
 The Reduction of VQ Index Table Size by Matching
Side Pixels

Ya-Feng Di 1, Zhi-Hui Wang 1, Chin-Feng Lee2, *, Chin-Chen Chang3

1 School of software, Dalian University of Technology
Dalian, China 116620

dyf.dlut@gmail.com, wangzhihui1017@gmail.com

2 Department of Information Management, Chaoyang University of Technology
Taichung, Taiwan 41349

*Whom correspondence: lcf@cyut.edu.tw

3 Department of Information Engineering and Computer Science, Feng Chia University
Taichung, Taiwan

e-mail: alan3c@gmail.com

Abstract. The vector quantization (VQ) technology is applied to compress an
image based on a local optimal codebook, and as a result an index table will be
generated. In this paper, we propose a novel matching side pixels method to
reduce the index table for enhancing VQ compression rate. We utilize the high
correlation between neighboring indices, the upper and the left of the current
index, to find the side pixels, and then reformulate the index. Under the help of
these side pixels, we can predict the adjacent elements of the current index and
then partition the codewords into several groups for using fewer bits to
represent the original index. Experimental results reveal that our proposed
scheme can further reduce the VQ index table size. Compared with the classic
and state-of-the-art methods, the results reveal that the proposed scheme can
also achieve better performance.

Keywords: vector quantization; matching side pixels; image compression

1 Introduction

With the rapid development of information technology, more and more people
utilize the Internet to communicate and exchange multimedia information, such as
images, audios, and videos. Among them images occupy a large proportion, which
brings storage issues that need urgent solution. In order to reduce the cost of storage
and increase the transmission speed, the images need to be compressed before
transmitting [1][2][3]. Vector quantization [4], as a typical and effective compression
technique is widely used in field of image compression [5][6]. VQ produces an index
table by quantizing a given image in block-wise manner. The indices can stand for the
whole image, in which the size of the former is much smaller than the latter, so VQ

© Springer International Publishing AG 2017
J.-S. Pan et al. (eds.), Advances in Intelligent Information Hiding
and Multimedia Signal Processing, Smart Innovation, Systems and Technologies 64,
DOI 10.1007/978-3-319-50212-0_25

203

can achieve a good compression rate. While the codebook design is a quite important
work before compressing the image, it is usually trained with the well-known Linde-
Buzo-Gray (LBC) algorithm [4].

However, people find that the index table can still be reduced to some degree, so
some techniques which can further compress the index table are proposed to improve
the compression effect. The famous compressing index table methods includes
search-order-coding (SOC) and improved search-order-coding (ISOC) which can be
applied to further losslessly compress VQ index table. SOC was proposed by Hsieh
and Tsai in 1996 [7] and the algorithm encodes each index one by one in a raster scan
order to find the same index with the current index along a predefined search path.
After finding the same index, replace the original index with the search order code
which is shorter than the original one. In 1999, Hu and Chang proposed an improved
SOC method [8] to further compress an index table. Before doing the search-order-
coding operation, sort the codewords in the codebook according their mean values in
the descending order. By doing so, the index value can be more approximate with the
neighboring indices. Besides the compression methods, a data hiding scheme based
on search-order-coding and state-codebook mapping was proposed by Lin et al in
2015 [9]. Lin et al first employ the SOC method to reduce index table and then use
the sate-codebook mapping method to deal with the indices which cannot be proposed
by SOC. Lin et al’s method has good performance on reducing the index table;
however, this method is a bit complicated and is not easy to implement. In this paper,
we propose a novel method for reducing a VQ index table by matching side pixels.
By exploiting the high correlation between the neighboring indices, we utilize the side
pixels of the neighboring indices to predict and find the correct index. The
experimental results demonstrate that our proposed scheme has a better performance
in compression rate compared with SOC, ISOC and Lin et al’s method.

The reminder of this paper is organized as follows. Section 2 gives a brief
introduction of the conventional VQ technique. The proposed scheme is described in
Section 3 in detail. Experimental results are demonstrated in Section 4 and the
conclusion part follows.

