology and cognitive science provides heaps of
interesting and motivating examples.

The rewrite systems and CSP translations of our modelling language were
presented during a course on “Formal Methods for Interactive Systems”, which
was held at the IMT School for Advanced Studies Lucca in May 2015 and deliv-
ered to four first year PhD students. The double aim of the course, teaching
1 http://sysma.imtlucca.it/cognitive-framework-maude-hofm-2016/.
2 http://sysma.imtlucca.it/cognitive-framework-csp-hofm-2016/.

http://sysma.imtlucca.it/cognitive-framework-maude-hofm-2016/
http://sysma.imtlucca.it/cognitive-framework-csp-hofm-2016/

Human-Oriented Formal Modelling of Human-Computer Interaction 239

formal methods and provide an approach for their application to interactive sys-
tems, was realised through the use of our practitioner-oriented formal notation
and its translations in MAUDE and CSP.

After introducing the two translations but before introducing the tools, the
students were asked three questions:

1. “In which of the two approaches did you find easier to get the model right?”
2. “Which of the two translations is more elegant?”
3. “In which of the two approaches the resultant behaviour is easier to guess?”

The PhD students unanimously answered “the rewriting logic approach” to
Questions 1 and 3, and “the process algebra approach” to Question 2. It is
interesting to notice that, in spite of finding the process algebra approach more
difficult, the student unanimously agreed that it is more elegant. These answers,
as well as further remarks and opinions that emerged in an open discussion that
followed, are an indicator that students have a strong interest for solutions that
are concise, elegant and abstract, and that they are happy to tackle challenging
problems in order to look for elegant rather than easy solutions. Given the small
number of students and the absence of research design we cannot draw empirical
conclusions from the students’ answers and remarks, although these appear to
be in line with the results of previous research [16].

In terms of tools, from the perspective of a student learning formal meth-
ods, it is important to see simulation and model-checking results directly on the
low-level semantic structures underlying high-level domain structures. This per-
spective is very different from that of a practitioner, who prefers tools that hide
the formal semantic structures underlying domain structures. Moreover, in the
case of students’ perspective, the presentation of results must aim at highlighting
relations between behaviour and semantics and using under-approximation [8],
the capability to output only relevant states and/or events, as well as stimulating
and developing their abstraction and problem solving skills.

MAUDE and PAT are somehow complementary in terms of presentation of
results, also due to the different characteristics of the formal methods on which
they are based. MAUDE does not support any form of graphical representation
but supports a form of under-approximation, by filtering the output through
additional rewrite rules, and allows the designer to easily track which rewrite
rule is applied and check the content of all data structures, thus tracking the
behaviour back to the architectural view of the designer. PAT facilitates the
visual representations of the global behaviour in terms of finite state machines,
but the form of under-approximation introduced by the CSP hiding operator
is not very effective due to the possible introduction of nondeterminism, while
the represented behaviour does not reflect the structure, in terms of concurrent
components and synchronisations, from which the global behaviour has been
attained. However, the use of both these tools in our course has allowed students
to make use of all needed presentation features, visualisation from PAT, under-
approximation and behaviour tracking from MAUDE. Moreover, in our class
discussions, students showed the perception that the fact that the two tools are
based on two distinct modelling paradigms contributed to stimulate and develop
their abstraction and problem solving skills.

240 A. Cerone

6 Conclusion and Future Work

We have discussed to which extent the modelling language developed in previous
work [3] for modelling interactive systems may represent an appropriate compro-
mise between the perspectives of an HCI practitioner (meets Objective 2 from
Sect. 2) and a formal methods expert (can be translated into formal methods and
undergo formal analysis). We noted that in order to accomplish Objective 2 from
Sect. 2 it would be necessary to implement mechanisms to effectively present the
results of simulation and model checking on the high-level cognitive and non
cognitive components, for example through domain specific visualisations.

Instead, for students learning formal methods, the presentation of both the
rewriting logic translation and the CSP translation and both respective tools,
MAUDE and PAT, was perceived by the students themselves as beneficial for
their abstraction and problem solving skills. In our future work, we plan to
systematically investigate empirical evidence of such student perception.

References

1. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 3–19. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15201-1 1

2. Cerone, A.: Closure, attention activation in human automatic behaviour: A frame-
work for the formal analysis of interactive systems. In: Proceedings of FMIS 2011,
Electronic Communications of the EASST, vol. 45 (2011)

3. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of
interactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol.
9763, pp. 287–303. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41591-8 20

4. Cerone, A., Roggenbach, M., Schlingloff, B.-H., Schneider, G., Shaikh, S.: Teaching
formal methods for software engineering – ten principles. Informatica Didactica 9
(2015). https://www.informaticadidactica.de/index.php?page=Schlinghoff2015

5. Cerone, A., Scotti, M.: Research challenges in modelling ecosystems. In: Canal, C.,
Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 276–293. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-15201-1 18

6. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction. Pearson
Education, Upper Saddle River (1998)

7. Glass, R.L.: A new answer to “how important is mathematics to the software
practitioner?”. IEEE Softw. 17(6), 136–136 (2000)

8. Idani, A., Stouls, N.: When a formal model rhymes with a graphical notation.
In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 54–68. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-15201-1 4

9. Ladenberger, L., Dobrikov, I., Leuschel, M.: An approach for creating domain
specific visualisations of CSP models. In: Canal, C., Idani, A. (eds.) SEFM
2014. LNCS, vol. 8938, pp. 20–35. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-15201-1 2

10. Page, R.L.: Software in discrete mathematics. In: Proceedings of ICFP 2003, ACM
SIGPLAN Notices, vol. 38, pp. 79–86. ACM (2003)

11. Sobel, A.E.K., Clarkson, M.R.: Formal methods application: an empirical tale of
software development. IEEE Trans. Softw. Eng. 28(3), 308–320 (2002)

http://dx.doi.org/10.1007/978-3-319-15201-1_1
http://dx.doi.org/10.1007/978-3-319-41591-8_20
https://www.informaticadidactica.de/index.php?page=Schlinghoff2015
http://dx.doi.org/10.1007/978-3-319-15201-1_18
http://dx.doi.org/10.1007/978-3-319-15201-1_4
http://dx.doi.org/10.1007/978-3-319-15201-1_2
http://dx.doi.org/10.1007/978-3-319-15201-1_2

Human-Oriented Formal Modelling of Human-Computer Interaction 241

12. Sobel, A.E.K., Clarkson, M.R.: Response on “Comments on ‘Formal methods appli-
cation: an empirical tale of software development”’. IEEE Trans. Softw. Eng. 29(6),
572–575 (2003)

13. Thagard, P.: Cognitive science. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Stanford University (2008)

14. Wing, J.M.: Teaching mathematics to software engineers. In: Alagar, V.S., Nivat,
M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 18–40. Springer, Heidelberg (1995).
doi:10.1007/3-540-60043-4 44

15. Wing, J.M.: Invited talk: weaving formal methods into the undergraduate computer
science curriculum (Extended Abstract). In: Rus, T. (ed.) AMAST 2000. LNCS,
vol. 1816, pp. 2–7. Springer, Heidelberg (2000). doi:10.1007/3-540-45499-3 2

16. Zamansky, A., Farchi, E.: Exploring the role of logic and formal methods in
information systems education. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 68–74. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-49224-6 7

http://dx.doi.org/10.1007/3-540-60043-4_44
http://dx.doi.org/10.1007/3-540-45499-3_2
http://dx.doi.org/10.1007/978-3-662-49224-6_7
http://dx.doi.org/10.1007/978-3-662-49224-6_7

“Boring Formal Methods” or “Sherlock Holmes
Deduction Methods”?

Maria Spichkova(B)

RMIT University, Melbourne, Australia
maria.spichkova@rmit.edu.au

Abstract. This paper provides an overview of common challenges in
teaching of logic and formal methods to Computer Science and IT stu-
dents. We discuss our experiences from the course IN3050: Applied Logic
in Engineering, introduced as a “logic for everybody” elective course at
TU Munich, Germany, to engage pupils studying Computer Science, IT
and engineering subjects on Bachelor and Master levels. Our goal was
to overcome the bias that logic and formal methods are not only very
complicated but also very boring to study and to apply. In this paper,
we present the core structure of the course, provide examples of exercises
and evaluate the course based on the students’ surveys.

1 Introduction

Logic not only helps to solve complicated and safety-critical problems, but also
disciplines the mind and helps to develop abstract thinking, which is very impor-
tant for any area of Computer Science and Engineering. Problems in teaching
and learning the basic principles of logic lead to the lack of analytical skills and
abstract thinking as well as to the problems in understanding of Formal Meth-
ods (FMs). The disputes on teaching logic and FMs have been going on for a
long time, but most lecturers teaching these subjects agree that they face many
challenges specific to these subjects.

Students are strongly focused on the direct relevance of what they study to
their daily practice, and are not interested to study more fundamental subjects,
especially logic [29,32]. The main obstacle in this case is that the students cannot
match logic and FMs (in contrary to Games Development, Programming, Test-
ing, etc.) to real world problems. As curricula becomes more practice-oriented,
the mathematical background of the students becomes weaker which provides
an additional obstacle in understanding of logic and FMs, cf. [2,5,34]. Also,
many students have negative perceptions and even fear of courses that require
dealing with complex mathematical notations. This is strongly related to the
phenomenon of mathematical anxiety [22,31].

The term mathematical anxiety was introduced in 1972 by Richardson and
Suinn as “feelings of tension and anxiety that interfere with the manipulation
of numbers and the solving of mathematical problems in a wide variety of ordi-
nary life and academic situations,” [18]. As stressed by Wang et al., mathemat-
ical anxiety has attracted recent attention because of its damaging psycholog-
ical effects and potential associations with mathematical problem solving and
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 242–252, 2016.
DOI: 10.1007/978-3-319-50230-4 18

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 243

achievement. From our point of view, this term could be extended to mathemat-
ical and logical anxiety (or even to formal methods anxiety), to cover a similar
phenomenon on learning logic and FMs.

Moreover, the term “formal” is for many people just some kind of synonym for
“unreadable”, however, even small syntactical changes of a formal method can
make it more understandable and usable for an average engineer. In the course
IN3050: Applied Logic in Engineering we aimed to apply the core principles of
our research work on Human Factors of Formal Methods [24,25], applying the
engineering psychology achievements to the design of FMs. However, improving
the usability aspects we cannot overcome the preconceived notions about FMs
completely. To achieve the goal, we should start by training and teaching of
logic not only by presenting its theoretical aspects but also focusing on its real
applications, industrial and non-industrial ones, referring to the programming
languages where the formal side is almost covered, or to famous fiction books
and movies, e.g., to the famous crime stories by A.C. Doyle. We applied these
ideas within the course IN3050: Applied Logic in Engineering for Bachelor and
Master students, and the students’ feedback on this matter was very positive.

There also is a great diversity in the students’ background and cognitive skills
due to the globalisation of higher education, which requires constant adaptation,
cf. [7,12]. One possible solution to overcome this problem is to provide courses
that require very basic or even no background knowledge in the corresponding
areas, having as result a “course for everybody”, and providing students with
deeper background additional non-compulsory tasks.

Contributions: Our goal was to overcome these problems and to teach the
course IN3050: Applied Logic in Engineering without expecting any previous
knowledge on logics and abstract thinking (in contrary to the many courses on
logic and FMs). We introduced this lecture course as a “logic for everybody”,
to engage pupils studying Computer Science, IT and engineering subjects, to
overcome the bias that logic and formal methods are not only very complicated
but also “very boring to study and to apply”. As per evaluation report [1], the
majority of the students agreed that the course was helpful to their understand-
ing of application of logic and FMs in Engineering. We believe that this course
would be especially beneficial for Computer Science students, as well as for the
IT students who aim to work as Software Requirements Engineers and Software
Testers. A general introduction to this course was presented in a technical report
[26]. In this paper we are going to focus on generalisation and analysis of the
proposed solutions to improve students’ learning experience.

Outline: The rest of the paper is organised as follows. Section 2 presents a short
overview of the related work on teaching logic and FMs. Section 3 introduces the
core structure of the course IN3050: Applied Logic in Engineering, where Sect. 4
presents a number of examples we used at the lectures and tutorials. Section 5
concludes the paper evaluating the course based on the results from the students’
surveys.

244 M. Spichkova

2 Related Work

A symposium to explore and discuss the challenges and successful solutions in
teaching of FMs was organised in 2004. After 12 years, the lecturers face very
similar problems while teaching logic and FMs: mathematical and logical anxiety
as well as understandability and readability of FMs. However, over the last few
years there have been number of interesting and promising approaches that we
would like to discuss here. In our previous work [28], we discussed the common
issues in teaching of FMs and logic, as well as reviewed various approaches for
teaching FMs for Software Engineering that have been proposed, and discuss
how they address the above mentioned challenges. The focus of our analysis
here is on the collaborative and communication aspects of software development
using formal methods and logical modelling.

A novel way to attract students while teaching FMs was presented in [6].
Within the engagement project cs4fn, Computer Science for Fun, the authors
taught logic and computing concepts using magic tricks, which inspired students
to work with logical tasks. Our approach was less revolutionary: we based the
course on both practical examples and entertainment examples, such as formal
modelling of logical puzzles and the Sherlock Holmes deductions from the modern
BBC TV series “Sherlock”.

Noble et al. [17] presented a course on Introduction to Software Modelling,
where Alloy programming language was taught along with introduces the prin-
ciples and practices of Software Engineering, beginning with domain analysis,
specification of classes and use cases, writing invariants, etc. An interesting point
about this douse is that the Alloy tool itself and the Alloy language were not
introduced until the final two blocks of the course, to allow focusing on software
modelling, rather than on the technical tools.

Wang and Yilmaz suggested to group the study programs in three main cat-
egories, based on the way logic and FMs are integrated into software engineering
curriculum, cf. [30]: programs avoiding FMs, programs having a specific course
with emphasis on formal verification of source code, and programs redesigned to
have FMs integrated throughout the curriculum. This grouping does not cover
another category, which we see as a very promising for integrating logic FMs
into software engineering curriculum: to introduce a specific course that

(1) covers basics of logic and FMs, without requiring a deep knowledge in math-
ematics, and

(2) uses visualisation and gamification/puzzle strategies to make the material
more understandable and less boring for the students.

Examples of this kind of courses might be

– the Logic and FM course designed for Information Systems students [35],
– a series of courses specifically adapted to the needs of university of applied

sciences, described in [29],

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 245

– Courses Computational Thinking at the Singapore Management University
and Computational Thinking and Design at the University of Maryland, organ-
ised in the spirit of “computational thinking for everybody” envisioned by
Wing [33].

The course IN3050: Applied Logic in Engineering, which we introduced as a
“logic for everybody” course, can be seen as another example of this kind of
courses.

3 Course: Applied Logic in Engineering

The course IN3050: Applied logic in Engineering (ALE) was introduced at TU
Munich, Germany, in Winter Semester 2012/2013 as a face-to-face course on
Bachelor and Master levels.1 The course was designed as an elective without any
enforced prerequisites. It contributed 6 credit points to the student curriculum,
which corresponds to 4 teacher-directed hours.

In the case of ALE, the teacher-directed hours were divided into weekly
lectures (2 h a semester week) and weekly tutorials (2 h a semester week). The
course attracted 20 students from the following study programs:
– Computer Science (German, “Informatik”),
– Business Informatics (German, “Wirtschaftsinformatik”),
– Mechanical Engineering (German, “Maschinenwesen”).

Introductory courses on Modelling in/for Software Engineering are usually
taught in the first or second semester of the first year of study. In contrast
to this kind of courses, we
– focused not on principles and practices of Software Engineering, but on logical

concepts, representation and analysis of information and problems;
– provided the course without any restriction on the year of study, and as result

most of the students enrolled into this course were either at the beginning of
their study (1–3 semester) or at their final semesters (7th semester or later).

The exam for this course was organised as an open book exam, as our goal was
to examine whether the students understand and are able to apply the core
principles of logic methods, rather than check they memory.

The learning outcomes of this course are that on completion of this course
students
(1) will be able to state the basic principles of logic applied in Engineering, and
(2) will experience practical applications of these principles.

The general structure of the course is presented on Fig. 1. ALE is partially
based on the book of Schöning [20], which introduces the notions and methods
of formal logic from a computer science standpoint, as well as on the book of
Russell and Norvig [19]. We also recommended our students to read the textbook
of Harrison [11], which focuses on practical application of logic and automated
reasoning [11], as well as a number of other books on logic and (semi-)automated
theorem proving [4,10,14].
1 http://www4.in.tum.de/lehre/vorlesungen/Logic/WS1213/index.shtml.

http://www4.in.tum.de/lehre/vorlesungen/Logic/WS1213/index.shtml

246 M. Spichkova

Fig. 1. Structure of the course Applied logic in Engineering

To explain the core ideas of Propositional Logic, First Order Logic (FOL) as
well as of the special kinds of logics (such as Datalogic, Description logic, etc.),
we provided illustrative examples and exercises that were based both

– on application of the logics in Engineering, coming from real industrial prob-
lems,

– on puzzles and analysis of situations from famous fiction books and movies,
e.g., detective stories like the famous Sherlock Holmes crime stories written
by A.C. Doyle.

The second kind of examples and exercises was required to provide more enter-
tainment background for the course and to illustrate that logic is not necessary
a very dry subject.

Thus, the course introduces not only the basic principles of Propositional and
First Order logic, but also presents the applied nature of logic and FMs, such as

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 247

– Reasoning and Planning problems;
– Formal Specifications/models for precise description of systems and require-

ments and analysis of systems;
– Verification: Proving that a system fulfils its requirements, and that a new

version of a system is a refinement of the previous version;
– Theorem proving/Model checking allowing (semi-)automated proofs;
– Design/optimization of digital circuits: Claude Shannon has shown that

propositional logic can be used to describe and optimize electromechanical
circuits, [21];

– Formalisation of queries in databases.

We also analysed application of FMs in a number of recent research projects,
as well as discussed our experience from large scale industrial projects involving
FMs, focusing not only on the efficiency features but also on usability aspects
and corresponding feedback from industrial partners [3,8,9,13,15,16,23,27].

4 Examples and Exercises Provided Within the Course

In this section we discuss examples and exercises introduced within the course.
Example: Propositional Logic. This example we used to explain visually
how to solve a suggested by Einstein logical puzzle, also in Propositional Logic.
Figure 2 presents the task of the puzzle and the initial set up for the suggested
visual framework, where the five blocks represent the houses. In the second step,
presented on Fig. 3, we apply all the facts highlight hem with light blue, and
visualise the corresponding information. In the next step we generate additional
rules based on the facts we already know and solve the puzzle, as shown on
Fig. 4.

Exercise: Applied Propositional Logic. Formalise the following sentences
S1 and S2 as formulas and then show that they are equivalent:

The Briton lives in the red house.
The Swede keeps dogs as pets.
The Dane drinks tea.
Looking from in front, the green house is just to
the left of the white house.
The green house's owner drinks coffee.
The person who smokes Pall Malls raises birds.
The owner of the yellow house smokes Dunhill.
The man living in the center house drinks milk.
The Norwegian lives in the leftmost house.

The man who smokes Blends lives next to the one
who keeps cats.
The man who keeps a horse lives next to the man
who smokes Dunhill.
The owner who smokes Bluemasters also drinks
beer.
The German smokes Prince.
The Norwegian lives next to the blue house.
The man who smokes Blends has a neighbor who
drinks water.

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

Who owns fish?

Fig. 2. Solving the Einstein puzzle: Step 1

248 M. Spichkova

The Briton lives in the red house.
The Swede keeps dogs as pets.
The Dane drinks tea.
Looking from in front, the green house is just to
the left of the white house.
The green house's owner drinks coffee.
The person who smokes Pall Malls raises birds.
The owner of the yellow house smokes Dunhill.
The man living in the center house drinks milk.
The Norwegian lives in the leftmost house.

The man who smokes Blends lives next to the one
who keeps cats.
The man who keeps a horse lives next to the man
who smokes Dunhill.
The owner who smokes Bluemasters also drinks
beer.
The German smokes Prince.
The Norwegian lives next to the blue house.
The man who smokes Blends has a neighbor who
drinks water.

???
Pet?
Drink?
Cigarettes?

Norwegian
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Drink?
Cigarettes?

???
Pet?
Milk
Cigarettes?

Who owns fish?

Swede
Dogs
Drink?
Cigarettes?

Dane
Pet?
Tea
Cigarettes?

German
Pet?
Drink?
Prince

Briton
Pet?
Drink?
Cigarettes?

Not located
on this step:

Fig. 3. Solving the Einstein puzzle: Step 2 (Color figure online)

Swede
Dogs
Beer
Bluemasters

Norwegian
Cats
Water
Dunhill

Dane
Horse
Tea
Blends

German
Fish
Co ee
Prince

Who owns fish?

Briton
Birds
Milk
Pall Malls

Fig. 4. Solving the Einstein puzzle: Step 3

S1: If the communication fails or the battery power gets low, while the system is
in sending mode, then the system goes into safety mode.

S2: If the communication fails, then the system must go into safety mode provided
that it is in sending mode; and if it is in sending mode, it goes into safety
mode, if the battery power gets low.

To solve this task it is enough to apply Propositional Logic. We define the
following four propositions to show that the above sentences are equivalent

A = “communication fails”
B = “battery power gets low”
C = “system is in sending mode”
D = “system gets into safety mode”

Then we will have

S1 : (A ∨ B) ∧ C −→ D
S2 (A −→ (C −→ D)) ∧ (C −→ (B −→ D))

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 249

First step: simplify S1:
(A ∨ B) ∧ C −→ D ≡
¬((A ∨ B) ∧ C) ∨ D ≡
¬(A ∨ B) ∨ ¬C ∨ D ≡
(¬A ∧ ¬B) ∨ ¬C ∨ D

Second step: simplify S1:

(A −→ (C −→ D)) ∧ (C −→ (B −→ D)) ≡
(¬A ∨ ¬C ∨ D) ∧ (¬C ∨ ¬B ∨ D) ≡
¬A ∧ (¬C ∨ ¬B ∨ D) ∨ ¬C ∧ (¬C ∨ ¬B ∨ D) ∨ D ∧ (¬C ∨ ¬B ∨ D) ≡
(¬A ∧ ¬C) ∨ (¬A ∧ ¬B) ∨ (¬A ∧ D) ∨ (¬C) ∨ (¬C ∧ ¬B) ∨ (¬C ∧ D)

∨(D ∧ ¬C) ∨ (D ∧ ¬B) ∨ (D) ≡
(¬A ∧ ¬C) ∨ (¬A ∧ ¬B) ∨ (¬A ∧ D) ∨ (¬C) ∨ (¬C ∧ ¬B) ∨ (¬C ∧ D)

∨(D ∧ ¬C) ∨ (D ∧ ¬B) ∨ (D) ≡
(¬A ∧ ¬B) ∨ ¬C ∨ D

This proves semantical equivalence of the formulas. �
Example: First Order Logic. Figure 5 provides an example we used to explain
the idea of formal notation for syllogisms.

Exercise: Applied First Order Logic. Formalize the following sentences as
formulas and then show that they are equivalent:

(1) The following property holds not for all time intervals: If the system gets a
signal from its sensors that there is no communication at a time interval t or
that the battery power gets low at a time interval t, and exists an information
package that have to be send, then at a time interval t there is an information
package in the temporal buffer.

(2) At some time interval t the following holds for all information packages:
there is an information package that have to be send, but there is no infor-
mation package in the temporal buffer, and the system gets a signal from its
sensors that there is no communication or that the battery power gets low.

If all plants need to be watered and
Violet is a plant.
then Violet need to be watered

premises

conclusion

If all X are Z and
A is X,
then A is Z

All plants need to be watered.
Violet is a plant.

Violet need to be watered

∀x.plant(x) → needs2Bwatered(x)
plant(V iolet)

needs2Bwatered(V iolet)

Fig. 5. Visual explanation of formal notation: Introduction to the Syllogisms

250 M. Spichkova

One possible solution:
Formalisation of the sentences would be
(1) ¬∀t. ((C(t) ∨ B(t)) ∧ S(t) → T (t)) and
(2) ∃t. (S(t) ∧ ¬T (t) ∧ (C(t) ∨ B(t))).
Proof that both formulas are equal:
¬∀t. ((C(t) ∨ B(t)) ∧ S(t) → T (t))
≡ ∃t.¬ ((C(t) ∨ B(t)) ∧ S(t) → T (t))
≡ ∃t.¬ (¬((C(t) ∨ B(t)) ∧ S(t)) ∨ T (t))
≡ ∃t. (((C(t) ∨ B(t)) ∧ S(t)) ∧ ¬T (t))
≡ ∃t. (S(t) ∧ ¬T (t) ∧ (C(t) ∨ B(t)))

Another possible solution:
Formalization of (1): ¬∀t.∃p. ((C(t) ∨ B(t)) ∧ S(p, t) → T (p, t))
Formalization of (2): ∃t.∀p. (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t)))
Proof that both formulas are equal:
∃t.∀p. (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t)))
≡ ¬∀t.¬(∀p. (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t))))
≡ ¬∀t.(∃p.¬ (S(p, t) ∧ ¬T (p, t) ∧ (C(t) ∨ B(t))))
≡ ¬∀t.(∃p. (¬S(p, t) ∨ T (p, t) ∨ ¬(C(t) ∨ B(t))))
≡ ¬∀t.(∃p. (¬S(p, t) ∨ ¬(C(t) ∨ B(t)) ∨ T (p, t)))
≡ ¬∀t.(∃p. (¬(S(p, t) ∧ (C(t) ∨ B(t))) ∨ T (p, t)))
≡ ¬∀t.(∃p. ((S(p, t) ∧ (C(t) ∨ B(t))) → T (p, t))) �

5 Evaluation and Conclusions

This paper presents an overview of common challenges in teaching of formal
methods and suggested solutions to them, based on our experiences from the
course Applied Logic in Engineering taught at TU Munich, Germany.

The course was introduced as an elective course on Bachelor and Master lev-
els and attracted 20 students. As per course evaluation [1], the majority of the
students agreed that the provided examples were very helpful, and the learning
amount and the amount of the material provided within the course were “exactly
right” (German, “genau richting”). For example, we received the following com-
ments from our students:
“Structured logically and builds up stuff part by part; nice additions as Sherlock
video”;
“The topic presented are interesting and indeed “applied”, unlike other logical
courses that are more theoretic”;
“I liked the small size of the course and I got a deeper understanding of logic”.
To the question what did you most liked in the course, the students replied
“Sherlock, Examples during lecture”.

The students’ feedback highlighted that the examples (for which we used
visual representation to reduce the cognitive load of students and to introduce
the corresponding ideas more understandable) as well as using puzzles and situ-
ations from famous fiction books and movies, not only helps to understand the

“Boring Formal Methods” or “Sherlock Holmes Deduction Methods”? 251

application of logic and FMs to real world problems, but also makes the leaning
experience more interesting and helps to overcome the prejustice that the FMs
are boring per default. Another point that we took out from the evaluation report
is that it would be beneficial for this kind of courses to have a relatively small
size of class, which allows teachers to approach each student individually.

References

1. Auswertung zur Veranstaltung Applied Logic in Engineering. TU Munich (2013)
2. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,

P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9 4

3. Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A., Knapp, S., Kof, L., Paul, W.,
Spichkova, M.: On the correctness of upper layers of automotive systems. Formal
Aspects Comput. 20(6), 637–662 (2008)

4. Büning, H.K., Lettmann, T.: Aussagenlogik: Deduktion und Algorithmen. Teubner
(1994)

5. Crocker, D.: Teaching formal methods with perfect developer. In: Teaching Formal
Methods: Practice and Experience, Electronic Workshops in Computing (2006)

6. Curzon, P., McOwan, P.W.: Teaching formal methods using magic tricks. In: Fun
with Formal Methods: Workshop at the 25th International Conference on Com-
puter Aided Verification (2013)

7. Feast, V., Bretag, T.: Responding to crises in transnational education: new chal-
lenges for higher education. High. Educ. Res. Dev. 24(1), 63–78 (2005)

8. Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Rittmann, S., Scheidemann, K.,
Spichkova, M., Trachtenherz, D.: A top-down methodology for the development of
automotive software. Technical report TUM-I0902, TU München (2009)

9. Feilkas, M., Hölzl, F., Pfaller, C., Rittmann, S., Schätz, B., Schwitzer, W., Sitou,
W., Spichkova, M., Trachtenherz, D.: A refined top-down methodology for the
development of automotive software systems - the KeylessEntry-system case study.
Technical report TUM-I1103, TU München (2011)

10. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer,
New York (1996)

11. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, New York (2009)

12. Hoare, L.: Swimming in the deep end: transnational teaching as culture learning?
High. Educ. Res. Dev. 32(4), 561–574 (2013)

13. Hölzl, F., Spichkova, M., Trachtenherz, D.: Autofocus tool chain. Technical report
TUM-I1021, TU München (2010)

14. Huth, M., Ryan, M.: Logic in Computer Science. Cambridge University Press,
New York (2004)

15. Kühnel, C., Spichkova, M.: FlexRay und FTCom: Formale Spezifikation in FOCUS.
Technical report TUM-I0601, TU München (2006)

16. Kühnel, C., Spichkova, M.: Upcoming automotive standards for fault-tolerant com-
munication: FlexRay and OSEKtime FTCom. In: Proceedings of EFTS 2006 Inter-
national Workshop on Engineering of Fault Tolerant Systems (2006)

17. Noble, J., Pearce, D.J., Groves, L.: Introducing alloy in a software modelling course.
In: ETAPS 2008 Workshop on Formal Methods in Computer Science Education
(FORMED) (2008)

http://dx.doi.org/10.1007/978-3-319-06410-9_4

252 M. Spichkova

18. Richardson, F.C., Suinn, R.M.: The mathematics anxiety rating scale: psychome-
tric data. J. Couns. Psychol. 19(6), 551 (1972)

19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River (2009)

20. Schöning, U.: Logic for Computer Scienctists. Modern Birkäuser Classics, Secaucus
(1989)

21. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Master’s thesis
(1937)

22. Sherman, B.F., Wither, D.P.: Mathematics anxiety and mathematics achievement.
Math. Educ. Res. J. 15(2), 138–150 (2003)

23. Spichkova, M.: FlexRay: Verification of the FOCUS specification in Isabelle/HOL.
A Case Study. Technical report TUM-I0602, TU München (2006)

24. Spichkova, M.: Human factors of formal methods. In: IADIS Interfaces and Human
Computer Interaction 2012 (IHCI 2012) (2012)

25. Spichkova, M.: Design of formal languages and interfaces: “formal” does not mean
“unreadable”. In: Emerging Research and Trends in Interactivity and the Human-
Computer Interface. IGI Global (2013)

26. Spichkova, M.: Applied logic in engineering. CoRR, abs/1602.05170 (2016)
27. Spichkova, M., Hölzl, F., Trachtenherz, D.: Verified system development with the

autofocus tool chain. In: 2nd Workshop on Formal Methods in the Development
of Software (WS-FMDS 2012), vol. 86, pp. 17–24 (2012)

28. Spichkova, M., Zamansky, A.: Teaching formal methods for software engineering.
In: 11th International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE) (2016)

29. Tavolato, P., Vogt, F.: Integrating formal methods into computer science curricula
at a university of applied sciences. In: TLA+ Workshop at the 18th International
Symposium on Formal Methods (2012)

30. Wang, S., Yilmaz, L.: A strategy and tool support to motivate the study of formal
methods in undergraduate software design and modeling courses. Int. J. Eng. Educ.
22(2), 407–418 (2006)

31. Wang, Z., Hart, S.A., Kovas, Y., Lukowski, S., Soden, B., Thompson, L.A., Plomin,
R., McLoughlin, G., Bartlett, C.W., Lyons, I.M., Petrill, S.A.: Who is afraid of
math? Two sources of genetic variance for mathematical anxiety. J. Child Psychol.
Psychiatry 55(9), 1056–1064 (2014)

32. Wing, J.M.: Weaving formal methods into the undergraduate curriculum. In: Pro-
ceedings of Algebraic Methodology and Software Technology, pp. 2–7 (2000)

33. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
34. Zamansky, A., Farchi, E.: Exploring the role of logic and formal methods in infor-

mation systems education. In: Proceedings of the 2nd Human-Oriented Formal
Methods workshop (HOFM) (2015)

35. Zamansky, A., Farchi, E.: Teaching logic to information systems students: chal-
lenges and opportunities. In: Proceedings of the 4th International Conference on
Tools for Teaching Logic (TTL) (2015)

Formal Model-Based Development in Industrial
Automation with Reactive Blocks

Peter Herrmann1(B) and Jan Olaf Blech2

1 NTNU, Trondheim, Norway
herrmann@item.ntnu.no

2 RMIT University, Melbourne, Australia
janolaf.blech@rmit.edu.au

Abstract. The use of standard IT equipment to control machines is
becoming increasingly popular mostly due to lower costs. Further, trends
and initiatives such as Industry 4.0 and smart factories accelerate the use
of standard IT components by demanding interconnected controllers and
factory equipment communicating with internet services. This develop-
ment offers new possibilities to use existing software frameworks and
software architectural approaches as well as development standards in
industrial automation. The formal methods-based support, that already
exists for standard IT platforms, can now be applied to industrial control
devices as well. In this paper, we look into the application of our Reactive
Blocks framework for industrial automation. Reactive Blocks comes with
a well established formal semantics and verification approaches tied to
it. We demonstrate the advantages of our methodology with an example.

1 Introduction

Industrial automation devices have traditionally been programmed by engineers
using standards such as IEC 61131–3 [17] and its derivatives. We see, however,
novel trends according to which this well established procedure will change in
the near future. One trend is the recent convergence of PC hardware and Pro-
grammable Logic Controllers (PLC) with respect to software development. In
the past, industrial automation devices mostly relied on techniques and stan-
dards that were developed independently from PC hardware and IT technolo-
gies. Examples include the IEC 61131 standard for PLC and PROFIBUS [2]
on the network technology side. In recent years, some PLC vendors started to
integrate standard PC processors. Moreover, smart single-board computers like
the Raspberry Pi [30] came into the market offering operating systems close to
those of ordinary PCs. These boards are cheap but powerful enough to carry
out control functions. For instance, we use Raspberry Pi-based devices to drive
a bottling plant deployed in the RMIT’s advanced manufacturing precinct [13].
On the network technology side, the Ethernet has gained entry into the world
of industrial automation.

Another trend is the growing interconnectivity of controllers. PLCs commu-
nicate now with each other and with other external devices and services, not
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 253–261, 2016.
DOI: 10.1007/978-3-319-50230-4 19

254 P. Herrmann and J.O. Blech

just for synchronization and basic control via the Supervisory Control and Data
Acquisition (SCADA) level, but also to support maintenance and new produc-
tion processes making a higher degree of customization possible. The growing
interconnectivity also allows for the utilization of novel technologies like cloud
computing. For example, services analyzing data streams to determine mainte-
nance intervals are already in place (see, e.g., ABB ServicePort [6]). Initiatives
like Industry 4.0 [18] foster these trends as they propose interconnected plants
run by controllers coordinating itself using internet-based services.

In our opinion, these trends in industrial automation will have growing rele-
vance also with respect to the application of human-oriented formal methods. In
particular, based on the more extended use of standard IT and PC technology,
development paradigms from computer science can be applied in this area. This
includes the use of model-based development as well as formal specification and
verification technologies. Since many engineers have no in-depth experience with
the application of the formal methods used in software development, we have
to find a way lessening the burden of applying the formalisms in practice. One
promising idea is Rushby’s concept of “Disappearing Formal Methods” [27] that
proposes the wrapping of formal techniques into tools such that they are easy to
use. Our model-based engineering technique Reactive Blocks [22] supports Rush-
by’s concept. In this article, we propose its use for the development of control
software in industrial automation.

2 Reactive Blocks in Industrial Automation

Reactive Blocks [3,22] is a model-driven engineering technique for reactive Java-
based systems. It uses UML activity and state machine diagrams [25] to model
systems. Since these diagram types are innately not provided with formal seman-
tics, we defined one ourselves. In [23], we defined an initial formal semantics for

Fig. 1. The UML activity of building block ManageLEDoperation.

Formal Model-Based Development in Industrial Automation 255

an early version of the tool based on cTLA [15], a variant of Lamport’s Temporal
Logic of Actions (TLA) [24]. Becoming more experienced with the tool, we later
defined the so-called reactive semantics [20]. Since UML activities are basically
graphs, we based it on rules in traditional graph theory.

One of the features of Reactive Blocks is that sub-functionality can be spec-
ified separately from each other in so-called building blocks. That enables us to
create models of recurring sub-functionality once and to reuse them in several
engineering projects. The reuse is further facilitated by providing each building
block with an External State Machine (ESM) [19]. This is a behavioral interface
allowing us to combine a building block correctly with its environment without
having to completely understand its functionality.

A UML activity is used to model the behavior of a building block. The
activity depicted in Fig. 1 contains three inner building blocks of type Button,
Toggle and LEDoperation that all embed certain sub-functionality. The reactive
semantics of the activities resembles Petri nets and corresponds to the flow of
tokens via the edges towards the nodes. In this way, control and data flows are
nicely visualized and can also be animated by the tool-set. Further, activities
may contain operations that represent Java methods executed when a token
passes the corresponding node. The flows are run-to-completion (see [20]). That
means, a flow passes all nodes on its way in the same atomic step until it reaches
one that models the need to wait for a certain stimulus (i.e., a timeout or an
external event).

To connect the flows of an activity containing an inner block and the one
specifying the behavior of this block, we use so-called parameter nodes and pins.
Parameter nodes are the little arrows at the outer edge of the activity. In the
node representing an inner building block in an activity, the parameter nodes are
shown as pins. For instance, the pins of the inner building block LEDoperation
in Fig. 1 are identical to the parameter nodes in its activity (see Fig. 2). A flow
reaching a pin of an inner building block will continue in the activity of this
block from the corresponding parameter node and vice versa in the same run-
to-completion step.

Thanks to the formal reactive semantics, we could build a model checker
into the tool-set [22] enabling the verification that the UML models fulfill vari-
ous correctness properties (e.g., the preservation of ESMs by the activities and
deadlock freedom). Following the “Disappearing Formal Methods” concept [27]
mentioned in the introduction, the formal issues of the verification process are
hidden to the user of the tool, and traces towards erroneous states are animated
directly on the UML activity graphs. The verification runs scale thanks to the
separation of functionality into different building blocks. Moreover, the UML
models can be automatically transformed into executable Java code [21].

In our opinion, the features of Reactive Blocks makes it highly suited for the
development of control software in industrial automation. The building block
concept fits well to the technical engineering disciplines, in which the same phys-
ical components are often used in different applications. So, when a particular
pump or valve is reused in a certain chemical plant, the building blocks realizing

256 P. Herrmann and J.O. Blech

the control of this component may be reused in the software model of the plant
as well.

Also the fact that the UML activities visualize control and data flows, is
helpful for the industrial automation domain since a typical property of control
software is the large number of threads running in parallel. While the coordina-
tion of the threads is difficult in classical programming languages, the run-to-
completion semantics together with the clearly arranged modelling of the control
and data flows facilitates the coordination of the various threads significantly.

Applying the built-in model checker leads to less errors in the generated
control software. Moreover, one can couple Reactive Blocks with other analysis
tools. Of particular interest for industrial automation is the composition of the
tool-set with BeSpaceD [5], a tool suited to verify spatiotemporal properties
(see [14]). That allows us to check already on the modelling level that control
software guarantees certain cyber-physical properties [16].

Another advantage of the building blocks and the ESMs is that the develop-
ment of sub-functionality by various teams of experts can be nicely coordinated
by embedding the sub-tasks in separate building blocks. Furthermore, the rich
set of building block libraries supports the development of technical systems. For
instance, the tool-set contains libraries containing various communication proto-
cols as well as blocks supporting the design of Internet of Things applications [3]
that play an important role in industrial automation. We show in Sect. 3 that
building blocks for control and for communication can be easily combined (see
also [12]). This fits nicely with the goals of Industry 4.0 [18].

3 Example

We demonstrate our approach by using a Raspberry Pi equipped with a Berry
Clip, i.e., a board provided with six colored LEDs, a buzzer, and a switch. In
our toy example, a lucent LED represents a certain production sub-process. To
determine the strain of the “plant”, the number of changes between the LEDs
shall be sent periodically to a remote control center.

We developed the control and communication software for the example by
creating three building blocks in Reactive Blocks. Figure 2 depicts the UML
activity describing the behavior of the building block LEDoperation that realizes
the operation of the LEDs on the Berry Clip. The inner block of type LEDs
contains the functionality to switch on and off the LEDs of the Berry Clip while
TimerPeriodic realizes a recurring timer that sends flows in even intervals (three
seconds in our example).

The ESM of building block LEDoperation is shown in Fig. 3. The block is
started by a flow through parameter node start which is forwarded to the pin of
the same name at the inner block LEDs. Thereafter, the ESM is in state passive.
In this state, a flow through the parameter nodes callCounter and counter is
allowed. It can be used by the environment of the building block to retrieve the
number of LED changes that are stored in the variable counter.

The rotative lighting of the LEDs is started by a flow through the parameter
node on bringing the ESM into state active. As shown in the activity, the flow

Formal Model-Based Development in Industrial Automation 257

Fig. 2. The UML activity of building block LEDoperation.

Fig. 3. The ESM of building block LEDoperation.

starts the periodic timer. A timeout leads to a flow through pin tick of block
TimerPeriodic. This flow is forked into two flows. One flow retrieves the value of
the LED currently switched on, that is stored in variable active, and forwards it
to pin setOff of building block LEDs. Thus, the currently lucent LED is switched
off. The other flow reaches a flow breaker. That is a special timer without a
dedicated duration used to separate a flow into different run-to-completion steps.
In our case, we use the flow breaker since the ESM of block LEDs does not accept
flows through its pins setOff and setOn in the same run-to-completion step.
The flow leaving the flow breaker reaches operation handleStep that represents
a Java method determining the next LED to switch on, sets the selected value
in variable active and increments the counter. After terminating the method,
the flow forwards to pin setOn of building block LEDs such that the selected
LED is switched on. A flow through parameter node off stops the lighting of
the LEDs by terminating the periodic timer and switching all LEDs off. The

258 P. Herrmann and J.O. Blech

Fig. 4. The UML activity of building block SendStatus.

building block can be terminated by a flow passing the parameter nodes stop
and stopped.

Figure 1 shows the building block ManageLEDoperation modeling that the
LEDs can be switched on and off by pushing the button of the Berry Clip.
Here, LEDoperation is represented by an inner building block. Further, we use
building block Button handling the access to the button of the Berry Clip and
Toggle that allows us to lead button pushes mutually to the on and off pins of
LEDoperation.

The transmission of the number of LED changes is realized by building block
SendStatus depicted in Fig. 4. We use the popular MQTT protocol, the func-
tionality of which is handled by the inner block RobustMQTT. Further, SendSta-
tus uses another periodic timer initiating a transmission every 30 s. A timeout
leads to a retrieval of the current counter value by a flow through parameter
node callCounter. The value is received via parameter node counter that is
forwarded to operation makeMessage. The corresponding Java method creates
an object containing the MQTT message format that is forwarded to the pin
publish of block RobustMQTT triggering the transmission of the counter value.
Moreover, the building block contains the inner block Buzzer that is used to give
a short audio signal using the buzzer of the Berry Clip in order to show that the
status value was sent.

The activity of the overall system model is quite simple. It consists of
instances of building blocks ManageLEDoperation and SendStatus, initial trig-
gers for these blocks, and edges connecting their pins callCounter resp.
counter. We automatically transformed this system description into a runnable
JAR file that can be directly executed on the Raspberry Pi. Moreover, we cre-
ated another simple system model enabling us to receive and print out MQTT
messages at a remote control station.

Formal Model-Based Development in Industrial Automation 259

The toy example substantiates two of the advantages named in Sect. 2. One is
reusability. The complex functionality, i.e., the activation of the various units of
the Berry Clip as well as the transmission via MQTT had not to be programmed
manually but could be reused by simply adding already existing building blocks.
Thus, the only creative task was the link of the various building blocks. Therefore
the models for the Berry Clip controller and the remote station could be created
by one of the authors within less than an hour. The undertaking was supported
by the model checker built into Reactive Blocks since we could easily find out if
all the blocks were indeed correctly coupled preserving their ESMs.

The other advantage affirmed by the example is the coordination of develop-
ment teams since one can hand the creation of the building blocks LEDoperation
and ManageLEDoperation over to a team of control software experts and Send-
Status to people with in-depth knowledge about communication. Also here the
model checker is of great help since it guarantees that the teams realize the
ESM-based behavioral interface descriptions of the particular blocks correctly
such that the results of their work can be seamlessly coupled.

4 Related Work

Formal specification of Programmable Logic Controllers (PLC) is not new but
most work is based on PLC specific programming and specification techniques
(see, e.g., [26,29]). Summaries of earlier approaches to use formal methods for
the specification and verification of PLC programs is given in [1,9].

One of the main disadvantages of the IEC standard 61131 [17] is that it leaves
some implementation and semantics aspects open to the PLC vendors. This
makes formal specification and verification work difficult, but it also hinders cross
platform development efforts. Some approaches such as the UNICOS toolset [10]
were developed to address these shortcomings. A comprehensive model checking
approach for IEC 61131–3 programs in connection with UNICOS can be found
in [8]. A transformation from UML into IEC 61131 has been studied in [31].
In [11], UML is used to model control software and analysis patterns together
with cTLA (see [15]) to verify their correctness. We established Coq descriptions
of IEC 61131–3 programs (see [4]) to facilitate human directed verification of
PLC programs (see also [7]). Another formal approach based on IEC 61499 was
proposed in [32]. Formal methods are also used to analyze Ethernet-based real-
time communication [28].

5 Conclusion

In this paper, we motivated that systems bridging control automation with the
classical IT world will become more mainstream in the close future. That opens
the door for the application of model-based and formal methods in this appli-
cation domain as well. In particular, we propose the use of Reactive Blocks for
control applications in the industrial automation domain. We believe that, due
to the easy use of the UML diagrams for modeling and the model checker for

260 P. Herrmann and J.O. Blech

analysis, it facilitates the application of formal methods in the practical devel-
opment of control system software also by users that are not experts in formal
techniques. We exemplified our approach by discussing the development of a
small Raspberry Pi-based system that, in spite of its size, is sufficient to point
out some of the expected advantages.

References

1. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M.,
Stursberg, O.: Verification of PLC programs given as sequential function charts.
In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.) Integration of Software Specification Techniques for Appli-
cations in Engineering. LNCS, vol. 3147, pp. 517–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-27863-4 28

2. Bender, K., Katz, M.: PROFIBUS: der Feldbus für die Automation. Hanser (1990)
3. Bitreactive, A.S.: Reactive Blocks. www.bitreactive.com. Accessed 28 Jan 2016
4. Blech, J.O., Ould Biha, S.: Verification of PLC properties based on formal seman-

tics in Coq. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 58–73. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24690-6 6

5. Blech, J.O., Schmidt, H.: BeSpaceD: towards a tool framework and methodology
for the specification and verification of spatial behavior of distributed software
component systems. Technical report 1404.3537. arXiv.org (2014)

6. Boo, P.: A service tool grows up - ABB ServicePort. In: ABB Review (2015)
7. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-

matic verification of PLC programs written in instruction list. In: Systems, Man,
and Cybernetics, vol. 4, pp. 2449–2454. IEEE (2000)

8. Fernandez Adiego, B., Darvas, D., Vinuela, E.B., Tournier, J.C., Bliudze, S., Blech,
J.O., Gonzalez Suarez, V.M.: Applying model checking to industrial-sized PLC
programs. IEEE Trans. Ind. Inform. 11(6), 1400–1410 (2015)

9. Frey, G., Litz, L.: Formal methods in PLC programming. In: Systems, Man, and
Cybernetics, vol. 4, pp. 2431–2436. IEEE (2000)

10. Gayet, P., Barillere, R.: UNICOS a framework to build industry like control sys-
tems: principles and methodology. In: International Conference on Accelerator and
Large Experimental Physics Control Systems, Genève, Suisse (2005)

11. Graw, G.: Korrekte Steuerungssoftware. Dissertation, Technische Universität Dort-
mund (2010) (in German)

12. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Model-based engineering and
analysis of space-aware systems communicating via IEEE 802.11. In: 39th Annual
International Computers, Software and Applications Conference (COMPSAC), pp.
638–646. IEEE Computer (2015)

13. Harland, J., Blech, J.O., Peake, I., Trodd, L.: Formal behavioural models to facili-
tate distributed development and commissioning in industrial automation. In: Eval-
uation of Novel Approaches to Software Engineering, COLAFORM Track (2016)

14. Herrmann, P., Blech, J.O., Han, F., Schmidt, H.: A model-based toolchain to verify
spatial behavior of cyber-physical systems. Int. J. Web Serv. Res. (IJWSR) 13(1),
40–52 (2016)

15. Herrmann, P., Krumm, H.: A framework for modeling transfer protocols. Comput.
Netw. 34(2), 317–337 (2000)

http://dx.doi.org/10.1007/978-3-540-27863-4_28
www.bitreactive.com
http://dx.doi.org/10.1007/978-3-642-24690-6_6
http://arxiv.org/abs/org

Formal Model-Based Development in Industrial Automation 261

16. Hordvik, S., Øseth, K., Blech, J.O., Herrmann, P.: A methodology for model-
based development and safety analysis of transport systems. In: 11th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE)
(2016)

17. IEC: IEC Standard IEC 61161–3. Programmable Controllers – Programming Lan-
guages, 2.0 edn. (01 2003)

18. Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das Zukun-
ftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4, 5 (2013)
(in German)

19. Kraemer, F.A., Herrmann, P.: Automated encapsulation of UML activities for
incremental development and verification. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 571–585. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04425-0 44

20. Kraemer, F.A., Herrmann, P.: Reactive semantics for distributed UML activities.
In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp.
17–31. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13464-7 3

21. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 state machines and
temporal logic for the efficient execution of services. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4276, pp. 1613–1632. Springer, Heidelberg (2006).
doi:10.1007/11914952 41

22. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool support for the rapid composition,
analysis and implementation of reactive services. J. Syst. Softw. 82(12), 2068–2080
(2009)

23. Kraemer, F.A., Herrmann, P.: formalizing collaboration-oriented service specifi-
cations using temporal logic. In: Networking and Electronic Commerce Research
Conference (NAEC), pp. 194–220. ATSMA, Riva del Garda, October 2007

24. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Pearson Education Inc, London (2002)

25. Object Management Group: OMG Unified Modeling LanguageTM (OMG
UML), Superstructure – Version 2.4.1 (2011). www.omg.org/spec/UML/2.4.1/
Superstructure/PDF/. Accessed 28 Jan 2016

26. Rausch, M., Krogh, B.H.: Formal verification of PLC programs. In: American Con-
trol Conference, vol. 1, pp. 234–238. IEEE (1998)

27. Rushby, J.: Disappearing formal methods. In: High-Assurance Systems Engineering
Symposium, pp. 95–96. ACM. Albuquerque (2000)

28. Steiner, W., Dutertre, B.: SMT-Based formal verification of a TTEthernet synchro-
nization function. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol.
6371, pp. 148–163. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15898-8 10

29. Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and
hybrid automata as approximations of continuous systems. In: Antsaklis, P., Kohn,
W., Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer,
Heidelberg (1997). doi:10.1007/BFb0031569

30. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, Cambridge (2014)
31. Vogel-Heuser, B., Witsch, D., Katzke, U.: Automatic code generation from a UML

model to IEC 61131–3 and system configuration tools. In: International Conference
on Control and Automation (ICCA), vol. 2, pp. 1034–1039. IEEE (2005)

32. Vyatkin, V., Hanisch, H.M.: Formal modeling and verification in the software engi-
neering framework of IEC 61499: a way to self-verifying systems. In: Emerging
Technologies and Factory Automation (ETFA), vol. 2. IEEE Computer (2001)

http://dx.doi.org/10.1007/978-3-642-04425-0_44
http://dx.doi.org/10.1007/978-3-642-04425-0_44
http://dx.doi.org/10.1007/978-3-642-13464-7_3
http://dx.doi.org/10.1007/11914952_41
www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://dx.doi.org/10.1007/978-3-642-15898-8_10
http://dx.doi.org/10.1007/BFb0031569

MELO

Computational Design Synthesis
Using Model-Driven Engineering
and Constraint Programming

Raphael Chenouard1(B), Chris Hartmann1,2, Alain Bernard1,
and Emmanuel Mermoz2

1 Ecole Centrale de Nantes, IRCCyN UMR CNRS 6597, 1 Rue de la No BP 92101,
44321 Nantes Cedex 3, France

{raphael.chenouard,alain.bernard}@irccyn.ec-nantes.fr,
chris.hartmann@airbus.com

2 Airbus Helicopters, Aéroport de Marseille Provence, 13700 Marignane, France
emmanuel.mermoz@airbus.com

Abstract. This paper introduces a new process for computational
design synthesis. It starts from functional requirements to generate one
or more topologies of components. This process is implemented using
Model-Driven Engineering techniques and Constraint Programming solv-
ing capabilities. Model transformations are used to transform functions
and available components to a CSP. This problem is solved with a CSP
solver, which solutions are transformed to topological architectures. The
process is successfully applied on the design synthesis of an autonomous
generator. It produces about 60 relevant solutions from which we found
some existing product architectures.

1 Introduction

Design synthesis is a hard task in the design process of a product. It is one step
within the preliminary design phase of a system of interest, when considering
a common design process [10]. The design synthesis task ends-up with a set
of architectures related to a functional decomposition derived from the stake-
holders’ needs. The modeling of products during preliminary design phases is
generally based on three aspects: function, behavior and structure [4].

Some previous works in design synthesis are based on graph grammars and
rules to build graphs corresponding to relevant topologies of components [6].
These rules are based on well-known principles of solutions or functional decom-
position in a given context. The major advantages of this kind of approaches
is that it generates solutions that fit good practices and designer experience.
However, the search space of possible solutions may be only partially explored.
Thus, some innovative and efficient solutions may not be found.

Some recent works mainly in the field of embedded systems investigate this
kind of problem as Design Space Exploration (DSE) [8,16]. These works use
as well model-driven engineering and optimization techniques to automate the
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 265–273, 2016.
DOI: 10.1007/978-3-319-50230-4 20

266 R. Chenouard et al.

definition of a valid solution. [8] like [6] uses graph theory to define rules that
guide the building of solutions. Some cut-off criteria are used to improve the
exploration procedure which defines new states by applying graph transforma-
tion rules using a selection heuristic. In [16], the aim is to define a more generic
framework being able to address various kinds of DSE like resource allocation
problems, routing problems or configuration problems. One of the major benefits
of this approach is its wide application range and its solver independence. How-
ever, the designer has to define a metamodel template used for the exploration.
Obviously it makes the exploration easier, but it requires to know in advance
the main structure of valid solutions even if their language propose mechanisms
to deal with alternatives or optional elements.

Another previous approach also mixed Model-Driven Engineering (MDE)
and Constraint Programming (CP) [2] to define a framework for modeling prob-
lems independently from a solver like in the Model-Driven Architecture philos-
ophy, but applied here to mathematical problem modeling and solving. This
work was also followed by the definition of high level modeling concepts to ease
the definition of Constraint Satisfaction Problems (CSPs) in order to represent
design problems [3]. The behavioral aspect of a product was the main target,
whereas functional and structural concerns were not really investigated.

In this paper, we propose a method based on MDE and CP to compute prod-
uct topologies from a brief functional description. The generation of topologies
must only satisfy the functional requirements. We do not take into account, at
this step, the behavioral aspect of a product and we restrict the structure def-
inition to a topological architecture: a set of inter-connected components. Our
aim is to explore all possible solutions and provide more innovative architectures
that may not be found using classical design processes. Moreover, we do not want
to use pre-defined rules or patterns that will always lead to the same kinds of
solution principles and exclude possible promising solutions.

The next section introduces the main process and modeling elements regard-
ing designers activities for design synthesis. Section 3 deals with automated solv-
ing of a computational design synthesis problem. Section 4 presents an applica-
tion of the method on a concrete case with a discussion of the proposed process
issues, before ending with a conclusion and the future works description.

2 Design Synthesis Automated Process

As said previously, design synthesis aims at generating a product architecture
from needs and requirements [1]. In this paper, we focus on the transformation
of functional needs to topological architectures, namely networks of components.
In most existing work, designers first decompose functions to define a functional
architecture [6], then allocate functions to physical components and check feasi-
bility and performances [17].

