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Abstract This chapter proposes a non-dominated sorting genetic algorithm
(NSGAII) for the multi-objective optimal operation management (MOOM) for
distributed microgrid. The main objective of the MOOM is to maximize the safe
instantaneous system load, and minimizing the pollutant emission produced by the
generating sources. Particle swarm optimization (PSO), genetic algorithm (GA) and
NSGAII artificial intelligence techniques are studied and optimized for microgrid.
The NSGAII control algorithm projected to maintain the grid voltage and angle
stability within the IEEE standards while increased penetration. To construct the
microgrid structure, the renewable energy sources such as wind energy, solid oxide
fuel cells (SOFC) and solar photo-voltaic (SPV) are considered. The robust
NSGAII based optimization algorithm continuously monitors the grid conditions
and regulates grid parameters for maximizing the instantaneous safe bus loading.
Power system stability indices such as fast voltage stability indices (FVSI), line
stability indices (LSI) and line stability factor (LQP).
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1 Introduction

The advancement in technology, economic and environmental factor influences the
electrical power generation, transmission and distribution to change to new sce-
narios such as microgrid concept. The existing centralized vertical power system
structure is actively shifting to distributed structure. In this distributed power system
structure, the customer is getting more freedom to choose the distribution compa-
nies [1–4]. Figure 1 depicts the typical structure of a centralized and vertical power
system.

Microgrid is one of the key advancements in the power system industry. It is
basically a dynamic distribution system by combining different DG networks and
distinctive loads at distribution voltage level. The sources utilized in the microgrid
are normally renewable/non-conventional [5–7]. Power electronics converers are
the one of integral part of microgrid [8–10]. Figure 2 shows the typical structure of
a microgrid equipped with different sources and security arrangements. In order to
improve the reliability and security of the microgrid in the combatting power
industry, need to implement highly reliable energy management system (EMS) [11–
13]. Real time optimization is incorporated with the microgrid to ensure the optimal
utilization of available DGs [14–18].
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The microgrid operation has been classified as islanded and grid connected. In
grid connected mode of operation, the microgrid is connected to the main grid
through a point of common coupling (PCC). Depending on the power exchange
through the PCC, the grid connected mode can be divided into two viz power
matched and power mismatched operation. In power matched operation, the power
exchange through the PCC will be zero. This is most favourable economic oper-
ation of the microgrid. In power mismatched operation, the microgrid exchanges
power with the distribution network. In islanded mode, the microgrid will operate
as an isolated system and it will satisfy its own load requirements from the available
DGs.

The islanded mode is most suitable for remote locations [19–22]. The same
microgrid can be operated in grid connected or islanded mode depending on the
command from the central control system [23–25]. Figure 3 shows the transfer
between these two operating mode. When the microgrid is not in operation, it can
be converted to grid connected mode by grid connection control or it can work as
islanded mode by grid disconnection control. The microgrid can be shutdown at
any time using shutdown control for maintenance purposes. The proposed NSGAII
controller facilitates transfer operation between the two modes. In grid connected
mode the NSGAII measure the power mismatch through the PCC and based on the
power mismatch the controller absorb/deliver power to/from the main grid. In case
of any emergency condition at the main grid the NSGAII controller sent a control
signal for disconnecting the microgrid from the main grid to the control centre. The
proposed controller enables the shutdown signal also for scheduled maintenance of
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the microgrid. The NSGAII optimization technique is illustrated in Sect. 3 for
microgrid optimization. The MOOM based microgrid management system is
intended to maximize the power penetration from the SOFC. The line flows across
distribution network and voltage profile at each bus are tested for the stability
analysis.

2 Microgrid Energy Management and Monitoring

The monitoring and management of microgrid serves the observation and utiliza-
tion of microgrid efficiently. The typical functional architecture of EMS and
monitoring software for microgrid is shown in Fig. 4. The monitored data from the
DGs, energy storage (ES) and loads is used for analysis and data manipulation
purposes. The grid management system is controls the entire grid to ensure the
stability and economic operation. The grid management and monitoring system are
working together to make the microgrid flexible. Therefore, it is the brain of the
microgrid control structure [26–30].
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2.1 Microgrid Monitoring

The function of microgrid monitoring system is to collect the data from the remote
station and display the collected data on the screen situated at the centralized control
centre [31–35]. The main purposes of the monitoring system are listed below,

• Real time monitoring and visualization of supervisory control, distributed
generation and the data acquisition system.

• Service management monitoring such as power forecasting, energy storage
system and tie line power.

• Optimized dispatch of energy available.

The power flow regulation by the monitoring system depends on the system
operation constraints and the energy balance constraints [36–40]. A typical moni-
toring system consists of PV monitoring system, wind monitoring system and micro
turbine monitoring system to monitor the different DG in included in the system
[41–46].

2.1.1 PV Monitoring System

The PV monitoring system provides operation information of the PV module. The
data provided by the PV monitoring system can be used for comprehensive
statistics, analysis and control of PV system. This monitoring system delivers the
following functions.

i. Real time monitoring and display of solar PV characteristics, solar power,
daily power and total power profile on hourly basis.

ii. Display the inverter parameters such as DC link voltage, DC link power, AC
voltage, power and frequency, power factor, total power and instantaneous
power.

iii. Monitor the inverter operation and provide alarm indication in case of any
component failure.

iv. Control the start and stop of inverter to optimize the power delivery.