2 Related Work

In this section, a brief introduction of vector quantization is described and an example
is also provided for better understanding.

Vector quantization (VQ) is proposed in 1980 by Linde et al. [4]. Due to its simple
and cost-effective advantage, VQ is used in numerous applications, such as image and
video compression. A complete VQ system consists of three parts, codebook design,
compression and decompression. Designing a proper codebook has significant effect
on the compression results. Generally, the popular Linde-Buzo-Gray (LBG) algorithm
is utilized to train a representative codebook with several images. In the compression
procedure, the image first needs be partitioned into a series non-overlapping blocks,
and the size of each block is l×l. Then each block is encoded with the index of the

204 Y.-F. Di et al.

best matched codeword in the codebook. The codebook has C codewords, and each
codeword Ci is a l×l dimensional vector, where i = 0, 1, 2, …, C-1. For the current
block assumed as X, calculate the Euclidean distance between X and each codeword
Ci with following equation (1)

2

1

(,) ()
l l

i i j ij
j

Dis X C X C x c , (1)

where xj is the jth pixel of the current block, cij represents the jth element of the ith
codeword Ci, j = 1, 2,…, l×l.

The codeword which has the minimal Euclidean distance with the current block X,
is the best matched codeword. Then utilize the index of the best matched codeword to
stand for the current block. After obtaining the indices of all blocks in the image, an
index table is generated and need be stored. When decompressing the image, the
receiver can refer the indices in the index table and the codewords in the codebook
using a simple table look-up method to reconstruct the image. There is one thing to
point that, VQ compression is a lossy algorithm.

Figure 1 shows a 512×512 image Lena and each block size is 4×4. A codebook
with 256 codewords generated by the LBG algorithm is illustrated in Figure 2.
Simultaneously, after the VQ compression phase, we can get an index table which has
512×512/ (4×4) = 16384 indices. To measure the compression efficiency, bit rate is
the most commonly used metrics. The bit rate is 16384×8/ (512×512) = 0.5 bpp in the
example.

Fig. 1. Lena image Fig. 2. An example of codebook

The Reduction of VQ Index Table Size by Matching Side Pixels 205

3 Proposed Scheme

Driven by the motivation of reducing the index table, in this section, we propose a
novel method to reduce the VQ index table by matching the side pixels.

3.1 Side pixels matching

In the index table, except the indices encoded using the conventional VQ algorithm at
the first row and first column, each of the residual indices has its upper and left
adjacent index neighbors which can be utilized to compress further by the proposed
matching side pixels. Figure 3 demonstrates some part of the generated index table in
the case of block size 4×4. The variables t1, t2, …, t16 are the specific elements of the
current index T. For a current index T, which belongs to the residual indices, side
pixels refers to the elements {t1, t2, t3, t4, t2, t9, t13} at the first row and column
elements in the current index and their adjacent elements in the neighboring blocks,
which are the shaded pixels u13, u14, u15, u16 in the upper index U and l4, l8, l12, l16 in
the left index L. We design a method of side pixel matching which utilizes {u13, u14,
u15, u16, l4, l8, l12, l16} to predict the adjacent elements { t1, t2, t3, t4, t2, t9, t13} in the
current index to realize the index table reducing.

Fig. 3. Side pixels of the index T

3.2 Reduce the index table

The fewer bits to represent the indices, the higher compression rate can be achieved.
First we utilize the side pixels to predict the adjacent elements of the current index.
Assume the block size is l×l, there are 2l-1 adjacent elements in the current index. The
first element in the corner of the current index is forecasted by calculating the average
of its upper and left element. The other adjacent elements in the current index are
directly predicted by equaling their neighboring elements. Take the index table in
Figure 3 as an example, in the current index T, the value t1 can be forecasted by
solving the equation 1 4 13() / 2t l u . The other values of the current index are

206 Y.-F. Di et al.

directly predicted by 2 14t u , 3 15t u , 4 16t u , 5 8t l , 9 12t l , 13 16t l . Then calculate

the Euclidean distance Td between the predicted elements of the current index T and
the corresponding elements of the codewords using following Equation (2)

2 1
2

1

()
l

T j ij
j

d p c , (2)

where pj is the jth predicted element of the current index, and cij is the corresponding
element of the ith codeword Ci, j = 1, 2, 3, 4, 5, 9, 13.