We propose in this paper to directly compute a topological architecture with-
out investigating too deeply the functional architecture. Our aim is to maximize
innovative solutions without using classical design patterns that will always pro-
duce the same solution principles. Thus, we just want to use high-level functions

Computational Design Synthesis 267

Fig. 1. Main process of the proposed method.

- issuing from stakeholders needs - and a database of allowed topological com-
ponents (see Fig. 1). These high-level functions define the functional require-
ments from which we compute satisfying architectures. The following subsec-
tions presents the two main metamodels we used as input and output of our
automated process implemented in the Eclipse environment with ATL transfor-
mation Language [11]. The solving is done using CSP formalism with classical
CP solving methods [12]. Computed solutions are transformed into topological
architectures and finally designers can analyse and investigate the best one(s)
for physical feasibility analysis.

2.1 Functional Requirements Modeling

Since more than a decade, researchers investigate the best manner to represent
functions within a design process. The kind of words or verbs to use is out of the
scope of this paper. We refer to this previous work [9] to deal with this issue. We
want to define the main concepts that are used in the proposed transformation
process to state input models like in [7].

Then, a function is defined by a name (that should be an action verb) and
a set of flows (oriented or not). Flows can be of three main categories: material,
energy and signal. Functions and flow may have some properties defined by a
name and a unit (e.g. an electrical flow is often defined with 2 properties: current
with unit A and voltage with unit V). A model of functional requirements is
simply a set of functions and flows instances as shown in Fig. 2.

2.2 Topological Architecture Modeling

We consider that a topological architecture is a network of components, namely
a set of inter-connected components. This definition is similar to the definition
in the systems engineering domain [14]. Then, a component is mainly defined
by its name and its interfaces relating to flows (see Fig. 3). Components are

268 R. Chenouard et al.

Fig. 2. Metamodel for simplified functional requirements definition.

connected through their interfaces which must be of compatible flows. Some
concepts are similar to those defined in the functional requirements metamodel,
like flow and property. Components are close to functions, but the function
concept relates to main functions, whereas components may integrate additional
flows corresponding to induced effects and they are connected to form a network.
Moreover, they are defined as generic abstractions of real components like for
instance a generic piston engine or an electrical battery.

Components are not considered as composite since we only consider atomic
ones. We focus on their connections within an architecture at a given level of
decomposition. Following a systemic approach, one can easily define functional
requirements for a component and apply recursively this process to define its
composition. In fact, we consider that a component only refers to a physical ele-
ment that interacts with other elements of the same decomposition level. In this
way, several components of the same type are just considered as different compo-
nents with same properties and interfaces definition. For instance, we may have
several piston engines with identical characteristics (maximum power, efficiency
curve, input/output interfaces), but we consider them as different components
in a topological architecture.

3 Solving a Design Synthesis Problem

Passing from functional requirements to a physical architecture is not obvious
and cannot be processed using a simple model transformation. We propose in
this paper to formulate a graph problem that can be solved using CP solvers.
The objective is to find a set of connected nodes (i.e. used component interfaces)
and a set of isolated ones (i.e. unused component interfaces) with respect to a
set of constraints related to the possible connections.

Computational Design Synthesis 269

Fig. 3. Metamodel for topological architecture definition.

Given a database of allowed components and the set of functions to sat-
isfy, we generate a mathematical problem which solutions are connected graphs
compatible with the following constraints:

1. connections can only exist between compatible interfaces,
2. function flows must be satisfied by input/output interfaces of the whole sys-

tem,
3. all interfaces of a component must be connected or none of them.

In our CSP, decision variables are the connections between interfaces (com-
ponents and functional requirements). Thus, we use a matrix of binary variables
to represent these decision variables. We can easily pre-compute the compati-
ble and incompatible interfaces of each given interface using its flow description
to eliminate some trivial decision variables. Concretely, we compute a matrix
of binary values defining allowed and not allowed connections and we set con-
straints fixing these decision variables if the connection is not allowed. Thus,
only the second and third set of constraints are used to restrict the domain of
variables during the solving process [15].

We use a simplified metamodel to define CSPs as shown in Fig. 4. A CSP
is defined as three sets: domains, variables and constraints. Since we only use
integer and binary variables, no additional domain kinds are considered. Con-
straints are not detailed here, but consist of classical logical and arithmetical
expressions [2]. Since we use MiniZinc concrete syntax, we take advantage of
some additional high-level constructs like matrices of variables or parameters,
forall and if-else constraints or sum function calls [13]. The solving is carried out
with the default solver of MiniZinc 2.0.12 distribution.

After the solving phase, we get a set of solutions. A solution is simply a list of
couples (value, variable) for which all constraints are satisfied (see Fig. 5). Obvi-
ously all variables must have a value to get a complete solution. Since decision
variables are connections between interfaces of components, it is easy to identify

270 R. Chenouard et al.

Fig. 4. Simplified metamodel for CSP modeling.

Fig. 5. Metamodel for solution modeling.

which ones are used and how they are linked to each others. A last transforma-
tion step is used to generate a topology from the set of used components and a
CSP solution.

One drawback of this modeling, is the possible huge number of variables.
For n interfaces (from a given set of allowed components) and m interface from
input and output functions to satisfy, we have more than n2 + m ∗ n variables.
Nevertheless, we use binary variables and the scaling of CP solving algorithms
stays satisfactory.

4 Application and Discussion

We applied our approach to an autonomous generator design synthesis problem.
We consider three high-level functions:

– the system must start/stop on demand,
– the system must produce electrical energy,
– the system must follow a voltage order (e.g. between 110 V, 220 V and 370 V),

These three functions imply two input flows: (1) the voltage order and (2)
an on/off signal; and only one output flow: electrical energy.

We use a set of 10 allowed components corresponding to 39 interfaces. So,
we get 1521 + 117 binary variables. These components include the environment
as a source for air and a sink for (exhaust) gas and thermal energy.

We obtain about 60 solutions. Figure 6 shows one solution that uses all
allowed components. A turbine and a piston engine are used to produce the

Computational Design Synthesis 271

mechanical energy for an alternator which produces electrical energy. An electri-
cal engine is used, since it is required to start the turbine and the piston engine.
It produces mechanical energy and it receives the start signal and electrical
energy. No electrical energy flow is defined in the input functional requirements,
so a battery is used to feed the electrical engine. This battery can also be used
to store and deliver the produced electricity. It also may improve the electricity
quality as the battery can soften the power demand.

For each solution and the corresponding selected component descriptions,
an architectural topology is generated. For printing purposes, we also generate
a DOT model processed with the GraphViz compiler [5] as it can be seen on
Fig. 6.

We apply our process to an autonomous generator problem. We only con-
sider 10 topological components, but we get more than 60 topologies. All these

PistonEngine

Alternator

TurbineEngine

ElectricalEngine

ACDCConverter

Battery

DCACConverter

FuelTank

VoltageRegulator
Input Flows

Output Flows

Environment

Fuel

RotationalEnergy

Air

ThermalEnergy

ThermalEnergy

ExhaustGas

ExhaustGas

RotationalEnergy

RotationalEnergy

ACElectricalEnergy

ACElectricalEnergy

ElectricalEnergy

ThermalEnergy

Fuel

RotationalEnergy

Air

ThermalEnergy

ExhaustGas

RotationalEnergy

ONOFFSignal

ACElectricalEnergy

RotationalEnergy

ThermalEnergy

DCElectricalEnergy

DCElectricalEnergy

ThermalEnergy

DCElectricalEnergy

DCElectricalEnergy

ACElectricalEnergy

ThermalEnergy

Fuel

VoltageOrderSignal

ElectricalEnergy ACElectricalEnergy

VoltageOrderSignal

ONOFFSignal

Air

Fig. 6. Example of a solution obtained by the solving process.

272 R. Chenouard et al.

solutions are valid in terms of flow connections and we were able to find some
architectures used in existing products.

On this example, we do not use several occurrences of components. Some
other experiments show that many similar (i.e. symmetrical) solutions are com-
puted and we can expect an exponential rise of the solution number according
to the number of allowed components (and their number of interfaces). The next
step for the designer is to check the physical feasibility of a topological architec-
ture. Working with so much solutions is not realistic on bigger design synthesis
problems even if we can automate many steps, but additional constraints can
be easily integrated in our approach to take into account other requirements or
performance criteria.

5 Conclusion and Future Work

In this paper, we present an innovative process to automate the design synthesis
of system architectures. We implement it using MDE tools and CP techniques to
compute relevant topologies. The designer has just to define functional require-
ments and select candidate components, then the automated process will produce
all possible topologies. We define several simplified metamodels for the function
definitions, the CSP model, the CSP solution, the topological architecture model
and we use an existing DOT language metamodel for printing the computed
topologies. We apply this process on a real example using a set of allowed com-
ponents. It proves the relevance of the process, even if some improvement must
be done.

Indeed, we have to consolidate our transformations and we have to auto-
mate the whole process, since some steps are manually launched and achieved
(e.g. some model injections). Nevertheless, we expect to link our process with
existing system modeling languages like SysML. Functional requirements may
automatically be extracted. Topological architectures can also be defined using
block definition diagrams and internal block diagrams.

Several harder issues must be investigated after this work. The major one is
the number of solutions and the symmetries appearing with multiple occurrences.
Without a drastic reduction of the number of computed solutions, the process
will not be fully usable for real-world design synthesis problems. In CP, some
existing work deals with symmetry breaking techniques [18] and we hope to
reduce drastically the number of computed solutions.

Another way to reduce valid topologies is to add more constraints about the
design synthesis problem. We only use high-level functional requirements, but
additional knowledge may be integrated as constraints in our CSPs to assess the
feasibility in terms of physical behavior. However, these constraints may often
lead to nonlinear constraints. In this case, we have to deal with Mixed-Integer
NonLinear Problems (MINLPs) which are harder to solve than current Integer
Linear Problem (ILP). We can also use an optimization algorithm to reduce
the number of computed solutions, but we have to define generic metrics or
performance criteria related to the topological aspects of the computed solutions.

Computational Design Synthesis 273

Some additional knowledge may also be integrated to deal with performance
criteria coming from needs and requirements.

References

1. Cagan, J., Campbell, M.I., Finger, S., Tomiyama, T.: A framework for computa-
tional design synthesis: model and applications. ASME. J. Comput. Inf. Sci. Eng.
5(3), 171–181 (2005)

2. Chenouard, R., Granvilliers, L., Soto, R.: Model-driven constraint programming.
In: Proceedings of the 10th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP), pp. 236–246 (2008)

3. Chenouard, R., Granvilliers, L., Soto, R.: High-level modeling of component-based
CSPs. In: Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA 2010.
LNCS (LNAI), vol. 6404, pp. 233–242. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16138-4 24

4. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI
Mag. 11(4), 26 (1990)

5. Graphviz: Graph visualization software. http://www.graphviz.org
6. Helms, B., Shea, K.: Computational synthesis of product architectures based on

object-oriented graph grammars. J. Mech. Des. 134(2), 1–14 (2012)
7. Hartmann, C., Chenouard, R., Mermoz, E., Bernard, A.: Formulation of a design

problem for computational pre-design. In: Virtual Concept Workshop (2016)
8. Hegeds, A., Horvth, A., Varr, D.: A model-driven framework for guided space

exploration. Autom. Softw. Eng. 22(3), 399–436 (2015)
9. Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., Wood, K.L.: A functional

basis for engineering design: reconciling and evolving previous efforts. Res. Eng.
Des. 13(2), 6582 (2002)

10. Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach. Springer, London
(1995)

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(12), 3139 (2008)

12. Kumar, V.: Algorithms for constraint satisfaction problems: a survey. AI Mag.
13(1), 32–44 (1992)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

14. Rechtin, E.: Systems Architecting: Creating and Building Complex Systems. Pren-
tice Hall, Englewood Cliffs (1991)

15. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
New York (2006)

16. Saxena, T., Karsai, K.: Towards a generic design space exploration framework.
In: IEEE 10th International Conference on Computer and Information Technology
(CIT), pp. 1940–1947 (2010)

17. Umeda, Y., Tomiyama, T., Yoshikawa, H.: FBS modeling: modeling scheme of
function for conceptual design. In: Proceedings of the 9th International Workshop
on Qualitative Reasoning (1995)

18. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006). doi:10.1007/
11889205 46

http://dx.doi.org/10.1007/978-3-642-16138-4_24
http://dx.doi.org/10.1007/978-3-642-16138-4_24
http://www.graphviz.org
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/11889205_46
http://dx.doi.org/10.1007/11889205_46

Incremental Consistency Checking
of Heterogeneous Multimodels

Zinovy Diskin1,2 and Harald König3(B)

1 NECSIS, McMaster University, Hamilton, Canada
2 Generative Software Development Lab, University of Waterloo, Waterloo, Canada

zdiskin@uwaterloo.ca
3 University of Applied Sciences FHDW Hannover, Hannover, Germany

harald.koenig@fhdw.de

Abstract. The local approaches to global consistency checking (GCC)
of heterogeneous multimodels strive to reduce the model merging and
matching workload within GCC. The paper’s contribution to such
approaches is a framework allowing the user to do matching incremen-
tally: to build the match required for checking the multimodel w.r.t. a
new constraint, the user employs matches produced in previous GCC
sessions.

1 Introduction

Modeling a complex system normally results in a (heterogeneous) multimodel,
i.e., a set of heterogenous (component) models each one conforming to its own
metamodel. A fundamental fact about multimodeling is that if even each of the
component model perfectly conforms to its metamodel, taken together they may
violate some global consistency (GC) rules, i.e., be globally inconsistent [2,7].
An accurate mathematical definition of GC based on model merge was proposed
in [9] for the homogeneous case, and extended for the heterogeneous multimod-
eling in [1]. Moreover, while in [9], the merge-based definition of GC was also
used as a practical procedure for GC checking (GCC), in [1] we proposed a
more efficient local approach, in which consistency is only checked at the over-
laps of the component metamodels, which reduces the model merge workload in
GCC. The local idea was significantly developed in our paper [4], in which we
proposed to check each global constraint c individually, and correspondingly do
matching and merging as minimally as required for checking c, i.e., only using
those (meta)model elements that affect the validity of c. In this way, not only
model merging, but also matching workload is reduced. As model matching is
a very expensive procedure, the local approach of [4] provides significant gains
for GCC.

The present paper makes a new contribution to the local GCC by reducing
the model matching workload even more by doing it incrementally. Suppose that

This work is supported by the Automotive Partnership Canada via the Network on
Engineering Complex Software Intensive Systems (NECSIS).

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 274–288, 2016.
DOI: 10.1007/978-3-319-50230-4 21

Incremental Consistency Checking of Heterogeneous Multimodels 275

the user performed GCC of a given multimodel w.r.t. a set of global constraints
C, but after that the user needs to make yet another GCC session for a bigger
set of constraints C ′ ⊃ C. We show how the user can effectively perform the
new matching procedure required for the latter GCC by using results of the
former match rather than building the new match from scratch. In a nutshell,
the mathematical framework we develop allows us to transform a constraint
increment C ′ −C into a respective increment in the inter-model correspondence
specification.

The paper is structured as follows. Sections 2 and 3 provide the required
background: in Sect. 2, we explain the main concepts and challenges of GCC
of heterogeneous multimodels with a simple example, and in Sect. 3, we outline
our mathematical framework, particularly, the machinery of diagrammatic con-
straints. Section 4 presents the contribution of the paper—incremental model
matching within GCC. In Conclusion we outline directions for future work.

2 Background I: Multimodeling, Global Constraints and
Global Consistency

Modeling a complex system normally results in a multimodel, i.e., a set of het-
erogenous models (class diagrams, sequence diagrams, statecharts, activity dia-
grams, etc.), each one conforming to its own metamodel. For illustrating the
main concepts, we will consider a toy example in Fig. 1, which shows two class
diagrams A1,2, each one conforming to its own metamodel M1,2. Metamodel M1

specifies classes implementing interfaces with operations implemented by meth-
ods. Metamodel M2 says that classes can be abstract, they have attributes, and
also implement interfaces. Each of the metamodels has its own constraints, e.g.,
all directed association are assumed to have multiplicities [0..1] at the target

Fig. 1. Sample multimodel

276 Z. Diskin and H. König

end by default, and the OCL constraint in M1 prescribes that each implemented
operation in a class belongs to this class’ implemented interface. In addition, we
may want to require that every class owns at least one either method or attribute
(or have both). This constraint cannot be declared in any of the two metamodels
as M1 knows nothing about attributes while M2 knows nothing about methods.
Following [1], we call such constraints inter-metamodel or global; correspondingly,
metamodels M1,2 and their constraints are called local.

What is the metamodel to which a global constraint can be attached? A
reasonable answer seems obvious: we need to merge local metamodels into a
global metamodel M , which in our case can be easily done manually as shown in
Fig. 1(b). For this merge, we have silently assumed (1) merging elements of M1,2

(i.e., glueing them together) with the same names except two associations owns,
and (2) merging associations impl@M1 and implmnts@M2 even though they
have different names (elements to be merged as well as their merge are shaded
in grey). The merged metamodel M clearly violates two basic constraints of the
metametamodel: (C1) different associations from the same metaclass must be
named differently, and (C2) any element only has one name. Thus, while local
metamodels do conform to the metametamodel, their merge does not, and we
say that metamodels M1,2 are globally inconsistent. Fixing global inconsistency
in our case is easy: we need to rename homonymic elements (say, into owns a
and owns m), and choose one of the synonymic names (say, impl) or generate a
new one. These fixes are not shown in Fig. 1(b), but below we will assume them
done. After the merged metamodel M is built and fixed, we can attach global
constraints to it, and check global consistency of the multimodel (A1, A2). For
this, we need first to merge the local models into a global model A as shown
in Fig. 1(b) (again shaded in grey in A1,2 and A0), and then check validity of
global constraints for A. Specifically, we see that the “one method or attribute”-
constraint described above is satisfied by model A.

In the toy example above, all manipulations were easy, but in practice, merg-
ing and checking global consistency may be a far more complicated issue. Specifi-
cally, (meta)model matching (together with subsequent merging) are very expen-
sive operations which need intelligent tool support, but anyway cannot be fully
automated. A key observation made in [1] and further developed in [4] is that for
checking a particular constraint or a group of constraints C, the user can match
only small parts of the (meta)models that matter for C’s validity rather than
match and merge the entire (meta)models. For instance, in the example above,
the “one method or attribute”-constraint does not cover interfaces, such that
manual effort for the decision whether to match “Comparable” and “TotalOrder”
can be omitted.

To make the simple example above generalizable and applicable to practically
interesting cases, we need a precise mathematical framework and tools built on
the base of such a framework. Specifically, we need a formal specification of
models and their merge, metamodels and constraints, and conformance of a
model to a metamodel. A suitable mathematical framework is outlined in the
next section.

Incremental Consistency Checking of Heterogeneous Multimodels 277

3 Background II: Mathematical Framework

We assume the reader to be familiar with the concept of (directed multi-)graphs
and graph morphisms (mappings), which together constitute the category G of
graphs. We also assume some basic knowledge of categories and functors. In
Sect. 3.1, we explain model mappings and spans, and in Sect. 3.2 model merge.
Section 3.3 explains the fundamental tool for our considerations — diagrammatic
constraints, and Sect. 3.4 explains local checking of global constraints in detail.
To make the paper self-contained, we sketched some technical material heavily
used in the paper in the appendix.

3.1 Model Mappings and Spans

Models’ structures are governed by metamodels. Since many models are graph-
ical, this can be formalized via typed graphs by defining a model A as a triple
(MA, GA, τA) with MA a graph of types or A’s metamodel graph, GA a graph
specifying model’s data, and τA : GA → MA a graph morphism called typing,
which assigns to each model element its type in the metamodel graph MA (see,
for example, models A1 and A2 in Fig. 2). We will often omit subindex A near
model’s components. In a homogeneous environment determined by a single
metamodel M , all models are typed over M and thus are pairs (G, τ). We will
also use the latter notation if M is clear from the context. We will denote the
class of all models over M by Model[M].

τ τ τ

Fig. 2. Model overlapping via spans

278 Z. Diskin and H. König

The following notion is fundamental for our work with hetero-
geneous models. A model mapping or morphism r : A → A′ is a
pair (rG, rM) of graph morphisms rG : G → G′ and rM : M → M ′

such that the inset diagram commutes, i.e. τ ; rM = rG; τ ′. For
example, Fig. 2 presents two model mappings, r1 = (r1G, r1M) :
A1 ← A0 and r2 = (r2G, r2M) : A0 → A2. Note the importance
of commutativity, which enforces mapping models’ data elements
to preserve their types. We will often omit subindexes M,G if they are clear from
the context.

Three special types of model maps are important. Two models are isomor-
phic, written A ∼= A′, if both mappings rM and rG are isomorphisms. Model A
is a submodel of A′, written A ↪→ A, if both rM and rG are inclusions. Finally,
if the square in the inset diagram above is a pullback (see Appendix), then we
write r : A pb→ A′ and call model A the (retyped) restriction (or reduction) of
model A′ along map rM .

Model overlap can be specified by a pair of model mappings

A1 A0
r1�� r2 �� A2 with a common source as illustrated in Fig. 2 (curved

arrows denote mapping behavior). Such a configuration of models and map-
pings is called a span; the common model is the head of the span, and the two
mappings are its legs. In more detail, a model span consists of two graph spans:

a metamodel span M1 M0
r1M�� r2M �� M2 and a data span G1 G0

r1G�� r2G �� G2 .
In each of the graph spans, an element x in the head represents a common/shared
concept, while legs show how this concept is represented in each of the compo-
nents. For example, each element x ∈ M0 declares that elements r1M (x) ∈ M1

and r2M (x) ∈ M2 refer to the same (meta)classifier. Particularly, associations
impl in metamodel M1 and implmnts in M2 are declared to be the same in Fig. 2
despite their different names. Analogously, the upper span declares that classes
Person@A1 and Person@A2 refer to the same class. Note that it is no restriction
to assume that the overlap span is jointly injective, i.e., for any two elements
x, x ∈ M0, if r1M (x) = r1M (x′) and r2M (x) = r2M (x′), then x = x′.

When a span specifies a model overlap, we will refer to it as an overlap or
correspondence span. Thus, the metamodel of our sample multimodel is actually
a span M = (M1,M2,M0, r1M , r2M) or shorter M = (r1M , r2M) rather than a
pair (M1,M2), and the multimodel itself is a span A = (A1, A2, A0, r1, r2) or
shorter A = (r1, r2) rather than a pair (A1, A2). We will call (A1, A2) the base
of multimodel A. Thus, a multimodel is essentially richer than its base (cf. [1]).

3.2 Model Merge and Global Constraints

After model overlap is specified by a span, we can merge the component models
in an entirely automatic way by employing an operation called pushout (PO).
Figure 3 explains the idea by showing how the two metamodels are merged.
Intuitively, we first take the disjoint union of M1 and M2, and then glue together
those elements, which are declared to be the same by the span. The result is a
merged graph M together with two mappings r1 : M1 → M and r2 : M ← M2

Incremental Consistency Checking of Heterogeneous Multimodels 279

Fig. 3. Merging metamodels (Color figure online)

specifying embedding of the local metamodel graphs into the merge. We will
denote it by M1 +M0 M2.

Local constraints are directly carried into the merged graph along the maps
r1 and r2, in this way the commutativity constraint (note the label [=]) and
multiplicities (not shown) are carried into the merge. Thus, PO takes a span of
metamodels as its input, and outputs a cospan (two mappings with a common
target), encompassing all data from the local metamodels without duplication.
Models’ data graphs are also merged with PO, and it can be shown that the
result of data graph PO is properly typed over the metamodel graph PO (we
omit the figure to save space). However, as our discussion in Sect. 2 shows, some
constraints can be violated and have to be checked. In addition, inter-metamodel
constraints may be added to the merged metamodel, e.g. the above mentioned
“one method [or] attribute” constraint shown in green in Fig. 3.

3.3 Diagrammatic Constraints

Table 1. Sample constraints

Name Shape

[0..1] �������	1
12 �� �������	2

[or] �������	1 �������	0
02

��
01

�� �������	2

[=] �������	0
01 ��

02 ���
��

��
��
�������	1

12
��
�������	2

A key feature of constraints used in metamodeling
is their diagrammatic nature: the set of elements
over which a constraint is declared is actually a dia-
gram of some shape specific for the constraint. For
example, the shape of any multiplicity constraint
is a single arrow, while the shape of constraint [or]
discussed above is a span of two arrows.

To declare a constraint named c over a meta-
model graph M , we recognize the constraint shape
in the graph and label the respective configuration
by constraint name c. Formally, we first declare a
signature of constraints, i.e., a set of constraint names/labels, each one assigned
with its (arity) shape denoted, for a constraint c, by Sc. For example, Table 1

280 Z. Diskin and H. König

specifies a simple signature consisting of three constraints. Now, to declare a con-
straint c over a graph M , we need to specify a graph morphism δ : Sc → M called
(shape) binding. E.g. in Fig. 4, constraint c = [or] is declared via binding δ with
δ(01) = owns m, δ(02) = owns a, which automatically implies δ(1) = Method ,
δ(0) = Class, δ(2) = Attribute. The elements in M the shape is mapped to, is
called the image or the scope of the binding; in Fig. 4 the elements beyond the
scope are veiled. The same formal mechanisms underlines commutativity con-
straint in Fig. 3: labeling an arrow square by [=] is a syntactic sugar for adding
the diagonal arrow, and declaring the constraint [=] from Table 1 for the two
triangles (by mapping the triangle shape to the respective triangle in the graph).

The pair (c, δ) is called a constraint declaration. In the sequel, we write c@δ,
meaning that constraint c is imposed on metamodel M at the image of binding
map δ.

Constraint name “or” already suggests its semantic interpretation in this
context: “Each class shall own at least a method or an attribute”. Importantly,
semantics of a constraint is, in general, defined irrespective to the binding by
defining a validating function validatec(X : Model[Sc]): boolean which
inputs a typed graph X = (GX , τX : GX → Sc), i.e. a model typed over c’s
shape, and outputs Boolean truth iff the model is considered to be satisfying
the constraint. The validating function must be stable under isomorphism: if
X ∼= X ′, then validatec(X) = validatec(X ′).

Now checking consistency of model A = (G, τ : G → M) against a fixed
constraint declaration c@δ in M is performed by function

check(A:Model[M], c@δ:Constr): boolean

which performs three steps:

1. Restrict A to elements, whose types are in the image of δ in M .
2. Retype elements of this new structure to formal typing over Sc. This yields

typed graph Ac@δ = (Gc@δ, τ c@δ).
3. Return the result of validatec(Ac@δ).

Fig. 4. Constraint declaration and check

In Fig. 4 the steps of
function check can be
tracked: validatec acts on
models typed over Sc: It
returns true if each element
of type 0 in Gc@δ has an
outgoing edge to some ele-
ment of type 1 or to some
element of type 2. Graph G
is restricted and retyped by
pulling back τ along δ, τ c@δ

is the retyping.
Model A satisfies c@δ,

written A |= c@δ, if

Incremental Consistency Checking of Heterogeneous Multimodels 281

check(A, c@δ)=true. A is a legal model over metamodel M , if A |= c@δ for
all constraints c@δ declared in M .

The framework described above allows us to give an accurate formal definition
of global consistency. In a nutshell, we specify local (meta)model overlap by
a span, then merge using PO, specify global constraints over the the merged
metamodel, and finally check the merged model against global constraints.

3.4 Global Consistency Revisited: Local Constraint Checking

As mentioned above, using this definition of global consistency as an algorithm
for consistency checking is very inefficient due to the expensive operation of
model matching. A better technique is given in [4]: Let A be a multimodel with
base (A1, A2), Ai = (Gi, τi: Gi → Mi) (i = 1, 2) defined over a multimeta-
model M = (M1,M0,M2, r1, r2). An inter-metamodel constraint c@δ is verified
as follows (see Appendix for how the pullback operation works).

1. Binding projection: Identify those fragments of M1, M2, and M0, that matter
for checking, by pulling δ back along r1, along r2, and along r1; r1 (or, equiv-
alently, along r2; r2 as the square is commutative), cf. Fig. 4. This results in
mappings r∗

1(δ) : Sc@δ
1 → M1, r∗

2(δ) : Sc@δ
2 → M2, and (r1; r1)∗(δ) : Sc@δ

0 →
M0. Let’s call these maps localised bindings (of δ to M1, M2, M0. resp.). Let

Sc@δ
i

kiM �� Ic@δ
i

� � �� Mi for i = 1, 2, 0

be their epi-mono-factorisations, i.e.Ic@δ
i is the image of δ’s localised binding

to Mi.
2. Model restriction and retyping: Carry out steps one and two of the constraint

checking algorithm of Sect. 3.3 locally, i.e. construct consecutive pullbacks of
τi along the two morphisms of the above epi-mono-factorisation, yielding

Bc@δ
i

pb
ki �� Ac@δ

i
pb � � �� Ai

The right pullback yields subgraph Ac@δ
i of Ai comprising those model ele-

ments that are typed in Ic@δ
i , the left pullback retypes elements of Ac@δ

i such
that they are typed over Sc@δ

i . Let Ac@δ
i = (Gc@δ

i , τ c@δ
i : Gc@δ

i → Ic@δ
i) and

provide the modeler with model data Gc@δ
1 and Gc@δ

2 .1, 2

3. Matching: Determine compatibly typed overlap Ac@δ
0 = (Gc@δ

0 , τ c@δ
0 : Gc@δ

0 →
Ic@δ
0) of these two data graphs, including correspondence span r′

1: Ac@δ
0 →

Ac@δ
1 and r′

2: Ac@δ
0 → Ac@δ

2 .3 We will refer to the triple (Ac@δ
0 , r′

1, r
′
2) as a

constraint specific (correspondence) span and denote it by span(c@δ).

1 In Fig. 3, Gc@δ
1 comprises classes, interfaces, and operations; Gc@δ

2 contains classes,
interfaces, and attributes.

2 Recall the fact that Bc@δ
i , Ac@δ

i , and Ai are typed graphs, such that the arrows of
the form pb→ depict morphism pairs in a pullback square, cf. Sect. 3.1.

3 Hence, in Fig. 3, Gc@δ
0 contains only certain classes.

282 Z. Diskin and H. König

4. Validation: Compute pullback Bc@δ
0 = (Hc@δ

0 , σc@δ
0 : Hc@δ

0 → Sc@δ
0) of this

overlap along k0M and apply validatec(Bc@δ
1 +Bc@δ

0
Bc@δ

2).

The key point of this algorithm is that the constraint-tailored correspondence
span span(c@δ) can be much smaller than the span specifying all correspondences
between the component models. E.g. checking our sample multimodel against the
constraint “One attribute or one method” specified in Sect. 2 requires to match
classes in models A1 and A2 while matching interfaces is not necessary. For this
toy example, the difference is not significant, but for practical models comprising
thousands of elements, the performance gain is essential.

4 From Constraints to Model Matching, Incrementally

This section introduces the main contribution of the paper. Since the most expen-
sive step in the algorithm of Sect. 3.4 is model matching (Step 3), we focus on
minimizing this effort by computing the required correspondence span incre-
mentally. The idea is briefly explained in Sect. 4.1, Sect. 4.2 describes our main
technical vehicle for the constraint grouping task, and Sect. 4.3 explains incre-
mentality in detail.

4.1 Incrementality in a Nutshell

Suppose we need to check global consistency wrt. a set of constraints

C = {c1@δ1, ..., cn@δn}.

In the next section we will show that any such set gives rise to a constraint
declaration c@δ for some new constraint symbol c with a new binding map δ
such that for any multimodel A we have A |= c@δ iff A |= C (where, as usual,
A |= C means A |= ci@δi for all i = 1, .., n). We will denote this new constraint
declaration by

∧
C and call it consolidation of C. Thus, we can replace checking

A against C by checking it against a single constraint
∧

C with our algorithm in
Sect. 3.4, so that model matching is reduced to discovering the correspondence
span span(C) def= span(

∧
C).

Assume now that new constraints are added to group C resulting in a
bigger group C ′ ⊇ C. To check A against C ′, we need to build a corre-
spondence span span(C ′), which, as we mentioned several times, is an expen-
sive procedure. Our idea is to build span(C ′) incrementally (rather than from
scratch) using the previously built correspondence span span(C). Indeed, we will
define a “delta” span span(C,C ′) and an operation � of span union such that
span(C ′) = span(C) � span(C,C ′), so that GCC can be done incrementally with
an effective reuse of the model matching knowledge.

Incremental Consistency Checking of Heterogeneous Multimodels 283

4.2 Constraint Grouping

Logical programming enables definition of new formulas with the help of con-
junction of already known formulas, e.g.

pythagoreanTriple(x, y, z) := (x2 + y2 = z2) ∧ isInteger(x) ∧ isInteger(y).

This classical consolidation of three small formulas by defining their conjunction
can be carried out in the same way with diagrammatic constraints: For the sake
of simplicity we explain the idea for two constraint declarations only. The general
case of an arbitrary (finite) number is straightforward. Let c1@δ1 and c2@δ2 be
imposed on metamodel M . We can define a new constraint symbol c1 ∧ c2 (read
“c1 and c2”) with arity graph Sc1∧c2 := Sc1 + Sc2 , i.e. the coproduct of the two
arity graphs (whenever, in the sequel, a term is printed in italics, we refer to
the appendix’ terminology). In the classical case this corresponds to the disjoint
union of all variable slots in the atomic formulae: We obtain 5 slots s1, . . . , s5
for the arity of the consolidated formula. For the diagrammatic conjunction of
c1@δ1 and c2@δ2 we take [δ1, δ2] : Sc1 + Sc2 (universal morphism) to be the
corresponding binding map. In the classical example above, this means that the
slots are mapped s1
→ x, s2
→ y, s3
→ z, s4
→ x, s5
→ y, placing x, y, z
accordingly into the slots.

Semantics of c1 ∧ c2 is defined as follows. For any model X with τX : GX →
Sc1∧c2 , we set X |= c1 ∧ c2 iff i∗c1(X) |= c1 and i∗c2(X) |= c2, where ic1 : Sc1 →
Sc1∧c2 and ic2 : Sc2 → Sc1∧c2 are the coproduct’s canonical injections (recall that
Sc1∧c2 = Sc1 + Sc2), and i∗c1(), i∗c2() are the respective PB operations (acting,
in fact, on τX — see Appendix). Stability under isomorphisms is obvious.

(c1 ∧ c2)@[δ1, δ2] is called a consolidated constraint declaration (composed of
c1@δ1 and c2@δ2). Note that in the partially ordered (by |=) set of all constraint
declarations, (c1 ∧ c2)@[δ1, δ2] is the g.l.b. of c1@δ1 and c2@δ2.

The construction defined above for the case of two constraint declarations in
the group, is directly generalized for the case of any finite number of constraints
C = {c1@δ1, . . . , cn@δn}. We will denote the corresponding consolidated con-
straint by

∧
C.

Theorem. Given a set of global constraints C = {c1@δ1, . . . , cn@δn} (declared
over the metamodel merge), let

∧
C be its consolidated constraint declaration

as defined above. Then A |= C iff A |= ∧
C.

4.3 From Constraints to Correspondence Spans

Given a constraint declaration c@δ, let Sc@δ kM �� Ic@δ � � �� M be its epi-mono
factorisation as described in Sect. 3.4.

Definition. Given two constraints, c@δ and c′@δ′, we say the latter (semanti-
cally) entails the former, and write c′@δ′ |= c@δ, if Ic@δ ⊂ Ic′@δ′

and A |= c@δ
for any multimodel A with A |= c′@δ′.

284 Z. Diskin and H. König

Corollary. Given a metamodel M , the space of all constraint declarations over
M is a (thin) category, say, Constr(M), whose arrows are entailments. 4 �

Specifically, it is easy to see that given two groups of constraints such that
C ⊂ C ′, we have

∧
C ′ |= ∧

C for their consolidations. This is our main moti-
vating example, but proofs are easier to build in a bit more general situation of
semantic entailment.

Given entailment c′@δ′ |= @δ, we have a diagram

Sc′@δ′
��Sc@δ �� Ic@δ � � �� Ic′@δ′ � � �� M (1)

with Ic@δ and Ic′@δ′
being images of δ and δ′ resp., which gives rise (through

backward propagation) to inclusions

Ac@δ
1 ⊆ Ac′@δ′

1 and Ac@δ
2 ⊆ Ac′@δ′

2

where models A with subindexes are constraint-specific restrictions of local mod-
els produced in Step 2 of the algorithm (Sect. 3.4). Thus, there will be further
automation potential for matching in Step 3, if two elements x1 ∈ Ac@δ

1 and
x2 ∈ Ac@δ

2 are declared to be the same: In this case neighbors (reachable via an
edge in the data graph) y1 ∈ Ac′@δ′

1 − Ac@δ
1 (of x1) and y2 ∈ Ac′@δ′

2 − Ac@δ
2 (of

x2) are likely to be identical, too.
We demonstrate the effects for the simple situation of a singleton C =

{c1@δ1} and C ′ = C ∪ {c2@δ2}. Consider for this the metamodel merge M in
Fig. 3. Suppose again that classes shall either possess an attribute or a method
(constraint c1@δ1), and, additionally, the following property (constraint c2@δ2)
has to hold for any class c:

(∼ c.abstract ∧ c.impl = i) implies (∀op ∈ i.ops: ∃m ∈ c.owns m: m.implOf = op)

i.e. each operation of an implemented interface has to be instantiated in each
concrete class. Let c′@δ′ be the consolidation of C ′. Its scope consists of the
complete merge M in Fig. 3. For applying our algorithm for checking validity
of (A1, A2) against c1@δ1, the user has to specify sameness of model elements.
Since the image of δ1 only covers Class in the complete overlap of M1 and M2,
the user only needs to match classes. Thus, in Fig. 2, he will declare classes
Person to be the same. In contrast, extended constraint declaration c′@δ′ covers
the complete overlap M0 in Fig. 3. Hence the user, additionally, has to specify
sameness of interfaces. Since Person-classes have already been matched, it is
likely that interfaces Comparable and TotalOrder are the same, and the system
can propose their matching to the user, which he can confirm or reject.

In the rest of the section, we investigate the nature of mapping span, which
maps a constraint c@δ to its specific correspondence span. We will show that it
can be extended to arrows by mapping an entailment c′@δ′ |= c@δ to the respec-
tive inclusion of correspondence spans. The latter can be seen as an increment
for model matching.
4 A thin category is nothing but a partially preordered (big) set: for any pair of objects,
the set of mediating arrows between them is either empty or a singleton.

Incremental Consistency Checking of Heterogeneous Multimodels 285

It is easy to verify that image inclusion of two constraints faithfully propa-
gates back to the local metamodels and its overlap by Preservation properties of
pullbacks. Thus diagram (1) is fully propagated back to mappings with codomain
M1, M2, and M0 in step 1 of the algorithm in Sect. 3.4, meaning that we get the
same shaped diagram (including image properties) for the localised bindings:

Sc′@δ′
i ��Sc@δ

i
�� Ic@δ

i
� � �� Ic′@δ′

i
� � �� Mi (2)

for all i ∈ {0, 1, 2}. In step 2, pullback of τi along these mappigs (i ∈ {1, 2}) is
carried out. If verification of c@δ and c′@δ′ would be performed simultaneously,
the system would present to the modeler typed graphs (Ac@δ

i) pb ↪→ (Ac′@δ′
i)

for i ∈ {1, 2} where inclusion is provided by preservation properties and one
can show that the pullback property arises from its decomposition property (see
Appendix). Suppose the modeler has already specified model overlap Ac@δ

0 =
(Gc@δ

0 , τ c@δ
0) for checking c@δ, then the question is, how to efficiently fill the

gaps (question marks and dashed arrows) in

Ac@δ
1
pb� �

��

Ac@δ
0
pb� �

?

���
�
�
�

r′
1

��
r′
2

�� Ac@δ
2
pb� �

��

= span(c@δ)
� �

��
Ac′@δ′

1 Ac′@δ′
0 ?? � ���� � ?�� ���� Ac′@δ′

2 = span(c′@δ′)
(3)

Whereas the two horizontal dashed correspondence morphisms declare the
extended overlap, the vertical dashed line guarantees coherence with the overlap
w.r.t. c@δ.

Note that for any solution Ac′@δ′
0 := (Gc′@δ′

0 , τ c′@δ′
0 : Gc′@δ′

0 → Ic′@δ′
0) the

codomain Ic′@δ′
0 is already known, cf. (2). Thus, we have to find Gc′@δ′

0 and its
typing. We claim that Gc′@δ′

0 is of the form Gc@δ
0 + G0, where G0 can be any

subset of elements of

{(x1, x2) ∈ Gc′@δ′
1 × Gc′@δ′

2 | ∃t0 ∈ Ic′@δ′
0 − Ic@δ

0 : τc′@δ′
1 (x1) = r1(t0)∧ τc′@δ′

2 (x2) = r2(t0)},

which turns Gc′@δ′
0 into a legal graph. We call G0 the match-extension and define

τ c′@δ′
0 = τ c@δ

0 on Gc@δ
0 and τ c′@δ′

0 (x1, x2) = t0. Note that this is unique since we
assumed in the beginning of Sect. 3.2 r1 and r2 to be jointly injective. Moreover
the correspondence maps must be taken to be projections (x1, x2)
→ x1 and
(x1, x2)
→ x2 on match-extension and such that they coincide with r′

1G and r′
2G

on Gc@δ
0 . Finally the model part of the vertical dashed map is the inclusion of

Gc@δ
0 into Gc′@δ′

0 . It can now be shown that Gc′@δ′
0 is indeed a graph, the above

diagram becomes commutative, all mappings on the model level are proper graph
morphisms and are compatibly typed, and the three vertical arrows are inclusion
pullbacks, as desired.

286 Z. Diskin and H. König

Thus, in the example above, Gc′@δ′
0 = Gc@δ

0 + G0, where graph Gc@δ
0 has

exactly one node Person. For graph G0, there are three cases:

1. G0 = ∅ (no extension)
2. G0 = {(Comparable : Interface, TotalOrder : Interface)}.
3. G0 = {(Comparable : Interface, TotalOrder : Interface), (impl1, impl2)},

where impl1 specifies that Person implements Comparable and impl2 spec-
ifies that Person implements TotalOrder.

The second case results in a double declaration of Comparable = TotalOrder
to be implemented by Person, which can automatically be rejected by the algo-
rithm. In addition to that, the algorithm can propose the third case, because
it is likely that Comparable and TotalOrder can be declared to be the same,
since otherwise Person should not be in the original overlap (because then it
implements different behavior). The user must only confirm this choice. If he
rejects, the algorithm outputs case 1.

Given a multimodel base (A1, A2) over the multimetamodel M, the con-
struction described by diagram (3) defines mappings between model correspon-
dence spans over M, which makes the space of spans a category Span(M). We
can summarize our discussion by formulating an important requirement to the
model matching tool: in order to preserve the matching knowledge, mapping
span : Constr(M) → Span(M) should be a functor. This requirement is well
aligned with matching algorithms based on similarity flooding [6]: global con-
straints provide information about model correspondences, which can be used
for matching (e.g., as it was done in our example above).

5 Conclusion: Future Work

We plan to extend the functorial nature of mapping span : Constr(M) →
Span(M) towards a richer structure over the spaces. Namely, we want to make
them lattices formed by Boolean logical operations for the former space, and
by Boolean operations over spans for the latter space. Then it should be possi-
ble to establish a structure compatible map (homomorphism) from the former
algebra to the latter, which would allow the user to do matching in a composi-
tional way with extensive reuse. Another direction is to investigate interaction
between our incremental approach and similarity flooding matching algorithms,
which potentially can enhance tools for both model matching and global con-
sistency checking. We also plan to develop a tool support for the approach in
collaboration with the Bergen group, whose ongoing work on tooling for dia-
grammatic constraint checking, and subsequent model repairing [5,8] looks very
promising.

A Appendix. Some Operations Over Graphs and Models

Two operations over graphs and graph morphisms heavily employed in the paper
are sketched below; a detailed specification can be found in, say, [3].

Incremental Consistency Checking of Heterogeneous Multimodels 287

Coproducts. The coproduct G1 + G2 of two graphs G1, G2 is their disjoint
union. Importantly, any coproduct is endowed with two canonic injections ik :
Gk ↪→ G1 + G2, k = 1, 2, which map each element to itself in the union.

Any pair of graph morphisms f1,2 : G1,2 → H gives rise to a unique mor-
phism [f1, f2] : G1 + G2 → H compatible with injections: i1,2; [f1, f2] = f1,2.
This property of coproducts is called universality and morphism specified above
universal. It is easy to see that universality allows us to define the following
operation over models (typed graphs): having typed graphs A1, A2 we define
A = A1 + A2 by setting GA = G1 + G2, MA = M1 + M2 and τA = [τ1; i1, τ2; i2]
where i1,2 : M1,2 ↪→ MA are coporduct injections.

Restriction/Retyping and Pullbacks. Given a model A =
(M,G, τ) and a type graph map as shown in the inset diagram,
we can define a new model A′ = (G′, τ ′) over M ′ by setting
G′ = {e = (t, x)| t ∈ M ′, x ∈ G, f(t) = τ(x)} 5 with projection
mappings τ ′(e) = t and f ′(e) = x. Further in the paper, we will
often denote map f ′ by τ∗(f) and say that it is obtained by pulling f back along τ ,
and similarly τ ′ = f∗(τ) is obtained by pulling τ back along f ; correspondingly,
the entire operation of producing a span (τ ′, f ′) from cospan (τ, f) is called
pull-back(PB) (of graphs).

If f is inclusion, then PB provides the (retyped) restriction of model A over
the M ′ part of the metamodel graph. Pullback operation can be seen as a gen-
eralization of model restriction for arbitrary mappings f , and we will often call
it so. As any PB square is commutative, we can consider it as a special model
morphism, which we will denote by a special arrow f : A′ pb→ A.

Preservation properties. It is known that If f is inclusion, injective or surjective,
then f ′ is, resp., inclusion, injective or surjective as well.

Pullback composition and decomposition. Given f : A pb→ B and g : B pb→ C,
their composition is also PB, i.e., f ; g : A pb → C. Moreover, given that the
second arrow and the composition are PBs, f ; g : A pb→ C and g : B pb→ C, it
is possible to prove that the first arrow is also PB, f : A pb→ B.6

Coproducts and pullbacks (Extensivity). Given three typed graphs and
morphism pairs A1

�� A0 A2
�� , then A1pb

�� A0 A2pb�� if and only if
A0

∼= A1 + A2.

References

1. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous mod-
els for global consistency checking. In: Dingel, J., Solberg, A. (eds.) MODELS
2010. LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21210-9 16

5 It is easy to show that G′ is equipped with a graph structure in a unique way, see,
e.g., [3].

6 But f ; g : A pb→ C and f : A pb→ B do not, in general, imply g : B pb→ C.

http://dx.doi.org/10.1007/978-3-642-21210-9_16
http://dx.doi.org/10.1007/978-3-642-21210-9_16

288 Z. Diskin and H. König

2. Egyed, A.: Fixing inconsistencies in UML design models. In: ICSE. pp. 292–301
(2007)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Tranformations. Springer, Heidelberg (2006)

4. König, H., Diskin, Z.: Advanced local checking of global consistency in heteroge-
neous multimodeling. In: Modelling Foundations and Applications - 12th European
Conference, ECMFA 2016, Held as Part of STAF 2016, Vienna, Austria, July 6-7,
2016, Proceedings, pp. 19–35 (2016). http://dx.doi.org/10.1007/978-3-319-42061-
5 2

5. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench: a
multi-level language workbench for MDE. In: Proceedings of the Estonian Academy
of Sciences, vol. 62, pp. 3–15 (2013)

6. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: ICDE, pp. 117–
128. IEEE Computer Society (2002)

7. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: ICSE, pp. 455–464 (2003)

8. Rutle, A., Rabbi, F., MacCaull, W., Lamo, Y.: A user-friendly tool for model check-
ing healthcare workflows. In: (EUSPN-2013) and ICTH, pp. 317–326 (2013). http://
dx.doi.org/10.1016/j.procs.2013.09.042

9. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., Chechik, M.: Consistency
checking of conceptual models via model merging. In: RE, pp. 221–230 (2007)

http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://dx.doi.org/10.1016/j.procs.2013.09.042
http://dx.doi.org/10.1016/j.procs.2013.09.042

Continuing a Benchmark for UML and OCL
Design and Analysis Tools

Martin Gogolla1(B) and Jordi Cabot2,3

1 University of Bremen, Bremen, Germany
gogolla@informatik.uni-bremen.de

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

3 Internet Interdisciplinary Institute, UOC, Barcelona, Spain

Abstract. UML and OCL are frequently employed languages in model-
based engineering. OCL is supported by a variety of design and analysis
tools having different scopes, aims and technological corner stones. The
spectrum ranges from treating issues concerning formal proof techniques
to testing approaches, from validation to verification, and from logic pro-
gramming and rewriting to SAT-based technology.

This paper presents steps towards a well-founded benchmark for
assessing UML and OCL validation and verification techniques. It puts
forward a set of UML and OCL models together with particular questions
centered around OCL and the notions consistency, independence, con-
sequences, and reachability. Furthermore aspects of integer arithmetic
and aggregations functions (in the spirit of SQL functions as COUNT
or SUM) are discussed. The claim of the paper is not to present a com-
plete benchmark. It is intended to continue the development of further
UML and OCL models and accompanying questions within the modeling
community having the aim to obtain an overall accepted benchmark.

Keywords: OCL ·Model-driven engineering · Benchmark · Verification
and validation · SAT

1 Introduction

Model-driven engineering (MDE) as a paradigm for software development is gain-
ing more and more importance. Models and model transformations are central
notions in modeling languages like UML, SysML, or EMF and transformation
languages like QVT or ATL. In these approaches, the Object Constraint Lan-
guage (OCL) can be employed for expressing constraints and operations and
therefore OCL plays a central role in MDE.

A variety of OCL tools and verification/validation/testing techniques around
OCL are currently available (e.g. [1–4,6,8–11,14–17,19,21–23]) but it is an open
issue how to compare such tools and support developers in choosing the OCL
tool most appropriate for their project. In many other areas of computer science
this comparison is performed by evaluating the tools over a set of standardized
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 289–302, 2016.
DOI: 10.1007/978-3-319-50230-4 22

290 M. Gogolla and J. Cabot

benchmark able to provide a somewhat fair comparison environment. Unfortu-
nately, such benchmarks are largely missing for UML and practically inexistent
for OCL.

In this sense, this paper continues the initial proposal of a set of UML/OCL
benchmarks [13] and puts forward a couple of complementary benchmark models
and a few ideas to encourage the community to have an active participation in
this benchmark creation and acceptance process. The two new scenarios focus
on integer arithmetic (area that has a significant effect on the tool efficiency
depending on the underlying formalism used in the reasoning tasks) and large
models with heavy use of aggregated functions, a topic for which the OCL lan-
guage itself has limited coverage [7].

The structure of the rest of this paper is as follows. The next section gives
a short introduction to OCL. Section 3 reviews the initial set of models in our
benchmark. Section 4 puts forward additional benchmark models while Sect. 5
discusses possible actions to take to further extend the benchmark. The paper
is finished in Sect. 6 with concluding remarks.

2 OCL in a Nutshell

The Object Constrains Language (OCL) is a textual, descriptive expression lan-
guage. OCL is side effect free and is mainly used for phrasing constraints and
queries in object-oriented models. Most OCL expressions rely on a class model
which is expressed in a graphical modeling language like UML, MOF or EMF.
The central concepts in OCL are objects, object navigation, collections, collec-
tion operations and boolean-valued expressions, i.e., formulas. Let us consider
these concepts in connection with the object diagram in Fig. 1 which belongs to
the class diagram in Fig. 2. This class diagram captures part of the submission
and reviewing process of conference papers. The class diagram defines classes
with attributes (and operations, not used in this example) and associations with
roles and multiplicities which restrict the number of possible connected objects.

Fig. 1. Object diagram for WR

Continuing a Benchmark for UML and OCL Design and Analysis Tools 291

Fig. 2. Class diagram for WR

Objects: An OCL expression will often begin with an object literal or an object
variable. For the system state represented in the object diagram, one can
use the objects ada, bob, cyd of type Researcher and sub 17, sub 18 of
type Paper. Furthermore variables like p:Paper and r:Researcher can be
employed.

Object navigation: Object navigation is realized by using role names from
associations (or object-valued attributes, not occurring in this example) which
are applied to objects or object collections. In the example, the following nav-
igation expressions can be stated. The first line(s) shows the OCL expression
and the last line the evaluation result and the type of the expression and the
result.

bob.manuscript

sub_17 : Paper

bob.manuscript.referee

Set{ada} : Set(Researcher)

cyd.manuscript.referee.manuscript.referee

Bag{ada} : Bag(Researcher)

sub_17.author->union(sub_17.referee)

Set{ada,bob} : Set(Researcher)

Collections: Collections can be employed in OCL to merge different elements
into a single structure containing the elements. There are four collection kinds:
sets, bags, sequences and ordered sets. Sets and ordered sets can contain an

292 M. Gogolla and J. Cabot

elements at most once, whereas bags and sequences may contain an element
more than once. In sets and bags the element order is insignificant, whereas
sequences and ordered sets are sensitive to the element order. For a given
class, the operation allInstances yields the set of current objects in the class.

Paper.allInstances

Set{sub_17,sub_18} : Set(Paper)

let P=Paper.allInstances in P.referee->union(P.author)

Bag{ada,bob,bob,cyd} : Bag(Researcher)

Paper.allInstances->sortedBy(p|p.wordCount)

Sequence{sub_18,sub_17} : Sequence(Paper)

Sequence{bob,ada,bob,cyd,ada}->asOrderedSet

OrderedSet{bob,ada,cyd} : OrderedSet(Researcher)

Collection operations: There is a number of collection operations which con-
tribute essentially to the expressibility of OCL and which are applied with the
arrow operator. Among further operations, collections can be tested on empti-
ness (isEmpty, notEmpty), the number of elements can be determined (size),
the elements can be filtered (select, reject), elements can be mapped to
a different item (collect) or can be sorted(sortedBy), set-theoretic opera-
tions may be employed (union, intersection), and collections can be con-
verted into other collection kinds (asSet, asBag, asSequence, asOrderdSet).
Above, we have already used the collection operations union, sortedBy, and
asOrderedSet.

Paper.allInstances->isEmpty

false : Boolean

Researcher.allInstances->size

3 : Integer

Researcher.allInstances->select(r | not r.isStudent)

Set{ada,cyd} : Set(Researcher)

Paper.allInstances->reject(p | p.studentPaper)

Set{sub_17} : Set(Paper)

Paper.allInstances->collect(p | p.author.name)

Bag{‘Bob’,‘cyd’} : Bag(String)

Boolean-valued expressions: Because OCL is a constraint language, boolean
expressions which formalize model properties play a central role. Apart from
typical boolean connectives (and, or, not, =, implies, xor), universal and
existential quantification are available (forAll, exists).

Researcher.allInstances->forAll(r, s |

Continuing a Benchmark for UML and OCL Design and Analysis Tools 293

r<>s implies r.name<>s.name)

true : Boolean

Paper.allInstances->exists(p |

p.studentPaper and p.wordCount>4242)

false : Boolean

Boolean expressions are frequently used to describe class invariants and oper-
ation pre- and postconditions.

3 Previous Benchmarks

The previous benchmark posed general questions that concerned the validation
and verification of properties in UML and OCL models. The questions came
hand in hand with precise models in which the questions were made concrete.
Questions were given names in order to reference them. The following questions
were stated:

ConsistentInvariants: Is the model consistent? Is there at least one object
diagram satisfying the UML class model and the explicit OCL invariants?

Independence: Are the invariants independent? Is there an invariant which is
a consequence of the conditions imposed by the UML class model and the
other invariants?

Consequences: Is it possible to show that a stated new property is a conse-
quence of the given model?

LargeState: Is it possible to automatically build valid object diagrams in a
parameterized way with a medium-sized number of objects, e.g. 10 to 30
objects and appropriate links, where all attributes take meaningful values
and all links are established in a meaningful way? These larger object dia-
grams are intended to explain the used model elements (like classes, attributes
and associations) and the constraints upon them by non-trivial, meaningful
examples to domain experts not necessarily familiar with formal modeling
techniques.

InstantiateNonemptyClass: Can the model be instantiated with non-empty
populations for all classes?

InstantiateNonemptyAssoc: Can the model be instantiated with non-empty
populations for all classes and all associations?

InstantiateDisjointInheritance: Can all classes be populated in presence of
UML generalization constraints like disjoint or complete?

InstantiateMultipleInheritance: Can all classes be populated in presence of
multiple inheritance?

ObjectRepresentsInteger: Given a representation of the integers in terms of
a UML class model where an integer is captured as a connected component
in an object diagram. Is it true that any connected component of a valid
object diagram either corresponds to the term zero or to a term of the form
succn(zero) with n > 0 or to a term of the form predn(zero)?

294 M. Gogolla and J. Cabot

Fig. 3. Class diagram for CS

Fig. 4. Class diagram for DS

IntegerRepresentsObject: Is it true that any term of the form zero or of the
form succn(zero) or of the form predn(zero) corresponds to a valid object
diagram for the model?

The concrete four UML and OCL models that were used to make the ques-
tions precise were: CivilStatus (CS) [see Fig. 3], WritesReviews (WR) [see Fig. 2],
DisjointSubclasses (DS) [see Fig. 4], and ObjectsAsIntegers (OAI) [see Fig. 5]. All
details can be found in [13].

Continuing a Benchmark for UML and OCL Design and Analysis Tools 295

Fig. 5. Class diagram for OAI

4 Additional Benchmarks

The two new benchmarks described in this section complement the old bench-
marks with regard to the use of integer arithmetic and the construction of larger
models for which aggregate functions (in the sense of SQL functions as count or
min) are needed.

4.1 Integer Arithmetic

As indicated in Fig. 6, for the integer arithmetic benchmark the respective class
diagram only has one class with three integer attributes a, b, and c. Basically
in this benchmark solutions for the equation a = b op c have to be found. The
operator op is one of the basic OCL integer operators +, -, *, div. Exactly
one of the four invariants from the lower left of Fig. 6 will be active.

The benchmark asks for the construction of a number of C objects (in the
example exactly 31) in which the respective operator invariant is valid. The other
two invariants guarantee that the solutions in the found C objects are mutually
distinct solutions, i.e., each solution appears only once.

We have used this benchmark to compare the efficiency of different SAT
solvers that can be employed for the model validator available in the USE tool.
The different SAT solvers (SAT4J, LightSAT4J, MiniSat, MiniSatProver) avail-
able under Windows show significantly different performance under this bench-
mark. Another instantiation of the benchmark for available SAT solvers under
Linux confirmed the observations made for Windows.

296 M. Gogolla and J. Cabot

Fig. 6. Integer arithmetic benchmark

4.2 Larger Model with Aggregation Functions

The second new benchmark handles global invariants restricting many classes
and concerns the construction of object diagrams for a State-Distict-Community
world as shown in Fig. 7. States consist of districts that in turn consist of commu-
nities. Individual persons with four statistical attributes (female, young, degree,
married) live in communities. The task is to construct an object diagram where
in each geographical area (State, District, Community) the statistical distribu-
tion of the attributes follows the percentages (Pc) stated in the Config object.

An example object diagram is presented in Fig. 8. For example, there the
Config object requires that in each state, district and community the percentage
of young people lies between 25% and 75% (minPcYoung and maxPcYoung).
This example object diagram used 2 states, 3 districts, and 4 communities. The
number of Person objects is also stated in the Config object.

The underlying invariants concern the three geographical areas and the four
statistical attributes. The invariants also include a decent degree of integer arith-
metic in order to restrict the statistical distribution of the attributes correctly.
It took the USE model validator about 6 min to construct the example object
diagram. This benchmark is well-suited for comparing the abilities of a UML
and OCL analysis tool with regard to global constraints, integer arithmetic and
the construction of middle-sized object diagrams.

5 Community Roadmap

Completing the benchmark is not something we can do on our own. And we
shouldn’t either. The next subsections discuss three different community-driven
actions to bring our proposal closer to reality.

Continuing a Benchmark for UML and OCL Design and Analysis Tools 297

Fig. 7. Class diagram for state-district

5.1 Improving Benchmark Coverage

Our initial collection of benchmark models covers already a good number of inter-
esting OCL expressions and scenarios but it is far from being complete. Speaking
generally, for an OCL tool there are challenges in two dimensions: (a) challenges
related to the expressiveness of OCL (i.e., the complete and accurate handling
of OCL) and (b) challenges related to the computational complexity of the eval-
uating OCL for a given problem (verification, testing, code-generation,...).

Therefore, beyond increasing the number of benchmark models, we also
require several variations of the same model, e.g. in terms of size and specific con-
structs used in the OCL constraints, to be part of the benchmark and improve
this way it’s coverage. And each of these variations can be decomposed in a num-
ber of subvariations that are relevant too. For instance, wrt size variations, we
can increase a model by adding more classes, more attributes per class, increasing
its density (number of associations between classes), the number of constraints,
or all of them at the same time. Some underlying formalisms are more sensitive
than others to some of these variations so fair evaluations would require to play
with all these extension variables.

This could easily lead to a combinatorial explosion. Still, based on our own
experience we believe that at least the following scenarios should be added to
our current collection of benchmark models:

1. Models with tractable constraints, i.e., constraints that can be solved ‘triv-
ially’ by simple propagation steps.

298 M. Gogolla and J. Cabot

F
ig
.
8
.
O

b
je

ct
d
ia

g
ra

m
fo

r
co

u
n
tr

y
-d

is
tr

ic
t

Continuing a Benchmark for UML and OCL Design and Analysis Tools 299

2. Models with hard, non-tractable constraints, e.g., representations of NP-hard
problems.

3. Unsatisfiable models, i.e. models that cannot be even instantiated in way
that all constraints are satisfied.

4. Highly symmetric problems, i.e., that require symmetry breaking to effi-
ciently detect unsatisfiability.

5. Intensive use of Real arithmetic.
6. Intensive use of String values and operations on strings. So far, String

attributes are mostly ignored [5] or simply regarded as integers which pro-
hibits the verification of OCL expressions including String operations other
than equality and inequality.

7. Many redundant constraints: is the approach able to detect the redundancies
and benefit from them to speed up the evaluation?

8. Sparse models: instances with comparably few links offer optimization oppor-
tunities that could be exploited by tools.

9. Support for recursive operations, e.g. in form of fixpoint detection or static
unfolding.

10. Intensive use of the ‘full’ semantic of OCL (like the undefined value or col-
lection semantics); this poses a challenge for the lifting to two-valued logics.

Recent research developments (e.g. [20]) could be enhanced to deal with OCL
expressions and be employed to automatically generate some of these benchmark
models, specially variations in size or density given a “seed” model. Nevertheless,
making an effort to find and contribute industrial models is still key to make
sure that tools face realistic models.

5.2 OCL Repository

The easiest way to share and contribute models to a common benchmark is by
storing them all in a single repository. This is not a new idea, several initiatives
like MDEForge [18] or ReMODD [12] have been proposed before but with limited
success, mainly due to their ambitious goal: a repository for all kinds of models
(and other modeling artifacts) in any format, shape or size.

We aim for a less ambitious but more feasible goal, a repository for OCL-
focused models. Being a textual language, the standard infrastructure for code
hosting services/version control systems can be largely reused. We still need
to store the models accompanying those OCL expressions but, in our scenario,
they are basically only UML models and, mostly, limited to class diagrams which
simplifies a lot their management.

Nowadays, the online coding platform GitHub (with over 30 million hosted
projects) is the only reasonable choice to host such repository since it offers all
the functionality we need and it is very well-known which reduces the entry
barrier of possible contributors that are not forced to invest time learning a new
environment. Therefore we have initialized our OCL repository there1 and added
some basic instructions on how to contribute new UML/OCL models there.
1 https://github.com/jcabot/ocl-repository.

https://github.com/jcabot/ocl-repository

300 M. Gogolla and J. Cabot

5.3 OCL Competitions

Competition is in our blood. Therefore, one way to increase awareness on the
benchmark is to organize yearly competitions of OCL tools where tool vendors
evaluate their tools against each other by executing them on the same set of
benchmark models.

This format is very successful in the SAT community (e.g. see2) where win-
ning a competition is considered a very prestigious achievement for a SAT solver
and therefore something that vendors/researchers strive for. In the MDE com-
munity we have the successful example of the Tool Transformation Contest3,
focusing on comparing the expressiveness, usability and performance of trans-
formation tools to get a deeper understanding of their relative merits and identify
open problems. We propose to replicate these successes in the OCL community.

Typically, competitions are organized in different tracks depending on the
properties we want to measure and, more importantly, include an initial call
for problems/case studies to use in the competition itself. These proposals are
perfect candidates to extend our benchmark.

6 Conclusions

This paper emphasizes the increasing need for a reliable set of OCL Benchmarks
that can be used to consistently evaluate and compare OCL tools. We believe
such benchmarks would encourage the development of new OCL tools (that
now would have a way to evaluate their progress and contrast it against more
established tools and a chance to distinguish themselves by focusing on those
aspects where others may be failing) and increase the user base of OCL and other
similar languages since users would be more confident on the tools’ capabilities.

This is still work in progress, and thus, we have also outlined how the com-
munity as a whole should (and could) push forward these ideas by, for instance,
contributing to a common repository or organizing and participating in specific
events on this topic. We hope to see these actions taking place in a near future.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

2. Beckert, B., Giese, M., Hähnle, R., Klebanov, V., Rümmer, P., Schlager, S.,
Schmitt, P.H.: The KeY system 1.0 (Deduction Component). In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 379–384. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73595-3 26

3. Boronat, A., Meseguer, J.: Algebraic semantics of OCL-constrained metamodel
specifications. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP, vol.
33, pp. 96–115. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02571-6 7

2 http://www.satcompetition.org/.
3 http://www.transformation-tool-contest.eu.

http://dx.doi.org/10.1007/978-3-540-73595-3_26
http://dx.doi.org/10.1007/978-3-642-02571-6_7
http://www.satcompetition.org/
http://www.transformation-tool-contest.eu

Continuing a Benchmark for UML and OCL Design and Analysis Tools 301

4. Brucker, A.D., Wolff, B.: HOL-OCL: a formal proof environment for uml/ocl.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78743-3 8

5. Büttner, F., Cabot, J.: Lightweight string reasoning for OCL. In:
Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 244–258. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31491-9 19

6. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: Stirewalt, R.E.K., Egyed,
A., Fischer, B. (eds.) ASE, pp. 547–548. ACM (2007)

7. Cabot, J., Mazón, J.-N., Pardillo, J., Trujillo, J.: Specifying aggregation functions
in multidimensional models with OCL. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 419–432. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16373-9 30

8. Cal̀ı, A., Gottlob, G., Orsi, G., Pieris, A.: Querying UML class diagrams. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 1–25. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28729-9 1

9. Castillos, K.C., Dadeau, F., Julliand, J., Taha, S.: Measuring test properties cov-
erage for evaluating UML/OCL model-based tests. In: Wolff, B., Zäıdi, F. (eds.)
ICTSS 2011. LNCS, vol. 7019, pp. 32–47. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24580-0 4

10. Chimiak-Opoka, J.D., Demuth, B.: A Feature Model for an IDE4OCL. ECEASST
36 (2010)

11. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. Electron. Commun. EASST 24, 1–13 (2009)

12. France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H.C., Jensen, A.C.:
Repository for model driven development (ReMoDD). In: 34th International Con-
ference on Software Engineering, ICSE 2012, pp. 1471–1472 (2012)

13. Gogolla, M., Büttner, F., Cabot, J.: Initiating a benchmark for UML and OCL
analysis tools. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp.
115–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38916-0 7

14. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Prog. 69, 27–34 (2007)

15. Gonzalez, C.A., Büttner, F., Clariso, R., Cabot, J.: EMFtoCSP: a tool for the light-
weight verification of EMF models. In: Gnesi, S., Gruner, S., Plat, N., Rumpe, B.
(eds.) Proceedings of ICSE 2012 Workshop Formal Methods in Software Engineer-
ing: Rigorous and Agile Approaches (FormSERA) (2012)

16. Hußmann, H., Demuth, B., Finger, F.: Modular architecture for a toolset support-
ing OCL. Sci. Comput. Program. 44(1), 51–69 (2002)

17. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

18. Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Collaborative repositories
in model-driven engineering. IEEE Softw. 32(3), 28–34 (2015)

19. Roldán, M., Durán, F.: Dynamic Validation of OCL Constraints with mOdCL.
ECEASST 44 (2011)

20. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633,
pp. 87–103. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 6

21. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp. 1078–1083. IEEE (2012)

http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://dx.doi.org/10.1007/978-3-642-31491-9_19
http://dx.doi.org/10.1007/978-3-642-31491-9_19
http://dx.doi.org/10.1007/978-3-642-16373-9_30
http://dx.doi.org/10.1007/978-3-642-28729-9_1
http://dx.doi.org/10.1007/978-3-642-24580-0_4
http://dx.doi.org/10.1007/978-3-642-24580-0_4
http://dx.doi.org/10.1007/978-3-642-38916-0_7
http://dx.doi.org/10.1007/978-3-662-49665-7_6

302 M. Gogolla and J. Cabot

22. Willink, E.D.: Re-engineering eclipse MDT/OCL for Xtext. ECEASST 36 (2010)
23. Yatake, K., Aoki, T.: SMT-based enumeration of object graphs from UML class

diagrams. ACM SIGSOFT Softw. Eng. Notes 37(4), 1–8 (2012)

An Experience Integrating Response-Time
Analysis and Optimization with an MDE

Strategy

Juan M. Rivas1(&), J. Javier Gutiérrez1, Mario Aldea1, César Cuevas1,
Michael González Harbour1, José María Drake1, Julio L. Medina1,

Laurent Rioux2, Rafik Henia2, and Nicolas Sordon2

1 Software Engineering and Real-Time Group,
University of Cantabria, Santander, Spain

{rivasjm,gutierjj,aldeam,cuevasce,

mgh,drakej,medinajl}@unican.es
2 Thales Research and Technology, Palaiseau, France

{laurent.rioux,rafik.henia,

nicolas.sordon}@thalesgroup.com

Abstract. The objective of this experience is applying Model-Driven Engi-
neering (MDE) to the development of complex design toolchains for distributed
real-time systems by integrating stand-alone tools for this kind of system. MDE
provides the capability to present to each tool the view of the design that is
required in each case and also provides the traceability between models to return
the results of applying a tool to the original model where the whole information
of the developed system persists. Since the tools require complex and interre-
lated scenarios of model transformation processes they need to be programmed
and optimized to obtain acceptable execution times and scalability. The expe-
rience described in this paper is the development of a Model-Driven Engi-
neering (MDE) toolchain to support the design of distributed real-time systems
using stand-alone tools for calculating response times, assigning priorities to
tasks and allocating tasks to processors. The process starts from a base design
described with a model that follows the OMG MARTE specification. This
toolchain can be applied at any stage of the design process using timing
parameters with different degrees of refinement, thus allowing the exploration of
different design solutions when needed.

Keywords: MDE tools � IDE � Schedulability analysis � Optimization �
Real-time � Design space exploration

1 Introduction

Development toolchains for embedded real-time systems require exploring multiple
optimization aspects at the design phase, before their implementation. Aspects like the
architectural design, the concurrency model, the deployment on the distributed plat-
forms, the timing behavior, security and others require the description of specific
system information and are heavily interrelated. Each of these aspects is supported by a

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 303–316, 2016.
DOI: 10.1007/978-3-319-50230-4_23

community of experts that generates knowledge and provides tools to manage it.
A challenge of current software engineering is to facilitate the integration of this
knowledge and the resources produced by the experts in different domains in such a
way that the engineers developing the system can use them in an efficient and easy
way.

Model-Driven Engineering (MDE) [1] is the methodology that currently provides
the most promising approach to manage the complexity and multi-aspect nature of
embedded real-time systems development:

• In MDE all the information on the system is formulated as models and the devel-
opment and design processes are specified in terms of model transformations.
A system may be represented by a large number of models, some of which have the
objective of storing a persistent description of the system, but others are temporarily
generated to extract and adapt the information required by the specific tools used
during the development to handle each aspect of the design.

• In MDE each model is defined as an instance of a meta-model that describes the
contents, structure and format of the terminal model containing the system infor-
mation. This formalization allows generating transformation tools that are generic
and reusable over many kinds of models by using the meta-models as reflective
information.

• The use of references between the elements of different models avoids duplicating
information and facilitates the global coherence and maintenance of the system
information.

Conventional MDE toolchains are sequences of model transformations. However, a
toolchain for embedded real-time systems must contain different branches working on
the aspects of the design supported by stand-alone tools. In this case we find the
following requirements:

• The transformation branches are usually of double direction. The direct branch
adapts the information stored in the base design models to the representation
required by the stand-alone tool, while the reverse branch returns the results gen-
erated by the tool to the system base description. Since these branches are inter-
dependent they need to be co-designed and co-maintained, and they need to
exchange transversal configuration information among them.

• Sometimes the transformation processes are iterative rather than linear, since the
transformation branch must be repeated until a particular objective is achieved.

• Efficiency is a concern, especially in these iterative processes, and this requires
finding imaginative ways to store the models and avoid repeating transformations as
much as possible.

The experience described in this paper is the implementation of a toolchain for
designing embedded real-time distributed systems starting from a base description of
the system that follows the OMG MARTE standard profile (The UML Profile for
Modelling and Analysis of Real-Time and Embedded Systems) [2]. The Schedulability
Analysis Modeling chapter (SAM) of this standard supports all the necessary modelling
elements to perform the schedulability analysis or optimization of a real-time system.
The process followed by the toolchain includes the schedulability analysis of the

304 J.M. Rivas et al.

system, which allows ensuring whether the timing requirements imposed in the soft-
ware can be met or not. When a system meets all its timing requirements, we say that
the system is schedulable. In common real-time distributed systems, like those that can
be found on cars or airplanes, the schedulability analysis normally consists on the
calculation of worst-case response times in order to compare them with the timing
requirements imposed on specific actions of the software.

On the other hand, the toolchain pays attention to two particular optimization
aspects: (1) finding the scheduling parameters (usually priorities) that allow the system
to be schedulable, and (2) in a distributed system finding a suitable allocation of tasks
and messages to processors and networks, respectively. This is what we call the
architecture optimization. During the optimization process these two aspects can be
combined in order to find the best possible solution. The schedulability analysis and
optimization of a real-time distributed system are supported by complex techniques that
are implemented in the appropriate stand-alone tools.

In this paper, we propose the integration of schedulability analysis and optimization
tools within an MDE strategy with the following characteristics:

• A general meta-model based on the MARTE standard is used at the base design
level. This meta-model allows modelling systems independently of the application
domain.

• An intermediate model particularly suitable for analysis will allow the connection
(through the appropriate transformations) between the general model coming from
the design phase and the specific model used by the selected analysis tool.
Therefore, any existing analysis tool can be integrated in the toolchain through the
adequate model transformation.

• A special-purpose tool is created to optimize (1) the priority assignment for the
tasks and messages (the latter only if fixed-priority communication networks are
specified), and (2) the allocation of tasks and messages to processors and networks.

As a proof of concepts, in a previous work [3] we presented a prototype of the
toolchain described in this paper. In the current work, the integration of the stand-alone
tools has been completed and implementation details are presented.

This document is organized as follows. Section 2 reviews some tools that are
related with the approach we present in this paper. In Sect. 3 we review the real-time
system model and current schedulability analysis and optimization techniques. In
Sect. 4, we provide an overview of the architecture proposed for the integration of the
tools in the MDE toolchain. Section 5 describes the integration of an available
schedulability analysis tool in our MDE strategy. In Sect. 6, we describe the design of
the optimization tool for priorities and architecture. Section 7 provides an industrial
case study to which the tools have been applied. Finally, Sect. 8 draws the conclusions.

2 Related Work

There are other recent works in line with this approach. For example, [4] presents
Optimum, a MARTE-based methodology for designing real-time applications in a
schedulability-aware fashion, i.e., enabling schedulability analysis of UML models at

An Experience Integrating Response-Time Analysis and Optimization 305

early stages. In [5], the MoSaRT analysis repository is presented as a helpful modelling
support to avoid wrong design choices at an early design phase, thus helping designers
to cope with the scheduling analysis difficulties. The work in [6] proposes an integrated
approach for prediction of performance in the context of distributed real-time
embedded defense systems. In this case, performance prediction aims at addressing
issues related to the integration of realistic data sources or the visualization of the
causes of performance issues. In [7], model-driven development is applied to the
integration of schedulability analysis in the development process of high-integrity
distributed real-time systems programmed in the Ada programming language.

The main difference with previous works is that our MDE approach is more
complete and modular in the sense that the tools for analysis, priority optimization, or
architecture optimization, are independent and could be easily changed if, for example,
a better tool is available. On the other hand, our approach can be applied to any
application domain that would need verifying real-time properties or optimizing the
whole or a part of the application, once it has been designed following the general base
model.

3 Real-Time Model

This section gives a high-level overview of the real-time model behind the presented
MDE strategy, along with the different versions of this model used by the schedula-
bility analysis and optimization tools integrated in the toolchain. We follow the
OMG MARTE standard [2] in which the system’s software is described as a set of
distributed end-to-end flows executing in multiple processors that can be communi-
cated through one or more networks. This model is commonly used by schedulability
analysis and optimization algorithms for distributed real-time systems.

The model follows an event-driven approach, in which each end-to-end flow is
re-leased by an event that can be periodic or sporadic. Sporadic events must have a
minimum inter-arrival time. Each end-to-end flow is composed of a series of steps that
execute sequentially. A step represents the execution of a thread in a processor, or the
transmission of a message through a network. Each step has a worst-case execution
time (WCET), which specifies the maximum amount of time (or an upper bound on it)
that the step needs to execute if it were alone in the system. Likewise, a step can also
have a best-case execution time or lower bound on it (BCET). Each step is scheduled
by using the scheduling parameters assigned according to the scheduling policy used.
In this work we consider a fixed-priority policy.

Figure 1 shows an example of one end-to-end flow with 6 steps executing in two
processors and one network. After the first step, there is a forking action that simulta-
neously releases two different branches of the end-to-end flow. The timing requirements
are given as end-to-end deadlines which reference the event triggering the end-to-end
flow, and must be met by the last step in the corresponding end-to-end flow branch. As a
result of applying a schedulability analysis technique, a worst-case response time
(WCRT) is calculated for each step. If the WCRT of the last step of each end-to-end flow
branch is less than or equal to its deadline, the system is said to be schedulable, that is, it
is guaranteed to meet its deadlines in all cases, including the worst one.

306 J.M. Rivas et al.

At the base design level we will use the TEMPO-MARTE meta-model presented in
a previous work [8] which enables the description of the real-time system design. This
meta-model is suitable for different application domains, and it has been successfully
applied to the industrial design of on-board satellite software. This design model can be
transformed into another one, compliant to another meta-model called
TEMPO-Analysis, which contains the relevant information (concurrency and real-time
aspects) organized in a format more suitable for the schedulability analysis and opti-
mization tools. Finally, this analysis model should be transformed into the specific
model of the selected analysis tool.

In this paper, we present the integration of MAST (Modeling and Analysis Suite for
Real-Time Applications) in the proposed toolchain for the schedulability analysis of the
system. MAST defines a meta-model [9, 10] to describe the timing behavior of
real-time systems which is aligned with the MARTE standard, and it also provides a
selection of techniques [11] to perform schedulability analysis, priority optimization, or
sensitivity analysis (assessment of how far or close is the system from meeting its
timing requirements). Regarding schedulability analysis, this selection includes rep-
resentative algorithms such as: the classic holistic analysis [12] that considers the steps
as if they were independent; (2) an offset-based technique [13] that exploits the
interdependencies among the steps of the same end-to-end flow through the use of task
offsets; and (3) another offset-based technique [14] that exploits the precedence rela-
tions among the steps.

4 Toolchain Architecture Overview

We propose an MDE toolchain that implements the necessary underlying infrastructure
to perform schedulability analysis and optimization of real-time systems inside an
EMF/Ecore environment based on the TEMPO meta-model aforementioned. An
overview of the architecture of the toolchain is shown in Fig. 2. The toolchain is
composed of two different interoperable tools:

Fig. 1. Example of an end-to-end flow

An Experience Integrating Response-Time Analysis and Optimization 307

1. A schedulability analysis tool that determines if the modelled system is schedulable
by calculating the worst-case response times of the steps.

2. Two optimization tools that modify certain characteristics of the TEMPO-Analysis
model to achieve schedulability: (1) a priority optimization tool that assigns opti-
mized priorities to steps, and (2) an architecture optimization tool that allocates
steps to processors and networks.

While TEMPO-MARTE represents the basis for the design view, its SAM-like
derivative (TEMPO-Analysis) specifically targets schedulability analysis and opti-
mization tools. Hence, the toolchain we propose operates on the TEMPO-Analysis
models directly, thus avoiding unnecessary TEMPO-MARTE to TEMPO-Analysis
(and vice versa) transformations.

The architecture optimization tool relies on the priority optimization tool to cal-
culate a priority assignment for each allocation of steps to processors tested. Similarly,
the priority optimization tool uses a schedulability analysis tool that accepts a
TEMPO-Analysis model as input. In this experience we use MAST as the schedula-
bility analysis tool inside this Ecore environment, but the toolchain is designed to work
with any other TEMPO-Analysis compatible tool. In this way, the optimization tools
can be used in conjunction with other analysis tools such as SymTA/S [15].

In order to allow the specification of other parameters not included in the
TEMPO-Analysis meta-model but necessary for the optimization process, the input
model for the optimization tool is complemented with an additional constraints model
that is compliant to the TEMPO-Constraints meta-model. This model contains infor-
mation such as valid priority ranges, which step priorities cannot be modified, or
step-to-processor affinities.

Fig. 2. Architecture of the TEMPO analysis and optimization toolchain

308 J.M. Rivas et al.

The toolchain implements the necessary model-to-model (M2M) transformations to
operate with the different meta-models involved. All these transformations work under
the Eclipse Modeling Framework (EMF). Some of them are implemented in Java,
while others rely on ATL [16]. The following sections explain in more detail the design
of these tools and their interconnections. Details on the TEMPO-MARTE to
TEMPO-Analysis transformations and back can be found in [8].

5 Integration of the Schedulability Analysis Tool

The goal of the schedulability analysis tool is to determine if the system is schedulable.
This is carried out by calculating the WCRTs of the steps and comparing them with the
imposed deadlines. In this work we define a tool to perform the schedulability analysis
on models compliant to the TEMPO-Analysis meta-model using the MAST analysis
tools. The link between the TEMPO-Analysis input model and MAST is automatically
established using ATL M2M transformations. Two transformation chains are defined in
this link:

1. A TEMPO-Analysis to MAST transformation to create the input model for the
MAST analysis tool.

2. A return transformation, in which the worst-case response times obtained by MAST
are incorporated into the TEMPO-Analysis model.

The TEMPO-Analysis to MAST transformation chain is depicted in Fig. 3, and is
composed of two ATL transformations applied sequentially. In the first ATL transfor-
mation (TA_To_CustomTA.atl), a new TEMPO-Analysis customized model is gener-
ated from the TEMPO-Analysis input model. This new model adds the information that
is optional in TEMPO but is mandatory in a MAST model, such as names for every
element. Afterwards, the second transformation is applied to this intermediate cus-
tomized TEMPO-Analysis model (TA_To_MAST.atl). This transformation generates

Fig. 3. TEMPO-Analysis to MAST transformation

An Experience Integrating Response-Time Analysis and Optimization 309

two models, (1) a MAST model that can be used as input to the MAST analysis tool, and
(2) a mappings model (compliant to the MapIDs meta-model) that maps the names of the
TEMPO-Analysis model elements to the names of their counterpart MAST model
elements.

A diagram of the return MAST to TEMPO-Analysis transformation is shown in
Fig. 4. It consists of one transformation (TA_MASTResults_MAPIDS_to_TA.atl).
This transformation has three inputs, (1) a MAST-Results model that contains the
worst-case response times of the steps, (2) the MapIDs model generated previously,
and (3) the TEMPO-Analysis custom model that has also been generated previously.
The output of this transformation is a TEMPO-Analysis model which now includes the
worst-case response times of the steps.

6 TEMPO Optimization Tools

The optimization tools are stand-alone tools written in Java that implement all the
necessary infrastructure to automatically perform priority and architecture optimiza-
tions on TEMPO-Analysis models. The information in a TEMPO-Analysis model is
complemented with a TEMPO-Constraints model that stores parameters that are not
modelled by TEMPO-Analysis but must be specified for the optimization process.

6.1 Priority Optimization

The goal of the priority optimization is to find a suitable assignment of priorities (if
possible) that makes the system schedulable. This assignment assumes that steps have
been statically allocated to processors or networks.

Fig. 4. MAST-Results to TEMPO-Analysis transformation

310 J.M. Rivas et al.

The priority optimization uses an iterative process that implements the HOSPA
heuristic algorithm [17] included in the MAST tools. The flow of this optimization
algorithm is depicted in Fig. 5, and is composed of the following stages:

1. The input of the priority optimization tool is a pair of TEMPO-Analysis and
TEMPO-Constraints models. The parameters of the TEMPO-Constraints model
relevant to the priority optimization are (1) the priority ranges from which the
priorities of the steps can be selected, and (2) the list of steps that have pre-assigned
priorities that cannot be changed.

2. The priority optimization process starts with an initial priority assignment. As with
HOSPA, this initial assignment is a fast non-iterative algorithm that distributes the
deadlines of the end-to-end flows among the tasks, and then the Deadline Mono-
tonic criterion is applied. The TEMPO-Analysis input model is updated with these
initial priorities.

3. The next step is to determine if this new priority assignment makes the system
schedulable. This is achieved by applying a schedulability analysis tool on the
TEMPO-Analysis model with the updated priorities.

4. Once the schedulability analysis has been performed, the priority optimization
process finishes if any of the following stopping criteria is met:
(a) The last priority assignment makes the system schedulable.
(b) Two consecutive priority assignments were identical.
(c) A pre-established maximum number of iterations have been reached. This

number of iterations can be set to zero, thus making the priority optimization
process non iterative, finishing with the initial assignment.

(d) A pre-established maximum number of iterations on an already schedulable
solution are reached. The priority optimization process has the capability of
improving an already schedulable solution by iterating over it.

5. If no stopping criterion is met, a new priority assignment is made by using the same
formulation as in HOSPA. This new assignment takes into account the previously
calculated worst-case response times of the steps to reorganize the priorities in the
system, giving higher priorities to those tasks that are farther from meeting their

Fig. 5. Design of the priority optimization tool

An Experience Integrating Response-Time Analysis and Optimization 311

deadlines. The TEMPO-Analysis model is updated with these new priorities, and
the process continues with stage 3 of the priority optimization process (the
schedulability analysis).

6. The priority optimization finishes by returning a TEMPO-Analysis model with the
best priority assignment that was found, which could be schedulable or not, and its
corresponding worst-case response times.

6.2 Architecture Optimization

The objective of the architecture optimization is to find an allocation of steps to
processors or networks that makes the system schedulable. Secondary optimization
criteria can be set, i.e., to balance the workload among the processors, or to minimize
the inter-processor communications.

As with the priority assignment, the architecture optimization process operates on a
TEMPO-Analysis model complemented with a TEMPO-Constraints model. A diagram
of the architecture optimization algorithm is depicted in Fig. 6 and comprises the
following stages:

1. The input is a pair of TEMPO-Analysis and TEMPO-Constraints models. The
parameters of the constraints model relevant to the architecture optimization are:
(1) the step to processor affinities (subset of processors to which each step can be
assigned to); (2) inter-processor latencies (communication latencies of messages
between pairs of processors); and (3) default inter-processor latencies for processor
pairs whose latencies were not explicitly specified. These inter-processor latencies
can be interpreted as message transmission times if a full schedulability analysis of
the networks is specified.

2. A brute-force search algorithm is intractable for non-trivial systems, thus an
advanced algorithm is required. We are experimenting with a backtracking algorithm

Fig. 6. Design of the architecture optimization tool

312 J.M. Rivas et al.

that is providing promising results. The search tree is traversed and nodes are pruned
according to their a priori likelihood of satisfying the optimization criteria (nodes
with low a priori likelihood are pruned). This likelihood is determined taking into
consideration indications such as the utilization in the processors, the number of
messages that need to be transmitted, or a quick estimation of the worst-case
response times.

3. By traversing the search tree, the algorithm reaches a candidate allocation. The
input TEMPO-Analysis model is updated with this candidate step to processor or
network allocation.

4. The priority optimization tool described in Sect. 6.1 is applied on the
TEMPO-Analysis model with the updated architecture. The TEMPO-Constraints
model is also provided. The priority optimization returns a TEMPO-Analysis model
with the best priority assignment that could be found for this allocation, together
with the associated worst-case response times.

5. The optimization process finishes when the resulting TEMPO-Analysis model
meets the optimization criterion set by the user. The main criterion is that the system
has reached schedulability. Secondary criteria that can be set are: (1) to minimize
the number of processors used, (2) to balance the load, or (3) to minimize the
inter-processor communications. A maximum number of iterations can also be set.
If no criterion is met, the process continues on stage 2, continuing the tree traversal
until another candidate allocation is reached.

6. When a stopping criterion is satisfied, the architecture optimization finishes by
returning a TEMPO-Analysis model with an updated allocation, a priority assign-
ment for this allocation, and the associated worst-case response times for this
system configuration.

7 Industrial Case Study

In this section we present a case study consisting on the application of our MDE
analysis and optimization strategy on a simplified version of an industrial system. The
system is a robot controller composed of two specialized nodes (Teleoperation Station
and Local Controller) connected via Ethernet. Both nodes and use fixed priority
(FP) scheduling while the network has no contention given the offsets of the messages
sent. The software consists of one end-to-end flow crossing both nodes and the net-
work, and two independent tasks. Figure 7 shows an overview of the system, including
the worst-case execution times (WCET) of each task.

The end-to-end flow is triggered by a periodic event with a period of 50 ms. The
first task in the end-to-end flow is Trajectory Planner, executing in the Teleoperation
Station. Once finished, this task sends a message to the Local Controller which laun-
ches the execution of task Command Manager. The flow continues with the execution
of task Data Sender on the Local Controller, which sends a message to the Teleop-
eration Station, launching task Reporter, which is the last task in the flow. This task
must finish at the latest 50 ms after the external event that triggered the flow arrived.
Additionally, the system has a task (GUI) with a period of one second executing in the

An Experience Integrating Response-Time Analysis and Optimization 313

Teleoperation Station, and another task (Servo Control) with a period of 5 ms exe-
cuting in the Local Controller. These two tasks must finish before their next activation
(deadline equal to their periods). The system also has three shared resources (mutual
exclusion resources) that are accessed via the immediate ceiling protocol. These shared
resources are named Commands, Servo Data, and Status. Which tasks access each
shared resource, and for how long, is also shown in Fig. 7.

During the design phase inside our MDE strategy, the system is modeled with the
TEMPO-MARTE meta-model. During this phase, the priorities (Prio) and associated
worst-case response times of the tasks (R) are still unknown. Once all the tasks and
timing requirements have been laid out, a designer of such system must determine these
values of the system, so it can be guaranteed whether deadlines are going to be met in
the worst-case. For this purpose, the TEMPO-MARTE model is transformed into
another model that conforms to the TEMPO-Analysis meta-model, which is suited for
the schedulability analysis. We now use the proposed analysis and optimization tool-
chain to achieve this goal.

The schedulability analysis tool is implemented as an Eclipse plug-in that operates
on TEMPO-analysis (*.tempo) models. The optimization tool uses the same internal
functionality as the schedulability analysis tool, but is implemented as a stand-alone
tool that can operate without Eclipse. We model the robot controller system using the
TEMPO-analysis meta-model, and then use this stand-alone tool to calculate a priority
assignment and its associated worst-case response times. We also define a
TEMPO-Constraints model specifying that the priorities should be selected in the range
[1, 10]. Since each processor has at most three tasks, this range is large enough to
guarantee that tasks don’t share the same priority level. No architecture optimization is
needed in this case because the tasks have a fixed allocation driven by their hardware
requirements. The priorities and worst-case response times calculated by the tool are
depicted in Fig. 8. Since the worst-case response times of the tasks (R) are lower than
the associated deadlines, we can now determine that the system, with the priorities
provided by the tool, is schedulable. It is worth noting that the worst-case response

Fig. 7. Robot controller system

314 J.M. Rivas et al.

times are given as an upper bound of the latency from the arrival of the external event
until the task finishes its execution.

Including all the underlying M2M transformations, the schedulability analysis of
this system required approximately 1 s, while the priority assignment required 2 s.

8 Conclusions

We have presented a toolchain to perform, inside the Thales’ TEMPO Ecore envi-
ronment, three of the most important actions in the development of real-time systems:
the schedulability analysis, the optimization of the priorities and the optimization of the
allocation of tasks and messages to processors and networks. This toolchain imple-
ments the necessary M2M transformations to take advantage of the widely used MAST
analysis tool, although the optimization tools can use any TEMPO-Analysis compatible
schedulability analysis tool.

This toolchain is a result of the fruitful collaboration between Thales Research &
Technology and the University of Cantabria (industry and academia). It represents a
contribution to the industrial exploitation of model-driven technologies, schedulability
analysis and optimization in the design of real-time systems in a variety of application
domains.

Acknowledgment. This work has been funded in part by the Spanish Government under grant
number TIN2014-56158-C4-2-P (M2C2).

References

1. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 26–31 (2006)
2. Object Management Group: UML profile for MARTE: modeling and analysis of real time

embedded systems, version 1.1. OMG document formal/2011‐06‐02 (2011)

Fig. 8. Robot controller system with results (priorities and response times)

An Experience Integrating Response-Time Analysis and Optimization 315

3. Rioux, L., Henia, R., Sordon, N., González Harbour, M., Gutiérrez, J.J., Rivas, J.M.,
Cuevas, C., Drake, J.M., Medina, J.L.: Schedulability analysis and optimization in a
model-based integrated toolchain: synthetic MARTE models for optimizing real-time design
with MAST and TEMPO. In: Proceedings of the Forum on specification & Design
Languages, FDL 2015, Barcelona, Spain, Demo Night Session (2015)

4. Mraidha, C., Tucci-Piergiovanni, S., Gérard, S.: Optimum: a MARTE-based methodology
for schedulability analysis at early design stages. ACM SIGSOFT Softw. Eng.Notes 36, 1–8
(2011)

5. Ouhammou, Y., Grolleau, E., Richard, M., Richard, P.: Towards a model-based approach
guiding the scheduling analysis of real-time systems design. In: Proceedings of the 5th
International WATERS Workshop, pp. 19–24 (2014)

6. Falkner, K., Chiprianov, V., Falkner, N.J., Szabo, C., Hill, J., Puddy, G., Fraser, D.,
Johnston, A., Rieckmann, M., Wallis, A.: Model-driven performance prediction of
distributed real-time embedded defense systems. In: Proceedings of the 18th International
Conference on Engineering of Complex Computer Systems (ICECCS), pp. 155–158 (2013)

7. Pérez, H., Gutiérrez, J.J., Asensio, E., Zamorano, J., de la Puente, J.A.: Model-driven
development of high-integrity distributed real-time systems using the end-to-end flow model.
In: Proceedings of the 37th Euromicro SEAA Conference, pp. 209–216 (2011)

8. Henia, R., Rioux, L., Sordon, N., Garcia, G.-E., Panunzio, M.: Integrating formal timing
analysis in the realtime software development process. In: WOSP 2015, pp. 35–40 (2015)

9. González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: modeling and
analysis suite for real time applications. In: Proceedings of the 13th Euromicro Conference
on Real-Time Systems, Delft, The Netherlands, pp. 125–134 (2001)

10. González Harbour, M., Gutiérrez, J.J., Drake, J.M., López, P., Palencia, J.C.: Modeling
distributed real-time systems with MAST 2. J. Syst. Architect. 56(6), 331–340 (2013).
Elsevier

11. MAST. http://www.mast.unican.es
12. Tindell, K.W., Clark, J.: Holistic schedulability analysis for distributed hard real-time

systems. Microprocessing Microprogramming 40(2–3), 117–134 (1994)
13. Mäki-Turja, J., Nolin, M.: Efficient implementation of tight response-times for tasks with

offsets. Real-Time Syst. J. 40(1), 77–116 (2008)
14. Palencia, J.C., González Harbour, M.: Exploiting precedence relations in the schedulability

analysis of distributed real-time systems. In: Proceedings of the 20th Real-Time Systems
Symposium, Phoenix, AZ, USA, pp. 328–339. IEEE (1999)

15. SymTA/S. https://www.symtavision.com/
16. Frédéric, J., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci.

Comput. Program. 72(1), 31–39 (2008)
17. Rivas, J.M., Gutiérrez, J.J., Palencia, J.C., González Harbour, M.: Schedulability analysis and

optimization of heterogeneous EDF and FP distributed real-time systems. In: Proceedings of
the 23rd Euromicro Conference on Real-Time Systems, Porto, pp. 195–204 (2011)

316 J.M. Rivas et al.

http://www.mast.unican.es
https://www.symtavision.com/

Towards Model-Based Optimisation:
Using Domain Knowledge Explicitly

Steffen Zschaler1(B) and Lawrence Mandow2

1 Department of Informatics, King’s College London, London, UK
szschaler@acm.org

2 Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain

lawrence@lcc.uma.es

Abstract. Search-based software engineering (SBSE) treats software-
design problems as search and optimisation problems addressing them by
applying automated search and optimisation algorithms. A key concern is
the adequate capture and representation of the structure of design prob-
lems. Model-driven engineering (MDE) has a strong focus on domain-
specific languages (DSLs) which are defined through meta-models, cap-
turing the structure and constraints of a particular domain. There is,
thus, a clear argument for combining both techniques to obtain the best
of both worlds. Some authors have proposed a number of approaches in
recent years, but these have mainly focused on the optimisation of trans-
formations or on the identification of good generic encodings of models
for search. In this paper, we first provide a structured overview of the
current state of the art before identifying limitations of the key proposals
(transformation optimisation and generic genetic encodings of models).
We then present a first prototype for running search algorithms directly
on models themselves (rather than a separate representation) and derive
key research challenges for this approach to model optimisation.

Keywords: Evolutionary optimisation · Object space · Model-driven
engineering · Model transformations

1 Introduction

Search-based software engineering (SBSE) is about using optimisation tech-
niques for automating the search for (near-)optimal software designs [1]. More
recently, the use of search-based approaches has also been extended to software
adaptation (e.g., [2,3]). Using search-based techniques allows the exploration of
much larger design spaces than could be explored manually by developers. As a
result, better solutions can be identified more quickly.

However, as has been recognised before [4,5], the problem domains in software
engineering are too complex to be effectively captured with traditional problem
representations as they are typically used in search-based systems. Model-driven

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 317–329, 2016.
DOI: 10.1007/978-3-319-50230-4 24

318 S. Zschaler and L. Mandow

engineering (MDE) offers good techniques for capturing complex domains includ-
ing their structural constraints by using meta-models. As a result, there has
recently been increased interest in combining the advantages of SBSE and MDE
[6–15].

Much of this work has focused on finding good generic representations of
models that are tailored towards the needs of standard optimisation algorithms
(most typically, genetic algorithms, e.g. [16]). As we will discuss in detail in
Sect. 3, these generic encodings introduce their own challenges. Most impor-
tantly, they make it easy for search steps to produce invalid candidate solution;
that is, models that do not satisfy the constraints expressed by the meta-model
or its well-formedness rules.

We propose an alternative approach: instead of defining a secondary encoding
for candidate solutions, we propose to run optimisation algorithms directly on
models represented in standard meta-modelling data structures. We argue that
given that developers have spent substantial time and effort designing meta-
models that are a good representation of the domain, we should make use of as
much of this information as possible during search and optimisation. We present
a first prototype of a tool for running population-based optimisations directly
on models and discuss some of the research challenges that need to be addressed
to make this vision a reality.

The remainder of this paper is structured as follows: In the next section, we
give an overview of existing work defining generic approaches to SBSE in an
MDE context. We then discuss some of the limitations of these existing works in
Sect. 3, before presenting our own proposal in Sect. 4. Our work is only an initial
exploration, highlighting more problems than providing definitive solutions, so
in Sect. 5, we outline some of the key research challenges in this area.

2 Related Work

Table 1 summarises the current literature on optimisation in MDE.1 We use two
orthogonal sets of categories for characterising the different approaches that have
been explored so far:

1. By optimisation target. Some approaches focus on selecting optimal transfor-
mations (producing optimal models), while other approaches focus on finding
optimal models directly without considering optimality of transformations
(and, possibly, without explicitly specified transformations).

2. By encoding approach. Two general approaches have emerged: (1) general
encoding of MDE artefacts using standard genetic encodings and applying
genetic optimisation algorithms, and (2) techniques that work directly on the
structure of the MDE artefacts themselves (possibly with annotations).

We will briefly discuss these categories in more detail below.

1 Some other approaches exist, but they have only been defined for a specific problem.
Here, we focus on approaches that aim to be generic.

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly 319

Table 1. Overview of related work

Optimisation of models Optimisation of transformations

Genome encoding [5,10,11] [6,13]

Direct search [4,12,17] [7–9,15]

2.1 Optimisation of Transformations

A number of authors have proposed approaches that aim to search for optimal
transformations instead of looking only for optimal models. Optimality of the
models produced is still of interest, but they are only indirectly manipulated by
searching the space of viable model transformations. This indirect approach is
chosen for one of three reasons:

1. There may be optimality criteria directly on the transformations themselves.
For example, when optimising cloud data centre configurations based on a
current configuration [3], we are not only interested in finding the optimal
new configuration, but also the shortest or least costly path there. Searching
for transformations rather than for models directly allows these objectives to
be expressed and incorporated into the search process.

2. There might be reachability constraints requiring valid solutions to be reach-
able from an initial model through a sequence of model transformations.
Optimising transformation chains enables these constraints to be expressed.

3. The transformations encode developer choices, but may need to be rerun for
other source models at a later stage. In other words, the transformations are
the actual optimisation object, their application to models is separate to the
optimisation process.

Using genome encodings. Abdeen et al. [13] propose encoding different trans-
formation sequences as genomes so that they become amenable to search with a
genetic algorithm. Their approach is based on Viatra. Each candidate solution
is a tuple made from a start model and a sequence of applications of small,
predefined Viatra transformations. The paper provides some good discussion of
the issue of invalid individuals: these may be the result of crossover or mutation,
making transformation chains invalid or causing them to create invalid models.
[13] uses a specific ranking mechanism to handle these cases.

Fleck et al. [6], propose MOMoT. MOMoT uses base transformations
expressed in Henshin and optimises chains of applications of these transfor-
mations to a base model. Fleck et al. handle invalid candidate solutions with a
repair mechanism, effectively reducing the population size for these situations.

Using direct search. Drago et al. [7–9] proposed QVT-R2, an exten-
sion of QVT-Relational. In QVT-R2, transformation developers create non-
deterministic transformations by providing multiple rules matching the same
structure in the source model. The rules are then annotated with information
about relevant quality analysis (e.g., information about how to invoke an external

320 S. Zschaler and L. Mandow

performance analysis). Each choice point is then incrementally and interactively
fixed for a given source model by running all transformation options and asking
the developer to choose the best resulting model based on the automatically
invoked quality analyses.

Hegedüs et al. [15] describe an approach to the guided exploration of trans-
formation chains, using a single-state, back-tracking algorithm guided by depen-
dency graphs between the individual transformations. Their work is based on
their earlier work on CPS(M) [14], where they introduced an approach to search-
based constraint solving directly over models.

2.2 Optimisation of Models

Using genome encodings. Williams [10] proposes Crepe, a generic encoding of
models as sequences of integers. Given a meta-model and a so-called “finitisation
model” (containing information about the range of attributes), Crepe provides a
unique, bi-directional transformation between instances of the meta-model and
integer-vector representations of these models. The integer vectors can be used
as genomes in the context of genetic algorithms using standardised, domain-
independent operators for mutation and crossover. In [11], the authors provide
some extensions to the approach as well as a first comparative evaluation of its
performance compared to a manually implemented optimisation.

Kessentini et al. [5], give a high-level overview of an architecture for reusing
SBSE techniques in the context of MDE. A key ingredient of their approach
is also a generic meta-model for encoding models as genomes, making them
amenable to standard genetic operators such as mutation and crossover.

Using direct search. Burton and Poulding [4] were the first to describe an
idea for running optimisation directly on models.2 They create separate domain-
specific modelling languages describing a search problem and candidate solutions
and run search to find near-optimal solutions. As described in [17], their solu-
tions are mappings between solution and problem models, effectively limiting
the problem to the optimisation of vectors of binary associations. This enables
them to easily define general mutation and crossover operators so that standard
evolutionary search can be applied.

Denil et al. [12] present a general approach for model-based optimisation
using their Formalism Transformation Graph and Process Model (FTG+PM).
Their main focus is implementing different search algorithms as transformation
scheduling programs, fully integrating them into a general MDE approach. They
show how to implement a number of single-state search algorithms in this way,
applying them to a problem in circuit design. Candidate solutions are implicit in
the transformation scheduling language, which may make it difficult to extend
this approach to population-based search algorithms.

2 In earlier work, Horvath et al. [14] introduce the idea of search over models, but
without support for optimisation.

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly 321

3 Issues with Generic Encoding of Models

We are interested in optimisation of models rather than transformations. While
the latter is useful when we have optimality requirements over transformation
chains (or reachability constraints expressed through such chains), more typi-
cally, we are interested simply in deriving optimal models. In such a case, opti-
mising transformations incurs too much overhead in repair and through redun-
dant representations of the same model through different transformation chains
(effectively reducing the size of the search population).

Generic genetic encodings of models as proposed in [5,10,11], however, have
their own problems. In particular, it seems very difficult to ensure locality and
preservation of well-formedness as we will demonstrate in an example. Figure 1(a)
shows the meta-model of a simple Zoo DSL. This DSL allows the description of
zoo configurations, where there are cages with animals, some of which may eat
other animals. An optimisation problem of interest would be to find the minimum
number of cages to keep all the animals in so that there are no animals that eat
each other in the same cage. Note that cages have a maximum capacity and
animals require a certain amount of space. The meta-model has been annotated
to indicate how it would be encoded by the algorithm proposed in [10]. There,
models are encoded as integer strings, where each model element is started by
an integer identifying its meta-class (shown in dashed rectangles in Fig. 1(a)).
This is then followed by pairs of integers where the first identifies the structural
feature (indicated by dashed circles in the figure) and the second provides the
value for this feature. For associations, the values are provided by numbering all
instances of the target type in sequence of appearance in the gene.

Figure 1(b) shows an example model3 and its encoding as a gene using
this algorithm. To ensure smooth applicability of the standard mutation and
crossover operators, genetic encodings should be local; that is, changes in one
part should not affect other parts of the represented object. This is not the case

Zoo

eats

Cage
totalSpace: int
spaceRemaining : int

Animal
count : int
spaceRequired: int

0
1 2

0 0

1

2

01

2

21121100011523202112121122

c1 a2a1 a3

c1 : Cage
totalSpace = 5
spaceRemaining = 3

a1 : Animal
count : 1
spaceRequired: 1

a2 : Animal
count : 1
spaceRequired: 1

a3 : Animal
count : 1
spaceRequired: 2

eats

100011523202112121122

c1 a2 a3

c1 : Cage
totalSpace = 5
spaceRemaining = 3

a2 : Animal
count : 1
spaceRequired: 1

a3 : Animal
count : 1
spaceRequired: 2

eats
(a)

(b) (c)

Fig. 1. Zoo DSL example (based on [10])

3 We leave out the recurring Zoo object for simplicity.

322 S. Zschaler and L. Mandow

for this generic encoding. For example, Fig. 1(c) shows the same gene after it has
been split in preparation of a standard single-point crossover operation, remov-
ing the representation for object a1 only. The remainder of the gene is exactly as
before, but the model fragment encoded by it has changed dramatically: the eat
relationship between the two animals has been lost and a3 has been moved into
the cage. Note that the latter change has also led to a violation of the model’s
well-formedness rules, which require that spaceRemaining should always indi-
cate the space left to place additional animals in a cage (and so should now be 2).
We are not aware of any generic genetic encoding of models that has overcome
this problem using generic mutation and crossover operators. As a result, such
approaches require a lot of repair of candidate solutions, substantially worsening
the optimisation performance [11].

The problem could be resolved by defining domain-specific mutation and
crossover operators. However, these are difficult to implement on the level of
genotypes; they will effectively have to constantly reinterpret the genes as the
corresponding model fragments. We have explored this in [18], showing that
such specific operators do indeed have a positive effect on the performance of
the optimisation algorithm.

In the next section, we propose that using optimisation directly on mod-
els makes it much easier to define such domain specific operators, substantially
reducing the need for repair. As discussed in Sect. 2, we are not the first to
propose this: Burton et al. [4,17] first proposed the idea and gave an example.
They do not, however, provide a general implementation. Denil et al. [12] pro-
vide a first generic implementation using a transformation scheduling language.
However, it is difficult to see how their approach would generalise to population-
based algorithms as typically used for multi-objective optimisation as the actual
candidate-solution model is implicit in the specification. As a result, their imple-
mentation works well for single-state search algorithms, including with back-
tracking, but cannot easily represent populations of more than one candidate
solution. Moreover, they do not provide general mechanisms for encoding opti-
misation objectives, initial model generation, or model evolution and breeding.
Therefore, there still is substantial need for further research in this area.

4 Model-Based Optimisation

Three ingredients are required for any search-based algorithm:

1. A representation of individual candidate solutions;
2. A mechanism for generating new candidate solutions from existing candidate

solutions (e.g., through mutation or breeding); and
3. A mechanism for evaluating the quality of candidate solutions; that is how

well they satisfy each of the optimisation objectives (often called the solution’s
fitness).

Most search algorithms also require a means of generating an initial population
of candidate solutions. Once these ingredients have been defined for a specific
problem, we can apply standard search-based algorithms.

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly 323

As discussed above, we will use models to represent individual candidate
solutions. Therefore, the overall search space is defined through a meta-model.
An initial population of candidate solutions can be provided in a number of
ways—for example, it could be provided as a set of explicit model files or we
could use constraint solvers like Alloy [19] to generate a suitable set of ini-
tial models (e.g., using the Cartier tool originally developed for transformation
testing [20,21]).

To generate new solutions from existing ones, endogenous model transforma-
tions are an obvious candidate. In particular, we propose to use graph transfor-
mations, as they have a clear and simple syntax for easily expressing endogenous
transformations. For example, Fig. 2 shows a simple Henshin rule that can be
used for the search problem described in the previous section. Because these
rules are defined on the model level, we will often be able to easily write them
in a way that ensures well-formedness rules are preserved.

Fig. 2. Henshin rule for moving animals between cages

Evaluating the fitness of candidate solutions can take many different forms.
In the simplest case, fitness may be determined by a model query—for example
expressed in OCL. In other cases, we may require to run a simulation of the
candidate solution, which may involve further transformations etc. (e.g., [2,3]).

To test out these ideas, we are currently developing a prototype tool for model
optimisation.4 Our tool provides a simple Xtext-based DSL to allow describing
model-based search problems together with an interpreter for running searches.
Search algorithms, fitness functions, and initial model provision are modularised
behind Java interfaces. For search algorithms this means that it is easy to incor-
porate existing implementations, such as the MOEA framework5. We currently
have no DSL-level support for fitness functions and initial model generation,
but plan to add these features. For now, they are specified by providing Java
implementations. Solution evolution is realised by Henshin transformations.

Figure 3 shows an example specification of the Zoo example in our tool. After
some configuration information in the first line, this code declares the structure
4 See https://github.com/mde-optimiser/mde optimiser.
5 See http://moeaframework.org/.

https://github.com/mde-optimiser/mde_optimiser
http://moeaframework.org/

324 S. Zschaler and L. Mandow

of the search space by indicating a meta-model, and then defines relevant fitness
functions and model evolvers. Fitness functions are currently provided by imple-
menting a specific Java interface; we are planning to provide full OCL integration
in the language for simple model queries. Evolvers are defined by specifying a
Henshin model and naming a rule in this model.

Fig. 3. Specification of the Zoo search problem

Figure 4 shows how to run a search using our tool. At this point, we only
support programmatic invocation. For this, a new Interpreter object needs to
be created and configured with a parsed version of the problem, a ModelProvider
for generating initial models, and a generic search algorithm (a variant of random
hill climbing in this example). Invoking execute runs the search as specified and
returns the set of solutions found.

Fig. 4. Basic code for running model-based search algorithms

As a tool, our prototype is closest to MOMoT [6], which also uses meta-
models to represent search spaces and Henshin rules to represent evolution.
However, they are searching for transformation chains using a genetic encod-
ing, while we are searching directly on models.