After obtaining the distances, a sorting operation is utilized on them. Specifically,
by sorting the distances in the ascending order between the seven values with the
corresponding elements of the codewords in the codebook, we can get a distance list.
Then we divide the sorted distances list into four non-overlapping groups, G0, G1, G2

and G3 as follows,

0

1

2

3

{0, 1, 2, , 1}
{ , 1, , 2 1}
{2 , 2 1, , 4 1}
{4 , 4 1, , 1}

G n
G n n n
G n n n
G n n N

, 1},
, 2 1}, 2, 2

, 4 1}, 4, 4
, 1},,

,

where n stands for the number in the first group and N means the codewords number
in the codebook. So we can use two bits stand for the correct index is in which group,
Specifically, “00” represents G0, “01” represents G1, “10” and “11” stands for G2 and
G3 respectively. As can be seen from the probability, if the correct index lies in the
first three groups, we can use fewer bits represent the index instead of original 8 bits.
Though the unfortunate situation still has the possibility to occur, experimental results
reveal that the index lies in the first three groups occupy the majority. An example is
given to illustrate the index table reducing procedure and prove the compression
effect.

In the example, we set n equals 8 and the current index T is 7. And the codebook
has 256 codewords. Then the Euclidean distance is calculated between the seven side
pixels with the elements in the corresponding positions of the codewords. After
sorting the codewords, the method partitions the sorted codewords into four groups.
Figure 4 shows the grouping situation. If the correct CW7 is in G0, the correct index 7
can be represented by “00” adding three bits, that is five bits; if CW7 is in G1, the
correct index code can be represented by adding two bits “01” to the head of the index
binary representation such that CW7 can be presented as five bits; if CW7 is in G2, the
correct index 7 can be represented by left-padding “10” to the four-bit representation
of CW7 to form a six-bit index code; unfortunately if CW7 falls in G3, the correct
index 7 can be represented by ten bits due to two leading bits “11” should be added to
its original eight-bit representation so the length of index code is ten. Figure 5 reveals
the distribution of correct index lying in groups when n equals 8. From the figure, we

The Reduction of VQ Index Table Size by Matching Side Pixels 207

can find that the probability of the correct index lies in the first three groups is far
greater than that in the last group, which proves that our proposed method can reduce
the index table significantly. Moreover, we assign the variable n with different values
and compare the different compression rates to obtain the best performance outcome.

Fig. 4. An example of grouping result

Fig. 5. The distributions of index grouping when n = 8

4 Experimental Results

In this section, experimental results are demonstrated to verify our proposed scheme
with satisfactory performance in terms of reducing the index table after VQ operation.
In our experiments, ten typical gray images sized 512×512 are used as the test images.
Each image is partitioned into 4×4 blocks without overlapping and a codebook
consisting 256 codewords is also prepared preliminarily. To obtain best experimental
results, the variable n is assigned with 16, 8 and 4, respectively.

Table 1 illustrates the performance of the test images with various n values. We
can find that all of the results are better than the original VQ compression bit rate
which is 0.5 bpp. When n equals 4, the proposed scheme can get the smallest bit rate
which means the compression rate is the most satisfactory.

208 Y.-F. Di et al.

Table 1. Comparison of bit rate (bpp) when n takes different values

Lena Baboon Barbara Airplane Girl Gold hill Peppers Sailboat Tiffany Toys Average

n=16 0.3897 0.4402 0.4194 0.3923 0.3869 0.3900 0.3874 0.3977 0.3792 0.3877 0.3971

n=8 0.3440 0.4304 0.3899 0.3461 0.3443 0.3523 0.3384 0.3574 0.3225 0.3378 0.3563

n=4 0.3122 0.4429 0.3773 0.3121 0.3247 0.3386 0.3122 0.3122 0.2743 0.2974 0.3316

The conventional VQ compression technique cannot gain satisfactory compression
rate, so some improved compression algorithms such as SOC and ISOC based on VQ
have been also proposed to get lower bit rate. We also make comparisons with these
two typical improved algorithms. Table 2 demonstrates the bit rate of these two
techniques as well as our proposed scheme in which Lena is taken for example.