5 Research Challenges

Our initial work has identified a number of challenges requiring further research
to enable model-based optimisation to be used effectively.

5.1 Reuse of Existing Optimisation Algorithms

Some existing optimisation algorithms make particular assumptions about the
search space. For example, hill climbing, a basic single-objective search algo-
rithm, expects to be able to identify the complete “neighbourhood” of a given
candidate solution so that this can be systematically explored. Similarly, swarm-
based search algorithms expect to be able to identify a “direction” vector between

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly 325

solutions and to use this to guide the derivation of one solution from another.
These notions are easily defined in classic search-based approaches, where solu-
tions are represented by (high dimensional) numerical vectors. It is less obvious
what they mean for models, which are only indirectly related by model transfor-
mation chains. Providing appropriate interpretations of these notions will make
it possible to reuse more existing search and optimisation algorithms. Beyond
that, however, there is an opportunity to explore novel search algorithms that
take guidance from the structure and constraints encoding the search space in a
model-driven context.

5.2 Model Evolution

Generating new candidate solutions from existing ones is a key part of any search
algorithm. In model-based search, a number of challenges need to be addressed:

Model breeding. Many population-based algorithms rely on a notion of “breed-
ing”, which allows creating new candidate solutions by combining two good par-
ent solutions. This is useful because it allows the search to reach new areas of
the search space, hopefully benefiting from the advantages of both parent solu-
tions. For example, in genetic algorithms, “breeding” is realised through so-called
crossover operators, which combine two genes by swapping sub-sequences. While
mutation of solutions is easily captured by model transformations as discussed,
it is less clear how to express breeding. Two approaches seem worth exploring:

1. Domain-specific breeders. As with model mutation, we could use model trans-
formations to express domain-specific breeding. These transformations would
take in two models and produce a new model. For example, in our Zoo prob-
lem, we could consider developing a transformation that takes two cage–
animal allocations and produces a new one mixing allocations from both
sources while making sure that constraints are not violated (e.g., updating
spaceRemaining values and checking for eats relationships). Burton et al.
[17] show a first example of this for problems where solutions are essentially
sets of links between pre-existing model elements.

2. Generic breeding through model merging. Model breeding essentially requires
identifying the common and different parts of two models so that the common
parts can be retained in the new solution and the different parts can be mixed
suitably. This is very similar to what has been developed in the context of
work on model differencing and model merging [22–25]. It should be possible
to reuse ideas from this field to develop generic model breeders. The key
challenge here is that mixing of differences should lead to a new model that is
(a) different from both parent models, and (b) well-formed. This will require
suitable adjustments to be made to existing diff/merge algorithms for models.

It is very likely that in either case we will not be able to produce breeders that
are guaranteed to produce well-formed models, introducing the need to deal with
invalid solutions in the search. Abdeen et al. [13] give a good discussion of these
issues in the context of genetic optimisation of model-transformation chains,

326 S. Zschaler and L. Mandow

where they use repair as well as customised ranking rules. Similar techniques
could be applied to model-based optimisation, too.

Efficient model evolution. Our current prototype first establishes all matches
for all evolvers and then randomly selects one of them when asked to produce
a new candidate solution. Especially where rules have similar pre-conditions or
will often not be applicable this seems an inefficient approach. We should explore
mechanisms for selecting evolvers (and matches) more efficiently. Denil et al.
[12] provide some initial insights into this problem by considering optimisation
algorithms to be a kind of transformation scheduling specification. This enables
them to use different sets of evolvers at different stages of the optimisation
process.

Non-deterministic matching in graph transformation engines. Search-
based algorithms rely on an amount of randomness underlying the exploration
process. Using graph transformations as model evolvers requires the matching
process to be non-deterministic. In other words, if there are multiple potential
matches for a graph-transformation rule in a model, the choice of match to
apply should be non-deterministic. Otherwise, we risk excluding large parts of
the search space from the search as a result of an accidental systematic effect
of how models happen to be stored in memory or of how model elements are
enumerated to find potential matches. Henshin is currently not non-deterministic
in this sense, requiring us to explicitly establish all matches and make a random
selection. It would be more efficient if Henshin were to non-deterministically
select matches on its own.

Compact representations of solutions and evolvers. Typically, a substan-
tial part of a candidate solution will remain constant, as it essentially describes
problem constraints rather than solution elements. Burton et al. [17] use dif-
ferent models to represent these static parts independently of the parts that
change during search. This makes for a very compact solution representation,
but requires a separate composition transformation whenever a solution’s fitness
is to be evaluated or when a new solution needs to be generated. There is a
need to understand other similarly compact representations of candidate solu-
tions and how they affect solution evolution and fitness evaluation. Similarly, we
should explore ways in which evolvers can be represented more compactly and
executed more efficiently knowing that large parts of a candidate solution never
change. This has been partially explored in the context of single-state search in
the work on design-space exploration [15], where critical-pair analysis is used
to establish a dependency graph between evolvers and use this as a basis for
guiding the selection of the next evolver to apply.

5.3 Performance

Search algorithms are computationally expensive. Typically, they require a large
number of iterations to be run for large populations of candidate solutions. Each
iteration requires each candidate solution in the population to be evolved to a

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly 327

new solution and the fitness of these solutions to be evaluated. The performance
of search algorithms is therefore substantially influenced by the performance of
solution evolution and fitness evaluations. Depending on the size of the models,
model transformations can be computationally expensive to execute. There has
been recent interest in increasing the efficiency of model transformation execu-
tion [26,27]. We need to explore how this could be integrated into model-based
optimisation. Ideally, we would like to be able to run model-based search even
at system run time to support self-aware system adaptation.

5.4 Flexible Definition of Model Providers

As discussed above, candidate solutions in model-based optimisation are par-
ticular in that substantial parts of the model will remain constant as they are
describing the search problem. When using constraint solvers like Alloy [19], this
would result in a large number of constraints, potentially impacting the perfor-
mance of initial model generation. Better techniques need to be studied that can
limit the performance impact on model generation. It would be useful to iden-
tify what are the key constraints that must be available to the constraint solver
for it to construct valid instance of the variable model part without necessarily
recreating the complete constant part every time.

5.5 Expressing Fitness Evaluations

Some fitness functions are essentially model queries, which can be efficiently
expressed in languages like OCL. However, other evaluations will be more com-
plex, including simulations and model analyses. At the moment, these are han-
dled by providing a general Java interface to be implemented for specific fitness
evaluations. Techniques better aligned with model-driven approaches need to be
developed. Kessentini et al. [5] have made some interesting first proposals in this
area, which need to be explored further.

6 Conclusions

Search-based software engineering (SBSE) and model-driven engineering (MDE)
are highly complementary approaches to software engineering. As a result, there
has been substantial interest recently in exploring the combination of both
approaches, in particular using MDE technologies to simplify and streamline
the application of SBSE. This paper adds to the debate by

1. Providing an overview and initial classification of the current state of the art;
2. Identifying issues with generic genetic encodings of models;
3. Presenting an initial prototype for model-based optimisation; and
4. Identifying a catalogue of research challenges towards complete support for

model-based optimisation.

328 S. Zschaler and L. Mandow

References

1. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

2. Efstathiou, D., McBurney, P., Zschaler, S., Bourcier, J.: Efficient multi-objective
optimisation of service compositions in mobile ad hoc networks using lightweight
surrogate models. JUCS 20(8), 1089–1108 (2014). Special issue on WAS4FI 2013

3. Chatziprimou, K., Lano, K., Zschaler, S.: Surrogate-assisted online optimisation of
cloud iaas configurations. In: IEEE 6th International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 138–145 (2014)

4. Burton, F.R., Poulding, S.: Complementing metaheuristic search with higher
abstraction techniques. In: 1st International Workshop Combining Modelling and
Search-Based Software Engineering (CMSBSE 2013), pp. 45–48 (2013)

5. Kessentini, M., Langer, P., Wimmer, M.: Searching models, modeling search: on the
synergies of SBSE and MDE. In: 1st International Workshop Combining Modelling
and Search-Based Software Engineering (CMSBSE 2013), pp. 51–54 (2013)

6. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of 1st North American Search Based
Software Engineering Symposium (NasBASE 2015) (2015). http://martin-fleck.
github.io/momot/downloads/NasBASE MOMoT.pdf

7. Drago, M.L., Ghezzi, C., Mirandola, R.: QVTR2: a rational and performance-
aware extension to the relations language. In: Dingel, J., Solberg, A. (eds.) MOD-
ELS 2010. LNCS, vol. 6627, p. 328. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21210-9 31

8. Drago, M.L., Ghezzi, C., Mirandola, R.: Towards quality driven exploration of
model transformation spaces. In: Whittle, J., Clark, T., Kühne, T. (eds.) MOD-
ELS 2011. LNCS, vol. 6981, pp. 2–16. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24485-8 2

9. Drago, M.L., Ghezzi, C., Mirandola, R.: A quality driven extension to the QVT-
relations transformation language. Comput. Sci. Res. Dev. 30(1), 1–20 (2015).
First online: 24 November 2011

10. Williams, J.R.: A Novel Representation for Search-Based Model-Driven Engineer-
ing. Ph.d. thesis. University of York (2013)

11. Efstathiou, D., Williams, J.R., Zschaler, S.: Crepe complete: multi-objective opti-
misation for your models. In: Proceedings of 1st International Workshop on Com-
bining Modelling with Search- and Example-Based Approaches (CMSEBA 2014)
(2014)

12. Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based model optimiza-
tion using model transformations. In: Amyot, D., Fonseca i Casas, P., Mussbacher,
G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 80–95. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11743-0 6

13. Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., Debreceni, C., Hegedüs, Á.,
Horváth, Á.: Multi-objective optimization in rule-based design space explo-
ration. In: Crnkovic, I., Chechik, M., Grünbacher, P. (eds.): Proceedings of
29th ACM/IEEE International Conference Automated Software Engineering (ASE
2014), pp. 289–300. ACM (2014)

14. Horváth, Á., Varró, D.: CSP(M): constraint satisfaction problem over models. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 107–121. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04425-0 9

http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://dx.doi.org/10.1007/978-3-642-21210-9_31
http://dx.doi.org/10.1007/978-3-642-21210-9_31
http://dx.doi.org/10.1007/978-3-642-24485-8_2
http://dx.doi.org/10.1007/978-3-642-24485-8_2
http://dx.doi.org/10.1007/978-3-319-11743-0_6
http://dx.doi.org/10.1007/978-3-642-04425-0_9

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly 329

15. Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: A model-driven framework for guided
design space exploration. In: Proceedings of 26th IEEE/ACM International Con-
ference Automated Software Engineering (ASE 2011), pp. 173–182, November 2011

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

17. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.: Solv-
ing acquisition problems using model-driven engineering. In: Vallecillo, A., Tolva-
nen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol.
7349, pp. 428–443. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31491-9 32

18. Mandow, L., Montenegro, J.A., Zschaler, S.: Mejora de una representación genética
genérica para modelos. In: Actas de la XVII Conferencia de la Asociación Española
para la Inteligencia Artificial (CAEPIA 2016) (2016, in press)

19. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

20. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to
select models for model transformation testing. In: Proceedings of 1st International
Conference on Software Testing, Verification, and Validation, pp. 328–337 (2008)

21. Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model
transformation testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 148–
164. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02408-5 11

22. Kolovos, D.S.: Establishing correspondences between models with the epsilon com-
parison language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 146–157. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02674-4 11

23. Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: Pro-
ceedings of ICSE Workshop on Comparison and Versioning of Software Models
(CVSM 2009). IEEE Computer Society, pp. 1–6 (2009)

24. Maoz, S., Ringert, J.O., Rumpe, B.: A manifesto for semantic model differencing.
In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 194–203.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21210-9 19

25. Langer, P., Mayerhofer, T., Kappel, G.: Semantic model differencing utilizing
behavioral semantics specifications. In: Dingel, J., Schulte, W., Ramos, I., Abrahão,
S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 116–132. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11653-2 8

26. Amstel, M., Bosems, S., Kurtev, I., Ferreira Pires, L.: Performance in model trans-
formations: experiments with ATL and QVT. In: Cabot, J., Visser, E. (eds.) ICMT
2011. LNCS, vol. 6707, pp. 198–212. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21732-6 14

27. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. Int. J. Softw. Tools
Technol. Transf. 12(3), 231–243 (2010)

http://dx.doi.org/10.1007/978-3-642-31491-9_32
http://dx.doi.org/10.1007/978-3-642-02408-5_11
http://dx.doi.org/10.1007/978-3-642-02674-4_11
http://dx.doi.org/10.1007/978-3-642-02674-4_11
http://dx.doi.org/10.1007/978-3-642-21210-9_19
http://dx.doi.org/10.1007/978-3-319-11653-2_8
http://dx.doi.org/10.1007/978-3-642-21732-6_14
http://dx.doi.org/10.1007/978-3-642-21732-6_14

SEMS

On the Emergence of Patterns for Spreadsheets
Data Arrangements

Ricardo Teixeira(&) and Vasco Amaral

NOVA LINCS, DI, FCT, Universidade Nova de Lisboa, Lisbon, Portugal
rd.teixeira@campus.fct.unl.pt,

vasco.amaral@fct.unl.pt

Abstract. Spreadsheets are widely used both by individuals as well as large
companies in a vast plethora of application domains. One of the reasons for this
popularity is the general purpose flexibility spreadsheets offer to the end user.
This flexibility favors the existence of multiple spreadsheet designs regarding
the physical organization of the data presented by a spreadsheet. Nevertheless,
to the best of our knowledge, little is still known about patterns of spreadsheet
data arrangements. Works refer the emergence of commonalities and templates
but it is hard to find a systematic study on the topic that presents us catalogues. It
is known that spreadsheets are extremely error-prone. Therefore, to know the
typical data arrangement patterns can be very useful insight on how to build
mechanisms and strategies in order to prevent errors regarding spreadsheets
specification and maintenance. The present work aims at present data arrange-
ment patterns that emerged from our studies and direct observation of real-world
spreadsheet samples from two large datasets, and, additionally, a formal rep-
resentation of the patterns identified through the use of conceptual models.

Keywords: Spreadsheets � Data arrangements � Patterns � Conceptual model �
UML

1 Introduction

Being the first “programmer in a box” to come along for technology users, spreadsheets
are widely used both by individuals to cope with simple needs like tracking personal
finances, training plans, to-do lists, supplier databases, or any purpose that requires
input of data and/or performing calculations; as well as large companies as integrators
of complex systems and as support for informing business decisions especially in areas
like marketing, business development, sales, and finance. As result of this general
purpose flexibility, a plenty of spreadsheet layout designs are possible towards the
physical organization of the data composing a spreadsheet.

Works proposing spreadsheet models [1, 2] already systematize common templates
of table structures. Other works created a library containing common spreadsheet
patterns [3] for later use of pattern matching algorithms in order to extract models from
them. Other works implemented a header inference system for spreadsheets [4],
describing the relation between the headers and their association with data.

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 333–345, 2016.
DOI: 10.1007/978-3-319-50230-4_25

However, these patterns are quite far from covering all existing kinds of spread-
sheet’s data arrangements and do not take in consideration the domains those patterns
are generally applied.

Knowing more about the typical data arrangement patterns, in other words, what
people usually want to model in a spreadsheet and what they usually expect to see in a
spreadsheet, can be very useful insight in how to build mechanisms and strategies to
specify and maintain less erroneous spreadsheets.

This work intends to take a step on extending the current perception of the emerged
spreadsheet patterns regarding the data arrangements. For this purpose, two large
repositories of spreadsheets used in spreadsheet studies were directly observed and
analyzed, namely:

• The EUSES corpus [5] – published in 2005 and made available only to researchers,
it is a dataset of over 4,500 spreadsheets gathered from the public world-wide-web;

• Enron corpus [6, 7] – a recent large dataset containing around 15,000 industrial
spreadsheets extracted from the Enron Corporation e-mail archive made public
during the legal investigation concerning the company after it went bankrupt.

The analysis method consisted of manually selecting random spreadsheet samples
from the datasets, until the patterns observed were becoming redundant. Due to the low
diversity verified, only 80 spreadsheets representative of all of the spreadsheets existing
in the datasets were selected and reunited. With them, a formal systemization of data
arrangement patterns was made using the UML conceptual model, namely, class dia-
grams, which is one of the most proliferated conceptual models, having a high level of
understanding.

The rest of the paper is organized as follows: in Sect. 2 we present the identified
patterns, cataloging them and presenting related insights. Then, in Sect. 3 we present a
metamodel of a spreadsheet concerning its data arrangement, and in Sect. 4 we con-
clude the paper.

2 Patterns

2.1 Table Structures

When thinking about spreadsheets we immediately conceive tabular forms constituted
by a set of labels – usually called “headers” – associated with a set of values. Based on
the spreadsheets observed, we can catalogue the common tables structures into three
distinct groups which are defined by the table growth orientation and their purpose.

Vertical Tables. The most linear table structure consists of a simple grown-vertically
table, where there is a header in the first row; this structure is commonly associated
with inventory, database (Fig. 1), or statistical data (Fig. 2). A header can represent a
formula referring other row’s entry values.

Also, sometimes there is an additional bottom row that applies an aggregation
function to some specific column, as we can see in Fig. 2.

334 R. Teixeira and V. Amaral

Horizontal Single Entry Tables. A second table structure is a table whose headers are
disposed vertically, and in which there is only one entry. Typically, the purpose of this
kind of tables is to display summary data, and usually an aggregation function is
applied on the solo entry values.

In Fig. 3, a SUM function is used to calculate the “TOTAL INCOME” from the
above entry values.

Fig. 1. Vertical table used as a database

Fig. 2. Vertical table used to display statistical data

Fig. 3. Horizontal single entry table example

On the Emergence of Patterns for Spreadsheets Data Arrangements 335

Relationship Tables. A third group of table structures are the relationship tables,
consisting of tables that grow horizontally, with a highlighted header – the top one. The
top header values are themselves headers, that is, without that header’s entry value, the
other header entry values are meaningless. Sometimes the top header label is omitted,
being only displayed its values. Aggregation functions are also commonly used on this
tables, both vertically (see row “8” in Fig. 4) and horizontally (see column “F” in
Fig. 5 of Sect. 2.2).

This table structure pattern dominates spreadsheets used for financial modeling and
analysis, with the top header usually representing calendar years (Fig. 4), year quarters,
months, etc.

2.2 Header Composition

In horizontal tables, it is usual to see headers composed by other headers. The main
headers – the ones who are composed – typically represent categories, and the coupled
ones are headers belonging to the category of the main header where they are attached.

Fig. 4. Relationship table using calendar years

Fig. 5. Relationship table with coupling

336 R. Teixeira and V. Amaral

Commonly, a main header’s entry value consists of an aggregation function –

usually SUM – applied to the coupled headers’ entry values.
In Fig. 5, we can see a relationship table composed by six main headers: “Expected

number of purses sold:”, “COSTS”, “Total Costs”, “REVENUE ($60/purse)”, “Total
Revenue” and “TOTAL PROFIT”, with the last four ones consisting of formulas. The
main header “COSTS” is composed by other six headers, with three of them – namely:
“Cigar Boxes”, “Recourses” and “Technology” – having attached headers of their own.
It is also possible to verify that “COST” has no table entry values associated, func-
tioning as a pure categorization label, meanwhile the lower level main headers, such as
“Cigar Boxes”, have entry values consisting of a SUM aggregation function applied to
the headers’ values they have attached.

2.3 Header Hierarchy

Similar to the composed headers, there are the hierarchically organized headers.
Although in the header composition is express some sort of hierarchy, there are actually
some major differences between the two header arrangements: in this type of header
arrangement, the hierarchy is explicit, that is, the headers are not physically on the
same level; also, unlike composed headers, in this arrangement the top headers (the
ones who have at least one header below in the hierarchy) do not have any values in the
table associated to them; lastly, a header hierarchy appears in both vertical and hori-
zontal table structures, although it is very uncommon to see it in a horizontal one.

In Fig. 6 it is possible to see a vertical table with two header hierarchies
(“Dimensions” and “Location”) which have a mere organizational purpose, with the
intend to offer a clearer and focused table understating. However, header hierarchies

Fig. 6. Vertical table with a header hierarchy

On the Emergence of Patterns for Spreadsheets Data Arrangements 337

can be use with a comparison purpose in mind. As we can see in Fig. 7, there is a
hierarchy for each header naming a year quarter (“1st Quarter”, “2nd Quarter”, “3rd
Quarter” and “4th Quarter”) with all of them sharing the same semantic yet physically
different sub-headers. Using this kind of arrangement obviates the need for multiple
tables, whose physical separation makes it difficult to compare the analogous data from
the distinct tables; or obviates the need for unique header labels – for instance, using
“1st Quarter 2002”, “2nd Quarter 2002”, etc., that also complicates the data analysis.

2.4 Table Replication

In a spreadsheet, it is often observed the replication of table structures, only differing
semantically in a certain aspect. In Fig. 8 we can see two structure replicas of a total of
five replicas of a relationship table, only differing in the year in which the table data
concerns. In this case, the replicas are distributed by different worksheets, however, the
replication can also occur on a single worksheet as shown in the example in Fig. 9,
where to calculate the “INCOME” and the “EXPENSES” the same table structure can
be used.

The choice between the two replication options seem to depend on the table
dimensions: larger table structures will naturally fit better in a spreadsheet on distinct
worksheets (Fig. 8), while smaller ones can perfectly fit on the same worksheet
(Fig. 9); and on the table purpose: if the spreadsheet analysis mainly relies on the
comparison of the output data from the distinct replicas, it is convenient that the
replicas stay physically close, which is the case of the example in Fig. 9 – besides the
fact that the structures are quite small, the obvious object of analysis of the worksheet is
the comparison between the “TOTAL INCOME” and the “TOTAL EXPENSES.

Fig. 7. Relationship table with a header hierarchy

338 R. Teixeira and V. Amaral

3 A Metamodel for Spreadsheet Arrangement

The patterns identified in Sect. 2 can be formally systemized using and extending the
UML conceptual model, specifically the UML class diagram metamodel. In Fig. 10, we
present the metamodel in which spreadsheet elements – represented as entities – such
as worksheets, tables, headers, etc., are an extension of the entity Class, and inherit
some of its relations with other entities, namely, Association (with Aggregation and
Composition specializations), Property and Usage.

Fig. 8. Relationship table replicated in different worksheets

Fig. 9. Horizontal single entry replicated in the same worksheet

On the Emergence of Patterns for Spreadsheets Data Arrangements 339

The spreadsheet entities may have their own constants, for instance, the entity
Worksheet have an integer constant named “order”. That constant indicates in which
order the worksheet appears in the workbook, and so does the entity Table, but to
indicate its placement in the worksheet relative to other tables. Additionally, Table has
another constant named “Table Type” that specifies if the table grows vertically,
horizontally, or if it is a relationship table.

Entities such as Table and Header can have Properties, which in the context of a
class diagram are the commonly named Attributes. Those attributes specify
child-headers, which can be further expanded to other headers, or be “leaf” headers.

With Association and its two extensions we can specify to which the spreadsheets
entities connect and how this connection is done in terms of data arrangement. For
instance, in Fig. 11 we can see a model (according to the metamodel) of the spread-
sheet table shown in Fig. 6 of Sect. 2.3, where the header hierarchies are expressed
through two aggregations. If there were no hierarchies, that is, all the headers placed on
the same row, a composition would be used instead.

Using the entity Usage it is possible to specify usage dependencies among instances
of the spreadsheet entities. For instance, as we see in Fig. 12 – a partial model of the
table presented in Fig. 5 of Sect. 2.2 – there is an entity Formula to specify a formula
associated to the attribute of the same name of the class to which this entity Formula is
associated by a composition. This entity has a string constant to express the formula

Fig. 10. Spreadsheet metamodel according to the detected patterns identified

340 R. Teixeira and V. Amaral

text with the header reference between brackets. Moreover, there is expressed a
dependency between the Formula entity and the corresponding header that is refer-
enced, using Usage.

Furthermore, for a particular group of formulas, more specifically, the aggregation
functions, there is a proper entity associated to the header of which attributes are input
for the aggregation function specified in the entity CellsAggregation (see Fig. 13).

Fig. 11. Model representation of the table presented in Fig. 6 of Sect. 2.3

Fig. 12. Partial model representation of the table presented in Fig. 5 of Sect. 2.2

On the Emergence of Patterns for Spreadsheets Data Arrangements 341

4 Conclusions

This paper presented a brief catalog of spreadsheet patterns regarding data arrange-
ments layouts observed from two real-world spreadsheets datasets, extending and
confirming the actual perceptions of the patterns in spreadsheets designs. Nevertheless,
there is a major limitation on the approach taken, since neither of the datasets were fully
covered, so it is possible that other existing patterns were not observed and, therefore,
not registered. Moreover, this paper also presents a formalization of the identified
patterns as a UML metamodel. This is an essential to design tools to build on top of the
UML realm. In fact, the models we presented of the spreadsheets were created using a
tool we implemented based on the metamodel. Conformance and other model-driven
features are thus free to get.

Acknowledgements. This work has been partially supported by NOVA LINCS through the
FCT project with reference UID/CEC/04516/2013.

Fig. 13. Model representation of the table presented in Fig. 4 of Sect. 2.1

342 R. Teixeira and V. Amaral

Attachments

Attachment 1. EUSES’ Spreadsheet Files

Database
01_20_04.xls
consultants.xls
Database_excel95.xls
datadict.xls
dist_ed_courses_Jan2000.xls
document_de_reference#A828A.xls
EbscohostByDb2002-03.xls
epcdata2002.xls
FeatureList.xls
flip_usd5.XLS
FS_Upgrade_Plan_v3_111502.xls
FS_Upgrade_Proj_Mgmt_#A829F.xls
haymth.xls
haymth_old.xls
ps-cs-msc-new.xls
topconschedtemplate.xls

Financial
02rise.xls
costfactors.xls
departmental_sales_e.xls
FinancialReport.xls
hist4q_e.xls
hist_e.xls
PersonalFinanceScope.xls
Prq403.xls
Q3_Final.xls
Q4_02.XLS
quaterly.xls
tab004.xls
treasurers_report_aud#A7EA4.xls
UF_Genetics_Financial#A7E51.xls
USFAthleticFinancialSummary.xls
W_SBT_financial.xls

Grades
1A6EGrades.xls
262grades.xls
310Grades.xls
483_grades_web.xls
511Grades.xls

On the Emergence of Patterns for Spreadsheets Data Arrangements 343

Inventory
am-template-inventory.xls
capitol_art_inventory.xls
ColdStorage.xls
inventor.xls
Inventory%20Schedule%202004.xls
Inventory-Emergency_C#A84CC.xls
InventoryList.xls
NMfgInventory04.xls
nonstandby_inventory_#A8712.xls
Overview.xls
Software_inventory_sheet.xls
temp_videos0304.xls
TuftsGHGInventory.xls
VRSinventory01.xls
VRSinventory03.xls

Attachment 2. EURON’s Spreadsheet Files

andrea_ring__4__BRLH Storage.xlsx
andrew_lewis__84__Notification Rpt 1200.xlsx
andy_zipper__109__Cost Allocation 02-21-01.xlsx
andy_zipper__112__mODEL 3 7 01 Base.xlsx
andy_zipper__115__DYNEGY-ICE VOL Jun1.xlsx
andy_zipper__266__Broker detail 5-29-01.xlsx
andy_zipper__290__AGA.xlsx
andy_zipper__342__COF Curves for Andy Zipper.xlsx
barry_tycholiz__870__EPNG BP Tariff Sheet.xlsx
benjamin_rogers__1003__NEPOOL-ZoneG Dailies.xlsx
benjamin_rogers__1024__TLR Analysis.xlsx
benjamin_rogers__1052__FPLE model.xlsx
benjamin_rogers__1058__newco development cash flow.xlsx
benjamin_rogers__1108__Wheatland O&M.xlsx
benjamin_rogers__1231__Comparison2.xlsx
benjamin_rogers__911__PJM Eastern Hub Pricing.xlsx
benjamin_rogers__936__PJM Model.xlsx
bill_williams_iii__1373__EOL 5-11.xlsx
bill_williams_iii__1395__EES September Daily.xlsx
chris_germany__2124__DecCohCHOICE-ENA.xlsx
chris_stokley__3947__NP15 DJ Charts.xlsx
darrell_schoolcraft__7827__imbalsumm0110.xlsx
larry_may__21636__ed052501.xlsx
louise_kitchen__22676__BGM 1024 ngpl.xlsx
phillip_m_love__30520__Paulacustomerlist.xlsx

344 R. Teixeira and V. Amaral

stacey_white__39052__Summary Oct 15.xls
steven_p_south__39352__04-23-01 Earnings 2 of 2.xlsx
vladi_pimenov__41075__VLADI-GASDAILY-CURVEFETCH.xlsx

References

1. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applications from
object-oriented specifications. In: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2005, pp. 124–133. ACM, New York (2005)

2. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Embedding and evolution of spreadsheet
models in spreadsheet systems. In: Proceedings of the 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing, Pittsburgh, pp. 179–186 (2011)

3. Hermans, F., Pinzger, M., Deursen, A.: Automatically extracting class diagrams from
spreadsheets. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 52–75. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14107-2_4

4. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses.
In: Proceedings of the 2004 IEEE Symposium on Visual Languages and Human-Centric
Computing, Rome, pp. 165–172 (2004)

5. Fisher, M., Rothermel, G.: The EUSES spreadsheet corpus: a shared resource for supporting
experimentation with spreadsheet dependability mechanisms. In: 1st Workshop on End-User
Software Engineering, pp. 47–51. ACM, New York (2005)

6. Hermans, F., Murphy-Hill, E.: Enron’s spreadsheets and related emails: a dataset and analysis.
In: 37th International Conference on Software Engineering, ICSE 2015, Florence, pp. 7–16
(2015)

7. Jansen, B.: Enron versus EUSES: a comparison of two spreadsheet Corpora. In: Second
Workshop on Software Engineering Methods in Spreadsheets, SEMS 2015, Florence,
pp. 41–47 (2015)

On the Emergence of Patterns for Spreadsheets Data Arrangements 345

http://dx.doi.org/10.1007/978-3-642-14107-2_4

Towards an Automated Classification
of Spreadsheets

Jorge Mendes1,2(B), Kha N. Do3, and João Saraiva1,2

1 HASLab, INESC TEC, Porto, Portugal
2 HASLab, Universidade do Minho, Braga, Portugal

{jorgemendes,jas}@di.uminho.pt
3 University of Science, Vietnam National University,

Ho Chi Minh, Vietnam
dnkha@fit.hcmus.edu.vn

Abstract. Many spreadsheets in the wild do not have documentation
nor categorization associated with them. This makes difficult to apply
spreadsheet research that targets specific spreadsheet domains such as
financial or database.

We introduce with this paper a methodology to automatically classify
spreadsheets into different domains. We exploit existing data mining clas-
sification algorithms using spreadsheet-specific features. The algorithms
were trained and validated with cross-validation using the EUSES cor-
pus, with an up to 89% accuracy. The best algorithm was applied to the
larger Enron corpus in order to get some insight from it and to demon-
strate the usefulness of this work.

Keywords: Spreadsheets · Data mining · Classification

1 Introduction

Spreadsheets are widely used at all levels of organizations. In fact, they are
used both from professional programmers at large worldwide organizations, to
non-professional programmers in small family-run businesses. As recent research
studies [1,8] and frequent reports of horror stories1 show, spreadsheets are prone
to errors. Recently advanced techniques have been proposed (some of them
already incorporated in regular programming languages), in order to improve
both the efficiency and productivity of spreadsheet users. To support such ongo-
ing research activity, several spreadsheet corpora have been proposed in the
literature [3,4,7] so that researchers can experiment their techniques in a corpus
that represent real-world spreadsheet applications. For example, the EUSES cor-
pus [4] divides its 5607 spreadsheets in 11 distinct categories, including finances,
databases, etc. As a consequence, researchers can apply their techniques to one
specific application domain of spreadsheets.
1 Please see the spreadsheet horror stories available at http://www.eusprig.org/

horror-stories.htm.

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 346–355, 2016.
DOI: 10.1007/978-3-319-50230-4 26

http://www.eusprig.org/horror-stories.htm
http://www.eusprig.org/horror-stories.htm

Towards an Automated Classification of Spreadsheets 347

The classification of software artifacts, in particularly source code files, are
usually performed by the administrator of a repository [15]. The EUSES corpus
is no exception, and its creators gathered spreadsheets from different sources and
put them together in a single repository for easy access by researchers. When
dealing with large corpora, this process can be tedious and time consuming.
Thus, it is not surprising that the large Enron spreadsheet repository [7] is not
classified yet.

This paper presents the use of automated software classification algorithms in
determining the appropriate application domain for a particular spreadsheet. We
configure well-known classification algorithms with spreadsheet-specific proper-
ties. The EUSES corpus is used as the basis for training and testing the clas-
sification algorithms. In this training study we considered five different classi-
fication algorithms, which are provided by the widely used Java-based Weka
machine learning suite [6,14]. Our first experimental results show that the best
spreadsheet classification algorithms are based on decision trees, which correctly
classifies 89% of the spreadsheets during cross-validation.

In order to perform the feature extraction and data preprocessing, we devel-
oped a Java-based tool to interact directly with both spreadsheets and Weka.
This helps to automate the whole process: spreadsheets have their features auto-
matically extracted and then packed in a file format compatible with the Weka
machine learning suite.

Having defined the best classification algorithm for spreadsheets, we then
automatically applied the classification process to the Enron repository. We were
able to: evaluate the performance of the process, get some information about
biases from the EUSES training, get some insight on the Enron corpus from the
point of view of the EUSES corpus. These results are available to the spreadsheet
research community and show that further work on this subject is required.

The remaining of this paper is structured as follows: Sect. 2 describes the
spreadsheet classification process: the EUSES spreadsheet corpus, the spread-
sheet specific features used in the classification algorithms, and the five used
classification algorithms. Section 3 briefly describes our spreadsheet classifica-
tion framework. Section 4 contains the experiments we performed and the results
obtained with the five classification algorithms and the spreadsheet specific fea-
tures. Section 5 presents the results of classifying the Enron corpus. Section 6
discusses our results and, finally, we conclude with Sect. 7.

2 Classification Environment

The classification of software artifacts [14] is usually performed in the following
steps:

– select data to train classification algorithms
– preprocess the data
– train the algorithms
– evaluate the derived models
– classify new artifacts

348 J. Mendes et al.

In the classification of spreadsheets we also followed these steps. First, we
sampled the EUSES corpus to obtain a training set (Sect. 2.1). Then, we pre-
processed the spreadsheet data to extract features from the training set spread-
sheets (Sect. 2.2). Next, we considered and applied several classification algo-
rithms to the training set to obtain different classification models (Sect. 2.3).
After, we evaluated all models using a five fold cross validation with this sampled
dataset (Sect. 4). Then, the best classifier will be used to classify new spreadsheet
instances, namely the Enron dataset (see Sect. 5).

2.1 The EUSES Spreadsheet Corpus

The data used to classify the algorithms is extracted from the EUSES spread-
sheet corpus [4]. Most of the spreadsheets in this corpus were obtained from the
Internet through searches using the Google search engine [5], but some of them
result from other researchers or individuals. It has a total of 5607 spreadsheet
files, organized in 11 distinct categories:

– cs101
– database
– filby
– financial

– forms3
– grades
– homework
– inventory

– jackson
– modeling
– personal

Some processing was already applied to this corpus. Each of these categories
has up to three directories: bad, duplicates, and processed. The bad directories
contain files that the authors of the EUSES corpus were unable to use for some
reason2. The duplicates directories, as the name suggests, contain duplicate files.
The processed directories contain the remaining files.

From the available categories, only six were kept for classification due to
the reduced number of spreadsheets in the other categories (see Table 1). The
six categories kept are: database, financial, grades, homework, inventory, and
modeling. All the spreadsheets in these categories are from the Internet searches.
Moreover, only the files in the processed directories were taken into account for
the classification, resulting in a total of 4402 spreadsheet files, with an average
of 734 files per category.

2.2 Feature Extraction

Sets of spreadsheet files are not directly usable to train a classifier. Thus, a
preliminary step that extracts features from the spreadsheets is required.

Spreadsheets have many attributes that can be extracted as features, hence
a selection must be made. Starting from common knowledge, having in mind
the selection of attributes that could distinguish spreadsheet categories, only
the words present in cell contents were extracted. Each word is considered an

2 This information is not clearly specified by the authors, but range from password
protected files to spreadsheets with disruptive macros [4].

Towards an Automated Classification of Spreadsheets 349

Table 1. Spreadsheet file count in the EUSES corpus.

Total bad duplicates processed

cs101 9 1 0 8

database 904 59 125 720

filby 45 0 0 45

financial 902 31 91 780

forms3 26 0 0 26

grades 895 17 148 731

homework 951 29 239 683

inventory 891 49 86 756

jackson 13 0 0 13

modeling 966 51 183 732

personal 5 0 0 5

Total 5607 236 872 4499

attribute, and its value for each spreadsheet is the number of occurrences of that
word in it. This makes the words feature.

The extraction process is as follows. If a cell contains a sentence, this sen-
tence is split into the several words that compose it. The resulting set of words
passes then through a cleaning process, where words that are present in all the
categories are removed from the set. Moreover, words that appear in less than
10% of the spreadsheets in a given category are removed from the set of words
in that category.

2.3 Algorithm Selection

Several algorithms are available to classify software artifacts based on the
extracted features. In order to select the one that best suits spreadsheet clas-
sification based on the mentioned features, several experiments were performed
with Weka. The following algorithms from the Weka suite were used in these
experiments:

– DecisionTable – Implementation of the IDTM algorithm [11]
– J48 – Java implementation of the C4.5 algorithm to generate decision trees [13]
– REPTree – A decision tree learner
– NaiveBayes – Implementation of a Naive Bayes classifier [9]
– NaiveBayesMultinomial – Implementation of a multinomial Naive Bayes clas-

sifier [12].

3 SSClassifier: A Java/Weka-Based Spreadsheet Classifier

In order to automatically classify large data sets of spreadsheets, like the
EUSES and Enron corpora, we developed a Java-based tool to process in

350 J. Mendes et al.

batch textual spreadsheets. This was accomplished using the Apache POI [2]
library to read the spreadsheet files and access their contents. The extraction of
spreadsheet features, as described in Sect. 2.2, was directly implemented in the
Apache POI spreadsheet representation. Then, we implemented a bridge between
the Apache POI and the Weka data representations, so that we could experiment
with different classification algorithms and spreadsheet features. The architec-
ture of the developed framework, named SSClassifier, is presented in Fig. 1.

Fig. 1. Architecture of SSClassifier.

The SSClassifier is publicly available from: https://bitbucket.org/SSaaPP/
spreadsheet-classification/.

4 Experiments

Several experiments were performed to select the best set of attributes and algo-
rithms from the ones defined in the previous section. A common flow was defined
for the several algorithms (depicted in Fig. 2), where we then experimented with
different inputs using five-fold cross-validation.

The attributes in the words feature consist in counts of words. The words
are the ones present in the spreadsheet contents, and some filtering is required
in order to obtain better results, much like with Natural Language Process-
ing (NLP). Some filtering was already applied, as described in Sect. 2.2, namely

https://bitbucket.org/SSaaPP/spreadsheet-classification/
https://bitbucket.org/SSaaPP/spreadsheet-classification/

Towards an Automated Classification of Spreadsheets 351

Fig. 2. Experiment flow layout.

removing words present in all categories and that do not provide any new infor-
mation (analogously to stop words in NLP), and discarding words that appear
only in a small subset of spreadsheets from a category.

The attributes used and their order is important in order to generate better
models. Thus, a selection of the attributes and a reordering was performed to
select the best option. The different sets of data based on the set of all the word
counts present in spreadsheets used are:

A full set of data;
B selection using the CfsSubsetEval attribute evaluator and BestFirst search

method;
C selection using the CorrelationAttributeEval attribute evaluator and Ranker

search method;
D selection using the GainRatioAttributeEval attribute evaluator and Ranker

search method;
E selection using the InfoGainAttributeEval attribute evaluator and Ranker

search method;
F selection using the ReliefFAttributeEval attribute evaluator and Ranker

search method.

352 J. Mendes et al.

Only the data set that went through CfsSubsetEval has less attributes. Only
the ones relative to the words, database, financial, grades, homework, inventory,
modeling, size, and west are kept. The other data sets (from C to F) have only
the order of the attributes changed.

After putting each of these data sets through the experiment flow, it is pos-
sible to see that some options provide better results than others. The results are
presented in Table 2. The best overall algorithm, the best overall data set, and
the best overall result are displayed in bold font face.

Table 2. Five-fold cross-validation results using the words feature.

A B C D E F

NaiveBayesMultinomial 57.8846 82.3473 57.8846 57.8846 57.8846 57.8846

NaiveBayes 41.0046 50.6158 41.1736 41.1736 41.1736 41.1253

J48 87.8773 88.0705 87.4909 87.8532 87.829 87.7324

REPTree 88.9882 87.8049 89.1331 89.0365 88.9882 89.0848

DecisionTable 85.0278 85.4866 84.9070 84.9070 84.9070 84.9070

From the results, we can notice that the algorithm with the best overall accu-
racy is REPTree, providing the best result with the C data set. The data set
B, with only 8 word attributes, improves considerably the results for the Naive-
BayesMultinomial algorithm, with the NaiveBayes algorithm also encountering
some improvements. However, the other algorithms suffer in terms of accuracy,
but only slightly. Nevertheless, this data set provides a lot of improvements in
terms of time for model training. All the resulting data from this work is provided
with the source code of the tool.3

5 Classifying the Enron Corpus

The Enron corpus [10] is an email data set that was released to the public. This
data set was processed in order to remove private and confidential data, but
many emails and respective attachments still remain.

Hermans and Murphy-Hill [7] analyzed the Enron email data set and found
spreadsheets as attachments in those emails. They extracted those spreadsheets
and provided it as its own corpus4.

The Enron spreadsheets have been submitted through a similar process than
the one applied to the EUSES corpus in order to classify them. First, all spread-
sheets were preprocessed in order to extract the words feature. Some of the
spreadsheets were not analyzed due to size limits or due to not being supported
by our toolset; 210 spreadsheets were left out. Then, this data was classified

3 https://bitbucket.org/SSaaPP/spreadsheet-classification/src/2259e60/paper/
data/.

4 The Enron spreadsheet corpus is available through here: www.felienne.com/enron.

https://bitbucket.org/SSaaPP/spreadsheet-classification/src/2259e60/paper/data/
https://bitbucket.org/SSaaPP/spreadsheet-classification/src/2259e60/paper/data/
www.felienne.com/enron

Towards an Automated Classification of Spreadsheets 353

using the REPTree algorithm that was trained with the data from the EUSES
corpus after the CorrelationAttributeEval attribute selection process. The results
are presented in Table 3.

Table 3. Results of the prediction on the Enron corpus.

Prediction Count

database 2039

financial 3176

grades 448

homework 8915

inventory 1057

modeling 83

Total result 15718

The results of the classification of the Enron corpus are very preliminary and
need a proper validation that due to time limitations we were unable to include in
this paper. As we can notice, most of the spreadsheets are classified as homework.
In fact, the homework class in the EUSES original classification includes a large
set of different domains. This results in a large vocabulary for that category in
the training of the classification algorithms. Of course, the original data set (the
EUSES corpus) and its classification, that we use to train the algorithms, does
influence the results. A proper validation of our preliminary results is needed,
indeed.

6 Discussion

The Apache POI [2] library was used to read the spreadsheet files and access their
contents. However, it several limitations. Its Excel file support is considerably
limited, with support only for recent file formats:

– Excel’97(-2007)
– 2007 OOXML

From the processed spreadsheets in the EUSES corpus, 261 spreadsheets were
discarded (around 6%) due to the lack of support for them from Apache POI.
Even for the supported file formats, many features are not available or are very
limited, e.g., charts and pivot tables. Thus, we were highly constrained in the fea-
tures to extract for classification. The issues of using Apache POI can be solved
by switching to LibreOffice Calc or Microsoft Excel extensions5, which have bet-
ter support for these file formats. Nevertheless, Apache POI is a relatively simple
point of entry for spreadsheet analysis, thus its use in this work.
5 Only tools that can be used locally were considered to avoid issues related to trans-

fering much data across networks.

354 J. Mendes et al.

The EUSES corpus was used as a basis for this work. This corpus already
has some kind of categorization and contains many spreadsheets. However, the
categories for the spreadsheets gathered from Internet searches (i.e., the ones
that were used in this work) are not based on spreadsheet characteristics, but
on keywords that the EUSES creators thought being commonly associated with
spreadsheets. This does not make the categories invalid, but might not reflect
what people think about the spreadsheets in those categories. Moreover, some
categories may contain some overlap. For example, one expects the homework
category to contain spreadsheets from different domains since homework can be
on diverse subjects.

Hence, two possible issues might arise:

– the categories do not match with what one can find from a random set of
spreadsheets;

– the categorization of the spreadsheets was dependent on an Internet search,
thus the contents/categorizations might be questionable.

In order to overcome these issues, a large set of spreadsheets can be gathered
and then clustering algorithms be ran on them. This would allow to organize
the spreadsheets based on their characteristics. Another option is to find spread-
sheets with a clear categorization (e.g., from the intended purpose by their cre-
ators) and then perform a new classification based on these new spreadsheets
and categories. Both of these possible solutions can provide a better training
corpus. However, the second solution might not yield a large enough data set to
apply data mining techniques.

Nevertheless, the work herein presented allows to augment the EUSES corpus
in an automated way with spreadsheets which do not have a category associated
with them, but are close to the ones already present in the corpus.

The classification model obtained from the EUSES corpus was applied to
the Enron spreadsheet repository in order to try obtaining insight on both the
classification process and the spreadsheets in the Enron repository. The high
number of homework spreadsheets found suggests that the EUSES classification
model is inappropriate to classify generically any spreadsheet.

The algorithms used make only a small subset of the available algorithms
for classification. This work can be easily expanded to include other algorithms.
Moreover, more than a selection and ranking of algorithms for spreadsheet clas-
sification, this work provides a methodology and work flow to extract features
from spreadsheets, filter them, train and then test classification algorithms.

Another close point is the selection of attributes. Much work can still be
done in order to find the best set of attributes for a classification algorithm.
Improvements are left for future work.

7 Conclusion

This paper presents an automatic classification technique for spreadsheets. We
considered five well-known data mining classification algorithms available in the

Towards an Automated Classification of Spreadsheets 355

widely used software classification framework Weka. We considered spreadsheet-
specific features when we trained and validated such algorithms with the EUSES
spreadsheet corpus. The decision tree learner algorithm REPTree correctly clas-
sified 89% of the EUSES corpus using the words spreadsheet feature during
cross-validation. In order to train and validate the classification algorithm, we
developed a Java tool to extract spreadsheet features in order to use them with
Weka to process and classify spreadsheet corpora.

References

1. Abreu, R., Cunha, J., Fernandes, J.P., Martins, P., Perez, A., Saraiva, J.: Smelling
faults in spreadsheets. In: 2014 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 111–120, September 2014

2. Apache Software Foundation: Apache POI. http://poi.apache.org
3. Aurigemma, S., Panko, R.R.: The detection of human spreadsheet errors by

humans versus inspection (auditing) software. In: Proceedings of EuSpRIG Con-
ference (2010)

4. Fisher, M., Rothermel, G.: The EUSES spreadsheet corpus: a shared resource for
supporting experimentation with spreadsheet dependability mechanisms. In: Pro-
ceedings of the First Workshop on End-User Software Engineering (WEUSE I),
pp. 1–5. ACM (2005)

5. Google: Google. https://www.google.com
6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:

The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

7. Hermans, F., Murphy-Hill, E.: Enron’s spreadsheets and related emails: a dataset
and analysis. In: Proceedings of the 37th International Conference on Software
Engineering, ICSE 2015, vol. 2. pp. 7–16. IEEE Press, Piscataway (2015)

8. Jannach, D., Schmitz, T., Hofer, B., Wotawa, F.: Avoiding, finding and fixing
spreadsheet errors - a survey of automated approaches for spreadsheet QA. J.
Syst. Softw. 94, 129–150 (2014)

9. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classi-
fiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345.
Morgan Kaufmann, San Mateo (1995)

10. Klimt, B., Yang, Y.: Introducing the Enron corpus. In: 1st Conference on Email
and Anti-Spam (CEAS) (2004)

11. Kohavi, R.: The power of decision tables. In: Lavrac, N., Wrobel, S. (eds.) Machine
Learning, vol. 912, pp. 174–189. Springer, Heidelberg (1995)

12. Mccallum, A., Nigam, K.: A comparison of event models for Naive Bayes text clas-
sification. In: Workshop on Learning for Text Categorization, AAAI 1998 (1998)

13. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Francisco (1993)

14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Series in Data Management Systems, 2nd edn. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

15. Yusof, Y., Rana, O.F.: Classification of software artifacts based on structural
information. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES
2010. LNCS, vol. 6279, pp. 546–555. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15384-6 58

http://poi.apache.org
https://www.google.com
http://dx.doi.org/10.1007/978-3-642-15384-6_58
http://dx.doi.org/10.1007/978-3-642-15384-6_58

Programming Communication with the User
in Multiplatform Spreadsheet Applications

Jerzy Sikora1, Jacek Sroka2, and Jerzy Tyszkiewicz2(B)

1 Institute of Archaeology, University of Lodz, �Lódź, Poland
jerzy.sikora@uni.lodz.pl

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{sroka,jty}@mimuw.edu.pl

Abstract. It is quite common that the same person uses many different
devices, depending on the situation: smartphones and tablets in the field,
laptops in the office, switching between operating systems and Web-based
applications. A spreadsheet user in this situation needs a multiplatform
spreadsheet, one which will work equally well on all types of devices. The
alternative of having many spreadsheets and copying data between them
is clearly inferior, because it is a well-known source of errors.

The topic we want to address in the present paper is programming the
interaction with the user in a multiplatform spreadsheet, using only the
core spreadsheet functionalities, which are implemented in the majority
of spreadsheet systems.

We report here on our experiences with creating the user interface
of a multiplatform spreadsheet application for archaeologists working in
the field.

1 Introduction

1.1 Early History

The initial challenge came from one of the authors of the present paper (J. Si.),
who needed a mobile application for Android, capable of storing stratigraphic
data collected during excavations, consisting of textual descriptions of archaeo-
logical contexts, and chronological earlier-than and later-than relations between
them. The data was intended to be transferred for further analysis to a standard,
Windows-based application (running under Wine on a Linux machine). So from
the very beginning the application was intended to be used in an environment
with at least two (or perhaps even three) operating systems involved. This is
nothing particular. Nowadays users routinely switch between devices, operating
systems, and between online and offline mode of work.

We decided to implement the archaeological application, later named Strati5,
as a multi-platform spreadsheet. The application was described from the user’s
point of view in [10]. We also published a short, nontechnical paper [9], advocat-
ing the general idea of rapid development of mobile multiplatform applications
in the form of spreadsheets with Strati5 as a working example.
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 356–371, 2016.
DOI: 10.1007/978-3-319-50230-4 27

Programming Communication with the User 357

1.2 Why a Spreadsheet?

In the paper [11] the other two of us (J. Sr. and J. Ty., with other co-
authors) made a claim, that spreadsheet formulas in fact constitute a platform-
independent programming language, even though there is no common formal
standard in this respect. Applications written in this language run on vir-
tual machines, which are spreadsheet management systems, like Microsoft Excel
(available for Windows desktop and phone, Mac, Android and iOS), Apache
OpenOffice and LibreOffice calc (available for Windows, Mac and Linux), WPS
Office spreadsheet (available for Windows desktop, Linux, iOS and Android),
and many other.1

When we had a chance to verify our belief in practice, we did so, treating the
archaeological application as a test, if spreadsheet technology can indeed serve
for multi-platform programming.

Next, using spreadsheet as an application saved us a lot of implementation
work. Programming the user interface is typically one of the most laborious
parts of each project. In our case, a vast majority of the user interface is always
provided directly by the spreadsheet system used. It is responsible for all func-
tionalities related to data navigation, typing, editing, undo, redo, file opening and
saving, etc. It also adapts the application to different screen sizes and resolutions,
mouse or touch as a pointing device, etc. Finally, it seems almost impossible to
find another technology which would make the very same code run on Android,
iOS, Windows, Linux and MacOS.

Having one application for all systems, we did not have to implement any
protocols to facilitate data transfer between different applications. Copying data
between spreadsheets is generally considered to be error-prone, so sharing the
same spreadsheet between devices and systems prevents many potential errors
and risks.

Last but not least, spreadsheet technology is very conservative and back-
ward compatibility has always been a major concern. Therefore, we expect our
application to remain fully functional for many years without any need of mod-
ifications, and even to get ported to new operating systems, should they appear
on the market—most likely without a single keystroke on our part.

1.3 Development History

After testing a few systems, WPS Office for Android was chosen as the optimal
one to start with and within a few days the first working version of Strati5 for
the tablet was available.

Tests took place during regular archaeological excavations in Ostrowite (Po-
merania, Poland) led by J. Si. A number of improvements resulted in a tool,
running on Android tablet (for collecting data in the field) and on Linux laptop

1 A Spreadsheet management system (or spreadsheet system) is a software used to
create, manage and execute individual spreadsheets. This distinction resembles the
relation between a database management system and individual databases.

358 J. Sikora et al.

at the base camp (for exporting the data to an external application). The whole
spreadsheet was routinely used and transferred between the devices, causing no
problems during many months of excavations. Strati5 proved to be reasonably
comfortable and intuitive in everyday operation.

Then we decided to offer the application to other users, making it as indepen-
dent of the operating system as possible. Achieving this goal required a number
of changes and appeared to be an interesting programming experience.

In the present paper we discuss the technical issues of programming the
interaction with the user in a spreadsheet intended to be transferred between
many platforms. We hope that this knowledge and developed know-how will
be useful in other cases. Requests for help in porting existing spreadsheets into
mobile environments already show up at MrExcel.com, a very active spreadsheet-
related forum, as witnessed by recent posts [1,3,7,8]. We expect that this demand
will grow. There have been a few papers which deal with the usability of mobile
spreadsheets [2,4,5], but they all discuss spreadsheet management systems rather
than individual spreadsheets, so we are probably pioneers in this respect.

As a by-product of our technical developments, in Sect. 3.2 we describe a
simple design pattern, which can be used to control location of cyclic references
in all types of Excel: desktop, mobile and online.

2 The Overall Structure of the Interface – Strati5

In this section we describe the spatial organization of the interface and spread-
sheet functionalities necessary to implement it. Our working example is Strati5.

2.1 Fundamental Requirements

The requirement was to develop a mobile application, capable of storing strati-
graphic data, consisting of archaeological contexts with textual descriptions, a
set of chronological earlier-than and later-than relations between the contexts,
which are edges of a directed acyclic graph of interest to archaeologists, called
Harris matrix. Later we added groups, i.e., named sets of contexts, to the data
model. We identified the following main requirements:

A. Entry and storage of the data, with estimated growth rate of at most 20
records a day and average of 200 records per month.

B. Warn about/prevent duplicated context id.
C. Warn about/prevent cycles in the relations between contexts.
D. Warn about/prevent using undefined contexts in the relations.
E. Warn about/prevent duplicate group id.
F. Warn about/prevent assigning contexts to undefined groups.
G. Operating on a mobile devices and laptops, with strong preference toward

network-independent operation.
H. Automatic or semi-automatic data export in a format accepted by Strat-

ify [6], a popular free desktop application for maintaining and processing
stratigraphic data.

www.MrExcel.com

Programming Communication with the User 359

I. Low resource consumption, to enable smooth operation on a tablet and pre-
vent draining the battery, assuming load from item A above.

As it can be recognized, most of the above items were related to data vali-
dation. While analyzing the methods to implement them, we came up with the
conclusion, that it was impossible to support all popular spreadsheet
systems.

Instead, we decided to work toward a more realistic goal of supporting
sufficiently many spreadsheet systems to offer our tool on all major
operating systems, and to cover a few most important spreadsheet sys-
tems: Microsoft Excel for Windows desktop and Mac, LibreOffice and Apache
OpenOffice for Windows, Linux and Mac, and Google sheets.

2.2 Structure of the Interface

After some consideration, we decided that the key services we needed from the
spreadsheet systems were:

– Reporting emergence of cyclic references (required for reporting cyclic rela-
tions between contexts);

– Support for array formulas;
– Support for “freeze panes” (i.e., making the top row(s) and/or the leftmost

column(s) always visible on the screen);
– Support for data validation by a list of allowed values;
– Support for conditional formatting.

They were needed for a very schematic idea of the interface, shown on Fig. 1.
It was based on the freeze panes function applied to a few rows and columns.

Fig. 1. Schematic structure of the user interface. The gray top row(s) and leftmost
column(s) are frozen panes.

360 J. Sikora et al.

Referring to the colors on the figure, the roles of the particular areas are as
follows:

– The dark gray area in the top left corner is always present on the screen. It
can display messages about spreadsheet’s global state, by formulas producing
texts of messages and conditional formatting indicating their presence.

– The medium gray area on the top edge consists of cells which are visible
whenever any fragment of their column is visible. They can be used to display
column-related messages.

– The medium gray area on the left edge consists of cells which are visible
whenever any fragment of their row is visible. They can be used to display
row-related messages.

– The light gray area are individual cells and the functions used in them are
most likely data validations and perhaps conditional formatting.

Eventually, the following operating systems and spreadsheet systems passed
tests of compliance with the above requirements:2

Windows Excel, LibreOffice, OpenOffice, WPS Office
MacOS X Excel, LibreOffice, OpenOffice, WPS Office
Linux LibreOffice, OpenOffice, WPS Office
Android WPS Office
iOS WPS Office
Windows mobile MS Office
All systems Google sheets.

3 Interaction with the User

In this section we point out the main issues we encountered while designing and
programming the way Strati5 interacts with the user.

First of all, we separated the spreadsheet into a number of worksheets. The
bulk of user interaction is performed on worksheet intended for data entry,3

whose structure is presented in Fig. 2 below and follows the schema from Fig. 1.
The headers of rows do not produce any messages, but contain the id of the
archaeological context being described in the row. Column headers are used to
display column-related messages. The descriptions of the contexts area contains
no validations, as it is intended for textual descriptions. The corresponding col-
umn headers are merely names of columns.

The requirements presented above determine, that the dominating activity
was to either block entries violating data integrity, or at least to warn the user
about them. The formulas of Strati5 we present below come from a variant with
200 contexts, at most 500 contexts and relations together, at most 12 relations
per context and at most 20 groups.
2 Some other combinations might be fully functional, too.
3 In fact, the remaining worksheets are almost never used in the field, and relatively

seldom at the base camp.

Programming Communication with the User 361

Fig. 2. The structure of the data entry worksheet of Strati5 (top). The colors follow
Fig. 1. There are no global state messages. The cells in the white areas undergo no
validation. Below Strati5 in Microsoft Excel under Windows 7 desktop (middle) and
in WPS Office under Android on a smartphone (bottom).

362 J. Sikora et al.

Requirements D and F can be very efficiently programmed using data val-
idation of type “List”, where the user has to choose the data element from a
list declared in the data validation form. This form of data validation is widely
supported by spreadsheet systems. On a majority of systems, the spreadsheet
displays a drop-down list of permitted values, from which the user can choose
the right one. It is particularly convenient on mobile devices, where typing is
much less comfortable and produces more typos than on machines with hard-
ware keyboards. Such lists are used in the ids of contexts earlier than the present
one and group id areas. The drop-down list can be potentially quite long, but
we did not decide to do anything about that.

Concerning requirements B and E, the only method to block a new data entry
in spreadsheets is to use data validation tools. Initially we intended to use them in
the context ids area. It is possible and not too difficult to write a custom formula
in the Excel data validation form, which will permit entering only a new context
id in a cell. However, data validation in Apache OpenOffice and LibreOffice does
not permit custom formulas. Worse still, upon reading an Excel-created file with
such a data validation, it is corrupted and produces a faulty data validation,
which permits duplicates, but blocks completely some entries. Consequently, we
submitted bug reports and had to choose another method to satisfy our need.

Being unable to block duplicates, we decided to indicate them instead, leav-
ing corrections to the user. There are two tools, which can be used for this
purpose: conditional formatting and formulas. The former can be used to mark
duplicates. However, Google sheets does not support marking duplicates, so the
only way was to enter a custom formula there. After the unpleasant experience
with formula-based data validation, we decided to use the header of context id
column cell to insert a single array formula, verifying if there were any dupli-
cates on the list below. It was written to yield a warning message if there are
duplicates, and the usual column header otherwise:

A1 {=IF(MAX(COUNTIF(A2:A200,A2:A200))>1,"DUPLICATE","Unit name")}
A single simple conditional formatting rule applied to this cell turns it red

when the warning is displayed, to increase its visibility. This form is sufficient,
because in archaeological practice, context ids are created, stored and almost
never changed. Consequently, if a new entry is a duplicate, it is clear that this
entry must be changed, not the other. Very recently an update of LibreOffice
introduced a faulty mechanism of array formula computation, which in our case
produces a constant duplicate warning. Therefore we decided to replace the array
formula by a formula-based conditional formatting in column A.

3.1 Reporting Emergence of Cyclic References

This was probably the source of the largest problem we had in the development
of Strati5. Our implementation of breadth-first-search (BFS) graph traversal
(presented for completeness in Appendix A) produces a cyclic reference between
spreadsheet cells as a manifestation of a cycle in the “earlier than” relation

Programming Communication with the User 363

created by the user. Therefore, we needed to notify the user of this event. Unfor-
tunately, the way spreadsheet management systems react on cyclic references is
very diverse. We have noted the following basic groups:

pop-up Displaying a pop-up window with an appropriate message. This
form is exhibited by Microsoft Excel for Windows desktop and Mac OS, WPS
Office for Windows and for Android. Additionally, the cells which are lying on
the cycle, as well as those which depend on them, are not recomputed.

error Evaluating the cells which are lying on the cycle to an error value.
This form is exhibited by OpenOffice, LibreOffice and Google sheets.

stop The cells on the cycle, as well as those which depend on them, are
not recomputed. This form is exhibited by Microsoft Excel for Windows Mobile,
Microsoft Excel Online, WPS Office for iOS.

Systems exhibiting pop-up message notify the user themselves.
For error group we used the top row to display the message. The com-

mon header of the columns where the user was supposed to enter the ids of
later contexts were a single cell merged from several individual ones, whose
text was constructed by a formula of the form =IF(ISERROR(SUM(’Cycle
test’!I2:I500)),"Cycle detected!", "Earlier than"). The column I on
the worksheet Cycle test is the place where cyclic references, and consequently,
error values, emerge (see Appendix A). SUM function evaluates to an error if there
are any errors in the summation area, and to a number otherwise. The whole
formula thus produces the message, whose visibility is increased by conditional
formatting. This gave us a common solution for pop-up and error systems.

Supporting stop was very important for us, because all available spreadsheet
management systems for iOS and Windows Phone were of this type.

We divided the header into two cells. The first of them contains the formula
=IF(ISERROR(SUM(’Cycle test’!I2:I500)),"Cycle detected!",
"Earlier than relations"&SUM(’Cycle test’!H2:H500)),
while the other cell contains
="Earlier than relations"&SUM(’Cycle test’!H2:H500)).

Then conditional formatting is applied to both cells, turning them red if their
values differ.

The cells in the range ’Cycle test’!H2:H500 contain numbers related to
each tuple in the earlier-than relation such that any single change of the relations
causes a change of their sum. ’Cycle test’!I2:I500 contains distances of the
contexts from the sterile layer and is, as before, the place where cyclic references
emerge.

In systems with pop-up and error responses the new formulas work very
much as before. In systems with stop response, the two results are obviously
equal if there are no cyclic references. However, if the user adds to, or modifies a
tuple in the relation creating a cyclic reference, the system stops the evaluation
of some cells in the range ’Cycle test’!I2:I500. One of the header formulas
depends on this range, the other does not. The latter is computed normally
and its value changes. The former is not recomputed due to its dependence
on unevaluated cells. Crucially, after the recomputation is finished, conditional

364 J. Sikora et al.

Fig. 3. Strati5 in WPS Office under iOS (top) and in Excel Online (bottom), showing
a warning about cyclic references. They are stop systems, so the indication is the red
color of the header. The bottom screenshot shows the the second cell of the header,
with a different value in it, triggering the conditional formatting.

formatting is applied to all cells, irrespectively of their evaluation status and the
two cells become red and issue a visual warning to the user, although no text
message is produced.

Programming Communication with the User 365

3.2 By-Product: A Cycle Indicator

A by-product of the above mechanism is our construction of a universal detector
of cyclic references in Excel desktop and online.

Excel desktop reports the emergence of cyclic references by a pop-up window
and indicates one, more-or-less randomly selected cycle, among all that are cre-
ated. This gives access to one cycle at a time. If such references are not enabled,
but already present somewhere in the workbook, there will be no warning or
indication of the subsequently created ones. This is especially likely if formulas
with OFFSET or INDIRECT are used and edited, but INDEX function used in the
reference form can cause the same effect.

Excel online does not report emergence of cyclic references in any way and
have no error checking tool.

The design pattern described below allows the user to set up cycle warnings
for any number of cells. All of them are activated simultaneously and visually
indicate ones which lie on cycles or depend on such cells. The form presented here
works for cells which do not evaluate to error values, but this can be overcome
with minor modifications.

As a matter of example, let us assume that the range A1:A10 are the cells
suspect of becoming elements of cycles we want to monitor.

We set up a single reference cell, let it be

C1 =NOW()

The monitors are installed by formulas (we assume that the formula is entered
into the top cell of the range and copied down, with automatic modifications
introduced by the spreadsheet)

B1:B10 =IF(A1=A1,C1)

and conditional formatting rules applied to cells in B1:B10, so that they change
the formatting of cell Bi iff its value is smaller than the value of the reference C1.

Let us assume the user makes an edit, which might cause some of the cells
to become members of cycles themselves or to depend on cells which are now on
cycles. Then the following events happen:

– Some of the cells in A1:A10 are attempted to be recomputed. Ones which are
now on cycles are not recomputed and the recomputation of their dependents,
including those in B1:B10, is also blocked4.

– The formula in C1 is volatile, hence it is recomputed and its value increases.
– Formulas in B1:B10 depend on cell C1 whose value has changed, hence their

recomputation is attempted. It succeeds for Bi iff Ai is not on a cycle and
does not depend on a cycle, otherwise it is blocked and the old timestamp is
retained.

4 Excel for Android recomputes all cells which are not elements of cycles, even if they
depend on cells which are elements of cycles. Therefore our solution does not work
in Excel for Android.

366 J. Sikora et al.

– Conditional formatting is applied to all cells in B1:B10. Those which have
been recomputed are equal to C1 and are not formatted; those which have not
been recomputed contain a timestamp older than the present value of C1 and
are therefore formatted.

A small variation allows a single monitor to be applied to several cells, e.g.,

B1 =IF(COUNT(A1:A10)=COUNT(A1:A10),C1)

collectively monitors the whole range A1:A10.
This design pattern incurs only low computational overhead and does not

require modifying the monitored spreadsheet computation. In particular, it can
be easily removed, when it is no longer needed.

3.3 Data Export

Requirement H was to provide data export from Strati5 to Stratify [6]. This tool
can read csv files of a specific structure, defined by the number of columns, their
data types and headers. The solution we implemented was to produce such a
csv file by concatenating values of certain cells, in a worksheet intended for data
export. The user is supposed to either copy and paste its content into a text
editor, or save it directly from the spreadsheet system as a csv file. Subsequently
Stratify can import such a file.

3.4 “Soft” Methods to Reduce Resource Consumption

We used two “soft” tricks to reduce the resource consumption of Strati5, both
related to the interaction with the user. This was done to satisfy requirement I.

The first one is that the user, while describing a context, is allowed to spec-
ify only contexts which are later than the present one, while relations in both
directions make perfect sense in archaeology, and Stratify permits them to be
specified. Specifying that a context c is earlier than the presently edited context
d can still be done: by going to the row with context c and entering there d as
a later context. This way we avoided expensive sorting by spreadsheet formulas
to group the tuples of the earlier-than relation by the first coordinate, which is
crucial for our implementation of BFS.

The next trick is that we introduced two predefined contexts: the chrono-
logically oldest context “sterile layer” and the top context “surface”, which are
crucially not processed in the acyclicity test (but are processed in the duplicate-
freeness test). The typical structure of many archaeological sites causes these
two contexts to be present in a very large fraction of the earlier-than tuples,
while they have no impact on the cyclicity of the relation. By eliminating them,
we get a significant reduction of the number of tuples Strati5 must process.

We expect that in many other contexts, domain-specific knowledge about
data to be processed can help devising analogous layout solutions to reduce the
computational cost of the spreadsheet application.

Programming Communication with the User 367

4 Scalability Problem

This is a problem we did not find any good solution for. Spreadsheets come
always with certain fixed number of rows and columns of formulas, and thus are
capable of processing a predefined maximal number of data items. Too small a
spreadsheet is therefore bad, too large one slows down the applications and drains
the battery—the opposite of requirement I. The designer has two basic methods
to overcome this problem: either to produce a couple of spreadsheets of different
sizes and let the user transfer the data between them when necessary (which is
error prone), or to assume that the user will modify the spreadsheet, adding or
removing rows of formulas. Preparing the spreadsheet for the latter action is not
trivial and requires a good deal of additional design work. It also interferes with
the good practice of hiding or locking those portions of the spreadsheet which
are not supposed to be edited by the end user.

5 Availability

Strati5 is available from http://bit.ly/Strati5, and is an open-source software
with a BSD license. Let us note here that, as far as we know, there is no tech-
nology to close the code of a multiplatform spreadsheet application, so multi-
platform spreadsheets are open source by necessity.

6 Standardization Issues

We were asked by the anonymous reviewers to discuss the issue of standardiza-
tion between spreadsheet management systems.

The following list indicates the main difficulties encountered while developing
our multiplatform spreadsheet:

a. Limited mutual compatibility of spreadsheet systems.
b. Highly insufficient documentation.
c. Technical and legal problems with using SDK tools for mobile systems.

It is clear that the more functionalities are compatible between spreadsheet
systems, the easier is to program multiplatform spreadsheets. Issues a and b are
two sides of the same coin. Definitely, they are real: during the whole development
process of Strati5 we had problems with mutual compatibility between spread-
sheet management systems and with their (lack of) documentation. Therefore
we had to rely on experiments choosing solutions in many cases, and we could
not use SDK tools for that.

A lot of work was necessary to find a workaround (not a solution!) of the
problem that cyclic references, a fundamental property of a spreadsheet, are
reported in so many different ways. Even spreadsheet systems coming from the
same vendor differ in this respect: Microsoft Excel for Windows (pop-up) differs
from its Online and Windows mobile versions (stop), WPS Office for Android
and Windows (pop-up) differ from WPS Office for iOS (stop).

http://bit.ly/Strati5

368 J. Sikora et al.

Cross-vendor problems concern other fundamental issues: LibreOffice and
OpenOffice do not permit formula-based data validations. Even the syntax and
behavior of formulas tends to differ from vendor to vendor like, e.g., error encod-
ing and handling between various Excel variants and LibreOffice on the one hand
and OpenOffice on the other hand.

The methods to create references to external workbooks are not transferable
between spreadsheet systems, in particular if one wants to use INDIRECT or some
other programmable, foolproof mechanism.

Indeed, as commented during the workshop, the relations between different
spreadsheet systems and their vendors seem to resemble those between Web
browsers and their vendors during the browser wars, with similar consequences
for the users and programmers.

A significant problem is related to the performance of the whole systems and
of their particular functions. Working with hardware of potentially low perfor-
mance, the programmer must know how spreadsheet systems implement specific
functions.5 E.g., in desktop Excel =MATCH(val,rng,0) is of linear time complex-
ity, while =MATCH(val,rng,1) is logarithmic, assuming that rng is sorted. It
would be desired to have guarantees that these complexities carry over to other
spreadsheet systems. In desktop Excel =COUNTIFS(rng1,val1,rng2,val2) is
much faster than =SUMPRODUCT((rng1=val1)*(rng2=val2)). Again, one would
like to know that the same relation holds in other systems. If many formulas are
being evaluated, the ability of the spreadsheet systems under consideration to
perform multi-threaded computations becomes an important factor, too.

We can also list two particular functionalities which would be very useful in
programming multiplatform spreadsheets.
Widely adopted and extended INFO function to determine the identity of the
spreadsheet system. That would help in programming spreadsheets in a clean
way, with clearly indicated portions of the code to be executed on particular
spreadsheet systems. The present functionality of INFO is insufficient: it returns
the version number of the system, but not its identity. E.g., =INFO("RELEASE")
returns the same value 11 in the latest WPS Office on Windows and on Android,
even though both spreadsheet systems differ in behavior and functionality, and
in quite different and much older Excel 2003. The situation is even worse with
Excel, whose online and Android versions do not support this function at all.

Row-wide and column-wide conditional formatting – in particular, setting con-
ditionally the width of columns and height of rows. This way one could set a
column to be a (part of a) frozen pane and be always present on the screen, fill
it with formulas computing warning messages, and set its width conditionally
to be 0 if it does not contain any warnings. Effectively, the column would then
play the role of a pop-up window produced without any scripts or macros.

Built-in array function sorting its input (like the one present in Google sheets)
in O(n log n) time would be a great tool to reduce resource consumption by many
5 We would like to thank one of the anonymous reviewers, who has pointed to us the

importance of this topic.

Programming Communication with the User 369

algorithms implemented by spreadsheet formulas. The typical sorting algorithms
built from formulas are quadratic. There is a spreadsheet sorting algorithm of
O(n log2 n) time complexity, but it requires O(n log n) formulas and is quite
complex [11]. Reducing resource consumption is particularly important on mobile
systems, due to their relatively low performance and dependence on battery.

Acknowledgments. We would like to thank the anonymous reviewers of our paper
and all participants of SEMS 2016, whose comments influenced this post-proceedings
paper.

The research project in Ostrowite, where J. Si. tested Strati5, was financed by
the National Science Centre grant based on the decision 2015/19/B/HS3/02124. The
research of J. Sr. was sponsored by National Science Centre grant based on the decision
2012/07/D/ST6/02492.

A BFS by Spreadsheet Formulas

Below we describe our implementation of the cyclicity test, which is based on
BFS graph traversal of [11], for Strati5 with the size limits we have indicated.
The way it is programmed is important for the generation of messages about
cyclicity of the relation.

Initial data is located in the worksheet Contexts. The range with contexts
is Contexts!A2:S200, with two contexts predefined: the top and the bottom
layer. The range Contexts!I4:T200 contains the relations: in row i (i.e., the
range Contexts!Ii : Ti) contains the list of contexts which are later than the
context in cell Contexts!Ai. The formulas below are located in the worksheet
Cycle test, which is hidden by default, because it is not intended to be edited
by the end user.

Below we indicate ranges and formulas. Each time, if the range consists of
more than one cell, we assume that the formula is entered into the top cell of
the range and copied down, with automatic modifications introduced by the
spreadsheet.

The formulas below ignore rows 1, 2 and 3 of the tab Contexts. The first of
them contains the headers, the other two contain two predefined contexts: the
sterile layer and the present surface, which are the bottom and top contexts in
the earlier-than relation. We do not process them.

First we count later contexts in each row, to know how many tuples it will
produce.

A2:A200 =COUNTA(Contexts!I4:T4)

Now we compute the incremental sum of the tuples to be created, adding
one dummy tuple for each context.

B2 =1

B3:B500 =B2+A2+1

This is the total number of all tuples:

370 J. Sikora et al.

C2 =SUM(B2:B200)

And this is the total number of all contexts:

D2 =COUNTA(Contexts!A4:A200)

Next we produce the number of the row in which the first coordinate of the
tuple is located. The count of rows refers to the area starting in row 4 in tab
Contexts, hence here we start with 1.

E2 =IF(ROW()>C$2+D$2,"",1)

E3:E500 =IF(ROW()>D$2+D$2,"",IF(F2>INDEX(A$2:A$200,E2),1+E2,E2))

The following is then the number of the column from which the second ele-
ment of the tuple originates:

F2 =IF(E2="","",1) F3:F500 =IF(E3="","",IF(E2=E3,1+F2,1))

Now we import the id of the context, which is the second element of the
tuple.

G2:G500 =IF(E2="","",INDEX(Contexts!I$4:T$200,E2,F2))

At this moment, consecutive rows in columns E and G contain the tuples of
the earlier-than relation we should process. In column E they are represented by
row numbers, in column G by real ids. They are grouped: all tuples that share
the same value of the first coordinate form a contiguous block.

The next formula searches column with ids of the contexts in sheet Contexts
to find the position of the context which is the second coordinate in the present
tuple:

H2:H500 =IF(OR(E2="",G2=0),-1,MATCH(G2,Contexts!A$4:A$200,0))

In case of nonexistent tuples (second coordinate "") or artificial ones (second
coordinate 0) we produce -1 without performing the actual search, because IF
is a lazy function, otherwise MATCH does the exact search (third parameter 0) for
the value of G2 in the range Contexts!A$4:A$200 and returns the position of
the match.

The last formula is the key one. Rows with -1 in column H get value 1 and are
the beginning of the recursion. Otherwise a = INDEX(B$2:B$200,H2) gives the
row number of the beginning of the block of tuples with the first coordinate equal
to G2 (via the value in the previous column), and b = INDEX(A$2:A$200,H2)
the size of that block. OFFSET then creates a range, which starts a rows below
and 0 columns to the right of I1, and spans b rows and 1 column (default
value, omitted in the formula). Now 1+MAX of that range does the recursion. It
is well-founded if there are no cycles in the earlier-than relation, and results in
a cyclic reference in case this relation contains a cycle.

I2:I500
=IF(H2=-1,1,1+MAX(OFFSET(I1,INDEX(B$2:B$200,H2),0,
INDEX(A$2:A$200,H2)+1)))

Therefore the correctness test is really the test if the above formulas produce
a cyclic reference or not.

Programming Communication with the User 371

References

1. Bradgar: iPad 2 running Excel with VBA? post #13. http://www.mrexcel.com/
forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.
html

2. Chintapalli, V.V., Tao, W., Meng, Z., Zhang, K., Kong, J., Ge, Y.: A comparative
study of spreadsheet applications on mobile devices. Mobile Information Systems
2016 (2016). doi:10.1155/2016/9816152

3. CWBlack: apps that support Excel VBA. http://www.mrexcel.com/forum/
general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-
applications.html

4. Flood, D., Harrison, R., Iacob, C.: Lessons learned from evaluating the usability
of mobile spreadsheet applications. In: Winckler, M., Forbrig, P., Bernhaupt, R.
(eds.) HCSE 2012. LNCS, vol. 7623, pp. 315–322. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34347-6 23

5. Flood, D., Harrison, R., Iacob, C., Duce, D.: Evaluating mobile applications: a
spreadsheet case study. Int. J. Mob. Hum. Comput. Interact. (IJMHCI) 4(4), 37–
65 (2012)

6. Herzog, I.: Group and conquer - a method for displaying large stratigraphic data
sets. BAR Int. Ser. 1227, 423–426 (2004). http://www.stratify.org

7. kgkev: VBA & Mobile devices. http://www.mrexcel.com/forum/general-excel-
discussion-other-questions/930944-visual-basic-applications-mobile-devices.html

8. QCMan: IPad and desktop. http://www.mrexcel.com/forum/excel-questions/
923376-ipad-desktop.html

9. Sikora, J., Sroka, J., Tyszkiewicz, J.: Spreadsheet as a multi-platform mobile appli-
cation. In: 2015 2nd ACM International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), pp. 140–141. IEEE (2015). doi:10.1109/
MobileSoft.2015.34

10. Sikora, J., Sroka, J., Tyszkiewicz, J.: Strati5 - open mobile software for Harris
matrix. In: Campana, S., Scopigno, R., Carpentiero, G., Cirillo, M. (eds.) Pro-
ceedings of the 43rd Annual Conference on Computer Applications and Quantita-
tive Methods in Archaeology, vol. 2, pp. 1005–1014. Archaeopress Publishing Ltd.,
CAA (2016)

11. Sroka, J., Panasiuk, A., Stencel, K., Tyszkiewicz, J.: Translating relational queries
into spreadsheets. IEEE Trans. Knowl. Data Eng. 27(8), 2291–2303 (2015). doi:10.
1109/TKDE.2015.2397440

http://www.mrexcel.com/forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.html
http://www.mrexcel.com/forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.html
http://www.mrexcel.com/forum/excel-questions/607337-ipad-2-running-excel-visual-basic-applications-2.html
http://dx.doi.org/10.1155/2016/9816152
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-applications.html
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-applications.html
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/830464-apps-support-excel-visual-basic-applications.html
http://dx.doi.org/10.1007/978-3-642-34347-6_23
http://www.stratify.org
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/930944-visual-basic-applications-mobile-devices.html
http://www.mrexcel.com/forum/general-excel-discussion-other-questions/930944-visual-basic-applications-mobile-devices.html
http://www.mrexcel.com/forum/excel-questions/923376-ipad-desktop.html
http://www.mrexcel.com/forum/excel-questions/923376-ipad-desktop.html
http://dx.doi.org/10.1109/MobileSoft.2015.34
http://dx.doi.org/10.1109/MobileSoft.2015.34
http://dx.doi.org/10.1109/TKDE.2015.2397440
http://dx.doi.org/10.1109/TKDE.2015.2397440

Fragment-Based Diagnosis of Spreadsheets

Thomas Schmitz1(B), Birgit Hofer2, Dietmar Jannach1, and Franz Wotawa2

1 TU Dortmund, Dortmund, Germany
{thomas.schmitz,dietmar.jannach}@tu-dortmund.de

2 Graz University of Technology, Graz, Austria
{bhofer,wotawa}@ist.tugraz.at

Abstract. Large spreadsheets are often difficult to understand and to
test. Detecting the true cause of an observed wrong calculation outcome
in a chain of calculations is even more challenging. In this work, we pro-
pose a novel approach that automatically decomposes large spreadsheets
into smaller units called fragments. This decomposition serves two pur-
poses. First, it allows us to apply fault localization procedures that can
exploit such structural abstractions to find possible explanations for the
wrong outcomes (called diagnoses). This results in a faster identification
of the diagnoses. Second, it makes the testing process better manage-
able for the users, as they can provide simpler test cases to reduce the
number of possible explanations of the fault. An empirical evaluation
of our method shows that the required running times for computing the
possible explanations can be measurably reduced when applying the pro-
posed fragmentation approach and that fragment-based test cases help
to significantly reduce the number of possible explanations.

Keywords: Fault localization · Spreadsheet fragmentation · Model-
Based Diagnosis

1 Introduction

Spreadsheets are widely used in companies for a variety of purposes, e.g., bud-
get planning, forecasting, price calculations, and investment decisions. One might
think that spreadsheets which are used for decision-making are well-tested and
free from faults, but the reality is disappointing as newspapers regularly report
on financial losses because of faulty spreadsheets. A recent article in The Wall
Street Journal [23] informs about a $ 100 million loss of the software company
Tibco that was caused by a spreadsheet fault. In addition, the consulting com-
pany F1F9 lists twelve famous examples of faulty spreadsheets (“The Dirty
Dozen”) [6]. Furthermore, Schmitz and Jannach recently published a set of faults
found in the spreadsheets of the Enron emails [21].

These examples demonstrate that faults in spreadsheets are a common prob-
lem and that many faults remain undetected even when domain experts inspect
the spreadsheets. But even when a user detects a wrong calculation outcome in a
spreadsheet, the process of visually tracing back the dependencies of calculations
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 372–387, 2016.
DOI: 10.1007/978-3-319-50230-4 28

Fragment-Based Diagnosis of Spreadsheets 373

to the faulty formula(s) can still be cumbersome for several reasons: (1) crossing
dependency arrows are confusing, (2) the tracing has to be enabled cell-by-cell,
which results in significant user effort for large spreadsheets, and (3) depen-
dency tracking between worksheets is not possible [9]. Several automated or
semi-automated approaches have been proposed to help the user to find the
cause of an unexpected calculation outcome, see [18] for a recent overview.

One of these automated debugging approaches is based on the principles
of Model-Based Diagnosis (MBD). MBD is applicable in situations where the
user is able to specify the expected values for the output cells. Jannach and
Schmitz [17] and Abreu et al. [1] have proposed MBD-based approaches for
spreadsheet debugging which are capable of automatically identifying sets of for-
mulas which can in principle be responsible for the observed faulty calculation
outcomes. The sets of faulty formulas that can “explain” the wrong outcomes
are called diagnoses. Unfortunately, “pure” MBD approaches have certain limi-
tations when it comes to huge spreadsheets, as the number of diagnoses and the
diagnosis time grows with the number of formula cells in the spreadsheet.

In this paper, we propose to use a hierarchical diagnosis process which allows
us to apply MBD techniques to larger spreadsheets. The main rationale of our
approach is that we first diagnose the problem at a coarse-grained level. To do
so, we automatically partition the faulty spreadsheet into a set of smaller units,
so-called fragments [16]. In the first phase of the hierarchical MBD process, these
fragments represent the smallest “diagnosable units”, i.e., there are fewer possi-
ble reasons for an unexpected outcome, namely the fragments, than when every
single cell would be considered. The result of the high-level diagnosis process
are those fragments that can be the cause of the problem. In the next phase, we
present the fragments that explain the faulty outcome, i.e., the diagnoses, to the
user. The user can then specify additional test cases for these small fragments
to further isolate the true problem. Given these additional test cases, we apply
the MBD technique on the more fine-grained level of the individual cells, which
finally leads us to the true cause of the problem, i.e., the faulty formulas.

The main contributions of this paper are (i) a fragmentation approach to
automatically partition a spreadsheet into smaller structurally connected parts
(Sect. 4.1), (ii) an algorithm that applies hierarchical diagnosis techniques on the
level of fragments (Sect. 4.2), and (iii) an empirical evaluation demonstrating the
advantages of our approach in terms of computational efficiency (Sect. 5).

2 Motivating Example

The spreadsheet illustrated in Fig. 1 computes the velocity and the distance
covered by an object within three phases (acceleration, constant velocity, and
deceleration). The three formulas in row 5 are faulty. The spreadsheet creator
has forgotten to divide the computed distance by two, which results in a triple
fault comprising the cells B5, C5, and D5. In fact, the developer only made one
mistake, but by copying the formulas the number of actually faulty formulas
was tripled. At some stage, the user of the spreadsheet realizes that there is a

374 T. Schmitz et al.

(a) Value view

(b) Formula view

Fig. 1. Running example: velocity and distance calculation.

problem, because the accumulated distance remains constant from phase 2 (cell
C6) to phase 3 (cell D6). When the user manually computes the values for the
accumulated distance, he/she realizes that the values for the cells B6 and C6 are
incorrect and the values for the cells D6 and E2 are correct.

When the user starts the traditional MBD process with the test data shown in
Fig. 1 to locate the cause of this problem, eleven potential causes are computed:
{B6, C6}, {B5, D6}, {B5, D5}, {B6, D6, C5}, {B6, D5, C5}, {B5, E2, D2},
{B5, C6, C5}, {B5, E2, C5, C2}, {B6, E2, B5, C2}, {B6, E2, C5, C2}, {B6, E2,
C5, D2}. Given only one single test case, it can easily happen in MBD-based
approaches that the system returns many combinations of formulas that could
explain the faulty behavior. In our example, one of the reported diagnoses ({B5,
D5}) is a subset of the true fault. This diagnosis does not comprise the cell C5,
as the formulas of B5 and D5 could be changed in a way that would already
result in the expected output values for the single test case provided by the user.

Overall, the example shows that basic MBD approaches have limitations in
certain situations. Specifically, in our situation two improvements are desirable:
(1) the number of diagnoses should be reduced so that the user has to inspect a
smaller set of possible causes and (2) the diagnosis {B5, D5} should also contain
the cell C5 to indicate that the user should change all of these formulas.

Besides being computationally more efficient, our proposed fragment-based
decomposition approach helps us in both mentioned dimensions. Let us assume
that the spreadsheet was automatically divided into the three fragments {C2,
D2, E2}, {B5, C5, D5}, and {B6, C6, D6}. When using MBD on the fragment
level instead of the cell level, only two fragments are reported as diagnoses,
namely the fragment {B5, C5, D5} and the fragment {B6, C6, D6}. This in turn
means that we can omit the fragment {C2, D2, E2} from further considerations.
We can now ask the user to provide a simple test case containing only the cells
{B5, C5, D5}. Given such an additional test case, applying the MBD procedure
on the fine-grained level will immediately return the true cause {B5, C5, D5} as
the only candidate. In this small example spreadsheet, all cells of the fragment
are the true cause, but this is not necessarily the case for other spreadsheets.

Fragment-Based Diagnosis of Spreadsheets 375

3 Preliminaries

As Model-Based Diagnosis is a formal and logic-based approach, a logical frame-
work for spreadsheets is required. In this section, we first describe the basic
concepts of spreadsheets more formally before we explain the MBD process.

The smallest unit of a spreadsheet is a cell. A cell contains either a formula or
a value. Formula cells use expressions and references to compute values. We refer
the reader to [13] for more information about the structure of these expressions.
For this section, it is sufficient to distinguish between formula and value cells.

Definition 1 (Formula Cells). The function formulaCells(C) returns the set
of formula cells contained in a set of cells C.

Definition 2 (References). The function ref(c) for a formula cell c returns
all cells that are directly referenced in the formula of c [13].

Cells are arranged in a matrix. Therefore, they have a unique position and
they can be accessed by their coordinates.

Definition 3 (Coordinates). The function x(c) returns the column index of
cell c. The function y(c) returns the row index of cell c.

There are two ways of referencing cells, A1 notation and R1C1 notation. In
this paper, we use R1C1 notation for identifying cells with equivalent formulas.

Definition 4 (R1C1 Notation). The relative position of a cell c with respect
to another cell c′ is indicated as ‘R[y(c) − y(c′)]C[x(c) − x(c′)]’. A formula
expression with relative positions is called a formula in R1C1 notation. Absolute
references to a cell c are indicated as ‘Ry(c)Cx(c)’ in R1C1 notation.

Definition 5 (Copy Equivalence). Two cells c, c′ are copy-equivalent if they
have the same formula in R1C1 notation.

When two cells are copy-equivalent it does not necessarily mean that their
formulas have been copied, but it is a good heuristic to determine that these two
cells are semantically equivalent.

Example 1. The formula of cell C2 of our running example from Fig. 1 is
‘=B2+B3* B4’ in A1 notation and ‘=R[0]C[-1]+R[1]C[-1]*R[2]C[-1]’ in R1C1
notation. The cells C2, D2, and E2 are copy-equivalent as well as B5, C5, and D5.

We distinguish between input, interim and output cells:

Definition 6 (Input, Interim and Output Cells). The function input(C)
for a set of formula cells C returns all cells that are referenced by formulas in
C but that do not belong to C. A cell c ∈ C is called an interim cell for a set
of formula cells C if there exists at least one formula cell in C that references c.
Otherwise c is called an output cell for C.

input(C) =
⋃

c∈C

ref(c)\C.

output(C) = {c ∈ C|�c′ ∈ C where c ∈ ref(c′)}.

376 T. Schmitz et al.

A spreadsheet S consists of a set of formula cells O = formulaCells(S) and
a set of input cells I = input(O). Labels and cells which are not referenced by
others are not relevant in our approach.

Example 2. The spreadsheet in Fig. 1 comprises the following sets of cells: O =
{C2, D2, E2, B5, C5, D5, B6, C6, D6} and I = {B2, B3, C3, D3, B4, C4, D4}.
The output cells are a subset of the formula cells: output(O) = {E2, B6, C6, D6}.

If a system under observation does not behave as expected, one can use
Reiter’s Hitting Set Tree algorithm [20] to determine the possible reasons for
the differences between the expected and the observed behavior. We use Reiter’s
basic definitions and framework to describe the general ideas of MBD.

Definition 7 (Diagnosable System). A diagnosable system is a pair (SD,

Comps) where SD is a system description (a set of logical sentences) and Comps

represents the system’s components (a finite set of constants) [17,20].

In the context of spreadsheets, the set Comps comprises the spreadsheet’s
formula cells and SD describes the logic of the formulas. To model whether a
formula is assumed to be correct or not, the abnormal behavior is represented
in SD with a unary “abnormal” predicate ab(.).

Example 3. For our running example, we have SD= {ab(C2)∨ C2 = B2 + B3 ∗
B4, ab(D2)∨ D2 = C2+C3 ∗C4, . . . ,ab(D6)∨ D6 = B5+C5+D5} and Comps

= {C2,D2,E2, . . . ,D6}.

A diagnosis problem arises when a set of logical sentences Obs, which contains
input values and expected output values of the spreadsheet, is inconsistent with
the computed output of the system (SD, Comps).

Example 4. In our example, the set Obs contains the input values shown in
Fig. 1(b) and the expected values for the output cells, i.e., Obs= {B2 =
0, . . . ,E2 = 0,B6 = 9,C6 = 33,D6 = 42}.

Definition 8 (Diagnosis). Given a diagnosis problem (SD, Comps, Obs),
a diagnosis is a minimal set Δ ⊆ Comps such that SD∪Obs∪{ab(c)|c ∈
Δ}∪ {¬ab(c)|c ∈ Comps\Δ} is consistent [17,20].

A diagnosis therefore corresponds to a minimal subset of the formula cells
which, if assumed to be faulty, explains the system’s faulty output, i.e., the
system description without these formulas is consistent with the expected values
in Obs. To calculate the diagnoses, Reiter proposes the Hitting Set Tree [20]
algorithm. In our work, we translate the spreadsheet into a constraint satisfaction
problem [17] and use Reiter’s algorithm in combination with QuickXplain [19].
Details about our specific algorithm implementation can be found in [17].

4 Fragment-Based Diagnosis

In this section, we first describe an evolutionary fragmentation algorithm and
then explain how MBD can be adapted to work on the fragment level.

Fragment-Based Diagnosis of Spreadsheets 377

4.1 Fragmentation Process

The fragmentation process proposed in this paper is based on the initial ideas
presented in previous work [16]. While this previous work only introduced the
basic idea, we now describe the fragmentation process itself. The main rationale
is that we start with each cell forming its own fragment. These single-cell frag-
ments are easy to understand. However, such a fragmentation does not reduce
the complexity when searching for the possible causes of the problem, as too
many fragments have to be considered. Therefore, we combine these small frag-
ments to larger ones in an evolutionary process, which consists of two major
parts: (1) collapsing copy-equivalent formulas and (2) merging fragments. When
we collapse copy-equivalent formulas, all of them are represented by only one
formula for which the user has to ensure the correctness. In contrast, merging
fragments does not reduce the number of formulas to test but combines con-
nected formulas into a group that can be tested together. While the process
of collapsing the copy-equivalent formulas follows strict rules, we use a genetic
approach for merging formulas into fragments. The goal of the genetic approach
is not to merge as many fragments as possible, but to create fragments with
a reasonable size and complexity. We will explain both the collapsing and the
merging part below in detail, but first, we formally define fragments.

Definition 9 (Fragment and Fragmentation). A fragment f is a set of for-
mula cells f ⊆ formulaCells(S). The set of formula cells of a spreadsheet S is
partitioned into n disjunct fragments fi, i.e., formulaCells(S) =

⋃n
i=1 fi and

∀i, j where i �= j : fi ∩ fj = ∅. We call F = {f1, . . . , fn} a complete fragmenta-
tion of a spreadsheet S.

Example 5. A possible complete fragmentation for the spreadsheet in Fig. 1
is F = {{C2, D2, E2}, {B5, C5, D5}, {B6, C6, D6}}. Another complete frag-
mentation is F ′ = {{B5, B6}, {C2, C5, C6}, {D2,D5,D6}, {E2}}. Even a frag-
mentation containing only a single fragment (F ′′ = {{C2, D2, E2, B5, C5, D5,
B6,C6, D6}}) is a complete and therefore valid fragmentation.

Collapsing. We start the fragmentation process by collapsing copy-equivalent
cells which share the same column or row index. The idea behind this is that we
want to avoid to collapse cells which appear somewhere else in the spreadsheet
and have the same formula only by chance. To do so, we first define a fragment
that is column-row-related, i.e., that only contains cells which share the same
column or row with another cell of the fragment.

Definition 10 (Column-Row-Related). A fragment f is column-row-relat-
ed, if a graph can be spanned over all cells c ∈ f with nodes f and edges e such
that the graph connects all nodes in f and ∀(c, c′) ∈ e : x(c) = x(c′)∨ y(c) =
y(c′).

Example 6. In our running example, the fragment f = {D2,B5} is not column-
row-related, as the cells D2 and B5 do not share the same column or row. The

378 T. Schmitz et al.

fragment f ′ = {D2,B5,D5}, however, is colum-row-related, because cell D5
shares the same column with D2 and the same row with B5.

With this definition, we can now define base fragments that represent the col-
lapsed formulas. They comprise either a single formula or a set of copy-equivalent
formulas. The base fragments are later used in the merging step.

Definition 11 (Base Fragment). We call a fragment a base fragment if all
contained cells are copy-equivalent and if they share the same row or column
with another cell. More formally, a fragment f is a base fragment if ∀c, c′ ∈ f :
copy-equivalent(c, c′) ∧ column-row-related(f) ∧ � base fragment f ′ with f ⊂ f ′.
The left-most cell in the first row of a base fragment f is called the representative
of f . The function representative(f) returns a cell c ∈ f as the representative
such that ∀c′ ∈ f : y(c) < y(c′) ∨ (y(c) = y(c′) ∧ x(c) ≤ x(c′)).

Collapsing copy-equivalent cells has the benefit that the complexity of test
cases can be reduced. Instead of indicating input data for each individual input
cell, the user has to indicate only the input data required for one cell (the
representative) of a set of copy-equivalent cells.

Example 7. In our example, the copy-equivalent cells C2, D2, and E2 have the
same column index and can, therefore, be collapsed. A test case for the fragment
{C2, D2, E2} only requires values for the input cells B2, B3, and B4 and the
output cell C2. No values have to be specified for the cells referenced in D2 and
E2 as well as for the cells D2 and E2 themselves. In total, our running example
has five base fragments: {C2, D2, E2}, {B5, C5, D5}, {B6}, {C6}, and {D6}.

Merging. For the second part of the fragmentation process, i.e., merging the
base fragments, the goal is to find the optimal fragmentation based on some com-
plexity criteria. Because of the number of possible solutions, deterministically
finding the optimal solution is not possible for larger spreadsheets. Therefore
we use an evolutionary algorithm. Evolutionary algorithms follow two concepts
from biology: evolution and selection, i.e., survival of the fittest. We implement
the evolution process by randomly merging fragments. We use randomness to
imitate biologic evolution; some of the newly created fragments are nearer to an
optimal fragmentation, others are far away.

Definition 12 (Mergeable). Two base fragments f, f ′ can be merged if |f | =
|f ′| ∧ ∀c ∈ f ∃c′ ∈ f ′ : (x(c)−x(r) = x(c′)−x(r′))∧ (y(c)− y(r) = y(c′)− y(r′))
where r = representative(f) and r′ = representative(f ′).

The result of merging two fragments is a fragment that contains the cells
of both fragments. As the base fragments of a spreadsheet are defined in a
unique way, a merged fragment can always be partitioned into its base fragments
again. Therefore, we can generalize the merging process of arbitrary fragments
as follows: two arbitrary fragments consisting of one or more base fragments can
be merged if all the base fragments that they comprise can be merged.

Fragment-Based Diagnosis of Spreadsheets 379

Example 8. The base fragments {C2, D2, E2} and {B5, C5, D5} can be merged
because the copy-equivalent cells of these fragments have the same distance to
their representatives (C5/D5 is one/two column(s) left of B5; D2/E2 is one/two
column(s) left of C2). {B6}, {C6}, and {D6} can be merged because they do not
comprise any copy-equivalent cells. The result is the fragmentation {{C2, D2, E2,
B5, C5, D5}, {B6, C6, D6}}. Both fragments are not base fragments as not all
contained cells are copy-equivalent. Merging all combinations of base fragments
is not possible, e.g., it would not be possible to merge the base fragments {C2,
D2, E2} and {B6}, because the size of these two base fragments is different.

In the genetic process, we randomly test different fragmentations. These frag-
mentations are called mutants (or individuals). Several mutants build a popula-
tion which evolves from generation to generation. Only the fittest mutants sur-
vive their generation. In each generation, the population is extended with newly
generated mutants. The goal of this process is to find the fragmentation that
leads to the most “useful” fragments, i.e., a well-structured and comprehensible
partition of the spreadsheet. We measure the usefulness of a given fragmenta-
tion by means of the aggregated complexity of its fragments. To determine the
complexity of each fragment, we use several heuristics: the number of input and
output values, the spanned area of the fragment, and the complexity of the for-
mulas. These heuristics are based on the ideas of code smells [11] and spreadsheet
complexity measures [12]. Instead of considering all cells of the fragments in the
heuristics, we consider only their representatives.

Definition 13 (Representatives). The function representatives(f) for a frag-
ment f which consists of n base fragments (fb1, . . . , fbn) returns the set of rep-
resentatives of the base fragments:

representatives(f) =
⋃

fbi∈f

representative(fbi).

The heuristics are defined as follows.

Hin(f) = |input(r)| (1)
Hout(f) = |output(r)| (2)

Harea(f) = (maxx(r) − minx(r) + 1) ∗ (maxy(r) − miny(r) + 1) (3)

Hformulas(f) =
∑

c∈r

formulaComplexity(c) (4)

where r = representatives(f), maxx returns the largest value for x for a set of
cells, minx returns the smallest value, and the formulaComplexity of a cell is
measured by the number of conditionals and cell references in the formula.

Heuristic (1) aims to group cells which have the same input and the idea of
(2) is to minimize the number of output cells. Heuristic (3) favors fragmentations
that contain “physically” close cells over fragmentations that comprise distant
cells. Heuristic (4) sums up the formula complexities of all representative cells
to compute the formula complexity of a fragment.

380 T. Schmitz et al.

Example 9. For the fragmentation F = {f1 = {C2, D2, E2}, f2 = {B5, C5, D5},
f3 = {B6, C6, D6}} of our running example, we have the following values:

Fragment f1 f2 f3

Hin 3 3 3

Hout 1 1 3

Harea 1 1 3

Hformulas 3 5 6

These four heuristics are used to determine the fitness of the individuals. Each
heuristic results in a single number for each fragment. The heuristics vary in
their importance for determining a good fragmentation. Therefore, we weight
the different numbers before we sum them up for each fragment.

fragmentComplexity(f) =
|H|∑

i=0

Hi(f) ∗ wi (5)

where H is the list of all implemented heuristics and w is a vector containing the
weights of the individual heuristics. The weights can be set manually or with the
help of some optimization technique. The fragment complexities are then used
to determine the fitness of the fragmentation as a whole. To support a balanced
fragmentation in which all fragments have roughly the same complexity, we also
take the standard deviation of all fragment complexities into account.

fitness(F) = −
⎛

⎝
∑

f∈F

fragmentComplexity(f)

⎞

⎠ − σ(F) ∗ wσ (6)

where σ(F) is the standard deviation and wσ is its weight:

σ(F) =

√√√√
∑

f∈F

(
fragmentComplexity(f) −

∑

f∈F fragmentComplexity(f)

|F |
)2

|F | .

The resulting number represents the fitness of the fragmentation, i.e., the
inverse complexity. The higher the number, the less complex is the fragmenta-
tion. We aim to find the individual that has the lowest complexity.

Example 10. Assume we have the weighting vector w = (2, 3, 4, 5) and wσ = 2.
The complexities for the fragments of Example 9 are fragmentComplexity(f1) =
3∗2+1∗3+1∗4+3∗5 = 28, fragmentComplexity(f2) = 3∗2+1∗3+1∗4+5∗5 = 38,
fragmentComplexity(f3) = 3 ∗ 2 + 3 ∗ 3 + 3 ∗ 4 + 6 ∗ 5 = 57. Then fitness(F) =

−(28 + 38 + 57) −
√

(28−41)2+(38−41)2+(57−41)2

3 ∗ 2 = −147.1.

Fragment-Based Diagnosis of Spreadsheets 381

Algorithm 1. Fragment Generation
1: procedure GenerateFragments(S, p, g, s, w, wσ) � S. . . set of cells

� p. . . population � g. . . #generations
� s. . . survival rate � w, wσ. . . heuristic weights

2: B ← CollapseCopyEquivalentCells(S)
3: count ← 0
4: P ← createInitialPopulation(B, p)
5: while count < g do
6: P ← selectFittestIndividuals(P, s, w, wσ)
7: P ← P ∪ getMutants(P, p − |P |)
8: count ← count + 1
9: end while

10: F ← selectFittestIndividual(P, w, wσ)
11: return F
12: end procedure

Algorithm 1 illustrates the fragment generation process. As an input the algo-
rithm takes the set S of formula cells of the spreadsheet that should be frag-
mented, the population size p, i.e., the number of individuals that can exist at
any time, the number of generations g, the percentage s of mutants that should
survive in the population in each generation, and the heuristic weights w and
wσ. The procedure CollapseCopyEquivalentCells(S) (Line 2) takes as input a set
of cells and creates the base fragments according to Definition 11. The resulting
fragmentation B is stored as the base fragmentation and is also used to create
the initial population (Line 4).

In the evolution step, the fittest individuals are selected. The function select-
FittestIndividuals takes as input the population P , the selection rate s, and the
heuristic weights w and wσ and computes the fitness value for each individual
F ∈ P according to (6). The s∗p individuals with the highest fitness are kept in
the population. In Line 7 mutants are created until the number of individuals is
equal to the population size p. The mutants are generated by randomly merging
fragments or dividing them into their base fragments. All mergings are done with
respect to Definition 12. In the next generations, evolution and selection repeat.
In Line 10, the fittest mutant, i.e., the individual with the lowest complexity
value and standard deviation, is returned.

4.2 Fragment-Based Diagnosis

The idea of fragment-based diagnosis is to efficiently locate the formulas that can
be the cause of unexpected outcomes. To do so, we use the generated fragments as
the smallest diagnosable components in the diagnosis process and reformulate
the diagnosis problem accordingly. First, we set the diagnosable components
Comps as the generated fragments in F , i.e., Comps= F . Then, we reformulate
the system description SD so that the abnormal predicates use the fragment the
corresponding formula cells belong to.

382 T. Schmitz et al.

Example 11. In our example we reformulate the system description as
SD= {ab(f1)∨ C2 = B2+B3∗B4, ab(f1)∨ D2 = C2+C3∗C4, . . . , ab(f3)∨ D6 =
B5 + C5 + D5} and Comps= {f1, f2, f3}.

The reformulation of SD ensures that once a fragment is considered to be
incorrect in the MBD process, all the formulas of this fragment are also consid-
ered to be incorrect when searching for inconsistencies between the expected and
observed calculation outcomes. With the help of this formulation, the complexity
of the diagnosis process can be strongly reduced, as only entire fragments can
be considered to be incorrect.

Overall, we can now automatically generate a fragmentation of a spreadsheet
and then determine those fragments that can be the cause of the erroneous
outcome. The user can then ignore all fragments (and their cells) that are not
part of any diagnosis. For the remaining fragments, the user can inspect their
formulas to manually find the fault or he/she can specify additional test cases
for these fragments. To specify a test case for a fragment, the user can choose
the values for the input cells of the fragment (regardless of whether these cells
contained input values in the original spreadsheet or formulas) and then state
the expected values for any of the output or interim cells of the fragment. These
additional simple test cases help to reduce the number of diagnoses in the MBD
process and therefore make it easier to find the true cause of the problem. If
the user for example specifies complete test cases containing expected values for
all interim and output cells for the fragments that contain the actually faulty
formulas, the true cause of the problem will always be found as the only diagnosis.

5 Empirical Evaluation

In this section, we first describe the framework for evaluating our approach and
the characteristics of the evaluated spreadsheets. Afterwards, we present and
discuss the results of our initial empirical evaluation.

We integrated the proposed approach into the Exquisite Framework [15,17].
The back-end used for calculating the fragmentation and the diagnoses was
implemented in Java. We used JGAP to implement the genetic approach
and Choco as the constraint solver for the MBD process. After preliminary
tests we empirically set the weight vector for the fragmentation process to
w = (0.2, 1, 1, 1) and wσ = 0.2 to obtain useful fragmentations. The experiments
were run on a laptop computer with an Intel Core i7-4710MQ CPU running
Windows 8.1.

We evaluated our approach on 5 different spreadsheets. The characteristics
of these spreadsheets are shown in Table 1. The tested spreadsheets were quite
diverse with regard to the number of formula cells, which range from 9 to 457.
However, as it is common for most real-world spreadsheets [10], the number of
unique formulas is much lower than the number of formulas itself. One spread-
sheet contains a single faulty formula. The Proteins spreadsheet contains two
unique faults. The other spreadsheets have a fault that was copied to other cells.

Fragment-Based Diagnosis of Spreadsheets 383

Table 1. Characteristics of the tested spreadsheets.

Spreadsheet #Input cells #Formula cells #Unique formulas #Faults

Wage planning 69 63 25 1

Proteins 14 98 14 2

Sales forecast 224 143 4 2

Course planning 126 457 10 2

Velocity calculation 7 9 5 3

Table 2. Results of the fragmentation process.

Spreadsheet Time [ms] #Fragments #Collapsed cells #Merged cells

Wage planning 151 13 38 12

Proteins 55 4 84 10

Sales forecast 26 4 139 0

Course planning 49 4 447 6

Velocity calculation 10 3 4 2

Table 2 shows the time needed for the fragmentation, the number of frag-
ments that were generated, the number of cells that could be collapsed due to
their copy-equivalence, and the number of merged cells to form larger fragments.
The time needed for the fragmentation process mainly depends on the number
of fragments that can be merged after the collapsing step. The fragmentation
process was therefore faster for larger spreadsheets with many copy-equivalent
cells (e.g. Course planning) than for smaller spreadsheets with many different
formulas (e.g. Wage planning). Overall, most of the tested spreadsheets had
many copy-equivalent cells that could be collapsed in the fragmentation process
so that the merging step could be completed very fast. Regarding the number of
generated fragments the second smallest spreadsheet (Wage planning) led to the
largest number of fragments, as it had the highest number of unique formulas.

Table 3 shows the results of calculating the diagnoses with the different
approaches. Calculating the diagnoses based on the fragments was faster for all
tested spreadsheets than calculating the diagnoses based on the individual cells.
Even for the most complex Course planning spreadsheet for which we needed
almost 12 s to compute the cell-based diagnoses, we were able to compute the
fragments that could be the cause of the error in about 14 ms. Regarding the
number of diagnoses, the fragment-based diagnosis procedure determined about
half of the fragments as possible diagnoses for the observed error. This is also
promising, as the reduced number of fragments to inspect lets the user focus on
those parts of the spreadsheet that can be the real cause of the error while the
others can be ignored.

The columns “Cell-based using additional test cases” show the results of
diagnosing the spreadsheets on the cell level, but with additional test cases for

384 T. Schmitz et al.

Table 3. Results of the different diagnosis procedures. Times are given in milliseconds.

Spreadsheet Cell-based Fragment-based Cell-based using
additional test cases

Overall

Time #Diag Time #Diag Time #Diag Time

Wage planning 14 24 3 6 15 1 169

Proteins 440 85 11 2 126 1 192

Sales forecast 102 144 3 2 48 1 77

Course planning 11,903 2,304 14 2 1,900 1 1,963

Velocity calculation 4 11 0 2 3 1 13

the generated fragments. For this measurement we simulated a user and manually
created test cases by specifying values for all interim and output cells of those
fragments that were part of a diagnosis. With this additional information, we
were always able to exactly locate the true cause of the observed errors. For
those spreadsheets for which the original cell-based diagnosis needed more than
100 ms, our approach was also much faster, even if we add up all calculation
times in this process (last column of Table 3), i.e., the time to generate the
fragments (see Table 2), the time to calculate the possibly faulty fragments, and
the time to determine the true cause of the error with the additional test cases.
In cases in which the fragmentation process requires more time than the cell-
based diagnosis process, our fragment-based approach cannot help in terms of
the overall computation time. However, our approach is still helpful to reduce
the number of diagnosis candidates in these cases.

6 Related Work

Reiter has laid the groundwork for modern Model-Based Diagnosis (MBD)
approaches with his theory about diagnosis reasoning from first principles [20].
In the last decades, researchers applied his concept to different areas of applica-
tion, e.g., logic programs [4] and hardware design languages [8]. Due to the high
computational complexity of “pure” MBD, various researchers have explored the
consideration of abstractions in the process. There are two main types of abstrac-
tion: behavioral abstraction and structural abstraction. Behavioral abstraction
simplifies the description of the model; structural abstraction aggregates compo-
nents of the model. The approach presented in this paper belongs to the group of
structural abstractions. Autio and Reiter were among the first proposing struc-
tural abstractions [2]. Other relevant works on structural abstraction include
Chittaro and Ranon’s work on hierarchical MBD in general [3], Stumptner and
Wotawa’s work on diagnosing tree-structured systems [22], and Felfernig et al.’s
work on structural abstraction to debug configurator knowledge bases [7].