Table 2. Comparison of bit rate (bpp) with SOC and ISOC

Methods m BR

SOC

m = 2 0.357

m = 4 0.341

m = 8 0.359

ISOC

m = 2 0.329

m = 4 0.322

m = 8 0.344

Ours 0.3122

Table 3. Comparison of bit rate (bpp) with Lin et al’s method

Lena Baboon Airplane Girl Peppers Sailboat Tiffany Average

n = 4 0.3122 0.4429 0.3121 0.3247 0.3122 0.3122 0.2743 0.3316

Lin et
al [8] 0.3165 0.4526 0.3190 0.3662 0.3284 0.3883 0.2976 0.3527

The Reduction of VQ Index Table Size by Matching Side Pixels 209

5 Conclusions

In this paper, a novel VQ index table representation by matching side pixels is
proposed. By exploiting the correlation between the side pixels of the neighboring
indices, we can use fewer bits to represent the original index. Experiment results
present that the proposed scheme can achieve better compression performance
compared with the classic compression index table methods and the state-of-the-art
methods such as SOC and ISOC methods.

In the future, we plan to explore the proposed index table reduction to information
hiding. The proposed information hiding scheme can hide a huge amount of
information in the index map of an image and allows complete reconstruction of the
indexes of the image. We would like to propose an information embedding scheme to
hide a huge amount of information in the reduction of an index map and allows
complete reconstruction of the indexes of the image.

References

1. C. Shi, J. Zhang and Y. Zhang: Content-based onboard compression for remote sensing
images. Neurocomputing, Vol. 191, pp. 330-340 (2016)

2. H. S. Li, Q. Zhu, M. C. Li, and H. Ian: Multidimensional color image storage, retrieval,
and compression based on quantum amplitudes and phases. Information Sciences, Vol.
273, pp. 212-232 (2014)

3. L. Zhang, L. Zhang, D. Tao, X. Huang and B. Du: Compression of hyperspectral remote
sensing images by tensor approach. Neurocomputing, Vol. 147, No. 1, pp. 358–363 (2015)

4. Y. Linde, A. Buzo, and R.M. Gray: An algorithm for vector quantization design. IEEE
Transactions on communications. Vol. 28, No. 1, pp. 84-95 (1980)

5. M. Lakshmi, J. Senthilkumar, and Y. Suresh: Visually lossless compression for Bayer
color filter array using optimized Vector Quantization. Applied Soft Computing, Vol. 46,
pp. 1030-1042.

6. Y.K. Chan, H.F. Wang, and C.F. Lee,: “A refined VQ-Based image compression method,”
Fundamenta Informaticae, Vol. 61, No. 3-4, pp. 213-221 (2004)

7. C. H. Hsieh and J. C. Tsai: Lossless compression of VQ index with search-order coding.
IEEE Transactions on Image Processing, Vol. 5, No. 11, pp. 1579-1582 (1996)

8. Y. C. Hu and C. C. Chang: Low complexity index-compressed vector quantization for
image compression. IEEE Transactions on Consumer Electronics, Vol. 45, No. 1, pp.
1225-1233 (1999)

9. C. C. Lin, X. L. Liu and S. M. Yuan: Reversible data hiding for VQ-compressed images
based on search-order coding and state-codebook mapping. Information Sciences, Vol.
293, pp. 314-326 (2015)

210 Y.-F. Di et al.

	25 The Reduction of VQ Index Table Size by Matching Side Pixels
	Abstract
	Keywords
	1 Introduction
	2 Related Work
	3 Proposed Scheme
	3.1 Side pixels matching
	3.2 Reduce the index table

	4 Experimental Results
	5 Conclusions
	References