Our MBD approach directly builds upon the consistency-based approach pre-
sented in [17], in which diagnoses are computed indirectly via conflict sets. In con-
trast, the consistency-based approach presented in [1] computes the diagnoses

Fragment-Based Diagnosis of Spreadsheets 385

directly by means of an SMT solver. To the best of our knowledge, structural
abstractions have not yet been applied to MBD-based spreadsheet debugging
techniques. However, Hofer and Wotawa have recently proposed dependency-
based models for spreadsheets as behavioral abstractions [14].

Cunha et al. proposed a system to automatically infer a model from a spread-
sheet [5]. Their approach is based on the values of the cells to decide on the
structure of the spreadsheet, while ours uses the formulas. In general, spread-
sheet debugging is a sub-field of spreadsheet quality assurance (QA), which also
covers testing, static analysis, modeling, visualization, design, and maintenance
support. An overview of QA techniques for spreadsheets can be found in [18].

7 Conclusion

Through our empirical evaluation we could demonstrate that partitioning
spreadsheets into fragments can be a powerful means to improve MBD for
spreadsheets. On the one hand, the number of diagnoses is decreased; on the
other hand, the time required for computing the diagnoses is significantly
reduced.

Furthermore, users can benefit from fragments when testing spreadsheets
in additional ways. For large spreadsheets, it can be difficult to determine if
the spreadsheet computes the correct output values for the given input values.
Fragments are units that can be tested separately and a user can create several
test cases for each fragment. Because of the small size of the fragments, a user
can easily determine the correctness of computed values. In addition, it is easier
for the user to manually specify values that cover special cases (e.g., conditionals,
division by zero) for small fragments than for a whole spreadsheet. Testing on
the fragment level can be compared to unit testing in software.

A number of research questions exist which we plan to answer in future
work. First, we plan to evaluate our approach by means of a user study. This
user study should settle the question of the usability of our approach for end
users. Additionally, we plan to expand our approach to automatically create
input values for test cases on the fragment level. These input values should help
to test the “standard” behavior of the spreadsheet as well as the special cases.
In a next step, we will evaluate whether users prefer to use these automatically
generated fragments for testing over manually created ones.

The fragmentation process itself can be improved in several ways. Up to
now, we have used fixed values for the population size and the weights of the
heuristics. In our future research, we plan to examine whether or not we can
obtain a better fragmentation when we change the values of these parameters.
In addition, we plan to add additional heuristics to the fitness function. A further
speed-up or a better quality of the fragment computation can be achieved when
changing the algorithm termination criteria from a fixed number of generations
to another criterion. For example, we could stop the evolutionary process when
the fitness remains constant over several generations. Once these improvements
are implemented, we will evaluate the approach on a larger set of spreadsheets.

386 T. Schmitz et al.

Acknowledgment. The work described in this paper was funded by the Austrian Sci-
ence Fund (FWF) under contract number I2144 and the German Research Foundation
(DFG) under contract number JA 2095/4-1.

References

1. Abreu, R., Hofer, B., Perez, A., Wotawa, F.: Using constraints to diagnose faulty
spreadsheets. Softw. Qual. J. 23(2), 297–322 (2015)

2. Autio, K., Reiter, R.: Structural abstraction in model-based diagnosis. In: ECAI
1998, pp. 269–273 (1998)

3. Chittaro, L., Ranon, R.: Hierarchical model-based diagnosis based on structural
abstraction. Artifi. Intell. 155(1–2), 147–182 (2004)

4. Console, L., Friedrich, G., Dupré, D.T.: Model-based diagnosis meets error diag-
nosis in logic programs. In: Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749,
pp. 85–87. Springer, Heidelberg (1993). doi:10.1007/BFb0019402

5. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: VL/HCC 2010, pp. 93–100 (2010)

6. F1F9: The Dirty Dozen. http://blogs.mazars.com/the-model-auditor/files/2014/
01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-Mazars-UK.pdf.
Accessed 7 Apr 2016

7. Felfernig, A., Friedrich, G.E., Zanker, M., Jannach, D., Stumptner, M.: Hierarchical
diagnosis of large configurator knowledge bases. In: Baader, F., Brewka, G., Eiter,
T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 185–197. Springer, Heidelberg
(2001). doi:10.1007/3-540-45422-5 14

8. Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware
designs. Artif. Intell. 111(1–2), 3–39 (1999)

9. Hermans, F., Pinzger, M., van Deursen, A.: Supporting professional spreadsheet
users by generating leveled dataflow diagrams. In: ICSE 2011, pp. 451–460 (2011)

10. Hermans, F., Murphy-Hill, E.R.: Enron’s spreadsheets and related emails: a dataset
and analysis. In: ICSE 2015, pp. 7–16 (2015)

11. Hermans, F., Pinzger, M., van Deursen, A.: Detecting code smells in spreadsheet
formulas. In: ICSM 2012, pp. 409–418 (2012)

12. Hodnigg, K., Mittermeir, R.T.: Metrics-based spreadsheet visualization - support
for focused maintenance. In: EuSpRIG 2008, pp. 79–94 (2008)

13. Hofer, B., Riboira, A., Wotawa, F., Abreu, R., Getzner, E.: On the empirical
evaluation of fault localization techniques for spreadsheets. In: Cortellessa, V.,
Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 68–82. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37057-1 6

14. Hofer, B., Wotawa, F.: Why does my spreadsheet compute wrong values? In: ISSRE
2014, pp. 112–121 (2014)

15. Jannach, D., Baharloo, A., Williamson, D.: Toward an integrated framework for
declarative and interactive spreadsheet debugging. In: ENASE 2013, pp. 117–124
(2013)

16. Jannach, D., Schmitz, T.: Using calculation fragments for spreadsheet testing and
debugging. In: SEMS 2015, pp. 1–2 (2015)

17. Jannach, D., Schmitz, T.: Model-based diagnosis of spreadsheet programs: a
constraint-based debugging approach. Autom. Softw. Eng. 23(1), 105–144 (2016)

18. Jannach, D., Schmitz, T., Hofer, B., Wotawa, F.: Avoiding, finding and fixing
spreadsheet errors - a survey of automated approaches for spreadsheet QA. J.
Syst. Softw. 94, 129–150 (2014)

http://dx.doi.org/10.1007/BFb0019402
http://blogs.mazars.com/the-model-auditor/files/2014/01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-Mazars-UK.pdf
http://blogs.mazars.com/the-model-auditor/files/2014/01/12-Modelling-Horror-Stories-and-Spreadsheet-Disasters-Mazars-UK.pdf
http://dx.doi.org/10.1007/3-540-45422-5_14
http://dx.doi.org/10.1007/978-3-642-37057-1_6

Fragment-Based Diagnosis of Spreadsheets 387

19. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: AAAI 2004, pp. 167–172 (2004)

20. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

21. Schmitz, T., Jannach, D.: Finding errors in the enron spreadsheet corpus. In:
VL/HCC 2016 (2016)

22. Stumptner, M., Wotawa, F.: Diagnosing tree-structured systems. Artif. Intell.
127(1), 1–29 (2001)

23. Tan, G.: Spreadsheet mistake costs Tibco shareholders $100 million, 16 October
2014. http://on.wsj.com/1vjYdWE. Accessed 7 Apr 2016

http://on.wsj.com/1vjYdWE

TrueGrid: Code the Table, Tabulate the Data

Felienne Hermans1,2(B) and Tijs van der Storm1,2

1 TU Delft, Delft, The Netherlands
f.f.j.hermans@tudelft.nl

2 CWI, Amsterdam, The Netherlands
storm@cwi.nl

Abstract. Spreadsheet systems are live programming environments.
Both the data and the code are right in front you, and if you edit either
of them, the effects are immediately visible. Unfortunately, spreadsheets
lack mechanisms for abstraction, such as classes, function definitions etc.
Programming languages excel at abstraction, but most mainstream lan-
guages or integrated development environments (IDEs) do not support
the interactive, live feedback loop of spreadsheets. As a result, exploring
and testing of code is cumbersome and indirect.

In this paper we propose a method to bring both worlds closer
together, by juxtaposing ordinary code and spreadsheet-like grids in
the IDE, called TrueGrid. Using TrueGrid spreadsheet cells can be pro-
grammed with a fully featured programming language. Spreadsheet users
then may enjoy benefits of source code, including added abstractions,
syntax highlighting, version control, etc. On the other hand, program-
mers may leverage the grid for interactive exploring and testing of code.
We illustrate these benefits using a prototype implementation of True-
Grid that runs in the browser and uses Javascript as a programming
language.

1 Introduction

Spreadsheets are very popular tools for end-user programming. Their formula
language is easy to learn and their grid interface is inviting. Apart from this,
spreadsheets are live: the user interface reacts immediately to changes in input
or code. Live programming helps bridging the gulf between code and behavior
because the user receives immediate feedback on their actions [8]. More recently,
live programming has found its way to a wider audience, for instance, by Bret
Victor’s influential talk Inventing on Principle [11]. Figure 1, taken from Victor’s
talk, illustrates the idea of live programming: on the right, we have source code
and on the left, we have the result of that code, in this case, a tree drawing.
Modifying the code will immediately affect the visual representation of the tree.

This liveness is one of the core features of most spreadsheet systems. When
a users enters a formula and presses enter, they see the result, without a lengthy
edit-compile-run cycle. This live characteristic of spreadsheets is often praised
as their key success factor [3].

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 388–393, 2016.
DOI: 10.1007/978-3-319-50230-4 29

TrueGrid: Code the Table, Tabulate the Data 389

Fig. 1. Live programming: on the right the source code and on the left its instantiation
of the code which changes immediately when the code is updated, screenshot from [11].

However, spreadsheets have a number of downsides too. For instance, the lack
of abstraction mechanisms forces spreadsheet users to use copy-paste for reusing
code. Although solutions to this problem have been researched [4,6], they do not
provide the power of full programming languages to spreadsheet users. Secondly,
the way formulas are edited in a spreadsheet system like Excel has important
drawbacks from the programming perspective. For instance, Excel’s formula edi-
tor lacks even the basic editor services, such as syntax highlighting and reference
resolution. In general, the interface is not inviting to apply proper coding styles
and practices. Another disadvantage of embedding the code within the sheet
itself is that it prohibits versioning and sharing of the formulas separately from
the data.

On the other hand, there is source code. All existing programming lan-
guages support abstraction, and modern editors help developers understand and
structure their code. However, mainstream integrated development environments
(IDE) lack the live and interactive style of interaction so coveted by spreadsheet
users.

In this paper, we will describe TrueGrid, a light-weight approach to bridging
the gap between programming and spreadsheets and describe ts implications in
both worlds. The basic concept of TrueGrid is to allow a spreadsheet like grid
to be programmed using a full featured programming language, in a consistent
user interface. Figure 2 shows this idea as implemented in our prototype. The
key charactertistic is that developers see the code and data at the same time.
Furthermore, like a spreadsheet, TrueGrid is live, i.e. on a change of data or code,
the grid is updated. In our example, we use JavaScript as a language, however,
the idea itself is not limited to a single programming language.

In the next section we explore the implication of the TrueGrid user inter-
face for spreadsheet users. Section 3 explores TrueGrid from the perspective of
programmers. In particular we discuss conventions for relating code to the grid
view.

390 F. Hermans and T. van der Storm

Fig. 2. A True Grid implementation, with the code editor on the left hand side and
the grid on the righ, available via http://www.felienne.com/TrueGrid/

2 TrueGrid for Spreadsheet Users

As an implementation of TrueGrid for spreadsheet users, we hypothesize that
existing spreadsheet system could be extended with a source code editor view,
next to the grid-based view of the data. This allows users to use advanced fea-
tures like PivotTables and charts on top of their TrueGrid, but also use pro-
fessional IDE services for expressing computations. For spreadsheet users, using
TrueGrid over spreadsheets presents several benefits. For example, the use of a
professional editor supports the developer with editor services like syntax high-
lighting and error marking. Furthermore, the textual form of the code allows
for easy diffing and merging, enabling more mature version control on spread-
sheets. While learning a new programming language can be challenging, there
are spreadsheet developers working with VBA now, which is a fully featured
language. Unfortunately the integration between the code and a spreadsheet is
low level and cumbersome. We envision TrueGrid having a less steep learning
curve, because code and data are juxtaposed.

As an example consider the simple grade book sheet shown in Fig. 3. It shows
the actual data (both provided and computed) in the grid. The average and
class average are expressed using ordinary Javascript functions. The TrueGrid
environment links functions or methods to the cells in the grid using a naming
convention. For instance, a function starting with the column_ prefix computes a

function column_avg(row) {

return (row.lab + row.exam) / 2;

}

function cell_classAvg(col , row) {

return sum(col) / col.length;

}

student lab exam avg

Rich 7 8 7.5

Jacome 8 9 8.5

Birgit 9 9 9

classAvg: 8.3

Fig. 3. Mockup of TrueGrid for spreadsheet use

http://www.felienne.com/TrueGrid/

TrueGrid: Code the Table, Tabulate the Data 391

complete column, given a particular row (an ordinary Javascript object). This is
used in the computation of the avg column, where each cell contains the average
of the lab and exam cells. The model also allows naming individual cells. This
is illustrated in the function cell_classAvg. The function receives the current
column (col, a Javascript array), and the current row. Based on the elements in
the column the class average is computed.

One could imagine linking the code to the grid using row and column coor-
dinates, just like ordinary spreadsheet formulas refer to (ranges of) rows and
columns. However, this would lead to code that is not very intuitive if read sep-
arately. Furthermore, insertion of rows and columns in the grid would require
updating the source code itself, similar to how spreadsheet systems realign cell
coordinates.

3 TrueGrid for Developers

Like spreadsheet users, developers often work with (example) data when pro-
gramming. For instance, developers use read-eval-print-loops (REPLs) to explore
the behavior of a function. Another use case is developer testing which requires
setting up test fixtures and inspecting the results. Both these use cases, however,
suffer from a lack of immediacy. After a change to the code, the developer needs
to reenter expressions in the REPL to observe expected changes in behavior.
Similar for testing: reexecuting the test is an explicit step after every change
to the code. TrueGrid eliminates these hickups and promises a more fluent, live
experience.

In particular, TrueGrid can be seen as a persistent REPL, where expressions
or method invocations are continuously evaluated, after every change to the
code or input data. Consider the example shown in Fig. 4. On the left is a
simple Javascript function for left-padding values with spaces or other padding
characters. Using TrueGrid, the programmer can provide example data in the
grid and explore the implementation. This can be especially valuable early in
the development process when you have some data and only a vague idea of how
certain functionality should be implemented.

function leftpad(str , len , ch) {

str = String(str);

var i = -1;

if (!ch && ch !== 0) ch = ’ ’;

len = len - str.length;

while (++i < len) {

str = ch + str;

}

return str;

}

function 0 1 2 Result

leftpad ”foo” 5 ” foo”

leftpad ”foobar” 6 ”foobar”

leftpad 1 2 0 ”01”

Fig. 4. Exploring function behavior using TrueGrid

392 F. Hermans and T. van der Storm

From the testing perspective, TrueGrid provides a kind of “FIT testing on
steroids” [9], where the grid functions as a live dashboard of test success and
failure. In this case, the grid shown in Fig. 4 could have an additional column indi-
cating the success or failure of the function execution, or use green/red coloring
of rows to the same effect. Again, the success indicators would be automatically
updated upon changing the source code on left.

4 Related Work

This work is positioned at the intersection of end-user programming and profes-
sional software development [7]. The particular link between software engineering
and spreadsheets has been explored before. For instance, Cunha et al. present
model-based programming environments for spreadsheets [2]. The focus of this
work is to improve reliability of spreadsheet engineering by applying model-
driven techniques. In this work we primarily focus on improving programmer
experience.

Integrating spreadsheet-based user interfaces with code editors leads to a
simple form of a heterogeneous programming environment (e.g., [10]), originally
pioneered in the work on structure editors, and recently popularized by the
Jetbrains Meta Programming System [5]. Although this kind of work aims for
a much more invasive integration, it is in line with the goal of having the best
user interface for each aspect of the programming experience. A similar strand
of research is explored in the context of DSLs by Adam and Schultz [1].

5 Conclusion and Outlook

Spreadsheets are live programming environments. However, their lack of abstrac-
tion mechanisms and editor support are impediments to professional spreadsheet
development. Conversely, traditional programming environments lack the con-
tinuous feedback that makes spreadsheets so attractive. In this paper we have
presented TrueGrid, a user interface design combining code editing and grid-
based data view, with a live execution model.

TrueGrid presents a promising bridge between the domain of spreadsheets
and software development. It has the potential to improve end-user programming
experience from two perspectives:

– For spreadsheet users: computations are expressed using program code, instead
of formulas in cells, so that end-users may enjoy both abstraction and liveness
at the same time.

– For professional developers: spreadsheet-like grids support live exploration and
testing of code, without explicitly invoking test scripts of entering expressions
in a REPL.

TrueGrid: Code the Table, Tabulate the Data 393

We have implemented a prototype of TrueGrid which runs in the browser, using
Javascript as the programming language. Further research is needed to empiri-
cally investigate the benefits of TrueGrid from both the programmer and spread-
sheet user perspectives. We expect that TrueGrid provides a fruitful vehicle for
exploring the middle ground between end-user programming on the one hand
side, and professional software development on the other.

References

1. Adam, S., Schultz, U.P.: Towards tool support for spreadsheet-based domain-
specific languages. In: Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences, pp. 95–98. ACM
(2015)

2. Cunha, J., Mendes, J., Saraiva, J., Visser, J.: Model-based programming environ-
ments for spreadsheets. Sci. Comput. Program. 96, 254–275 (2014)

3. Hermans, F.: Analyzing and Visualizing Spreadsheets. Ph.D. thesis, Delft Univer-
sity of Technology (2013)

4. Hermans, F., van der Storm, T.: Copy-paste tracking: fixing spreadsheets without
breaking them. In: Proceedings of the International Conference on Live Coding
(2015)

5. Jetbrains: Meta programming system (2016). https://www.jetbrains.com/mps/
6. Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in

excel. ACM SIGPLAN Not. 38(9), 165–176 (2003)
7. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.M., Erwig, M.,

Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel,
G., Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineer-
ing. ACM Comput. Surv. 43(3), 21 (2011). http://doi.acm.org/10.1145/1922649.
1922658

8. Lieberman, H., Fry, C.: Bridging the gulf between code and behavior in program-
ming. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 1995, pp. 480–486. ACM Press/Addison-Wesley Publishing Co., New
York (1995). http://dx.doi.org/10.1145/223904.223969

9. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Inte-
grated Tests. Prentice Hall, Englewood Cliffs (2005)

10. Schrage, M.M., Swierstra, S.D.: Beyond ASCII - parsing programs with graphical
presentations. J. UCS 14(21), 3414–3430 (2008)

11. Victor, B.: Inventing on principle (2012). http://vimeo.com/36579366

https://www.jetbrains.com/mps/
http://doi.acm.org/10.1145/1922649.1922658
http://doi.acm.org/10.1145/1922649.1922658
http://dx.doi.org/10.1145/223904.223969
http://vimeo.com/36579366

Views on UML Interactions as Spreadsheet
Queries

Martin Gogolla1 and Antonio Vallecillo2(B)

1 University of Bremen, Bremen, Germany
gogolla@informatik.uni-bremen.de
2 University of Malaga, Malaga, Spain

av@lcc.uma.es

Abstract. This paper explores the use of table-based representation for
artifacts occurring in model-driven development as opposed to graph-
based representation. As an example for table-based representation of
models, we explain how views on object interaction that are traditionally
represented as UML sequence or communication diagrams can be realized
by spreadsheet queries.

1 Introduction

Models in Model-Based Engineering (MBE) are graph structures and as such
they are typically expressed using graph-based representations; e.g., class and
object diagrams are represented as nodes and edges in a graph. This sort of
representation permits a natural, faithful and comprehensive description of the
models and of their views, and its operation by theories and tools. However,
graph-based descriptions of large systems can become cumbersome and diffi-
cult to understand, query and analyze by human users due to their size and
complexity [4,8].

The modelling world has few connections to the spreadsheet world, despite
the fact that spreadsheets provide a widely used description technique. Spread-
sheets are able to represent complex information in a clearly structured way in
tabular form. Together with relational databases, now they probably constitute
the most used way of presenting and manipulating information.

This paper explores the use of table-based representation for artifacts occur-
ring in MBE, as opposed to their traditional graph-based representation. As an
example, we show how object interaction diagrams that are traditionally rep-
resented as UML sequence or communication diagrams [9,12], can be naturally
expressed in tabular form; and how views on such models can be easily realized
by spreadsheet queries. In principle, the table-based representation we show here
can be used for all other UML-like models as well, hence facilitating the creation of
views and their representation in a more appropriate manner for many purposes.

2 Preliminaries

The context of our work is the UML tool USE (Uml-based Specification Envi-
ronment) [5] that allows the developer to describe (a) system structure with a
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 394–400, 2016.
DOI: 10.1007/978-3-319-50230-4 30

Views on UML Interactions as Spreadsheet Queries 395

class diagram incorporating OCL (Object Constraint Language) invariants and
(b) system behavior with OCL contracts, UML state machines and operation
implementations in the language SOIL (Simple Ocl-like Imperative Language)

Fig. 1. Example interaction as UML communication diagram.

396 M. Gogolla and A. Vallecillo

Fig. 2. Example interactions as spreadsheet.

that combines OCL expressions with control flow. Models can be executed by
means of scenarios that can be documented with UML sequence and commu-
nication diagrams. These two diagrams are the UML form of showing object
interactions.

Our running example is a simple variant of a toll collecting system for trucks
moving on a road layout described in more detail in [5]. Figure 1 shows (a) the
class diagram, (b) a communication diagram for a scenario with 15 major mes-
sages involving three towns (Hamburg hh, Berlin b, Munich m) connected by
roads and one travelling truck as well as (c) an object diagram reflecting the
system state after one particular message (number 12). Messages possess sub-
messages indicated by structured numbers, e.g., 12.1, 12.2, 12.2.1, 12.2.2, 12.2.3.

The challenge for us was: how can we achieve a comfortable view mechanism
on complex interactions consisting of message exchanges among objects? Differ-
ent views may want to filter the interactions along different aspects like message
kind (e.g., creating or destroying objects or inserting or deleting links), message
order (through the numbering system) or involved object types.

3 Representing Interactions in Spreadsheets

We now want to explain how the graphically displayed message exchanges from
the communication diagram in Fig. 1 can be given in table-based form. Figure 2
shows (part of) the object interactions in a spreadsheet. The columns describe

Views on UML Interactions as Spreadsheet Queries 397

Fig. 3. Example query on interaction as spreadsheet query.

(1) the structured message number, (2) the message in instantiated form, (3) the
message in generic form, (4) the message kind, (5) a flat message number,
and (6) the message call depth. The distinction between columns (2) and (3)
can be explained best by message 12.2.3 having flat number 34: the generic
form shows the SOIL statement from the “move” implementation “self.debt :=

self.debt+1” whereas the instantiated form shows concrete, substituted values
“self.debt := 2”. The table-based representation contains even more details than
Fig. 1, as attribute initializations and operation result values are shown. Every
present information on messages is stated in the table. Apart from the depicted
attributes, the table could contain further information, such as the sender and
receiver of each message.

4 Views on Interactions as Spreadsheet Queries

Let us now turn to the question how complex interactions as present in Fig. 2
can be viewed and filtered for particular purposes. The developer will not be
interested in all messages with all details, but will like to see only messages rel-
evant in a particular context. For example, the developer might want to achieve
a rough overview on the creation of the road layout and the operation calls in
the later part of the scenario.

The spreadsheet query in the upper, grey-shaded part of Fig. 3 serves this
purpose. The result of the query is stated in the lower part.

Thus, by expressing spreadsheet queries that can be formulated in the spread-
sheet itself and that can use present constants and simple, but effective operators,
the developer is able to interactively formulate requirements on the desired view
and to satisfy the current information needs.

In order to compare this approach with similar queries on the UML meta-
model, Fig. 4 shows the fragment on the UML metamodel that deals with Interac-
tions. As we can see, every message requires the specification of several instances
of class MessageEnd and of separate objects in case of arguments. For example,
Fig. 5 shows how only one of the 41 messages in the Interaction is represented as
an instance of the UML metamodel, namely the “enter(hh)” message. This illus-
trates the complexity required for navigating through these kinds of instances
for expressing queries that can be easily specified in a spreadsheet.

398 M. Gogolla and A. Vallecillo

Fig. 4. UML interaction metamodel (from [9]).

Fig. 5. Send message event as an instance of the UML metamodel (from [5]).

5 Conclusion

So far, most efforts for connecting the spreadsheet and Model-Based Engineering
worlds have focused on representing spreadsheets as models [10] in order to make
use of MBE concepts, mechanisms and tools to improve the specification, devel-
opment, debugging, maintenance, and evolution of spreadsheets—see, e.g., [1,2]
and many of the SEMS workshop series papers [6,7].

In this paper we have discussed an example that aims at showing the benefits
of using a tabular representation of a model as opposed to its graph-based rep-
resentation. In fact, models of non-trivial systems can become very complicated
and their representation as spreadsheets can be quite simple and straightforward.

Views on UML Interactions as Spreadsheet Queries 399

In this manner queries can be formulated in a natural and user-oriented way, too.
Furthermore, we can use all the powerful operations provided by spreadsheets to
implement some operations on the views, or even make use of advanced features
for querying spreadsheets [3]. We could also keep them in sync, so that certain
changes in the views (the spreadsheets) are propagated to the models, updating
them accordingly.

Of course, each notation is more apt for particular goals, and probably the
best approach consists of combining table- and graph-based representations,
using one or the other depending on the kind of user querying the model [11],
and on the operation we want to perform on the model. In the USE context
we already count on graph- and table-based representations for object diagrams
and interactions. Counting on spreadsheet-based representation of other aspects,
such as complete object diagram evolution, would be desirable too.

Acknowledgements. This work is funded by Spanish Research Project TIN2014-
52034-R and by Universidad de Málaga (Campus de Excelencia Internacional
Andalućıa Tech).

References

1. Bals, J., Christ, F., Engels, G., Erwig, M.: ClassSheets - model-based, object-
oriented design of spreadsheet applications. J. Object Technol. 6(9), 383–398 (2007)

2. Cunha, J., Fernandes, J., Mendes, J., Pereira, R., Saraiva, J.: MDSheet: model-
driven spreadsheets. In: Proceedings of SEMS 2014, vol. 1209, pp. 31–33. CEUR
(2014)

3. Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.: Embedding model-
driven spreadsheet queries in spreadsheet systems. In: Proceedings of VL/HCC
2014, pp. 151–154. IEEE Computer Society (2014)

4. Gelman, A.: Why tables are really much better than graphs. J. Comput. Graph.
Stat. 20(1), 3–7 (2011)

5. Gogolla, M., Hamann, L., Hilken, F., Sedlmeier, M.: Modeling Behavior with inter-
action diagrams in a UML and OCL tool. In: Roubtsova, E., McNeile, A., Kindler,
E., Gerth, C. (eds.) Behavior Modeling – Foundations and Applications. LNCS,
vol. 6368, pp. 31–58. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21912-7 2

6. Hermans, F., Paige, R.F., Sestof, P. (eds.): Proceedings of 1st International Work-
shop Software Engineering Methods in Spreadsheets (SEMS 2014). CEUR Pro-
ceedings, vol. 1209 (2014). http://ceur-ws.org/Vol-1209/

7. Hermans, F., Paige, R.F., Sestof, P. (eds.): Proceedings of 2nd International Work-
shop Software Engineering Methods in Spreadsheets (SEMS 2015). CEUR Proceed-
ings, vol. 1355 (2015). http://ceur-ws.org/Vol-1355/

8. Kosslyn, S.M.: Understanding charts and graphs. Appl. Cogn. Psychol. 3(3), 185–
225 (2006)

9. Object Management Group: Unified Modeling Language (UML) Specification, ver-
sion 2.5. OMG Document formal, 01 March 2015

10. Paige, R.F., Kolovos, D., Matragkas, N.: Spreadsheets are models too. In: Proceed-
ings of SEMS 2014. CEUR, vol. 1209, pp. 9–10 (2014)

http://dx.doi.org/10.1007/978-3-319-21912-7_2
http://ceur-ws.org/Vol-1209/
http://ceur-ws.org/Vol-1355/

400 M. Gogolla and A. Vallecillo

11. Sobreira, P., Tchounikine, P.: CSCL scripts: interoperating table and graph repre-
sentations. In: Proceedings of CSCL 2013, pp. 165–168 (2013)

12. Wendland, M.-F., Schneider, M., Haugen, Ø.: Evolution of the UML interactions
metamodel. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 405–421. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41533-3 25

http://dx.doi.org/10.1007/978-3-642-41533-3_25
http://dx.doi.org/10.1007/978-3-642-41533-3_25

Implementing Nested FOR Loops
as Spreadsheet Formulas

Paul Mireault(&)

SSMI International, Montréal, Canada
Paul.Mireault@SSMI.International

Abstract. A FOR loop is a computing structure that allows a set of calculations
to be made repeatedly for each iteration of the loop where the number of
iterations is known in advance. A nested loop happens when a loop is inside
another loop. In a spreadsheet program like Microsoft Excel, one can program
loops in VBA, its programming language. Spreadsheet developers who do not
know how to program in VBA usually implement the equivalent of loops with
static values (e.g. region codes and product types are typed as constants) or with
formulas (e.g. the region code is the previous region code + 1). In this paper, we
present similarities and differences between programming loops and spreadsheet
formulas loops. We also present a set of formulas that implement nested loops
for 1, 2 or 3 nested levels, along with a generalization for deeper nesting levels.
We also provide model management formulas to help the spreadsheet developer
ensure that his spreadsheet model covers all the iterations.

1 Introduction

Various research has reported important spreadsheet error rates. [1] surveyed studies
showing a percentage of spreadsheet with errors as high as 86%. Spreadsheet errors
have led to not only monetary losses [2] but have also caused career failures [3] and
reputation losses [4].

Research has been done to help spreadsheet developers build complex spreadsheets
by using Computer Science and Software Engineering concepts. For example, [5]
studied the use of user-defined functions as a way to reduce formula complexity, [6]
examines cell labels typed by the spreadsheet developer to infer a structure and provide
type checking in formulas, and [7] proposes a model-driven approach. Finally, [8]
developed a methodology based on the conceptual model of Information Systems.

2 Structure in Spreadsheets

Spreadsheet developers sometimes find themselves in a situation where they need to
build a repetitive structure. For example, they may need to prepare a report or a model
with multiple dimensions like years, products and regions, as illustrated in Fig. 1.

We have seen spreadsheet developers build such structures by typing values and
repeatedly copying them to achieve the desired result. Some other developers type
values and use reference formulas to produce the same result. While the latter approach

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 401–414, 2016.
DOI: 10.1007/978-3-319-50230-4_31

offers some flexibility by allowing the user to easily change a dimension’s values, both
approaches don’t allow the user to easily add or remove values in the dimensions.

In a computer program, the same structure is normally implemented with nested
loops. Any modification requires only that the user add or remove values and re-
execute the program.

The objective of this paper is to devise a set of formulas to implement nested loops
in a spreadsheet using nothing else but a plain version of Excel (i.e. not using external
spreadsheet generator or add-ins.) We will start with a simple loop and proceed to a
1-level, 2-level and 3-level nested loop, explaining the how to implement each level’s
specific characteristics. Finally, we will illustrate how to adapt the general loop
implementation to situations more suitable to general spreadsheet uses.

3 Loops in Computer Programming

Loops are a programming construct that cause the execution a series of instructions to
be repeated a number of times. During the loop’s execution, variables are assigned
values and these values are overwritten in each execution.

Implementing a loop in a spreadsheet consists of setting up the iterations in col-
umns or in rows. Since a spreadsheet is a static object, columns cannot be added
programmatically during its utilization: the spreadsheet developer must create the
appropriate number of columns.

A FOR loop is used when the number of iterations is known before its execution. It
uses a loop counter which is initialized at the beginning of the loop. The loop
instructions are then executed and the loop counter is then incremented by a specified
value. If the loop counter does not exceed the maximum specified value, the loop is
repeated. In its simplest case, the loop counter is initialized with the value 1 and it is
incremented by 1 at the end of each iteration.

C Java BASIC
for (i = 1; i <= n; i++)
{set of instructions}

for (i = 1; i <= n; i =
i+1)
{set of instructions}

FOR I = 1 TO N
set of instructions

NEXT I

A nested loop is a loop that occurs within another loop, as illustrated in the
following code snippet:

Fig. 1. Example of a multi-dimensional structure

402 P. Mireault

BASIC
FOR I = 1 TO N

FOR J = 1 TO M
set of instructions

NEXT J
NEXT I

The total number of iterations, i.e. the number of times the set of instructions will
be executed, is N * M. As we nest more loops, the number of iterations can become
quite large quickly. In a computer program this only affects the time it takes to execute
the program. But in a spreadsheet, this has the effect of adding columns (or rows) to the
spreadsheet.

4 Loops in a Spreadsheet

4.1 Simple Loop

We will use the SSMI (Structured Spreadsheet Modelling and Implementation)
methodology described in [9] to illustrate the variables and the formulas that we will
implement in the spreadsheet.

In a simple loop, the value of the loop counter is incremented in each column. The
simple loop is illustrated in the Formula Diagram of Fig. 2 and the Formula List of
Table 1.

In the SSMI methodology, all formulas should refer to cells in the same column.
When we need to use a value in the previous column, we create a variable whose sole
purpose is to reference that value. This way, all references to other columns are well
indicated. In this case, we create a variable, Previous I = I(n-1), to record the
value variable I had in the previous column and use it to calculate the value of the loop

Fig. 2. Formula diagram of the simple loop

Table 1. Formula List of the simple loop

Variable Formula

Previous I I(n-1)

I Previous I + 1, Initial value = 0

Implementing Nested FOR Loops as Spreadsheet Formulas 403

index, I = Previous I + 1. Since we refer to one column on the left, we need to
provide an initialization column to provide the initial values for the variables that are
the object of a (n-1) reference. Figure 3 shows the SSMI implementation of the
simple loop: column A contains the variable names, column B is the initialization
column and columns C to G represent the loop iteration. Also, a variable is named in
the row or column where it is defined, and a visual cue (bold italic) is used to show
exactly where an Excel name has been created, such as Previous I and I in rows 6
and 9. 9.

Since we want the loop counter to start at 1, we explicitly initialize it to 0 in cell B9.

4.2 1-Level Nested Loop

In a 1-level nested loop, we want to produce a result similar to Fig. 4.

In this example, the inner loop index J has 2 values and the outer loop index I has
5 values. We can observe that whenever J reaches its final value it resets to 1, and
when it resets, the value of I gets incremented, otherwise it remains unchanged.

To model that behavior, we introduce an indicator variable, Reset J Indica-
tor, which takes the value 1 when the counter J needs to be reset and the value 0
otherwise. The condition for a reset is that the previous value of J has reached its final
value. This is illustrated in the Formula Diagram of Fig. 5 and the Formula List of
Table 2.

Since the loop counter I is initialized at 0 we need an initial condition to have the
Reset J Indicator set to 1 immediately in the first iteration. To do so, we initialize
J with its final value. Figure 6 shows the SSMI implementation of the 1-level nested
loop.

Fig. 3. Implementation of the simple loop, normal view (left) and formula view (right)

Fig. 4. Illustration of a 1-level nested loop

404 P. Mireault

Fig. 5. Formula diagram of the 1-level nested loop

Table 2. Formula List of the 1-level nested loop

Variable Formula

Previous I I(n-1)

I IF(Reset J Indicator = 1, Previous I + 1, Previous I),
Initial value = 0

Previous J J(n-1)

Reset J
Indicator

IF(Previous J = Final J, 1, 0)

J IF(Reset J Indicator = 1, 1, Previous J + 1), Initial
value = Final J

Fig. 6. Implementation of the 1-level nested loop, normal view (left) and formula view (right)

Implementing Nested FOR Loops as Spreadsheet Formulas 405

4.3 2-Level Nested Loop

In a 2-level nested loop we want the loop indices to follow the pattern shown in Fig. 7.

In this example, the inner loop index K has 4 values, the middle loop index J has 2
values and the outer loop index I has 5 values. We can observe that the behavior of the
inner loop index hasn’t changed: whenever it reaches its final value it resets to 1. The
same can be said about the outer loop index: when the next loop index J resets, the
value of I gets incremented, otherwise it remains unchanged. But now, the middle loop
index J has 3 possibilities at each iteration: it remains unchanged, it is incremented or it
is reset. We need two indicator variables to indicate when it should be incremented and
when it should be reset. The condition for a reset is when K has been reset and
Previous J has reached its final value. The condition for an increment is when K has
been reset and Previous J has not reached its final value. This is illustrated in the
Formula Diagram of Fig. 8 and the Formula List of Table 3.

Figure 9 shows the SSMI implementation of the 2-level nested loop.

Fig. 7. Illustration of a 2-level nested loop

Fig. 8. Formula diagram of the 2-level nested loop

406 P. Mireault

Table 3. Formula List of the 2-level nested loop

Variable Formula

Previous I I(n-1)

I IF(Reset J Indicator = 1, Previous I + 1, Previous
I), Initial value = 0

Previous J J(n-1)

Reset J
Indicator

IF(Reset K Indicator = 1 AND Previous J = Final J,
1, 0)

Increment J
Indicator

IF(Reset K Indicator = 1 AND Previous J<>Final J,
1, 0)

J IF(Reset J Indicator = 1, 1, IF(Increment J
Indicator = 1, Previous J + 1, Previous J)),
Initial value = Final J

Previous K K(n-1)

Reset K
Indicator

IF(Previous K = Final K, 1, 0)

K IF(Reset K Indicator = 1, 1, Previous K + 1),
Initial value = Final K

Fig. 9. Implementation of the 2-level nested loop

Implementing Nested FOR Loops as Spreadsheet Formulas 407

4.4 3-Level Nested Loop

In a 3-level nested loop, we want the loop indices to follow the pattern shown in
Fig. 10.

In this example, the inner loop index L has 3 values and the other loops are as
before. We can observe that the behavior of the middle loops J and K are the same:
whenever their previous loop index reaches its final value they either reset to 1 or
increment, otherwise they remain unchanged. This is illustrated in the Formula Dia-
gram of Fig. 11 and the Formula List of Table 4.

Fig. 10. Illustration of a 3-level nested loop

Fig. 11. Formula diagram of the 3-level nested loop

408 P. Mireault

We see, in the Formula Diagram and in the Formula List, that the middle loops
have the same set of 4 variables and similar formulas. Thus, this provides a general-
ization to adding nested loops.

Table 5 summarizes the actions that can be performed on the different loop indices
and what their initial value must be.

5 Model Management Formulas

Unlike programming, where the total number of iterations is determined by each loop
index’s final value and can change from one program execution to another, the total
number of iterations in a spreadsheet is determined by the number of columns in which

Table 4. Formula List of the 3-level nested loop

Variable Value/Formula

Previous I I(n-1)

I IF(Reset J Indicator = 1, Previous I + 1, Previous
I), Initial value = 0

Previous J J(n-1)

Reset J
Indicator

IF(Reset K Indicator = 1 AND Previous J = Final J,
1, 0)

Increment J
Indicator

IF(Reset K Indicator = 1 AND Previous J<>Final J,
1, 0)

J IF(Reset J Indicator = 1, 1, IF(Increment J
Indicator = 1, Previous J + 1, Previous J)),
Initial value = Final J

Previous K K(n-1)

Reset K
Indicator

IF(Reset L Indicator = 1 AND Previous K = Final K,
1, 0)

Increment K
Indicator

IF(Reset L Indicator = 1 AND Previous K<>Final K,
1, 0)

K IF(Reset K Indicator = 1, 1, IF(Increment K
Indicator = 1, Previous K + 1, Previous K)),
Initial value = Final K

Previous L L(n-1)

Reset L
Indicator

IF(Previous L = Final L, 1, 0)

L IF(Reset L Indicator = 1, 1, Previous L + 1),
Initial value = Final L

Table 5. Actions that can be performed on a loop index depending on the loop’s position

Reset Incremented Unchanged Initialization

Outer loop - X X 0
Middle loop X X X Final
Inner loop X X - Final

Implementing Nested FOR Loops as Spreadsheet Formulas 409

the loop formulas have been copied. If the spreadsheet developer copied the formulas
in 40 columns, that is good for loops with final values {2, 4, 5} and {5, 8} but not for
{3, 2, 7} and {9, 5}, which require 42 and 45 columns respectively.

While it would be possible to program a VBA (Visual Basic for Applications)
module to automatically adjust the number of columns according to the set of final
values, this is beyond the scope of this paper. Many spreadsheet developers have never
taken any programming course and would be incapable of programming such a VBA
module.

The workaround we propose is to use model management formulas. We define a
model management formula as a formula whose purpose is to inform the spreadsheet
developer or user about errors or inconsistencies in the spreadsheet itself.

A simple model management formula will compare the expected number of col-
umns with the actual number of columns in the different spreadsheets that use the
loop. The expected number of columns is the product of the final values of the loops’
indices plus the number of initialization columns. (That number is 1 most of the time,
but a developer may need to adjust it to his needs.) The number of actual columns is the
maximum value of the loop iteration counter. The difference between those two
numbers should be zero, and it can inform the developer as to the number of columns to
add or to remove from the spreadsheets that use the loop. Figure 12 shows a warning
indicating that the loop formulas need to be copied in 31 more columns in two
spreadsheets.

Fig. 12. Model management formulas

410 P. Mireault

6 Application to Different Contexts

In practice, spreadsheet developers use loops to represent objects that don’t have the
standard characteristics of the loops we used so far. Their first value may not always be
a 1, and in some cases they may not even be quantitative. In this section we show two
common examples: in the first case the loop models a set of years, and in the second
case it models a set of qualitative variables.

Figure 13 shows the Year Loop parameters, where the user can enter the first and
last years that the spreadsheet should consider. Mode management formulas calculate
the Number of Years, which is used as Final I, and the Base Year, which will be
explained shortly.

Figure 14 shows the Product Loop parameters. In this case, the user can enter product
names in the List of Products and the Number of Products is calculated as the
number of elements in the list and is used as Final J. Figure 15 shows the Region Loop
parameters which behaves similarly and supplies the value of Final K.

After having prepared the different loop parameters, we can create the user’s loops,
as shown in Fig. 16. We can use Excel’s INDEX function with the J and K loop indices
because their starting value is always 1. The Year is calculated as I + Base Year.

Once the nested loops are set, the developer can use them in other worksheets. If
the worksheet has the same column structure as the Y-P-R Loop worksheet, we can
simply use the loop index’s name as shown in Fig. 17.

Fig. 13. The Year loop parameters

Implementing Nested FOR Loops as Spreadsheet Formulas 411

On the other hand, if the worksheet does not have the same column structure, the
developer can create a row referring to Y-P-R Iteration Counter and use it with
the INDEX function as shown in Fig. 18.

Fig. 14. The Product loop parameters

Fig. 15. The Region loop parameters

412 P. Mireault

7 Conclusion

The worksheets managing the loops are behind the scene activities. Once they have
been implemented and tested, the developer can concentrate on the actual worksheet
that needs to be built.

This paper shows that a well-known computer programming structure can be
adapted to be used in the spreadsheet environment. The adaptation has its limitations,
the most important one being that the spreadsheet’s structure has to conform to the
desired loops.

This paper contains all the formulas spreadsheet developers need to create their
own worksheets to manage loop-like structures, whether they have programming
training or not. They can be saved and re-used or distributed as templates.

Fig. 18. Using the loop indices in a worksheet with a different column structure

Fig. 16. Creating the actual loops

Fig. 17. Using the loop indices in a worksheet with the same column structure

Implementing Nested FOR Loops as Spreadsheet Formulas 413

References

1. Panko, R.R.: What we know about spreadsheet errors. J. End User Comput. 10, 15–21 (2008)
2. Burden, T.: How a Rookie excel error led JPMorgan to misreport its VaR for years (2013).

http://www.zerohedge.com/news/2013-02-12/how-rookie-excel-error-led-jpmorgan-
misreport-its-var-years

3. Mouchel profits blow (2011). http://www.express.co.uk/finance/city/276053/Mouchel-profits-
blow

4. Conczal, M.: Researchers finally replicated Reinhart-Rogoff, and there are serious problems.
Roosevelt Institute (2013). http://rooseveltinstitute.org/researchers-finally-replicated-reinhart-
rogoff-and-there-are-serious-problems/

5. Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in excel. ACM
Sigplan Not. 38, 165–176 (2003)

6. Erwig, M.: Software engineering for spreadsheets. IEEE Softw. 26, 25–30 (2009)
7. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: a framework for model-driven

spreadsheet engineering. In: Presented at the Proceedings of the 34th International Conference
on Software Engineering, Zurich, Switzerland (2012)

8. Mireault, P.: Structured spreadsheet modeling and implementation. In: 2nd Workshop on
Software Engineering Methods in Spreadsheets, Firenze, IT (2015)

9. Mireault, P.: Structured Spreadsheet Modelling and Implementation: A Methodology for
Creating Effective Spreadsheets. SSMI International, Montréal (2016)

414 P. Mireault

http://www.zerohedge.com/news/2013-02-12/how-rookie-excel-error-led-jpmorgan-misreport-its-var-years
http://www.zerohedge.com/news/2013-02-12/how-rookie-excel-error-led-jpmorgan-misreport-its-var-years
http://www.express.co.uk/finance/city/276053/Mouchel-profits-blow
http://www.express.co.uk/finance/city/276053/Mouchel-profits-blow
http://rooseveltinstitute.org/researchers-finally-replicated-reinhart-rogoff-and-there-are-serious-problems/
http://rooseveltinstitute.org/researchers-finally-replicated-reinhart-rogoff-and-there-are-serious-problems/

SheetGit: A Tool for Collaborative
Spreadsheet Development

Ricardo Moreira(B)

NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Lisbon, Portugal
rm.moreira@campus.fct.unl.pt

Abstract. Spreadsheets play a pivotal role in many organizations. They
serve to store/manipulate data, and are often used to help in the decision
process of organizations, thus having a direct impact on their success.

As the research community already realized, spreadsheets tend to have
the same issues “professional” software has.

One of the most used mechanisms to manage software projects is
version control. Thus, we present a version control system oriented for
end-user programmers. It allows for seamless and risk-free collaboration
between users, to graphically visualize the history of spreadsheet ver-
sions, to switch between different versions just by pointing and clicking,
and to visualize the differences between two spreadsheets in an animated
way.

Keywords: Spreadsheets · End-user software development · Microsoft
excel · Version control · Excel add-in

1 Introduction

There have been multiple studies attempting to measure errors in spreadsheets,
and they have always found them in abundance [8]. While spreadsheets are easy
to share and modify, this actually makes it difficult to control and maintain
their integrity [4]. The amount of user controls in spreadsheets do not approach
the level of controls that professional programmers have found to be necessary
for their development, so errors are more likely to happen and not be detected.
Indeed it is common for spreadsheets to reach high levels of complexity and size,
making them hard to comprehend and debug, ergo increasing the number of
errors when they are used [2].

Essentially, spreadsheets are being used as cheaper, more agile replacements
of professional programs that would normally cost large sums of money to create
and maintain, but they have fewer controls and tools to prevent errors. If profes-
sional programmers are no longer making sure end users will not make mistakes,
to prevent these from happening, end users must themselves start to adopt the
disciplines and tools that professional programmers have long used when dealing
with complex software [9]. One of these mechanisms is version control.

Version control is known to be extremely beneficial for experienced program-
mers [7], but it is also beneficial for end-user programmers, both for learning
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 415–420, 2016.
DOI: 10.1007/978-3-319-50230-4 32

416 R. Moreira

and debugging purposes [6]. Version control also helps in understanding spread-
sheets as these reach high levels of complexity. With proper version control, one
can see how the spreadsheet was built over time and, from its origin, gradu-
ally come to understand it. Moreover, this is the way professional programmers
collaboratively work, and thus, it should also be used by end-user programmers.

Our goal is to bring version control to spreadsheet end-user developers, in
an intuitive manner, to help modernize Excel’s development tools, to help lower
the risk of spreadsheet errors, to help end users create, manage, comprehend
complex spreadsheets and to enable easy, risk-free collaboration and sharing of
spreadsheets. For this purpose, we have created an add-in for Excel which auto-
matically creates versions, branches, allows users to change between versions,
and see the differences between them. Since end-user developers are the target
demographic, the user interface is the prime focus of the application, and we
intend to have it thoroughly validated to ensure it is easy to use.

2 SheetGit

In this section we introduce the tool termed SheetGit we have implemented
as a version control solution for spreadsheet end-users. In this tool we have
implemented a set of fundamental features: creating versions, switching between
them, the option to see the differences between two versions, and sharing them
through the Internet. In the next sections we describe each of these.

2.1 Showing Versions

Creating a proper user interface is challenging because the project’s target audi-
ence consists of end users who most likely have never interacted with any type of
version control. As a result, we designed the interface to be simple and intuitive,
and for most of the features to be automated or easy to understand with a fast
tutorial, though it still requires validation through an empirical study.

We chose to use a tree to display our versions, as seen in Fig. 1, because of
its simplicity and adaptability, allowing for an intuitive graphical representation
of many advanced version control functions such as branches and merges. Very
popular version control services such as Github [5] or Bitbucket [1] also make
use of a tree structure to display their version lists.

The versions are placed chronologically, the large white version being cur-
rently active, meaning it is the spreadsheet the user is seeing. In this case, the
user restored his spreadsheet to a previous point in time, so it is not the most
recent version of the spreadsheet.

2.2 Creating Versions

The default behavior for creating a version is to do so automatically, as to prevent
any sort of data loss due to the user forgetting to save, and to not interrupt the
user as he/she works. Since the number of versions may inflate greatly due to the

SheetGit 417

Fig. 1. A single branch tree displaying a set of commits

automated behavior, we have also implemented a method to combine or prune
them where we believe the end result may be indifferent to the user, using metrics
such as time since last edit and amount of data entered into the workbook. This
only collapses those versions, but the user can always re-open them to a more
detail view.

Branches are created automatically when users edit a version that is not at
the last one. This will allow them to keep working seamlessly yet still providing
a clear view of their current work parentage.

By default, all versions will have a summary of its changes stored in an
additional text file, and also displayed on the version tree, as seen in Fig. 2.
Users can then understand what actions occurred without having to open the
version or write a version message beforehand. Nevertheless, the user has always
the possibility of adding a version message.

Fig. 2. Our mock up’s version tree displaying a commit’s details

418 R. Moreira

2.3 Switching Between Versions

Another feature SheetGit supports is to switch from one version to another. To
do so, the user has only to click in the desired version in the tree showing the
versions. This will change the workbook so it is in the state of the particular
version selected.

2.4 Showing Differences Between Versions

Showing differences between versions is one of the greater challenges of the
project because, given the free-form factor of spreadsheets, the user is able to
organize information in whatever way he feels best. Also because its authors
may have never seen diffs in a version control system, so various concepts that
seem normal to professional programmers can be difficult for some end users to
understand.

Differences between versions are shown inside Excel itself. If the user selects
a particular version, the mouse/cursor will recreate the actions required to turn
one version into the other. If a user could not understand the list of changes in
a version, he/she can visualize the animation to see all of them being performed
one by one. There are options to speed up or skip the animations to not hinder
the more experienced users. As a better illustration of this concept, we refer
the reader to the tool’s website, at http://spreadsheetsunl.github.io/sheetgit/,
where a concept movie can be seen showing this mechanism.

Although the tool stores the changes performed between two consecutive
versions, for versions more distant, we intend to use SheetDiff as our algorithm
for detecting differences between versions as it has been proven to be very robust
and efficient at discerning changes [3]. This algorithm will find the differences
between two versions and we will display them as the set of changes necessary
to switch from one version to another.

2.5 Collaborative Development

Users will have a shared repository with other people. To minimize possible
conflicts when more than one person is developing the same spreadsheet, each
user will be forced to use his/her own personal branches, created from the main
branch or from his/her own other branches. When the user is satisfied with the
changes, he/she can merge to the main branch such changes so they become
incorporated in the main development and available to other users. When merg-
ing conflicts may arise. If there is a conflict in a particular cell, such cell can show
the conflicting values and the corresponding version, through a list, allowing the
user to select the intended choice. If an entire row or column is in conflict, then
both can be shown and the user is guided to delete the wrong one.

Every version and branch is tinted with a unique color belonging to a specific
user, with the master branch always being gray to show it can be used by multiple
users, as seen back in Fig. 2.

This online portion of the application is optional but is fully automatic once
the user grants SheetGit the appropriate permissions to their Bitbucket account.

http://spreadsheetsunl.github.io/sheetgit/

SheetGit 419

2.6 Technological Choices

We have created our solution as an Excel add-in to keep it as closely knit to
Excel as possible, as this potentially increases its acceptance among spreadsheet
developers as opposed to being run as an external tool. This will also enable us
to present information directly in the active spreadsheet, and grant us access to
Excel’s proprietary file formats.

The add-in functions as a self-contained task pane, that includes an embedded
browser to allow us to make use of Javascript, while retaining the advantages of
the more powerful C# add-ins. Our version tree is created using Gitgraph.js1, a
Javascript library.

The collaboration side of the application will be performed with the help
of Bitbucket, using it as the online hosting service for the spreadsheets. This
because Bitbucket offers free registration, a welcoming API, and private reposi-
tories, allowing users to maintain their privacy.

Availability. SheetGit is available as a Microsoft Excel open-source add-in at
http://spreadsheetsunl.github.io/sheetgit/. Since this is an open-source project,
we believe it will receive contributions from the community, and thus will be
constantly improved.

3 Related Work

Many version control tools already exist to work with spreadsheets, such as
Microsoft Sharepoint’s History2, Google Sheets3, XLTools’s Version Control4

and Pathio5, and while they all perform well, they generally have issues when it
comes to perceiving changes in formatting and formulae.

They show their versions in the way of a chronological list, but this makes
it difficult for users to perceive the parent of a version, which as been shown
to be beneficial for end users [6]. Users tend to solve problems by searching
for alternatives and then backtracking when required, which is easier when the
parent is accessible [6]. With our tree and branch presentation, it is easy for
users to keep track of the origin of all changes.

Also when it comes to presenting the differences, it is either done in a very
simplistic manner, or in a more complete manner, but end users without version
control experience might have a greater difficulty in understanding the presen-
tation without a very rich tutorial.

In regards to collaboration, some tools exist with varying degrees of complete-
ness in its implementation. Google Sheets, after each change, a new revision is
automatically created. When viewing the version history, each user is assigned a

1 http://github.com/nicoespeon/gitgraph.js.
2 https://products.office.com/en-us/sharepoint/.
3 https://www.google.com/sheets/.
4 https://xltools.net/.
5 https://www.pathio.com/.

http://spreadsheetsunl.github.io/sheetgit/
http://github.com/nicoespeon/gitgraph.js
https://products.office.com/en-us/sharepoint/
https://www.google.com/sheets/
https://xltools.net/
https://www.pathio.com/

420 R. Moreira

unique color, and the altered cells are highlighted in the color of its author. This
means, however, that what exactly changed is not explicitly shown. Moreover, in
Google Sheets everything every user does is visible to every other user. Our app-
roach allows to have private branches and merge only what is desired. Microsoft
Sharepoint’s revisions are created automatically just like Google Sheets but there
is no method to view the differences between versions.

4 Conclusion

A version control system is a very helpful tool for professional software devel-
opment as it allows for both collaboration and controlled development. Such
features are also desired when developing spreadsheets by end-user developers.
It is however necessary to adapt such systems to the necessities and restrictions
of this kind of developers.

Although more features can be added, we believe that the next important
step is to validate our proposal with spreadsheet end-user developers. Such an
evaluation is complex and should be done in a long term study where the poten-
tial benefits would be assessed in the usage of the tool in a considerable period
of time ideally in a collaborative development environment.

Acknowledgements. This work has been partially supported by NOVA LINCS
through the FCT project with reference UID/CEC/04516/2013.

References

1. Atlassian: Bitbucket. https://bitbucket.org/. Accessed 03 Mar 2016
2. Bradley, L., McDaid, K.: Using Bayesian statistical methods to determine the

level of error in large spreadsheets. In: 31st International Conference on Soft-
ware Engineering-Companion, ICSE-Companion 2009, vol. 2009, pp. 351–354. IEEE
(2009)

3. Chambers, C., Erwig, M., Luckey, M.: SheetDiff: a tool for identifying changes in
spreadsheets. In: 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 85–92, September 2010

4. Deloitte: spreadsheet management: not what you figured (2009). http://www2.
deloitte.com/us/en/pages/audit/articles/spreadsheet-management.html. Accessed
18 Jan 2016

5. GitHub, Inc.: Github. https://github.com/. Accessed 03 Mar 2016
6. Kuttal, S.K., Sarma, A., Rothermel, G.: On the benefits of providing versioning

support for end users: an empirical study. ACM Trans. Comput. Hum. Interact.
21(2), 901–943 (2014). http://doi.acm.org/10.1145/2560016

7. Mitchell, L.: You’re not using source control? Read this! (2014). http://www.
lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-v1.1.pdf.
Accessed 11 Jan 2016

8. Panko, R.R.: What we know about spreadsheet errors. J. Organ. End User Comput.
(JOEUC) 10(2), 15–21 (1998)

9. Panko, R., Halverson, R.P.: Spreadsheets on trial: a survey of research on spread-
sheet risks. In: Proceedings of HICSS-29, 29th Hawaii International Conference on
System Sciences, vol. 2, pp. 326–335 (1996)

https://bitbucket.org/
http://www2.deloitte.com/us/en/pages/audit/articles/spreadsheet-management.html
http://www2.deloitte.com/us/en/pages/audit/articles/spreadsheet-management.html
https://github.com/
http://doi.acm.org/10.1145/2560016
http://www.lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-v1.1.pdf
http://www.lornajane.net/wp-content/uploads/2013/01/source-control-whitepaper-v1.1.pdf

VeryComp

Context-Aware Design of Reflective Middleware
in the Internet of Everything

Marina Mongiello(B), Tommaso di Noia, Francesco Nocera,
Eugenio di Sciascio, and Angelo Parchitelli

Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italy
{marina.mongiello,tommaso.dinoia,francesco.nocera,
eugenio.disciascio,angelo.parchitelli}@poliba.it

Abstract. We daily experience the interaction with physical objects
which are becoming smarter and smarter with the ability to communi-
cate with each other as well as with different information systems. While,
on the one hand, we are assisting to the rise of a pervasive Internet of
Things (IoT) or an Internet of Everything (IoE), on the other hand we
face the need of a new generation of objects able to adapt to external
inputs coming from the environment they are dipped in.

New modeling techniques, pattern and paradigm for composing and
developing software and services able to deal with changing context and
requirements are necessary.

Self-adaptive systems are modern applications whose running part
should be able to react on its own, by dynamically adapting its behav-
ior, in order to sustain a required set of qualities of service, and dynamic
changes in the context or in the user requirements. Here, we propose a
solution allowing a IoT Middleware to conform to Reflective program-
ming paradigm thus giving more flexibility and adaptability to the net-
work behavior.

1 Introduction

The Internet of Things (IoT) and its extension Internet of Everything (IoE) is for
sure one of the most influential technological shift we are facing in the last years.
Thanks to the spreading of sensors and to the diffusion of low-cost miniaturized
computational resources, we are able to make objects that produce data and
interact with each other thus producing a network of interconnected things, data,
processes. IoE makes possible to distribute data sources and data consumers in
the real world to produce, collect, exchange and consume information usually
with a high rate. Elements of the IoT are quite evolved piece of hardware that
may be programmed and covered by a software layer implementing complex
functionalities.

One of the challenges in building Internet of Services and Things is the way
software will be developed and composed on the top of flexible infrastructures
and integration architectures. Despite the great interest in software composition
and verification methods, when developing service- and thing-based software
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 423–435, 2016.
DOI: 10.1007/978-3-319-50230-4 33

424 M. Mongiello et al.

systems, strong challenges still regards the way a smart IoT-based architecture
is designed in order to make it robust with reference to the contextual changes
it continually undergoes. Therefore, new software composition paradigms and
patterns that deal with heterogeneity, dynamicity, adaptation are needed.

We all known that the physical world is not a static environment and
it changes accordingly to sometimes unpredictable events. Then, informative
objects which are dipped in the physical world should be able to adapt and
change their behavior accordingly to the surrounding context. This means that
the software they have on board should be able to react in order to change and
modify its functions to comply with the new environmental variables. From the
point of view of a software architecture, IoT poses many interesting challenges
due to its unpredictable yet adaptive requirements. In order to be as effective
as possible, in IoT solutions the intelligent objects are usually coordinated by a
middleware that acts as a facilitator towards a smoother and homogeneous com-
munication among the various components. A huge work is available in the litera-
ture about IoT middleware. Interesting and structured surveys are in [2,7,10,15].
IoT middleware is also facing multiple challenges [1,6] that are mainly induced
by IoT features. In this paper we propose a reflective extension of an IoT middle-
ware. The approach aims to show a possible solution to make a IoT middleware
conforming to the pattern of reflective programming, which allows a software
system to dynamically change its logic without internal changes to the code.

The remainder of the paper is structured as follows: in the next section we
describe the a formal model of the approach we propose. Section 3 describe a
practical example of a use case scenario. In Sect. 4 the formal model is instan-
tiated in the use case scenario. The details of the reflective implementation are
provided in Sect. 4.

Conclusion and future work close the paper.

2 Modeling Reflective Middleware

While designing a IoT solution, the use of traditional methods may lead to exces-
sive complexity of the code that may become slow and/or little maintainable.
Among the different patterns available to design a software system, Reflection
allows the developer to produce an extensible architecture from the beginning.
A IoT middleware can surely benefit from the use of a reflective approach. As an
example, we have the possibility of designing a completely configurable system
and adaptable to different operating environments.

The main concept in Reflection pattern is the distinction between base-level
and meta-level. A base level includes the core application logic. Its runtime
behavior is observed by a meta level that maintains information about selected
system properties to make the software self-aware. Changes to information kept
in the meta level thus affect subsequent base-level behavior. [4] The adapta-
tion of the meta level is performed indirectly with help of a specific Interface,
M eta-Object Protocol (MOP). This allows users to specify a change, checks
its correctness, and automatically integrates the change into the meta level. [5]

Context-Aware Design of Reflective Middleware in the Internet 425

MOP also makes possible the change of connections between the base-level and
meta-objects. A meta-object is an object that manipulates, creates, describes,
or implements other objects (including itself). Thus, a proper configuration of
the base-level and meta-objects defines the behavior of an application. [11] In
addition, using a programming language that supports reflection, it is possible
to change the structure of the objects themselves at run-time and then make the
software system more flexible.

In this Section, we define a formal model of a reflective middleware for Inter-
net of Things. Let S be the set of sensors S = {s1, s2, ..., sn} where each si is
the stimulus, i.e. the physical, biological, chemical etc., quantity that the sensor
detects and D = {d1, d2, ..., dn} the Domain of sensor’s output for each sensor
in S.

Definition 1 (Condition). Given S and D, a Condition C is a relation R
between s and d where s ∈ S and d ∈ D or a boolean combination of relations
between s and d.

For example, suppose sensor si detects changes in concentration of pm10 in the
air, a condition may be: if pm10 greater than 35 or if humidity minor
than 15 and pm10 greater than 35.

Let AR = {arg1, arg2, ..argn} a set of arguments that can applied to given
operations:

Definition 2 (Action). Given a set A = {a1, a2, ..an}, an Action ai is the oper-
ation to be performed when a Condition occurs, applied to the argument argj,
ai(argj).

For example: if an increase in the fine dust emission is detached, an action
necessary for managing the problem resolution may be sending an e-mail to an
office responsible for safeguarding, the action is notification, the argument is
sending e-mail.

Definition 3 (Rule). A Rule is defined as a function associating Condition to
an Action R : C− > A(arg).

Let B be the Message Broker component that models the Publish/Sub-
scribe mechanism for defining the relationships between physical sensors and
actions:

Definition 4 (Message). A message mi is defined as mi =< si, di, ai, argi >
where si is the sensor, di the sensor’s output, ai the given action and argi the
argument passed to the action ai.

Definition 5 (Message bus). The Message Bus is the channel where the Mes-
sage Broker publishes messages from sensors and receivers subscribe to receive
notifications of a relevant message.

426 M. Mongiello et al.

The proposed model maps an Iot middleware on the three levels of a classical
reflection pattern according to the following matching: the Condition to the Meta
level, the Action to the Base level and the Rule to the Meta-Object Protocol.
Rules are modeled and stored in a Rule-Based system. A Rule Engine
models the reasoning algorithm that automates the rules R. Figure 1 shows a
graphical schema of the proposed approach using an abstract architecture. The
architecture models the main elements of our approach that are represented as
components. The abstract architecture can be instantiated in several contexts
and scenarios. Conditions are represented at the condition level where conditions
are defined, Actions at several action levels, the rule engine that implements the
reasoning algorihtm on the rules. The Adaptor component works as a driver
and translates the received command in a real action. It is possible to use place
more Adaptor, one for each desired application.

Fig. 1. Graphical schema of proposed model.

Context-Aware Design of Reflective Middleware in the Internet 427

Steps for performing the reflective mechanism:

– Step 1: Sender publishes messages on the Message Bus.
– Step 2: Receivers subscribe to the Message Bus.
– Step 3: The Message Broker passes the message mi through the Message

Bus to the Condition level.
– Step 4: The Rule Engine executes the rule.
– Step 5: An Action level is activated.

The reflection mechanism is activated precisely in the last one step. Especially
the Reflection is implemented through rules triggered by the messages.

3 Use Case Scenario

To explain the formal model let us consider its instantiation in a use case sce-
nario, i.e. consider a smart environment, specifically in a Smart city domain.
Particularly, in this domain management of energy, environmental protection
and mobility are some interesting applications of Internet of Everything. The
devices can be spread over the whole area of urban land to monitor, through
appropriate sensors, meteorological and environmental variables as depicted in
Fig. 2.

Fig. 2. Smart environment scenario.

Typically variables to be monitored are air, temperature, humidity, fine dust
emissions.

Other variables to be monitored are related to the use of municipal services
such as the position of city buses at their respective sections, the residual capacity
of the car parks, the urban lighting control. Suppose now that a network of
sensors monitors the city traffic and at the same time the fine dust emissions.

428 M. Mongiello et al.

A slowdown occurs in an area of the town, the data is sent from the con-
troller to the middleware that analyzes the data and compares it with a set of
pre-established rules. The controller will trigger a series of procedures to solve
the slowdown (special signals indicating for alternative routes are lighted on).
Suppose now that there is an increase in the fine dust emissions: the constant
monitoring unit sends the data to the middleware which will activate the neces-
sary actions for the resolution of the problem. The two main action to solve the
critical events maybe: sending an email to the municipal section for safeguard
of environment and of the land or to the section for land and infrastructure and
mobility.

4 Instantiation of the Model

In this section we instantiate the model defined in Sect. 2 in the use case scenario
described in Sect. 3.
The DeviceHive middleware. We choose DeviceHive as IoT middleware for
several reasons.

Ease of installation, the rich documentation and the high integration with a
wide range of programming languages and IoT protocols. By using DeviceHive,
the set up of a IoT system is made by the following three steps:

– Create: the user must create an instance of the Cloud by DeviceHive. There
are instances of Microsoft Azure, Juju, Docker and Cloud Playground. In our
implementation, we used the shell instance Cloud Playground.

– Connect: using the specific IoT Toolkit, a dedicated gateway is installed. This
is the link between the devices and the cloud of DeviceHive. The gateway is
written in Go, and in our case communicates with a Python script that is
responsible for receiving the data from the sensors within the network.

– Visualize: sent data can be displayed via a Web page.

Redis as a Message Broker. In our instantiation of the model we adapt Redis
as Message Broker. Redis1 is a NoSQL DBMS. It is based on the key-value
paradigm but has some characteristics that make it different from other database
of its own category: it works in RAM, provides support to the storage of the pair
key-value, it offers four data structures: lists, sets, ordered sets and hash. We
used Redis as Message Broker, which allows to translate a message from the
messaging protocol of the sender to the recipient’s messaging protocol. Through
appropriate Publish/Subscribe directives Redis implements the mechanism of
Publish/Subscribe, whereby senders do not send messages directly to recipients;
rather the messages are published and sorted into channels, without knowing
who is really writing to the channel. Interested parties express their intention to
subscribe to notifications of one or more channels of interest. This decoupling
between publishers and subscribers allows for greater scalability and a dynamic
network topology.
1 http://redis.io/.

http://redis.io/

Context-Aware Design of Reflective Middleware in the Internet 429

Observer. An Observer component observes rules extracted from the Rule
based-systems. In our implementation, the rule based systems is a config file.

The Observer (of the data flow) notifies the Message Broker about the
arrival of new data and the active rule.

Event-driven Component. We use Node JS as Event-driven component. It
receives data about the sensor and the variable of the sensor through a REST
interface.

Message Bus. Instantiation of the Message Bus of our model is obtained using
the Redis Message channel. To implement the Publish/Subscribe mechanism,
publishers publish messages on the Redis channel, recipients subscribe on the
channel and read information about the available services.

Condition Level. The meta-level of the reflective mechanism is the Condition
Level of our model. In the instantiation of the model it contains a simple call to
a generic function, with the string identifying the function and the class of the
function. In is instantiated in a separate component of our reflective component
connected to the Rule Engine.

According to this mechanism, the logic of the program can be dynamically
changed depending on the data got from the sensors and changes are transparent
to the internal structure of the software.

The Condition Level can be extended with the meta-objects to develop con-
siderably more advanced functionality external to the server. In fact, it is suffi-
cient to connect the component to the Redis server for listening to the messages
coming from the server. The Condition Level has access to basic levels via the
object dbclass containing instances of basic objects identified by a particular
name which is specified in the configuration file of the Action Level, that will
be eventually analyzed. In the message received by Redis the class name and
the name of the function to call are specified in special strings. The data to
be written is contained in a separate object, which will be the argument of the
function.

Rule Engine. A Rule Engine component implements the algorithm for the
extraction of the action from the rule, given a condition.

Adaptors and Action Level. In order to determine which are the Action
Levels available at runtime, a system for loading dynamic components within
the same Condition Level has been implemented. Two files for each Action Levels
are available: a JSON file containing configuration data and a JS file containing
the class itself. Objects instantiated with the data in the JSON file will then
be stored in an array, and referenced by the name of the same class, specified
within each rule.

5 Reflective Implementation of the Middleware
Architecture

In this Section we analyze the flow of control in the implementation of the use
case scenario. In our implementation, the system will automatically perform

430 M. Mongiello et al.

actions according to the values received by the sensors of devices by matching
the set of formal rules.

The hardware used to provide a source of data is based on the Arduino
platform, a small electronics board equipped with a microcontroller, which is
used to quickly achieve hardware prototypes. In addition to the Arduino board
we have used the RaspberryPi B+ board to send and receive data from/to the
local server which then makes a transition of data to Cloud DeviceHive servers.

In Fig. 3 the architectural scheme of the proposed solution is depicted. Within
the component, a configuration file will contain the definition of the rules on the
data and the actions to take if the rule is checked. The Observer (of the data
flow) notifies the Node JS that forward to the Message Broker about the
extracted active rule. The active rule together with the information about sensors
and variables, (the predicate of our Condition) is published on the Message Bus.
On the message channel is published information about the arrival of new data.
The Message Broker works as a through for data flow and the active rule
that are forwarded to the Reflective part of our component.

We can analyze the exchange of information between the various components
involved in which the environmental monitoring unit sends a message to the
middleware with the following form:

{"device":"Arduino_Raspberry_PM10_sensor",
"value":40,
"sensor":"pm10_sensor",
"timestamp":"1452357172"}

The message reaches the middleware where it is published on the Message
Bus; now it has the following form:

{"id":"EJH8rmcDl",
"rule":"notification",
"rule_where":"send_email",
"data":{"device":"Arduino_Raspberry_PM10_sensor","value":40,

"sensor":"pm10_sensor",
"timestamp":"1452357172"}

}

Receivers subscribe to the Message Broker and are notified of the message.
The Message Broker forwards the whole message made up of sensor, variable,
(the predicate of the condition) and the rule, (extracted from the config file) to
the Rule Engine that executes it. Reflection is applied thanks to the signing of the
receiver component of the Redis channel. This component will read the published
messages that contain specific information on the function to be called, the class
of which the function is a member and topics. The Condition Level and the
Rule Engine contains enable the action level of the reflective component. The
Rule Engine contains among other specifications a simple call to the generic
function to notify to execute the email application to communicate the proper
recipient the exceeding the threshold with respect to the value contained in the
catalog of rules.

Context-Aware Design of Reflective Middleware in the Internet 431

Implementation of the rule is:
{

"id" : "Arduino_Raspberry_PM10_sensor",
"sensors" : ["pm_10_sensor",
"temperature_sensor"],
"rules" : [

{
"sensor": ["pm10_sensor"],
"action": "notification",
"argument": "send_email",
"variable_action" : {

"condition" : "moreThan",
"value": "35

}
}

]
}

In this case the PM10 value greater than admitted threshold value of 35. The
level of detail in the rules of the system is of the single sensor and can group

Fig. 3. Architectural schema of proposed scenario.

432 M. Mongiello et al.

multiple sensors in logic “AND” between them. The activations are managed
via a plugin system. Each plugin is self-consistent and controls an appropriate
device in Plug & Play mode.

In Fig. 4 we show the class diagram of our architecture. Our component is
placed between the devices and the Cloud DeviceHive.

The wrapper replaces the middleware for passing the requests delivered from
devices that will connect to our component, instead of connecting directly to
the middleware. This part of the server, implemented by classes GenericServer
and Server, contains a simple HTTP server. Performed steps are:

1. receives the HTTP request from the gateway and analyzes the content;
2. composes a new HTTP request to the server DeviceHive, creating all the

headers required by the function getDHHeaders;
3. as soon as the server has received the answer from DeviceHive, forwards it to

the gateway of the device.

Note that with this approach it may be also possible to implement a set of classes
that replace the function getDHHeaders, pushing the Strategy design pattern,
to process requests sent to the middleware always based on a REST approach.

Data sent by the gateway initially directed to the middleware, i.e. DeviceHive
in our framework, are intercepted by the server. This latter performs a series
of comparisons to evaluate if the appropriate component of base level will be

Fig. 4. Class diagram of the proposed architecture.

Context-Aware Design of Reflective Middleware in the Internet 433

activated. Comparisons are based on checking the rules in the Configuration
File, each one related to one or more sensors present on a given device.

The class delegated to parsing the configuration file (FileObserver) scans
the file and analyzes the rules. In fact, a single rule could be related to several
sensors.

In this way, given a notification message received by the gateway, it only
needs to check if the condition specified in variable action is verified. In case
it is verified, the wrapper publishes a message on the Redis Publish/Subscribe
server via a DataObserver class object. FileObserver parses the configura-
tion file in case of modification while the server is running.

6 Related Work

In this section we present a state of the art of existing approaches for reflective
middleware. A survey of reflective middleware for Iot is in [13]. The survey
addresses a broad range of techniques, methods, models, functionalities, systems,
applications, and middleware solutions related to context awareness and IoT.
The paper analyzes, compares and consolidates past research work. One of the
first approaches is in [3] that presents an architecture for reflective middleware
based on a multi-model approach. Through a number of working examples, they
demonstrate that the approach can support introspection, and fine- and coarse-
grained adaptation of the resource management framework. More recent relevant
approaches of reflective middlewares are in SOAR (SOA with Reflection) [8].

[9] presents a chemical reaction-inspired computational model using the con-
cepts of graphs and reflection, which attempts to address the complexities asso-
ciated with the visualization, modelling, interaction, analysis and abstraction
of information in the IoT. [12] presents Internetware which consists of a set of
autonomous software entities distributed over the Internet, together with a set
of connectors to enable collaborations among these entities in various ways. To
support on-demand collaboration, Internetware middleware employs an RSA and
reflection mechanisms on its own application server. [14] extends the Multinet-
work INformation Architecture (MINA), a reflective (self-observing and adapting
via an embodied Observe-Analyze-Adapt loop) middleware with a layered IoT
SDN controller.

7 Conclusion and Future Work

In the recent years, there has been a huge effort to provide an immediate access to
information about the physical world through Internet technologies. IoT vision
aims to integrate the virtual world of information to the real world of things.
The role of a IoT middleware is to provide the connectivity between the vir-
tual world and physical world and an interface between heterogeneous physical
devices and applications. We present a reflective extension of an IoT middleware
which makes possible the design of a software resulting completely configurable
and adaptable to different operating environments. The proposed framework

434 M. Mongiello et al.

enables to automatically perform actions according to the values received by the
sensors by triggering a set of rules. Our current implementation relies on the
commercial DeviceHive middleware and wraps it with an adaptable layer thus
transforming the whole middleware in a reflective architecture. The approach is
general enough and can be extended to deal with diverse functionalities other
than the ones currently implemented. We are working to extend the proposed
framework with the addition of new Plug and Play actions. Also we are working
to extend the framework and enable it for the integration of several middlewares.
The idea is to build an “adaptive wrapper” of middlewares able to adapt the
reflective middleware to the different clouds.

Acknowledgment. The authors acknowledge partial support of PON03PE 00136 1
Digital Services Ecosystem: DSE. Furthermore, the author Francesco Nocera acknowl-
edges support of Exprivia S.p.A Ph.D grant 2016.

References

1. Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: Role of middleware for
internet of things: a study. Int. J. Comput. Sci. Eng. Surv. (IJCSES) 2(3), 94–105
(2011)

2. Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: A survey of middleware for
internet of things. In: Özcan, A., Zizka, J., Nagamalai, D. (eds.) Recent Trends in
Wireless and Mobile Networks. CCIS, vol. 162, pp. 288–296. Springer, Heidelberg
(2011)

3. Blair, G.S., Costa, F., Coulson, G., Delpiano, F., Duran, H., Dumant, B., Horn,
F., Parlavantzas, N., Stefani, J.B.: The design of a resource-aware reflective mid-
dleware architecture. In: Cointe, P. (ed.) Meta-Level Architectures and Reflection.
LNCS, vol. 1616, pp. 115–134. Springer, Heidelberg (1999)

4. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture. Wiley, New York (2007). A Pattern Language for Distributed Computing

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: a System of Patterns. Wiley, New York (1996)

6. Chaqfeh, M.A., Mohamed, N. et al.: Challenges in middleware solutions for the
internet of things. In: 2012 International Conference on Collaboration Technologies
and Systems (CTS), pp. 21–26. IEEE (2012)

7. Fersi, G.: Middleware for internet of things: a study. In: 2015 International Confer-
ence on Distributed Computing in Sensor Systems (DCOSS), pp. 230–235. IEEE
(2015)

8. Huang, G., Liu, X., Mei, H.: SOAR: towards dependable service-oriented architec-
ture via reflective middleware. Int. J. Simul. Process Model. 3(1–2), 55–65 (2007)

9. Ikram, A., Anjum, A., Hill, R., Antonopoulos, N., Liu, L., Sotiriadis, S.: Approach-
ing the internet of things (IoT): a modelling, analysis and abstraction framework.
Pract. Experience Concurrency Comput. 27, 1966–1984 (2013)

10. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M.,
Gerosa, M.A., Hamida, A.B.: Service-oriented middleware for the future internet:
state of the art and research directions. J. Internet Serv. Appl. 2(1), 23–45 (2011)

11. Maes, P.: Concepts and experiments in computational reflection. In: ACM Sigplan
Notices, vol. 22, pp. 147–155. ACM (1987)

Context-Aware Design of Reflective Middleware in the Internet 435

12. Mei, H., Huang, G., Xie, T.: Internetware: a software paradigm for internet com-
puting. Computer 12(6), 26–31 (2012)

13. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1),
414–454 (2014)

14. Qin, Z., Denker, G., Giannelli, C., Bellavista, P., Venkatasubramanian, N.: A soft-
ware defined networking architecture for the internet-of-things. In: 2014 IEEE Net-
work Operations and Management Symposium (NOMS), pp. 1–9. IEEE (2014)

15. Razzaque, M., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for internet
of things: a survey. IEEE Internet Things J. PP(99), 1–21 (2015)

Composition of Advanced (µ)Services for the
Next Generation of the Internet of Things

Amleto Di Salle, Francesco Gallo(B), and Claudio Pompilio

Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, 67100 L’Aquila, Italy

{amleto.disalle,francesco.gallo}@univaq.it,
claudio.pompilio@graduate.univaq.it

Abstract. In recent years, technologies such as Machine to Machine
(M2M) and the Internet of Things (IoT) have become core technologies
of tomorrow’s world that probably we will go to inhabit. Potentially,
everything that belongs to the environment around us is or will be con-
nected, and it will produce data or provide services of some kind. The
big penetration of technologies such as sensors, electronic tags, micro-
controllers, etc., and the inexorable growth of the Internet, improve the
understanding of the physical environment, from industrial buildings or
the workplace, up to the farmland. The proliferation of all these devices,
often able to host in a very small footprint, an entire TCP/IP stack,
has meant that the M2M world was incorporated into the world IoT
establishing an environment where things and people are able to com-
municate, share information and generate knowledge.

It is now clear that to support the growth and development of a global
network of devices connected in an autonomous way to the Internet and
with the ability to communicate and exchange information between them,
two key actors are need: first, the adoption of a technological standard that
can “disconnect” the Things from a specific application, in order to shift
towards application independent Things; and second, to transformThings
into systems able to make decisions or support decisions.

In our visionary paper, we will describe a high level software archi-
tecture based on features from embedded SIM (eSIM) technology and
(µ)services technology, in order to develop IoT systems of new genera-
tion, able to leverage on LTE or 3G cellular networks to combine services
provided not only from the Cloud, but also by Things themselves, and
from of them networks.

Keywords: IoT · Service composition · Embedded SIM

1 Introduction

In the longer term, a new IoT [2] and M2M [6] ecosystem will enable intelligent
creatures exchanging information, interacting with people, supporting business
processes of enterprises, and creating knowledge. Thanks to wireless and cellular

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 436–444, 2016.
DOI: 10.1007/978-3-319-50230-4 34

Composition of Advanced (µ)Services for the Next Generation of the IoT 437

technologies and rapid deployment of cellular 3G and 4G or Long Term Evolution
(LTE) systems on global scale, the instant access to the Internet is available
virtually everywhere today. Furthermore, the IoT technologies will play a central
role in the optimization for citizens and enterprises within the urban realm, and
it is evident that now it is absolutely necessary to increase significantly the levels
of system integration and standards development. The bold requirements
are relevant for the following considerations:

1. IoT solutions bring together devices, networks, applications, software plat-
forms, cloud computing platforms, business processing systems, knowledge
management, visualization, and advanced data analysis techniques.

2. Embedded processing is evolving, and this enable very constrained devices
with a very low power consumption, to be capable of hosting an entire
TCP/IP stack including a small web server or web container.

3. Decision support or even decision-making systems will therefore become
very important in different application domains for IoT, as well the set of
tools required to process data, aggregate information, and create knowledge.
Knowledge representation across domains and heterogeneous systems are also
important, as are semantics and linked-data.

Since the considerations above, we will introduce a new software architec-
ture in order to address the challenges posed by these systems, and provide
preliminary guidelines to build next-generation of IoT systems.

2 Motivation

In the first part of this section, we will give a brief description of the “imple-
mentation” of current IoT systems. However, in the second part, we give you a
different view of an IoT system in order to address the bold points introduced
in the Sect. 1.

Figure 1 shows the way in which currently is possible to implement an IoT sys-
tem: the integration of device in several processes merely implies the acquisition
of data from device layer, its transportation (Network layer) to the Enterprise
systems (in general, the Cloud), its assessment, and once a decision is made,
potentially the control (management) of the device, which adjust its behaviour.
However, in the future, such implementation could be not viable due to:

– the large scale of IoT, as well as the huge data that the devices will generate,
the heterogeneity of the data type and the continuous stream of data;

– access and use of enterprise systems is often characterised by free accounts,
that are often strongly limited in the number of allowed accesses, quantity of
data, assigned resources, etc.;

– data transport from the place where the data originates or collected to the
backend system where evaluate their usefulness, will not be practical for com-
munication reasons, as well as due to the processing load that it will incur at
the enterprise side, thus resulting in an highly centralised approach;

438 A. Di Salle et al.

Fig. 1. Simplified description of actual IoT System

– often, the data is strongly linked to the application, despite by its nature
can also be used in other contexts. For example, considering the Fig. 1, a
Pollution V alue generated by People application, might also be used in Auto-
motive or Agriculture application, etc.

Since the considerations above, it is clear that current solutions for the design
and implementation of new generation IoT systems not meet those requirements
of integration, scalability and standardisation desired. A new approach should:

– minimise communication with enterprise systems. With the increase on devices
(more memory, multi-core CPUs, etc.), it makes sense not to host the intel-
ligence and the computation required for it only on the enterprise side, but
even on the device themselves;

– partially outsource functionality within the real devices, in order to realise
distributed business processes whose sub-processes may execute outside the
enterprise system;

– model businesses processes focusing on the functionality provided and that
can be discovered dynamically during runtime, and not on concrete imple-
mentation of it; we care about what is provided but not how, indeed

– allow devices, as they are capable of computing, to realise the task of process-
ing and evaluating business relevant information they generate by themselves
or in clusters;

– allow heterogeneous devices to exploit the network to communicate between
them, although physically distant. The goal is to make it “visible” on the net,
without the need to pair it with other master devices. For example, many
wearable smart devices on the market must be connected to a smart-phone,
tablet or pc to share data collected.

Composition of Advanced (µ)Services for the Next Generation of the IoT 439

Fig. 2. Simplified new IoT system

In order to meet the challenges identified above, we offer a different view of
IoT system, where the enterprise component (i.e. Cloud) is only one of several
actors that can constitute the system but not the main one, Fig. 2.

These requirements are driving the need to scale to approaches that are
capable of enabling intelligence directly on device, in order to improve the dis-
tribution of services and functionality between devices themselves. We need to
develop a new generation of devices and services capable of aggregating informa-
tion and generate knowledge, in order to shift from device-centric approaches to
application-centric approaches, i.e. the (heterogeneous)devices must be able to
offer services or change their behaviour in order to meet the (µ)business process.

3 ESIM Technology as Host for the Next Generation
of (µ)Things

In this section, we will introduce the main concepts behind to Embedded Sim
technology (eSIM) [4]. After a brief summary on benefits of the new technology,
we will see as we can use and extend specific characteristic of it to build a new
generation of IoT systems.

Embedded Sim Overview

One of the main challenges for the new generation of IoT is: heterogeneous devices
must be able to exploit the network to communicate between them, although phys-
ically distant. The goal is to make it visible on the net, without the need to pair

440 A. Di Salle et al.

it with other master devices, see Sect. 2. In order to ensure that all Things of our
environment can be visible to affected neighbours, it is necessary that they are
equipped with radio modules to leverage on the 3G or 4G network (LTE). This
condition is necessary for two reasons:

1. many connected devices are in remote locations and have simple functions,
so they would not be suited to wifi or Bluetooth. Indeed, they may only need
a 2G, 3G or 4G connection, and

2. subscriber identification module (SIM) [1] cards are the de facto trust anchor
of mobile devices worldwide. The cards protect the mobile identity of sub-
scribers, associate devices with phone numbers, etc.

Traditional SIMs cause significant challenges for insertion and replacement,
raise costs and create barriers to sales and adoption. The GSMA has already
developed a solution, the embedded Universal Integrated Circuit Card (eUICC)
[5] SIM specification which lowers these barriers. The idea behind an eSIM is
that it is embedded as a chip into the hardware device rather than being a
removable card. This solution has the following advantages:

– the possibility to miniaturise radio modules, and the elimination of traditional
sim slot, will allow to extend in a consistent way the type of heterogeneous
device that can be equipped with this technology;

– the eSIM card will contain security information, such as private key infor-
mation, which could be used in authenticating user equipment in a cellular
network, and will make it easier to locate lost or stolen devices through Data
Loss Prevention [13] and Mobile Device Management [8] solutions;

– embedded SIMs are generally more hardy than regular SIMs. They can be
hermetically sealed (especially where devices are placed in wet or hot environ-
ments - like smart meters), which means the card can not be swapped.

Another important capability introduced with the new standard is the
Remote Provisioning, i.e. the ability to remotely change the SIM profile on a
deployed SIM without having to physically change the SIM itself. In order to
achieve this, the SIM has extra memory and is therefore capable of holding more
than one operator profile (rather than only one on the traditional SIM).

4 (µ)Services for (µ)Things

In the previous section, we illustrated a new technology that could be a good
choice for next-generation of Internet of Things, satisfying the requirement
related to access to radio networks in an autonomous way. These new features
will create a source of data that will consist of a myriad of new “occasionally
connected” devices, presenting associated challenges.

In a hypothetical scenario, where heterogenous and distributed devices popu-
late the network, we may ask whether it is possible to take another step forward,
in order to build systems that meet the vision represented in Fig. 2. In partic-
ular, as the device are capable of computing, they can either realize the task

Composition of Advanced (µ)Services for the Next Generation of the IoT 441

of processing, or provide information on resources able to satisfy that particu-
lar task. We want devices announcing themselves and reacting to the actions of
other devices, people or vehicle. We believe that such a role can be played by
micro services ((µ)Services) [3]. Microservices are small, autonomous services
that work together [11].

How can the new generation of devices for the IoT exploit (µ)services? To
answer this question, we can list some of the most important characteristics of
micro services [11]:

– autonomous, each (µ)service is a isolated entity, and in order to enforce sep-
aration between services, all communication between the services themselves
are via network calls, and they must be able to change independently of each
other;

– heterogeneity, by their nature, the new IoT systems are heterogeneous, i.e.
composed from many different devices with different computational capabil-
ities. Consequently, any (µ)services may have features linked to the type of
technology that hosts them;

– scalability, small and well confined services can run on other parts of a system
on a smaller and less powerful hardware;

– composability, we allow for our functionality to be consumed in different
ways for different purposes.

Therefore, the decision support or decision-making systems will become very
important in different application domains of IoT, as well as the set of tools
required to process data, aggregate information, and create knowledge across
domains and heterogeneous systems.

Given this not exhaustive list of characteristics, it is evident how the use of
micro services for the implementation of a system composed of Thing with appro-
priate capacity, it will enable us to address many of the challenges enumerated
in the previous sections.

5 (µ)Thing Architecure

In this section, we will introduce a new architecture in order to set some funda-
mental roles in a new generation of IoT system, based on previous sections. The
goal is not to reinvent the wheel, but just to propose guidelines for the design
and implementation of these new systems.

The concepts and technologies identified in the previous sections are relevant
to Layer 3(L3), depicted in Fig. 3.

In L3, there are all Things that define our system. Through the use of eSIM,
each of them can play an “active” role in the network, commensurate with the
resources and services offered.

442 A. Di Salle et al.

Fig. 3. (µ)Thing services architecture

In particular, we have identified two types of Thing:

– glueThing. These elements have high computational capability, such as to
allow them to be interposed between the upper and lower layers, or between
the Things of the same Layer (L3), in order to play a role of glue or an
intermediary between the parties. The purpose is to allow the composition of
services or functionality exposed by heterogeneous Things of the network.

– Thing. This network elements do not provide services or functionalities, but
generate or collect data to be shared with the other layers of the stack. We
can not say in advance whether they have capacity or computational resources
reduced.

Obviously the two roles can be interpreted by the same Thing. From our
point view, the Remote Provisioning capability, see Sect. 3, is quite interesting.
The idea is to use the Remote Provisioning in order to inject profiles that can
enable use, in glueThing/Thing mode, the functionalities provided/required by
the device. The profile can be changed dynamically, allowing different behaviours
according to the (µ)business process defined, Sect. 2.

6 Considerations and Future Works

In our visionary paper, we introduced a new informal service-based architec-
ture with the aim of supporting the development and implementation of a new

Composition of Advanced (µ)Services for the Next Generation of the IoT 443

generation of Things, and service oriented system. In the previous sections, we
have highlighted how every aspect of our environment will soon be an active
component with which we will relate and collaborate.

One of the major problems that so huge and heterogeneous number of devices
will present, is linked to the unambiguous identification in the network. Indeed, in
the perspective in which even a “road user” will be able to expose data and offer
services through a (smart)device, it will be essential to introduce or maintain a
high level of security and reliability in the network. In our view, the adoption
of eSim technology allows the respect of the safety and traceability required,
delegating the security management to the telephone network operators and
phone operators, and not to the developer or users of the services offered.

Particularly interesting are the potential capabilities offered to Remote Pro-
visioning uses. Actually, the new standard allows to user to change “freely” the
SIM profile: i.e., add a data or voice profile, or combining one or two of them,
depending on the country where he/she/it is located, without replacing the SIM.
A more sophisticated way of using this feature would be to change the role of a
Thing within L3, so as to enable dynamically services or functionality, or inject
a “new behavior” if the host allows it.

Given the great interest is generating the IoT world, there are tools [12],
approaches [10], and protocols [7,9] that enable the design and development of
IoT systems. The protocols implement a messaging protocol model that consists
of a number of publishers and subscribers connected to a broker. Publishers
send (publish) messages to the broker on a specific “topic”. Subscribers register
(subscribe) their interest in certain topics with the broker. The broker manages
the connections to the publishers and subscribers and distributes the messages
it receives from the publishers to the subscribers according to their subscribed
topics. The [12] and [10] provides infrastructure for the design and development
of IoT systems cloud based.

Our approach, presented in preliminary form, encourages the use of tech-
nologies that can relax the close relationship between devices and the cloud of
the current framework, promoting the development of applications that leverage
the full potential of new devices and benefits from applications based on the
(µ)services composition. Based on these considerations, the next steps will be
to test and evaluate new devices with eSim technology embedded and create
profiles compliant with the new standards, allowing safely modify the behavior
Things.

Acknowledgment. The work described in this paper has been supported by the
European Union’s H2020 Programme under grant agreement number 644178 (project
CHOReVOLUTION - Automated Synthesis of Dynamic and Secured Choreographies
for the Future Internet), and by the Ministry of Economy and Finance, Cipe resolution
n. 135/2012 (project INCIPICT - INnovating CIty Planning through Information and
Communication Technologies).

444 A. Di Salle et al.

References

1. 3rd Generation Partnership Project (3GPP). 3gpp home (2016). http://www.3gpp.
org

2. Chen, S., Xu, H., Liu, D., Hu, B., Wang, H.: A vision of IoT: applications, chal-
lenges, and opportunities with china perspective. IEEE Internet Things J. 1(4),
349–359 (2014)

3. Fowler, M., Lewis, J.: Microservices (2014). http://www.martinfowler.com/
articles/microservices.html

4. GSMA documents (2016). www.gsma.com
5. GSMA: Remote provisioning architecture for embedded UICC technical spec-

ification (2016). http://www.gsma.com/connectedliving/wp-content/uploads/
2014/01/2.-GSMA-Remote-Provisioning- Architecture-for-Embedded-UICC-
Technical-Specification-Version-1.0.pdf

6. Hller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., Boyle, D.:
M2M and IoT technology fundamentals. In: Hller, J., Tsiatsis, V., Mulligan, C.,
Karnouskos, S., Avesand, S., Boyle, D. (eds.) From Machine-To-Machine to the
Internet of Things, chap. 5, pp. 81–143. Academic Press, Oxford (2014)

7. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: A publish/subscribe protocol for
wireless sensor networks. In: 3rd International Conference on Communication Sys-
tems Software and Middleware and Workshops, COMSWARE 2008, pp. 791–798,
January 2008

8. Jensen, C.S., Xie, X., Zadorozhny, V., Madria, S., Pitoura, E., Zheng, B., Chow, C.
(eds.): 16th IEEE International Conference on Mobile Data Management, MDM
2015, Pittsburgh, PA, USA, 15–18 June 2015, vol. 1. IEEE (2015)

9. Kovatsch, M.: Coap for the web of things: from tiny resource-constrained devices
to the web browser. In: Proceedings of the 4th International Workshop on the Web
of Things (WoT 2013), Zurich, Switzerland, September 2013. (Best paper)

10. Microsoft: Microsoft’s azure in IoT (2016). www.microsoft.com/en-us/
server-cloud/internet-of-things/

11. Newman, S.: Building microservices: designing fine-grained systems (2015)
12. Samsung: Artik cloud (2016). https://artik.cloud
13. Shabtai, A., Elovici, Y., Rokach, L.: A Survey of Data Leakage Detection and Pre-

vention Solutions. Springer Publishing Company Incorporated, New York (2012)

http://www.3gpp.org
http://www.3gpp.org
http://www.martinfowler.com/articles/microservices.html
http://www.martinfowler.com/articles/microservices.html
www.gsma.com
http://www.gsma.com/connectedliving/wp-content/uploads/2014/01/2.-GSMA-Remote-Provisioning- Architecture-for-Embedded-UICC-Technical-Specification-Version-1.0.pdf
http://www.gsma.com/connectedliving/wp-content/uploads/2014/01/2.-GSMA-Remote-Provisioning- Architecture-for-Embedded-UICC-Technical-Specification-Version-1.0.pdf
http://www.gsma.com/connectedliving/wp-content/uploads/2014/01/2.-GSMA-Remote-Provisioning- Architecture-for-Embedded-UICC-Technical-Specification-Version-1.0.pdf
www.microsoft.com/en-us/server-cloud/internet-of-things/
www.microsoft.com/en-us/server-cloud/internet-of-things/
https://artik.cloud

A Formal Approach to Error Localization
and Correction in Service Compositions

Julia Krämer and Heike Wehrheim(B)

Paderborn University – Computer Science, Paderborn, Germany
juliadk@mail.upb.de, wehrheim@uni-pardeborn.de

Abstract. Error detection, localization and correction are time-
intensive tasks in software development, but crucial to deliver function-
ally correct products. Thus, automated approaches to these tasks have
been intensively studied for standard software systems. For model-based
software systems, the situation is different. While error detection is still
well-studied, error localization and correction is a less-studied domain.
In this paper, we examine error localization and correction for models of
service compositions. Based on formal definitions of error and correction
in this context, we show that the classical approach of error localization
and correction, i.e. first determining a set of suspicious statements and
then proposing changes to these statements, is ineffective in our context.
In fact, it lessens the chance to succeed in finding a correction at all.

In this paper, we introduce correction proposal as a novel approach on
error correction in service compositions integrating error localization and
correction in one combined step. In addition, we provide an algorithm to
compute such correction proposals automatically.

1 Introduction

In modern software development, Service-Oriented Architectures (SOA) empha-
size the construction of software out of existing services to facilitate the con-
struction of large software system. Such software systems then consist of ser-
vice calls, which are assembled to contribute to a specific task, using standard
operators from workflow construction like sequential composition, decisions and
repetitions. A very important assumption in the SOA setting is that all infor-
mation, which is available about a single service, is its interface, i.e. its input
and output variables and its pre- and postcondition. SOA favor a model-based
development because at design time, only a model of the service composition
under construction is developed.

Debugging, i.e. the detection, localization and correction of faults, is one of
the most important tasks to deliver functionally correct products. While these
tasks are well-studied for standard software systems (and especially imperative
programs), the situation is different for models of service compositions.

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 445–457, 2016.
DOI: 10.1007/978-3-319-50230-4 35

446 J. Krämer and H. Wehrheim

Models of software in general typically abstract from details of the final
systems, which facilitates error detection in terms of verification, leading to the
existence of a broad range of verification approaches for models of software (and
of services), e.g. [10,11,22].

In contrast, error localization becomes more difficult for models of service
compositions, because most standard approaches for standard software systems
cannot be applied to models of software. The reason is that almost all error
localization techniques for standard software rely on the availability of a larger
number of test cases or the ability to executed the system under consideration at
will. Techniques like Delta Debugging [5,25–27], Tarantula [13], Pinpoint [3] and
AMPLE [7] inspect test cases and compare, for instance, how often a statement
is executed in a failing and how often in a successful test cases. Slicing [17,24,28]
and trace formula approaches to error localization [4,9,14–16,19], which encode
single executions of the programs, examine dependence information between
single statements to find errors. Unfortunately, models of software usually fail
to provide a larger number of test cases and – being models and not software –
cannot be executed arbitrarily. For a detailed discussion, see [18].

Similarly, for standard software, several effective error correction approaches
exist (see [20] for a detailed survey). However, most of them make assumption
about their domain of application not valid for models of software, and service
compositions in particular (cf. Section 2).

Providing effective error localization and correction methods for models of
service composition remains an open challenge. In this paper, we provide a novel
and formally rigorous approach that combines the computation of error local-
ization and correction in one step. As we will argue, the standard approach to
error localization and correction, i.e. the computation of suspicious statements,
followed by attempts to correct the errors within these statements, appears to
be unrewarding for models of service composition in general.

Organization of the Paper. We present our definition of service compositions
in 2. In 3, we formally define error localization and correction. Our automated
approach to the computation of corrections is presented in Sect. 4. Section 5
discusses why both error localization and correction need to be combined into a
single step for service compositions. We conclude the paper with discussion and
future work in Sect. 6.

2 Services and Service Compositions

In this section, we introduce service compositions and their formal semantics.
Service compositions consist of single services assembled together to finally
assure a given postcondition for the outputs. While we still use standard concepts
of workflow modeling like sequential composition, decisions and repetitions, we
use a textual representation inspired by service effect specifications (SEFFs) [2]
to denote service compositions. Various other graphical and structural notations,
for instance, WS-BPEL [21], exist.

A Formal Approach to Error Localization and Correction 447

In the following, we associate each service and service composition with a
domain D = (TD,PD,RD), which consists of a set TD of types, a set PD of
predicates and a set RD of rules to reason within the domain. In our context,
predicates are functions p :

⊗
i∈I Ti → B where B = {true, false}, I is a finite

index set and Ti denotes a type for all i ∈ I. The set PD of a domain must
always satisfy

⋃
p∈PD

useT (p) ⊆ TD, where useT (p) denotes the set {Ti | i ∈ I}
of all types occurring in the specification of predicate p.

Service providers offer services in a service market. A service market SM(D)
on a domain D is a set of services, which operate in D.

Definition 1 (Service Composition). Let D = (TD,PD,RD) be an abstract
domain. The set of all service compositions SC is given by the following grammar
in Backus-Naur-form:

SC � S1,S2 ::= [Skip]� | S1;S2 | [(T1 u1, . . . , Tn un) := S(v1, . . . , vm)]�

| while [B]� do S1 od | if [B]� then S1 else S2 fi;
where m,n ∈ N, B ∈ PD, � is a label, T1, . . . , Tn ∈ TD and S has m input and
n output variables.

In the following, def(SC) denotes the set of variables assigned to in a service
composition SC. Each statement st of a service composition has a special label �
in order to identify the statement. As in Definition 1, we write [st]� if � is the
label of st . We assume that different statements have different labels and use
natural numbers as labels in the following. If a service composition SC is not in
this form, we can rename all occurring statements by traversing the control-flow
graph s.t. SC complies to this criterion.

Figure 1 shows a simple service composition example. The input to the ser-
vice composition is the painter painter and a painting painting . The aim of the
composition is to frame the painting and then, to sell the resulting image at
the highest price possible. As advertising is costly, we assume that the highest
price with an unknown artist is achieved only if the image is not advertised
at all. In contrast, if the artist is famous, the highest price is achieved if the
image is advertised before. The output of the service composition is the money
gained (M).

A service composition calls a service according to its specification, i.e. its
name, its input and output variables as well as its pre- and postconditions (also
called effects).1 While this information is not part of our syntax, we annotated
Fig. 1 accordingly for the convenience of the reader.

Formally, the domain of our example comprises the types Painting , Image,
Money , Gain and the predicates unknown, isGainOf and highest. In addition, we
assume the following rules to be known:

¬unknown(painter) ∧ isGainOf(I,painter,G)) ∧ price(M,I,G,painter) ⇒ highest(M,painter,I)

unknown(painter) ∧ ¬isGainOf(I,painter,G)) ∧ price(M,I,G,painter) ⇒ highest(M,painter,I)

1 In WSDL (https://www.w3.org/TR/wsdl), all four components together are called
IOPE.

https://www.w3.org/TR/wsdl

448 J. Krämer and H. Wehrheim

Fig. 1. A Simple Service Composition

In its current state, however, the service composition is faulty. The condition
in the if-statement leads to a call of service advertise when the painter is not
well-known and not – as intended – when the painter is famous.

Definition 2 (Service). Let D = (TD,PD,RD) be a domain. A service spec-
ification (or short, service) consists of a name together with an interface. An
interface I over the domain D is a tuple I = (In,Out, pre, post) such that

– In, Out are sets of typed input and output variables such that In ∩ Out = ∅,
useT (In) ⊆ TD and useT (Out) ⊆ TD,

– and pre and post are logical formulas build over the predicates in D using
¬,∨,∧ and are called the pre- and postcondition of the service, respectively.
We have var(pre) ⊆ In and var(post) ⊆ In ∪ Out.

In addition, we assume that services do not modify their input variables, i.e. if
the precondition holds before a service call, then it also holds afterwards.

If a service S changes its inputs, we replace every call T x := S(xI
1, . . . , x

I
m)

with two assignments service x′
1, . . . , x

′
m := xI

1, . . . , x
I
m;T x := S′(x′

1, . . . , x
′
m)

such that the actual input variables are not changed.
We write OutS, InS, preS, postS for the components of a service S. In the following,
we say that a service with interface I1 = (In1,Out1, pre1, post1) refines a service
with interface I2 = (In2,Out2, pre2, post2), denoted by I1 � I2, if In1 ⊆ In2,
Out1 ⊇ Out2 and additionally, pre2 ⇒ pre1 and post1 ⇒ post2.

Remark 1. From a logical perspective, services are implications because they
do not modify their input variables, i.e. services guarantee that whenever the
precondition holds, the postcondition can be established for the output variables.

Remark 2. Note that Definition 2 can be generalized to service compositions
immediately, as from an abstract perspective, service compositions can be con-
sidered services themselves. For instance, the service composition in Fig. 1 has
the input variables painter and painting, the output variables M, the precondition
true and the postcondition highest(M,painter,I).

A Formal Approach to Error Localization and Correction 449

sp(Skip, ϕ) = ϕ
sp(S1; S2, ϕ) = sp(S2, sp(S1, ϕ))

sp(if [B] then S1 else S2 fi;, ϕ) = sp(S1,B ∧ ϕ) ∨ sp(S2, ¬B ∧ ϕ)

sp(while [B] do S1 od, ϕ) = ϕ ∧ Inv [x̄/¯̂x] ∧ ¬B [x̄/¯̂x]

Fig. 2. Strongest Postcondition Semantics for Service Compositions

Strongest Postcondition Semantics. In this section, we define a partial-
correctness strongest postcondition semantics for service compositions [1,8]. Par-
tial correctness here refers to that we do not consider termination as correct-
ness criterion. W.l.o.g., we assume all service compositions to be in single static
assignment form (SSA)2.

In addition, we assume loops to be annotated with invariants. We consider
this assumption practically feasible. Even if not every loop is annotated with
an invariant by its developer in practice, various existing automated invariant
generation methods can be applied to overcome this (e.g. [12]).
Strongest postconditions for service compositions and for programs mainly differ
in the treatment of service calls. The postcondition of a service does not uniquely
determine the values of outputs. Due to SSA form, services never change values
of variables (especially not the inputs of the service), but only make assign-
ments to previously unused, fresh variables. Therefore, all properties, which
hold before a certain statement, also hold afterwards. Note that in a service
call (u1, . . . , un) := S(v1, . . . , vm), the inputs and outputs are thus disjoint, i.e.,
{u1, . . . , un} ∩ {v1, . . . , vm} = ∅. In the following, we write x̄ = (x1, . . . , xn) for
a tuple of variables. The sp-semantics of service calls is

sp(ū := S(v̄), ϕ) = ϕ ∧ postS(v̄, ū).

Strongest postcondition definitions for the remaining cases can be found in Fig. 2.
Please note that we abstract the loop by its invariant and therefore, only know
that the invariant holds at the end of the loop and the loop predicate does
not. Due to variable renaming in SSA form, we need to rename the variables
occurring in the invariant and in the predicate of the loop to the variable names
introduced by the transformation to SSA form (variable names of join-nodes).
For branches, it suffices to treat join-nodes as special service calls, which assign
the correct value to variables occurring in both branches.

3 Errors and Corrections

In this section, we discuss all three steps of debugging of service compositions.
First, we shortly present how to detect errors in service compositions using
verification. Second, we formally define the types of errors, which we consider
here. Finally, we define corrections for service compositions.
2 Using [6], SSA form can be established for all service compositions.

450 J. Krämer and H. Wehrheim

Please note that we still only consider services compositions in SSA form.
Services are in general well-tested pieces of code, thus, we assume that single
services are correct, i.e. services used in a service compositions always correctly
implement their interface. Moreover, we assume that all loops are annotated
with loop invariants capturing the complete loop behavior. In Sect. 4, we shortly
discuss how to correct faulty loops.

Correct Service Compositions. Service compositions are specified using interfaces
(cf. Definition 2), where pre- and postconditions describe the expected behavior
in terms of predicates over input and output variables. Intuitively, a service
composition is correct if the output satisfies the postcondition whenever the
input meets the precondition. Formally, we say that a service composition is
correct, if it can be proven (for instance, using the approach in [23]), that the
service compositions complies to its interface. Otherwise, we call the service
composition faulty. If we apply [23] to our example (Fig. 1), we see that the
service composition fails to establish the precondition of the service sellAtPrice.

Error and Correction. We restrict ourselves to the localization and correction
of errors, which can be detected as follows:

1. the correctness requirement is not met, i.e., when started in a state satisfying
preSC we might reach a state outside postSC,

2. the execution of a service composition blocks at some service call because the
precondition of the service is not satisfied, and

3. during an execution a loop is reached but the loop invariant does not hold.

In Definiton 3, the first case corresponds to a global error, whereas the sec-
ond and the third case are subsumed by local errors. The first type of error
mainly occurs if the service composition does not make enough progress towards
the postcondition, whereas the second type of error is mainly caused by calling
the wrong service, which invalidates the precondition of the next service or the
invariant of a succeeding loop.

Definition 3 (Error). Let SC be a service composition, � one of its labels,
and (pre, post) the requirement on SC. An error in SC occurs at � if one of the
following conditions hold:

1. � = �⊥ and sp(SC, pre) �⇒ post (a global error),
2. � /∈ {�⊥, ��} and � is not inside an if or while statement, and sp(SC→�, pre) �⇒

pre� (a local error).

Please note that pre� denotes the precondition of a statement �. If the state-
ment is a service call S, it holds pre� = preS. We use the invariant of a loop as
its precondition and for all remaining cases, the precondition is true.

Our example has a local error as it fails to establish the precondition of the
service at label 4.

A Formal Approach to Error Localization and Correction 451

A correction serves as a replacement of a part of the service composition.
Therefore, a correction consists of two labels, which specify the part the correc-
tion might eventually replace and an interface, which specifies the service, which
should be inserted between the two labels.

Definition 4 (Correction). Let SC be a service composition. A correc-
tion cor for SC is a triple (�, ū := S(v̄), �′)) such that SC can be divided
into SC→�

;SC′;SC�′ . Applying cor to SC (by replacing SC′) yields cor(SC) =
SC→�; ū := S(v̄);SC�′ .

The key difference between imperative programs and service compositions w.r.t.
error correction is now the fact that not all services we like to use in a correction
are available in the service market. It is essential to note that markets cannot
and do not offer every possible service operating in the domain. Hence, we call
a correction realizable in a service market SM(D) if every service S occurring in
the correction, is contained in SM(D). Error localization for service compositions
can thus only propose corrections, which afterwards needs to be checked for their
realizability.

4 Correction Proposals

In this section, we present an automatic approach to compute corrections for ser-
vice compositions. The aim is to provide small correction proposals first. Small
here refers to the number of statements, which are replaced by the correction.
Nonetheless, the easiest correction of a faulty service composition with require-
ment (pre, post) is to replace the entire composition by a single service call of a
service S with preS = pre and postS = post. Quite likely this is not a realizable
correction (since otherwise one would not have bothered to construct the service
composition at first hand).

Corrections for Global Errors. We assume service compositions to be in SSA
form. Thus, we have at most one assignment to every output variable of the
service composition. Most likely, this output is determined at the end of the
service composition (otherwise, the statements behind that can be discarded
because they do not affect the output anymore). Hence, we start the correction
of global errors, i.e. when the service composition in its entirety has failed to
establish the postcondition, at the end of the service composition.

The key to the correction of global errors is to determine the functionally
missing in the current service composition. We specify the missing part in terms
of so-called bridges.

Definition 5 (Bridge). A bridge between two logic formulas ϕ and ψ is a
formula ρ such that ϕ ∧ ρ ⇒ ψ holds. The set of bridges between ϕ and ψ is
defined as ψ \ ϕ := {ρ | ρ is a bridge between ϕ and ψ}.

452 J. Krämer and H. Wehrheim

As an example: ϕ := p(x), ψ := p(x) ∧ q(z). Then ψ \ ϕ contains for instance
false, q(z) and ψ. We use the notation \ here since a bridge can easily be com-
puted as set difference when both ϕ and ψ are given as conjunctions (sets) of
literals – as for our strongest postconditions. As the sp-semantics does not intro-
duce quantifiers, it is sufficient to consider propositional logic formulae ϕ and ψ.

Proposition 1. For arbitrary formulae ϕ and ψ, it holds that ψ \ ϕ is infinite.

Proof. The set always contains false as ϕ ∧ false ≡ false and false implies
everything. The set is non-finite as false can be expressed with infinitely many
formulae.

While there always exists a bridge, there does not necessarily exist a service,
which has the bridge as postcondition. Thus, the corrections which we propose
below, might not be realizable.

Computing Corrections for Global Errors. Corrections for global errors need to
range from some label � of the service composition (not contained in a branch or
a loop) to the end of the service composition denoted by �⊥. Thus, we need to
construct a bridge between the strongest postcondition, which can be guaranteed
at � and the postcondition post.

The correction from � to �⊥ thus proposed to add a service call using the
service Scor of the following form (o1, . . . , ol) := Scor(x1, . . . , xk) where

– {o1, . . . , ol} = Out \ (def(SC→�) ∪ InSC),
– {x1, . . . , xk} = def(SC→�) ∪ InSC,
– preScor

:= sp(SC→�, pre) and
– postScor

:= ρ

and ρ ∈ post \ sp(SC→�, pre). The bridge, which we take here, needs to be
chosen such that var(ρ) ⊆ {o1, . . . , ol, x1, . . . , xk}. One candidate is post itself. It
is, however, preferable to use smaller (in terms of variables used) ρ’s since this
increases the chances of proposing a realizable correction. We do not need to
rename the variables of the service calls as the service Scor takes the variables
defined so far as inputs and must provide all output variables of the service
composition.

Theorem 1. Let SC be a service composition with requirement (pre, post) and
let SC have a global error (and no local errors). Let � �= �⊥ be a label of SC. Then,
the correction (�, ū := S(v̄), �⊥), where S � Scor, is a refinement of ō := Scor(x̄)
as given above, corrects the error.

Proof. We have to prove that (�, ū := S(v̄), �⊥) is a correction, i.e. we have to
prove that the service composition

SC→�; ū := S(v̄);SC�⊥

satisfies the postcondition postSC for every input, which satisfies the
precondition.

A Formal Approach to Error Localization and Correction 453

Formally, we thus need to show the following:

sp(SC→�; ū := S(v̄);SC�⊥ , preSC) ⇒ postSC.

(A) First, we show that there does not exist a local error in the corrected service
composition:
– SC→� does not contain a local error by assumption.
– The following holds:

sp(SC→�; ū := S(v̄);SC�⊥ , preSC)
= sp(ū := S(v̄);SC�⊥ , sp(SC→�, preSC))
= sp(SC�⊥ , sp(ū := S(v̄), sp(SC→�, preSC)))

By definition, preScor
:= sp(SC→�) and the service S refines Scor, i.e.

preScor
⇒ preS. Thus, it holds that sp(SC→�) ⇒ preS, and S is applica-

ble and does not block.
– SC�⊥ is the empty program and therefore, cannot contain a local error.

(B) Second, we prove that there does not exist a global error. The strongest
postcondition of the service call is given by

sp(ū := S(v̄), sp(SC→�, preSC)) = preS(x̄) ∧ postS(x̄, ō) ∧ sp(SC→�, preSC).

By definition, it holds that sp(SC, preSC)∧ postScor
⇒ postSC as the postcon-

dition of the service Scor is defined as a bridge between sp(SC, preSC) and
postSC. As S � Scor, it holds that postS ⇒ postScor

.
The service composition SC�⊥ denotes the empty program as �⊥ does not
correspond to any program label. Therefore, the following holds:

preS(x̄) ∧ postS(x̄, ō) ∧ sp(SC→�, preSC) ⇒ sp(SC→�, preSC) ∧ postScor(x̄, ō) ⇒ postSC.

Thus, the service composition SC→�; ū := S(v̄);SC�⊥ is correct wrt. the
sp-semantics and (�, ū := S(v̄), �⊥)) is indeed a correction. ��

The theorem does not consider realizability of the proposed correction. If the
pre- and postcondition of a service composition are incompatible or even false,
or the proposed service cannot be found in the market, the proposed correction
cannot be applied. Then, another proposal has to be computed and checked for
realizability.

Correction of Local Errors. A local error occurs when the precondition of a ser-
vice (or the invariant of a loop) is not established upon the call of the service
(start of the loop). Every local error can be rephrased as a global error in the
following way. If � is the location of the local error, we only consider the ser-
vice composition up to �, and use the precondition of � as postcondition of the
subcomposition.

Proposition 2. Let SC be a service composition with a local error at � and
requirement (pre, post). Then the following holds: SC has a local error at � iff
SC→� has a global error with respect to (pre, pre�).

454 J. Krämer and H. Wehrheim

Hence, we can reuse the algorithm to compute correction proposals for global
errors also for local errors by simply modifying the considered service compo-
sition and pre- and postconditions. An alternative correction proposal for local
errors is (�, ū := S(v̄), �⊥), where the precondition of S is the strongest postcon-
dition of SC→� and the postcondition of S is the postcondition of SC.

We have already seen that our service composition has a local error at label 4.
As one correction, we propose to replace the block before 4 (the if-statement)
by a new service call. As input, it gets all the variables used so far, i.e., painter,
painting and I. As output variable, it gets G. Its precondition is isImage(I,painting)
and the postcondition is ¬unknown(painter) ⇒ isGainOf(I,painter,G). Thus, We
need to check whether this service is available in the service market and if yes, can
use it at the place of the if-statement. This correction also leads to an error-free
service composition as the strongest postcondition of cor(SC) wrt. pre together
with the rules of the ontology now imply the overall postcondition post.

Correction of Loops and Branches. We treat loops and branches as a single
block in the above approach and do not allow to correct errors, which occur
inside of loops and branches. Nevertheless, we can also correct errors in loops
and branches using the same approach as above.

Let while B do S1 od be a loop and Inv its invariant. We say that the loop has
a while-global error if sp(S1, Inv ∧B) �⇒ Inv . We then consider S1 as a complete
service composition with precondition Inv ∧B and postcondition Inv and apply
the correction proposal algorithm for global errors.

Similarly, we can correct local errors in loops and branches. We say a loop
while [B]� do S1 od has a local error at label �′ if �′ ∈ L(S1) and

sp(S1→�′ , sp(SC→�, preSC) ∧ Inv ∧ B) �⇒ pre�′ .

Analogously, we say that a branch if [B]� then S1 else S2 fi; has a local error
at label �′ if either �′ ∈ L(S1) and sp(S1→�′ , sp(SC→�, preSC) ∧ B) �⇒ pre�′ or
�′ ∈ L(S2) and sp(S2→�′ , sp(SC→�, preSC) ∧ ¬B) �⇒ pre�′ . Also for local errors
in branches or loops, we first propose corrections in S1 and S2, respectively, by
considering both of them as single service composition and then, applying the
algorithm given above. Afterwards, we again treat loops and branches as single
blocks and try to replace them with new services.

5 Discussion

In this section, we discuss why existing error localization methods are not helpful
w.r.t. to error correction in service compositions. We start with the following
artificial service compositions, which illustrates that considering only a subset of
statements (i.e. only a set of suspicious statements) of the service composition
in fact lessens the chance to find a realizable correction.

B b := makeA(a);C c := makeB(b);D d := makeD(c)

A Formal Approach to Error Localization and Correction 455

The requirement on this service composition is (pre, post) = (isA(a), isD(d)) using
the services makeA, which has precondition isA(a) and postcondition isB(b),
makeB, which has precondition isB(B) and postcondition isC(c) and makeD,
which has precondition ¬isC(c) and postcondition isD(d).

The local error (precondition of service makeD not met) can be corrected in
various ways, for example,

– it can be considered as a missing code problem – the service with precondition
isC(c) and postcondition ¬isC(c′) (whereas both the input and the output
variable have type C) needs to be inserted or

– it can be solved by exchanging the service makeB with a service with the same
precondition, but the postcondition ¬isC(c) or

– it is also possible to replace both the service calls makeA and makeB by, for
example, services with precondition isA(a) and postcondition ¬isB(b) and pre-
condition ¬isB(b) and postcondition ¬isC(c), respectively.

This construction can be repeated arbitrarily often and we do not know, which
correction to prefer unless we know the available service markets, and thus, which
alternative services exist.

The previous example shows why errors in service compositions can be at
any places. The next example shows why reducing the set of statements does
not help with error localization. Assume that the requirement on the service
composition given below is (pre, post) = (isA(a), isD(d) ∧ isE(e)).

B b := makeA(a);F f := makeF(a);
C c := makeB(b);D d := makeNotC(c);E e := makeE(f)

The service makeE has the precondition isF(f) and the postcondition isE(e),
the service makeF has the precondition isA(a) and the postcondition isF(f) and
the service makeNotC has precondition isC(c) and the postcondition ¬isD(d).
The pre- and postcondition of all other services remain unchanged. For any
input, the service composition already guarantees isE(e), but not isD(d). Thus,
we could apply slicing to only correct the part of the service composition, which
is responsible for the error isD(d), i.e. we only correct the service composition
B b := makeA(a);C c := makeB(b);D d := makeNotC(c). Nevertheless, this may
obliterate the only existing correction. For example, the service composition
can be fixed with a service D d := makeNotC(f, c), which has the precondi-
tion isF(f)∧ isC(c) and the desired postcondition isD(d). As the variable f is not
in the slice, slicing cannot propose this correction.

6 Conclusion

In this paper, we addressed the problem of automated error localization and
correction for models of service compositions. We therefore needed to find a way
to overcome the lack of executability of single services, which makes most error
localization and correction methods for standard software inapplicable. Thus,

456 J. Krämer and H. Wehrheim

we proposed correction proposals, which state where and how to modify existing
service compositions in terms of alternative services. Correction proposals can
be statically computed based on the strongest postcondition semantics of our
service compositions and thus, are completely independent from test cases or
executability. Hence, the computation of correction proposals is a good way to
the localization and correction of errors in model-driven design approaches in
general. Moreover, the computation of correction proposals can easily be gen-
eralized to every setting, which has a formal semantics in terms of strongest
postconditions. Hence, even automated correction of imperative programs might
benefit from our approach.

As future work, we want to practically evaluate the effectiveness of correc-
tion proposals for existing service markets w.r.t. to the existence of alternative
markets. Moreover, we want to examine whether existing approaches to error
localization and correction might be reused for more specific classes of errors (for
instance, errors caused by a missing negation in conditions of loops or branches).
Finally, we want to study the generalization of our approach to software systems.

References

1. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs:
Graduate Texts in Computer Science, 2nd edn. Springer, Heidelberg (1997)

2. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82, 3–22 (2009). Special Issue: Soft-
ware Performance - Modeling and Analysis

3. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., Pinpoint: problem
determination in large, dynamic internet services. In: International Conference on
Dependable Systems and Networks (2002)

4. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 189–208. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 13

5. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of 27th
International Conference on Software Engineering, ICSE 2005. ACM (2005)

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

7. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for java. In:
Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 528–550. Springer, Heidelberg
(2005). doi:10.1007/11531142 23

8. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics: Texts
and Monographs in Computer Science. Springer, New York (1990)

9. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32759-9 17

10. Fahrenberg, U., Larsen, K.G., Legay, A.: Model-based verification, optimization,
synthesis and performance evaluation of real-time systems. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal Engineering
Methods. LNCS, vol. 8050, pp. 67–108. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39721-9 2

http://dx.doi.org/10.1007/978-3-642-35873-9_13
http://dx.doi.org/10.1007/11531142_23
http://dx.doi.org/10.1007/978-3-642-32759-9_17
http://dx.doi.org/10.1007/978-3-642-32759-9_17
http://dx.doi.org/10.1007/978-3-642-39721-9_2
http://dx.doi.org/10.1007/978-3-642-39721-9_2

A Formal Approach to Error Localization and Correction 457

11. Güdemann, M., Poizat, P., Salaün, G., Dumont, A.: VerChor: a framework for ver-
ifying choreographies. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol.
7793, pp. 226–230. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 16

12. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02658-4 48

13. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2005. ACM (2005)

14. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. ACM SIGPLAN Not. 46(6), 437–446 (2011)

15. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011. ACM (2011)

16. önighofer, R.K., Bloem, R.: Automated error localization and correction for imper-
ative programs, FMCAD 2011. FMCAD Inc. (2011)

17. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

18. Krämer, J., Wehrheim, H.: A short survey on using software error localization for
service compositions. In: Aiello, M., Johnsen, E.B., Georgievski, I., Dustdar, S.
(eds.) Service Oriented and Cloud Computing, ESOCC 2016 (2016). (to appear)

19. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault
localization of imperative programs. In: Merz, S., Pang, J. (eds.) ICFEM
2014. LNCS, vol. 8829, pp. 251–266. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11737-9 17

20. Monperrus, M., Automatic software repair: a bibliography. Technical report hal-
01206501, University of Lille (2015)

21. OASIS. Web Services Business Process Execution Language v2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

22. Schäfer, W.: Model driven development with mechatronic UML. In: Stapleton, G.,
Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, p. 4. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87730-1 3

23. Walther, S., Wehrheim, H.: Knowledge-based verification of service compositions
- an SMT approach. In: Engineering of Complex Computer Systems (ICECCS)
(2013)

24. Weiser, M.: Program slicing. In: Proceedings of 5th International Conference on
Software Engineering, ICSE 1981. IEEE Press, Piscataway (1981)

25. Zeller, A.: Yesterday, my program worked. today, it does not. why? In: Nierstrasz,
O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE -1999. LNCS, vol. 1687, pp. 253–267.
Springer, Heidelberg (1999). doi:10.1007/3-540-48166-4 16

26. Zeller, A.: Isolating cause-effect chains from computer programs. In: Proceedings
of 10th ACM SIGSOFT Symposium on Foundations of Software Engineering, SIG-
SOFT 2002/FSE-10. ACM (2002)

27. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

28. Zhang, X., He, H., Gupta, N., Gupta, R.: Experimental evaluation of using dynamic
slices for fault location. In: Proceedings of Sixth International Symposium on Auto-
mated Analysis-driven Debugging, AADEBUG 2005. ACM (2005)

http://dx.doi.org/10.1007/978-3-642-37057-1_16
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-319-11737-9_17
http://dx.doi.org/10.1007/978-3-319-11737-9_17
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://dx.doi.org/10.1007/978-3-540-87730-1_3
http://dx.doi.org/10.1007/3-540-48166-4_16

Pure Edge Computing Platform
for the Future Internet

Mirko D’Angelo(B) and Mauro Caporuscio

Linnaeus University, Växjö, Sweden
{mirko.dangelo,mauro.caporuscio}@lnu.se

Abstract. Future Internet builds upon three key pillars – namely, Inter-
net of Things, Internet of Services, and Internet of Contents – and is con-
sidered as a worldwide execution environment that interconnects myriad
heterogeneous entities over time, supports information dissemination,
enables the emergence of promising application domains, and stimulate
new business and research opportunities. In this paper we analyse the
challenges towards the actualisation of the Future Internet. We argue
that the mobile nature inherent to modern communications and inter-
actions requires a radical shift towards new computing paradigms that
fully reflect the network-based perspective of the emerging environment.
Indeed, we position the adoption of a Pure Edge Computing platform
that offers designing and programming abstractions to specify, imple-
ment and operate Future Internet applications.

1 Introduction

The evolution of the Internet has radically changed our life: while initially sim-
ply used to exchange data between selected hosts, today the Internet is essential
for the provision of daily-life software resources (e.g., data, and services) dis-
tributed all over the world. Future Internet (FI) builds upon three key pillars –
namely, Internet of Things, Internet of Services, and Internet of Contents – and
is formed by real world things connecting to one another, which are all around
us, everywhere and anytime, and can be discovered, composed and consumed
as needed [20]. Indeed, FI can be considered as a worldwide execution environ-
ment, where a large open-ended collection of heterogeneous resources dynam-
ically interact with each other, to provide users with rich functionalities, e.g.,
real thing consumption, service provisioning, and content sharing [10].

FI enables the emergence of appealing and promising application domains,
stimulating new business and research opportunities. In these settings, software
vendors are no longer considered as independent units, where all software is
built in-house. Rather, they will be networked and depend on each other ser-
vices. Indeed, vendors will be part of a software ecosystem: “A set of actors
functioning as a unit and interacting with a shared market for software and ser-
vices, together with the relationships among them” [17]. These characteristics
should be underpinned by a common technological platform, which facilitates
the development of FI applications through the provision of proper designing
c© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 458–469, 2016.
DOI: 10.1007/978-3-319-50230-4 36

Pure Edge Computing Platform for the Future Internet 459

and programming abstractions for (i) uniformly representing things, services and
contents, and (ii) deploying, discovering, composing, and consuming them at run
time [16]. To this end, nowadays technological platforms leverage on computing
paradigms that employ the so called everything-as-a-service (XaaS) abstraction –
i.e., cloud and fog computing. Cloud computing [1] platforms heavily rely on dis-
tributed processing and available bandwidth from the peripheral devices to the
(centralised) backend server: most data is sent to the cloud to be processed, leav-
ing edge devices as simple portals into the cloud. Even though this architecture
works well today, it fails when considering FI, where myriads of mobile devices
interact each other by exchanging micro-data. To this end, fog computing [6]
promotes a decentralised approach, where the edge devices play a key role to
achieve geographical distribution, location awareness, real-time interactions and
data streaming. However, device mobility is not fully supported and edge devices
are still considered to be simple portals to reach the real infrastructure.

The high mobile nature inherent to modern communications and interactions
requires a radical shift towards architectures that fully reflect the network-based
perspective of the FI. Specifically, network-based systems rely on the explicit
distribution of resources, which interact by means of (asynchronous) message
passing. Indeed, network-based systems differ from distributed systems in the
fact that the involved networked resources are independent and autonomous,
rather than considered as integral part of a conceptually monolithic system [25].
To this end, we position in this paper the adoption of a Pure Edge Computing
platform that offers designing and programming abstractions to specify, imple-
ment and operate FI applications. Moreover, we discuss a set of key challenges
towards its actualisation, namely: discovery, composition and communities.

This paper is organised as follows. Section 2 introduces a motivating scenario.
Section 3 discusses the requirements for a FI technological platform, and analyses
existing solutions. Section 4 illustrates the Pure Edge Computing platform and
discusses key challenges, and Sect. 5 sketches our perspectives for future work.

2 Motivating Scenario

This section introduces Lost Child, a Future Internet scenario that serves as
running example to illustrate the proposed approach. Lost Child extends the
scenario presented in [22] and points out a number of concepts that are central
to elicit the requirements of the Future Internet platform:

A five year old child who is attending a parade in Manhattan with his parents
goes missing among all the people, and his parents only notice he is missing
after some time. A police officer, once advised, sends out an alert to all entities
within a two kilometre radius, requesting them to share all photographs they
have taken in the parade during the past hour containing people with a red shirt.
After the request a community of entities participating to the search emerge.
Many smartphones are able to filter and send the images that match the officer
description to a final endpoint, while others despite having relevant informations
may be incapable to execute the task due to some missing functionality (e.g.

460 M. D’Angelo and M. Caporuscio

computer vision capabilities to process, analyse, and understand images) or to
a low battery level. However, these devices are able to participate to the search
by offloading the computation to near devices able to carry out the service on
their behalf. Given the importance of the task, also the smart traffic cameras in
the area collaborate to the search sending relevant informations, while personal
computer in the surrounding houses grant their infrastructure as an offloading
point for other devices to carry out complex computations. With John’s parents,
the police officer searches through the relevant photographs received on his phone.
After looking through some pictures, they are able to spot John in one of the
images, which they identify to be taken at a nearby location. Soon, the parents
are reunited with their child.

Functional requirements for Lost Child are specified as follows:

R0: Devices may enter/leave the network dynamically, since a key aspect is the
prominent role of mobile devices as rich sensors and service providers.

R1: Devices self-organise into emerging communities with a common goal.
R2: Devices within the community opportunistically make transient use of the

shared infrastructure (e.g., storage, network, memory, processing power).
R3: Devices within the community opportunistically interact each other by pro-

viding/consuming services of interest.
R4: Devices within the community opportunistically interact each other by shar-

ing data of interest enriched with contextual information.
R5: Devices within the community opportunistically interact each other by pro-

viding/consuming things of interest (e.g., camera, gps, sensors, etc.).

3 XaaS Platforms for the Future Internet

Best practices suggest to develop complex applications by exploiting the abstrac-
tions offered by an underling platform. A platform is an extensible software
system that provides a set of core functionalities shared by applications that
interoperate with it, and the interfaces through which they interoperate [3].

Choosing the platform is quite critical, because it affects the resulting applica-
tion architecture and behaviour. In fact, each specific platform imposes architec-
tural/behavioural constraints, and has architectural/behavioural properties that
might be well-suited for some situations and ill-suited for others [13]. Indeed, a
platform that induces a wrong architecture/behaviour might prevent the appli-
cation from achieving certain properties of interest.

To this extent, a platform for the FI should provide designing and program-
ming abstractions for (i) uniformly representing things, services and contents,
and (ii) deploying, discovering, composing, and consuming them at run time.
Further, the platform should be confronted with the following set of properties:

Scalability: to accommodate a high number of networked services/devices; it
is a key property to satisfy R0 and R1.

Interoperability: to enable the composition of services that are heterogeneous
in many dimensions, e.g., location, functionalities and data; it is a key prop-
erty to satisfy R3–R5.

Pure Edge Computing Platform for the Future Internet 461

Mobility: to natively support service location and relocation; it is a key prop-
erty to satisfy R0–R5.

Adaptability: to react to the changing environment and keep requirements
fulfilled; it is a key property to satisfy R0 and R1.

Dependability: to support sensitive cross-domain requirements, e.g., perfor-
mance, and security; it is a key property to satisfy R2–R5.

Nowadays platforms promote the adoption of computing paradigms that
employ the so called everything-as-a-service (XaaS) abstraction to uniformly rep-
resent heterogeneous resources irrespectively of their specific nature (i.e., thing,
service, and content). Although these platforms leverage on the same abstraction,
they differ with respect to the architectural decomposition of internal function-
alities, namely: presentation logic, application logic, data access logic and data
storage. The position of these four elements identifies the specific architectural
style employed by the different computing platforms. Table 1 classifies them with
reference to the set of properties analysed within next sections.

Table 1. Cloud, Fog and Pure Edge Computing properties

3.1 Cloud Computing

Cloud Computing (CC) [1] rapidly changed the landscape of information tech-
nology. CC platforms heavily rely on distributed processing and available band-
width from the peripheral devices to the central backed server. As showed in
Fig. 1(a), all functional elements reside on the server side and most of the data
is sent to the central server to be processed, leaving peripheral devices as simple
portals into the cloud.

Referring to Table 1, platforms based on a CC architecture are not good can-
didates for dealing with the FI, as the architectural style employed by CC is
client-server, and both physical and logical models are centralised. Scalability is
one of the key property of CC, and is usually managed by increasing/decreasing
at run time the number of servers. Client-side Mobility is partially supported
and latency between client and server is generally very high. On the other hand,
server-side mobility is not supported. Interoperability is often not supported,

462 M. D’Angelo and M. Caporuscio

since two different CC platforms usually adopt different technologies (e.g. lan-
guages, and protocols). Dependability attributes like performance and reliability
are often guaranteed. Adaptability is usually provided by the platform developer;
however, the constraints imposed by this architectural pattern (e.g., mobility)
could limit the application of some feasible strategies. Finally, CC architectures
fail when considering myriads of devices that interact each other by exchanging
micro-data, which is incredibly latency sensitive. Referring to the Lost Child, CC
fails to provide the application with the required properties, and thus it prevents
the fulfilment of requirements R1, R3 and R5.

Fig. 1. Cloud vs. Fog vs. Pure Edge Computing

3.2 Fog Computing

Fog Computing (FC) [6] recently emerged as a platform that makes use of near-
user peripheral servers to provide storage and processing power where they are
needed. The FC platform employs a distributed computing infrastructure where
services can be handled either at the periphery of the network (e.g., by smart
routers) or at the central server. As showed in Fig. 1(b), the functional elements
are subdivided between the near-user fog servers and the central server.

Still referring to Table 1, FC platforms are also not good candidates for deal-
ing with the FI. In fact, the FC architecture is based on client-server style and,
while the physical model is distributed, the logical one is still centralised. Scala-
bility is partially supported by FC, since new peripheral-servers can be dynami-
cally added when new entities join the network. Client-side Mobility is supported
and latencies between client and server are usually very low. Also in this case,
server-side mobility is not supported, since FC nodes are fixed entities. Inter-
operability is often not supported, for the same reason of CC and, also here,
Adaptability strategies are limited. Dependability attributes like performance
and reliability are often guaranteed. Even though FC well addresses latencies
issue, it is not the appropriate architectural candidate for the FI platform. In
fact, server-side mobility is not supported and devices are still considered to be
simple portals to reach the real infrastructure. Indeed, FC paradigm still suffers
the client-server nature of the approach. Referring to the Lost Child, CC fails
to provide the application with the required properties, and thus it prevents the
fulfilment of requirements R1, R3, and R5.

Pure Edge Computing Platform for the Future Internet 463

4 Pure Edge Computing Platform: Vision and Challenges

Edge Computing (EC) [24] pushes the frontier of computing applications, data,
and services away from centralised nodes to the logical extremes of the network.
EC is envisioned as a further extension of CC and FC, and aims at moving the
control and trust decision to the edges of the network, in order to allow for novel
human-centred applications [18].

Our vision is that FI must embrace the edge computing philosophy with the
adoption of a distributed computing platform unifying things, services, and con-
tents into XaaS. To this end, we position the design and development of a Pure
Edge Computing (PEC) platform to break the monolith and enable a self-scaling
mobile environment. PEC will employ a peer-to-peer (P2P) architecture, where
all functional elements reside on the edge devices, and no central server exists
(see Fig. 1(c)). Specifically, to improve dependability, PEC platform will adopt a
hierarchical and hybrid P2P architecture, which exploits CC/FC nodes to play
the role of super-peers and provide PEC nodes with supporting functionalities.

According to the P2P architecture employed by PEC, both the physical
and the logical model are network-based (see Table 1). Therefore, Scalability
is natively supported, as adding new clients to the network simultaneously adds
new computational resources to the computing environment. Both client-side
and server-side Mobility is supported and latencies between nodes are very low.
Interoperability is natively supported by the P2P architecture. Dependability
attributes (e.g., performance and reliability) and Adaptability are addressed,
although satisfying these requirements is challenging. Further, still referring to
Lost Child, PEC provides the application with the set of properties needed to
fulfil the functional requirements.

PEC platform seems to be promising, as it provides the set of key charac-
teristics required to deal with FI. Next sections discuss a set of key challenges
towards its actualisation, namely: discovery, composition and communities.

4.1 XaaS Discovery

FI applications should dynamically aggregate services of interest, and be able
to adapt to the evolving situation in which they operate, such as the physical
environment and the computational entities populating it or the device on which
the service runs. The challenges related to XaaS Discovery concern the ability
of discovering, understanding, selecting, and correlating services of interest.

Discovering XaaS of interest in an open-ended world asks for mechanisms
to semantically describe both functional and extra-functional properties of the
services, and to reason about them and their actual context. The adoption
of Semantic Web (SW) technologies enhances the discoverability of devices by
enriching their descriptions with machine-interpretable semantics [5]. However,
having semantic models and ontologies alone is not sufficient to achieve inter-
operability. In fact, ontologies developed by different parties are not guaranteed
to be compatible with each other. Indeed, due to the inherent high degree of
dynamism characterising FI, having a well established a-priori semantics is not

464 M. D’Angelo and M. Caporuscio

Fig. 2. Peer-to-peer XaaS discovery

possible in practice. Rather semantics should “emerge” from online negotiations
among involved parties [9]. However, accuracy of the matching is frequently not
satisfying and significant amount of human effort is still needed. Someone advo-
cates to adopt the Linked Data principle [23]. Linking to existing knowledge
rather than creating repetitive one helps to facilitate navigation, discovery and
more importantly, interoperability.

Considering the high dynamic nature of the FI and the large number of enti-
ties participating into the system, developing an efficient and scalable discovery
mechanism is challenging. To this end, the platform should employ fully decen-
tralised techniques to discover and select XaaS of interest [11,14]. On the one
hand, fully decentralised service discovery mechanisms on unstructured networks
provides for scalability and self healing proprieties, at the expenses of a large
communication overhead. On the other hand, discovery mechanisms based on
structured networks have low communication overhead over the network, but
they fail when dealing with dynamic systems.

The CAP theorem [15] states that it is impossible for a distributed computer
system to simultaneously provide all three of the following guarantees: Con-
sistency, Availability and network Partitions. Since obtaining strong consistency
guarantees in extremely distributed and dynamic systems is not only difficult but
often unnecessary, we envision a discovery mechanism based on eventual consis-
tency model [26], which guarantees availability and network partitions. Our idea
is to build a service discovery tool relying on distributed AP-based P2P tech-
nologies that use techniques like epidemic gossip. Referring to Fig. 2, to avoid
large communication overhead a distributed service registry could be managed
by the superpeer nodes of the system (see dark nodes in Fig. 2). Superpeer nodes
would provide registration and lookup functionalities to the nodes they manage
while, interacting with other superpeer nodes, they would carry out the distrib-
uted lookup task. In fact, instead of attempting to coordinate a large amount

Pure Edge Computing Platform for the Future Internet 465

of components to enable service discovery, the problem can be reduced to coor-
dinating superpeer nodes. This semi-structured approach unites the benefit of
both the structured and unstructured approach since scalability and self-healing
properties would be fully accommodated with a low communication overhead
over the network.

4.2 XaaS Composition

Service composition allows for dynamically building complex applications by
aggregating a large number of simple, distributed and heterogeneous services.
Composing XaaS requires a paradigm shift from software services to real
world services, and from application-centred services to user-centred services
that demands for situation-aware composition techniques [12]. The composi-
tion process in the FI must deal with the uncertainty and complexity of the
environment, as well as with other important factors, such as device mobility,
battery management and context informations. Because of the high number of
dimensions to consider simultaneously, the service composition is challenging,
and finding the optimal solution is often computationally infeasible.

The PEC platform should exploit enhanced algorithms able to learn from the
dynamic environment and determine optimal service compositions accordingly.
Indeed, machine-learning based selection algorithms should be able to under-
stand the context and self-adapt their behaviour according to both the user
needs and the execution environment [8].

Once the composition process ends, the composite services are coordinated
either by means of choreography or orchestration. Even though choreogra-
phies always provide a global view, and allow for parallel execution of ser-
vices, resource-constrained devices might not support choreography engines [12].
On the other hand, orchestrations significantly reduce network traffic and

Fig. 3. Asyncronous message passing and data-flow model example

466 M. D’Angelo and M. Caporuscio

communication complexity between nodes. The platform should employ an inte-
grated and automated run-time support for both orchestrations and choreogra-
phies [2].

Network-based systems rely on the explicit distribution of resources, which
interact by means of (asynchronous) message passing. Employing asynchronous
interaction model between the participating nodes (see Fig. 3(a)) would decouple
them, and their communication flow, in both time – allowing concurrency – and
space – allowing distribution and mobility. To this extent, we position to build
the PEC platform on the asynchronous message-passing paradigm to provide
support for both orchestrations and choreographies. Indeed, a key requirement
for the PEC platform is the adoption of a coordination languages able to deal
with the asynchronous nature of FI [9]. As shown in Fig. 3(b), data-flow lan-
guages [19] structure applications as a directed graph of autonomous software
components that exchange data by asynchronous message passing. In the data-
flow paradigm the components do not “call” each other, rather they are activated
by the run-time system, and react according to the provided input (received
message). Once the output is available, the run-time system is in charge of mov-
ing data towards the proper destination. Data-flow applications are inherently
parallel. Exploiting the data-flow paradigm introduces a set of advantages in
the PEC platform: (1) concurrency and parallelism are natural and components
can be easily distributed across the network, (2) asynchronous message passing
is natural for coordinating independent and autonomous components, and (3)
applications are flexible and extensible since components can be hierarchically
composed to create more complex functionalities.

4.3 XaaS Communities

FI devices should be able self-organize into emerging communities with a com-
mon goal. The combination of devices with their XaaS “representatives” consti-
tutes de-facto a cyber-physical system. In the FI setting, which involves a large

Fig. 4. Dynamic management of XaaS communities

Pure Edge Computing Platform for the Future Internet 467

number of entities, flat organizational structures are not appropriate. Therefore
some “structural thinking” is necessary, leading to the organization of such enti-
ties in “communities” or “societies” (“ecosystems”) of cyberphysical artifacts [7].

A large complex network is said to have community structures if nodes can
be grouped into (potentially overlapping) sets such that each set is densely con-
nected internally [21]. These connections can represent different type of asso-
ciations such as: social relations, physical proximity or groups of interest. The
vision is that FI devices will have integrated models of their knowledge (i.e.,
content), functionality (i.e., service) and infrastructure (i.e., things) available,
which can then be linked and exchanged in a peer-to-peer fashion to create
online social networks of collaborating devices. PEC platform for FI should pro-
vide proper mechanisms for allowing XaaS to self-organize into communities of
interest. Specifically, the platform should provide support for detecting, manag-
ing and reconfiguring service communities.

Referring to Fig. 4, our idea is to manage communities structures through
dynamic groups management. Communities can be build statically by the par-
ticipating applications but the platform must be able to adopt mechanisms of
communities identification. For example, similarly to techniques also used in the
social networks, an high number of interactions between nodes (see the dashed
arrows in Fig. 4) could imply the membership in a common group. To this end
we are investigating on the possibility to extend the A3 middleware [4] to deal
with community organizations through dynamic group management.

5 Future Work

FI can be considered as a worldwide execution environment, where a large open-
ended collection of heterogeneous resources dynamically interact with each other.

The high dynamic nature inherent to FI requires a radical shift towards new
computing paradigms able to fully reflect the network-based perspective of the
emerging environment.

To this end, we position the adoption of a PEC platform that offers proper
abstractions to specify, implement and operate FI applications. Specifically, the
PEC platform should provide (i) a XaaS abstraction for uniformly represent-
ing things, services and contents, and (ii) a set of mechanisms for deploying,
discovering, composing, aggregating and consuming XaaS at run time.

As consequence, a set of groundbreaking challenges make the development of
the PEC platform ambitious. To this extent, future work is towards the exploita-
tion of a rigorous and systematic model driven development process that, starting
from the deep investigation of the FI domain, will incrementally produce a set
of intermediate artifacts, which will be finalised into the actual implementation
of the PEC platform. This development process will exploit a logical two-phases
methodology: the first phase (P1) aims at producing a PEC platform able to
homogenise the underlying FI heterogeneity. Concurrently, as well as comple-
mentary, the second phase (P2) aims at providing software engineers with a
set of development tools enabling for the design, analysis, implementation and
validation of applications exploiting the PEC platform.

468 M. D’Angelo and M. Caporuscio

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Autili, M., Inverardi, P., Tivoli, M.: Choreos: large scale choreographies for the
future internet. In: Proceedings of Conference on Software Maintenance, Reengi-
neering and Reverse Engineering (2014)

3. Baldwin, C.Y., Woodard, C.J.: The architecture of platforms: a unified view. In:
Platforms, Markets and Innovation, chap. 2 (2009)

4. Baresi, L., Guinea, S., Saeedi, P.: Achieving self-adaptation through dynamic group
management. In: Assurances for Self-adaptive Systems - Principles, Models, and
Techniques, pp. 214–239 (2013)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284, 34–43
(2001)

6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of Workshop on Mobile Cloud Computing (2012)

7. Camarinha-Matos, L.M., Goes, J., Gomes, L., Martins, J.A.: Contributing to the
internet of things. In: Proceedings of Technological Innovation for the Internet of
Things (2013)

8. Caporuscio, M., D’Angelo, M., Grassi, V., Mirandola, R.: Reinforcement learn-
ing techniques for decentralized self-adaptive service assembly. In: 5th European
Conference on Service-Oriented and Cloud Computing (2016)

9. Caporuscio, M., Funaro, M., Ghezzi, C.: PaCE: a data-flow coordination lan-
guage for asynchronous network-based applications. In: Gschwind, T., De Paoli, F.,
Gruhn, V., Book, M. (eds.) Software Composition, pp. 51–67. Springer, Heidelberg
(2012)

10. Caporuscio, M., Ghezzi, C.: Engineering future internet applications: the prime
approach. J. Syst. Softw. 106, 9–27 (2015)

11. Cardellini, V., D’Angelo, M., Grassi, V., Marzolla, M., Mirandola, R.: A decentral-
ized approach to network-aware service composition. In: Dustdar, S., Leymann, F.,
Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 34–48. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24072-5 3

12. Dar, K., Taherkordi, A., Rouvoy, R., Eliassen, F.: Adaptable service composition
for very-large-scale Internet of Things systems. In: Proceedings of Middleware Doc-
toral Symposium (2011)

13. Di Nitto, E., Rosenblum, D.: Exploiting ADLs to specify architectural styles
induced by middleware infrastructures. In: Proceedings of International Confer-
ence on Software Engineering (1999)

14. Fredj, S.B., Boussard, M., Kofman, D., Noirie, L.: Efficient semantic-based IoT
service discovery mechanism for dynamic environments. In: Proceedings of Inter-
national Symposium on Personal, Indoor, and Mobile Radio Communication (2014)

15. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

16. Issarny, V., Caporuscio, M., Georgantas, N.: A perspective on the future of
middleware-based software engineering. In: Briand, L., Wolf, A. (eds.) Future of
Software Engineering. IEEE-CS Press (2007)

17. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: Proceedings of International Conference on
Software Engineering - Companion (2009)

http://dx.doi.org/10.1007/978-3-319-24072-5_3

Pure Edge Computing Platform for the Future Internet 469

18. Lpez, P.G., Montresor, A., Epema, D.H.J., Datta, A., Higashino, T., Iamnitchi,
A., Barcellos, M.P., Felber, P., Rivire, E.: Edge-centric computing: vision and chal-
lenges. Comput. Commun. Rev. 45(5), 37–42 (2015)

19. Morrison, J.P.: Flow-Based Programming: A New Approach to Application Devel-
opment, 2nd edn. CreateSpace, Paramount (2010)

20. Papadimitriou, D.: Future internet - the cross-ETP vision document. Technical
report, European Future Internet Portal (2009)

21. Porter, M., Onnela, J., Mucha, P.: Communities in networks. Not. Am. Math. Soc.
56(9), 1082–1097 (2009)

22. Satyanarayanan, M.: Mobile computing: the next decade. In: Proceedings of the
Workshop on Mobile Cloud Computing (2010)

23. Serrano, M., Nguyen-Mau, H.Q., Hauswirth, M., Wang, W., Barnaghi, P.M.,
Cousin, P.: Open services for IoT cloud applications in the future internet. In:
Proceedings of International Symposium on a World of Wireless, Mobile and Mul-
timedia Networks (2013)

24. Skala, K., Davidovic, D., Afgan, E., Sovic, I., Sojat, Z.: Scalable distributed com-
puting hierarchy: cloud, fog and dew computing. Open J. Cloud Comput. 2(1),
16–24 (2015)

25. Tanenbaum, A.S., Van Renesse, R.: Distributed operating systems. ACM Comput.
Surv. 17, 419–470 (1985)

26. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)

Author Index

Aldea, Mario 303
Alzahrani, Nasser 196
Amaral, Vasco 333
Arcaini, Paolo 163
Atienza, Nieves 3

Bernard, Alain 265
Blech, Jan Olaf 196, 253
Bonfanti, Silvia 163
Boudewijns, Rimco 179

Cabot, Jordi 289
Calinescu, Radu 42
Caporuscio, Mauro 458
Cerone, Antonio 26, 232
Chenouard, Raphael 265
Corradini, Andrea 101
Cuevas, César 303

D’Angelo, Mirko 458
di Noia, Tommaso 423
Di Salle, Amleto 436
di Sciascio, Eugenio 423
Diskin, Zinovy 274
Do, Kha N. 346
Doan, Khanh-Hoang 207
Drake, José María 303
Drewes, Frank 112

Ellison, Martyn 42
Essoussi, Nadia 13

Gallo, Francesco 436
Gargantini, Angelo 163
Gogolla, Martin 207, 289, 394
González Harbour, Michael 303
Gonzalez-Diaz, Rocio 3
Guidotti, Riccardo 51
Gutiérrez, J. Javier 303

HajKacem, Mohamed Aymen Ben 13
Hartmann, Chris 265
Henia, Rafik 303
Hermans, Felienne 388

Herrmann, Peter 253
Hilken, Frank 207
Hofer, Birgit 372
Hoffmann, Berthold 112
Hristakiev, Ivaylo 145

Jannach, Dietmar 372

König, Harald 274
Krämer, Julia 445

Löwe, Michael 129

Manders, Maarten 179
Mandow, Lawrence 317
Medina, Julio L. 303
Mendes, Jorge 346
Mermoz, Emmanuel 265
Milazzo, Paolo 67
Minas, Mark 112
Mireault, Paul 401
Mongiello, Marina 423
Moreira, Ricardo 415

N’cir, Chiheb-Eddine Ben 13
Nocera, Francesco 423

Paige, Richard F. 42
Parchitelli, Angelo 423
Pardini, Giovanni 67
Pedreschi, Dino 51
Plump, Detlef 145
Pompilio, Claudio 436

Reijsbergen, Daniël 83
Riccobene, Elvinia 163
Rioux, Laurent 303
Rivas, Juan M. 303
Rossetti, Giulio 51
Rucco, Matteo 3

Saraiva, João 346
Schmitz, Thomas 372

Sikora, Jerzy 356
Sordon, Nicolas 303
Spichkova, Maria 196, 221, 242
Sroka, Jacek 356

Teixeira, Ricardo 333
Tikhonova, Ulyana 179
Tyszkiewicz, Jerzy 356

Vallecillo, Antonio 394
van der Storm, Tijs 388
Vo, Phan Thu Nhat 221

Wehrheim, Heike 445
Wotawa, Franz 372

Zschaler, Steffen 317

472 Author Index

	Preface
	STAF 2016 Organizers’ Message
	DataMod 2016 Organizers’ Message
	DataMod 2016 Program Committee

	GCM 2016 Organizers’ Message
	HOFM 2016 Organizers’ Message
	MELO 2016 Organizers’ Message
	SEMS 2016 Organizers’ Message
	VeryComp 2016 Organizers’ Message
	Keynote Talks
	The Topological Field Theory of Data: A Program Towards a Novel Strategy for Data Mining through Data Language
	Mining Big (and Small) Mobile Data for Social Good
	Enabling Software Verification for Practicing Engineers with Domain Specific Languages
	Human-Centered Methods in Visualization Research
	Spreadsheet Programming Using Examples
	Contents
	DataMod
	Separating Topological Noise from Features Using Persistent Entropy
	1 Introduction
	2 Related Work
	3 Background
	4 Persistent Entropy
	5 Separating Topological Features from Topological Noise
	6 Conclusions and Future Work
	References

	An Accelerated MapReduce-Based K-prototypes for Big Data
	1 Introduction
	2 Related Works
	3 An Accelerated MapReduce-Based K-prototypes for Big Data
	3.1 K-prototypes Method
	3.2 MapReduce Model
	3.3 An Accelerated MapReduce-Based K-prototypes Method for Big Data (AMR K-prototypes)

	4 Experiments and Results
	4.1 Environment and Data Sets
	4.2 Evaluations Measures
	4.3 Results

	5 Conclusion
	References

	Refinement Mining: Using Data to Sift Plausible Models
	1 Introduction
	2 Event Structure and Instantiation
	3 Model Mining Formal Framework
	3.1 The Model Mining Engine

	4 Refinement Mining
	4.1 A Case Study from Ecology

	5 Model Usage and Model Mining Advantages
	6 Conclusion and Future Work
	References

	Towards Platform Independent Database Modelling in Enterprise Systems
	1 Introduction
	2 DBLModeller Approach
	3 Evaluation
	3.1 Model Extraction
	3.2 RQ3: SQL Keyword Usage Study
	3.3 RQ4: Microsoft SQL Server Specialisation

	4 Conclusions and Future Work
	References

	Audio Ergo Sum
	1 Introduction
	2 Related Work
	3 Personal Listening Data Model
	4 LastFM Case Study
	4.1 Data Models Analysis
	4.2 Segmentation Analysis
	4.3 Sequences Analysis
	4.4 Frequency Analysis
	4.5 Storage Analysis

	5 Applications
	6 Conclusion
	References

	A High-Level Model Checking Language with Compile-Time Pruning of Local Variables
	1 Introduction
	2 The Core Objective/MC Language
	3 Control Flow Graph
	3.1 Construction of the Control Flow Graph
	3.2 Transformations

	4 PRISM Translation
	5 Conclusions
	References

	Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems
	1 Introduction
	2 Background and Data
	2.1 Background and Related Work
	2.2 Data

	3 Preliminaries
	3.1 Target Areas and Valid Station Placement Locations
	3.2 Topology and Characteristics
	3.3 Simulation Methodology

	4 Topology Generation Models
	4.1 Regular Grid
	4.2 Poisson Point Process
	4.3 Ginibre Point Process
	4.4 Rating-Weighted Scheme

	5 Analysis and Results
	6 Conclusions
	References

	GCM
	On the Definition of Parallel Independence in the Algebraic Approaches to Graph Transformation
	1 Introduction and Background
	2 Comparing Definitions of Parallel Independence: The Left-Linear Case
	3 The Non-linear Case
	4 Conclusions
	References

	Approximating Parikh Images for Generating Deterministic Graph Parsers
	1 Introduction
	2 Parikh Images and Grammar Graphs
	3 Approximating Parikh Images
	4 Application to Deterministic Graph Parsing
	5 Conclusions
	References

	SPO-Rewriting of Constrained Partial Algebras
	1 Introduction
	2 Partial Algebras and Hypergraphs
	3 Partial Morphisms for Algebras and Hypergraphs
	4 SPO-Rewriting of Constrained Partial Algebras
	5 Inheritance -- The Algebraic Way
	6 Related Work and Future Research
	References

	Attributed Graph Transformation via Rule Schemata: Church-Rosser Theorem
	1 Introduction
	2 Attributed Graph Transformation via Rule Schemata
	2.1 Double-Pushout Approach with Relabelling
	2.2 Rule Schemata

	3 Church-Rosser Theorem
	3.1 Independence of Direct Derivations with Relabelling
	3.2 Church-Rosser Theorem for Rule Schema Derivations

	4 Proof of Theorem1
	5 Related Work
	6 Conclusion
	References

	HOFM
	Visual Notation and Patterns for Abstract State Machines
	1 Introduction
	2 Abstract State Machines
	3 A Visual Notation for ASMs
	4 Visual Trees
	5 Visual Patterns
	5.1 Structural Patterns
	5.2 Semantic Patterns

	6 Tool
	7 Preliminary Evaluation
	8 Related Work
	9 Conclusions
	References

	Visualization of Formal Specifications for Understanding and Debugging an Industrial DSL
	1 Introduction and Motivation
	2 Related Work
	3 Visualization of DSL Specifications
	3.1 Specification of the LACE DSL
	3.2 Visualization of the LACE DSL
	3.3 Generating LACE Visualizations

	4 Discovering Opportunities: User Study
	5 Future Work: Applying and Reusing LACE Visualizations
	5.1 Specification and Visualization Templates
	5.2 Trace Framework

	6 Conclusion
	References

	Spatio-Temporal Models for Formal Analysis and Property-Based Testing
	1 Introduction
	2 Background
	2.1 Formal Methods
	2.2 Property-Based Testing

	3 Proposed Framework
	4 Initial Set of Modeling Languages and Tools
	5 Evaluation
	6 Conclusions
	References

	Towards a Developer-Oriented Process for Verifying Behavioral Properties in UML and OCL Models
	1 Introduction
	2 General Idea and Running Example
	2.1 General Idea
	2.2 Running Example

	3 Adding Frame Conditions to Application Models
	4 Transformation to Filmstrip Model
	5 Verifying Behavioral Properties
	6 Transforming Verification Results to Application Model Sequence Diagrams
	7 Evaluation of Run-Times for the Verification Tasks
	8 Conclusion and Future Work
	References

	Model-Based Generation of Natural Language Specifications
	1 Introduction
	2 Related Work
	3 Framework
	4 Conclusions and Future Work
	References

	Human-Oriented Formal Modelling of Human-Computer Interaction: Practitioners' and Students' Perspectives
	1 Introduction
	2 A Perspective from Cognitive Science
	2.1 A Formal Notation for Human Cognition and Behaviour

	3 A Perspective from Formal Methods
	4 A Common Perspective
	5 Students' Perspective
	6 Conclusion and Future Work
	References

	``Boring Formal Methods'' or ``Sherlock Holmes Deduction Methods''?
	1 Introduction
	2 Related Work
	3 Course: Applied Logic in Engineering
	4 Examples and Exercises Provided Within the Course
	5 Evaluation and Conclusions
	References

	Formal Model-Based Development in Industrial Automation with Reactive Blocks
	1 Introduction
	2 Reactive Blocks in Industrial Automation
	3 Example
	4 Related Work
	5 Conclusion
	References

	MELO
	Computational Design Synthesis Using Model-Driven Engineering and Constraint Programming
	1 Introduction
	2 Design Synthesis Automated Process
	2.1 Functional Requirements Modeling
	2.2 Topological Architecture Modeling

	3 Solving a Design Synthesis Problem
	4 Application and Discussion
	5 Conclusion and Future Work
	References

	Incremental Consistency Checking of Heterogeneous Multimodels
	1 Introduction
	2 Background I: Multimodeling, Global Constraints and Global Consistency
	3 Background II: Mathematical Framework
	3.1 Model Mappings and Spans
	3.2 Model Merge and Global Constraints
	3.3 Diagrammatic Constraints
	3.4 Global Consistency Revisited: Local Constraint Checking

	4 From Constraints to Model Matching, Incrementally
	4.1 Incrementality in a Nutshell
	4.2 Constraint Grouping
	4.3 From Constraints to Correspondence Spans

	5 Conclusion: Future Work
	A Appendix. Some Operations Over Graphs and Models
	References

	Continuing a Benchmark for UML and OCL Design and Analysis Tools
	1 Introduction
	2 OCL in a Nutshell
	3 Previous Benchmarks
	4 Additional Benchmarks
	4.1 Integer Arithmetic
	4.2 Larger Model with Aggregation Functions

	5 Community Roadmap
	5.1 Improving Benchmark Coverage
	5.2 OCL Repository
	5.3 OCL Competitions

	6 Conclusions
	References

	An Experience Integrating Response-Time Analysis and Optimization with an MDE Strategy
	Abstract
	1 Introduction
	2 Related Work
	3 Real-Time Model
	4 Toolchain Architecture Overview
	5 Integration of the Schedulability Analysis Tool
	6 TEMPO Optimization Tools
	6.1 Priority Optimization
	6.2 Architecture Optimization

	7 Industrial Case Study
	8 Conclusions
	Acknowledgment
	References

	Towards Model-Based Optimisation: Using Domain Knowledge Explicitly
	1 Introduction
	2 Related Work
	2.1 Optimisation of Transformations
	2.2 Optimisation of Models

	3 Issues with Generic Encoding of Models
	4 Model-Based Optimisation
	5 Research Challenges
	5.1 Reuse of Existing Optimisation Algorithms
	5.2 Model Evolution
	5.3 Performance
	5.4 Flexible Definition of Model Providers
	5.5 Expressing Fitness Evaluations

	6 Conclusions
	References

	SEMS
	On the Emergence of Patterns for Spreadsheets Data Arrangements
	Abstract
	1 Introduction
	2 Patterns
	2.1 Table Structures
	2.2 Header Composition
	2.3 Header Hierarchy
	2.4 Table Replication

	3 A Metamodel for Spreadsheet Arrangement
	4 Conclusions
	Acknowledgements
	Attachments
	Attachment 1. EUSES’ Spreadsheet Files
	Attachment 2. EURON’s Spreadsheet Files

	References

	Towards an Automated Classification of Spreadsheets
	1 Introduction
	2 Classification Environment
	2.1 The EUSES Spreadsheet Corpus
	2.2 Feature Extraction
	2.3 Algorithm Selection

	3 SSClassifier: A Java/Weka-Based Spreadsheet Classifier
	4 Experiments
	5 Classifying the Enron Corpus
	6 Discussion
	7 Conclusion
	References

	Programming Communication with the User in Multiplatform Spreadsheet Applications
	1 Introduction
	1.1 Early History
	1.2 Why a Spreadsheet?
	1.3 Development History

	2 The Overall Structure of the Interface -- Strati5
	2.1 Fundamental Requirements
	2.2 Structure of the Interface

	3 Interaction with the User
	3.1 Reporting Emergence of Cyclic References
	3.2 By-Product: A Cycle Indicator
	3.3 Data Export
	3.4 ``Soft'' Methods to Reduce Resource Consumption

	4 Scalability Problem
	5 Availability
	6 Standardization Issues
	A BFS by Spreadsheet Formulas
	References

	Fragment-Based Diagnosis of Spreadsheets
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Fragment-Based Diagnosis
	4.1 Fragmentation Process
	4.2 Fragment-Based Diagnosis

	5 Empirical Evaluation
	6 Related Work
	7 Conclusion
	References

	TrueGrid: Code the Table, Tabulate the Data
	1 Introduction
	2 TrueGrid for Spreadsheet Users
	3 TrueGrid for Developers
	4 Related Work
	5 Conclusion and Outlook
	References

	Views on UML Interactions as Spreadsheet Queries
	1 Introduction
	2 Preliminaries
	3 Representing Interactions in Spreadsheets
	4 Views on Interactions as Spreadsheet Queries
	5 Conclusion
	References

	Implementing Nested FOR Loops as Spreadsheet Formulas
	Abstract
	1 Introduction
	2 Structure in Spreadsheets
	3 Loops in Computer Programming
	4 Loops in a Spreadsheet
	4.1 Simple Loop
	4.2 1-Level Nested Loop
	4.3 2-Level Nested Loop
	4.4 3-Level Nested Loop

	5 Model Management Formulas
	6 Application to Different Contexts
	7 Conclusion
	References

	SheetGit: A Tool for Collaborative Spreadsheet Development
	1 Introduction
	2 SheetGit
	2.1 Showing Versions
	2.2 Creating Versions
	2.3 Switching Between Versions
	2.4 Showing Differences Between Versions
	2.5 Collaborative Development
	2.6 Technological Choices

	3 Related Work
	4 Conclusion
	References

	VeryComp
	Context-Aware Design of Reflective Middleware in the Internet of Everything
	1 Introduction
	2 Modeling Reflective Middleware
	3 Use Case Scenario
	4 Instantiation of the Model
	5 Reflective Implementation of the Middleware Architecture
	6 Related Work
	7 Conclusion and Future Work
	References

	Composition of Advanced ()Services for the Next Generation of the Internet of Things
	1 Introduction
	2 Motivation
	3 ESIM Technology as Host for the Next Generation of ()Things
	4 ()Services for ()Things
	5 ()Thing Architecure
	6 Considerations and Future Works
	References

	A Formal Approach to Error Localization and Correction in Service Compositions
	1 Introduction
	2 Services and Service Compositions
	3 Errors and Corrections
	4 Correction Proposals
	5 Discussion
	6 Conclusion
	References

	Pure Edge Computing Platform for the Future Internet
	1 Introduction
	2 Motivating Scenario
	3 XaaS Platforms for the Future Internet
	3.1 Cloud Computing
	3.2 Fog Computing

	4 Pure Edge Computing Platform: Vision and Challenges
	4.1 XaaS Discovery
	4.2 XaaS Composition
	4.3 XaaS Communities

	5 Future Work
	References

	Author Index