2.1.2 Wind Power Monitoring System

Wind power monitoring system monitors the wind power sources connected to the
microgrid and provide the data for analysis, efficient control and utilization of wind
power sources. The wind power monitoring system mainly intended to fulfill the
following functions.
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i. Monitor the power generation from the wind power generation station in real
time. The power monitoring system displays the total power generated, con-
sumed from the wind power sources, daily power profile and hourly power
generation profile.

ii. Observe the wind turbine generator and collect both electrical and mechanical
data. The monitoring system displays the AC voltage, frequency, power factor,
temperature, speed of turbine and generator for analysis purposes.

iii. Monitor and display the wind speed profile, pitch angle, turbine speed for the
efficient operation of Maximum Power Point Tracking (MPPT) controller.

iv. Adjust the power flow and control the start and stop of inverters.

2.1.3 Micro Turbine Monitoring

The operation of micro turbine is monitored in real time and provides alarm indi-
cation for any emergency. The data available from the monitoring system can be
used for efficient control of the micro turbine based power system by accurate
analysis and manipulation of the data. The main functions of the micro turbine
monitoring system are as follows.

i. Monitor the major operational data like speed, gas flows, temperature, valve
pressures and display these monitored data on the screen for comprehensive
statistics and analysis.

ii. Monitor and display the voltage, frequency, power and power factor to ensure
the efficient operation of the micro turbine.

iii. Adjust the operational parameter for optimal utilization.

Similar to this manner all the distributed generation sources connected to the
microgrid is monitored by the respective monitoring system. Based on these
monitored and displayed data, the energy management algorithm controls the
operation of the whole DGs in a coordinated manner.

2.1.4 ES Monitoring System

The objective of ES monitoring system is to monitor the energy storage system
connected to the microgrid. The data collected by the monitoring system is utilized
for the economical and optimal energy storage system management. The main
functions handled by the ES monitoring systems are as follows.

i. Monitoring and displaying the charge level, energy that can be charged,
current discharge power, total charge stored and total energy discharged in real
time fashion.
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ii. Communication and protection of the DC-DC bidirectional converter and
charge controller by observing the DC voltage level, load condition and
generation conditions located at remote locations.

iii. Remote control of battery charging and discharging.

2.1.5 Load Monitoring

Load monitoring is one of the major functions handled by the microgrid monitoring
system. The entire operation and management of the microgrid depends on the
nature of load that connected to the microgrid. The load monitoring system pro-
vides the loading information for comprehensive statistics, analysis and efficient
load generation balancing. The main function of load monitoring system is as
follows.

i. Monitor the types of load, power consumption, real and reactive power, load
voltage and current.

ii. Recording the loading conditions in hourly manner.
iii. Provide warning alarm indication in case of overload, frequency mismatch.

2.2 Microgrid Management

Microgrid management is meant to maintain the operation stability and security of
the microgrid. Figure 5 shows the functional block diagram of a microgrid EMS
system. The management system improves the efficiency of the system by efficient
DG forecasting, load forecasting and energy storage (ES) forecasting. The energy
management system (EMS) uses historical as well as real-time data to forecast the
DG, ES and loads [47–49].
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2.2.1 Forecasting

The data forecasted by the forecasting system is used for the optimization purpose
by the control system; therefore accuracy of forecasting is crucial. The EMS uses
historical and real-time environmental operational data for accurate forecasting of
DG, ES and loads. Forecasting is one of the challenging problems in microgrid
EMS due to the unpredictable nature of DGs (PV and wind) and temporal uncer-
tainties in controllable loads (Electric vehicles). The forecasting system can be
divided into DG forecasting, and load forecasting.

DG forecasting is necessary in microgrid management in order to run the
microgrid economically as well as eco-friendly. In general, the DG forecasting is
intended to predict short term and super short term output of a DG on the basis of
optimized energy dispatch. Objective of the DG forecasting is to maximize the
utilization of all the DGs connected to the microgrid. In earlier days statistical
methods are used to forecast the DG output based on the trend analysis depending
on the historical data. Now statistical method is replaced by the soft computing
technics like, Fuzzy logic controller, PSO, NSGAII, etc.…

Load forecast is to predict the future load demand, so that the operators can
predict the operation status of the network. It is a remarkable for the measure of
future operation of electrical microgrid network. Forecasting load plays a major part
in control, operation, and planning of the microgrid. Therefore, enhancing the
forecast accuracy can play a crucial role in higher security and a superior economy
operation of the microgrid. The load forecasting methods can be classified as tra-
ditional methods like regression analysis, sequential analysis and modern methods
like expert system theory, neural network theory, wavelet analysis, gray system
theory, fuzzy theory and combinational method.

2.2.2 Data Analysis

The characteristics of the DGs, loads, and cost effectiveness of the market data
should be analysed, which is utilized to adjust the forecast and the optimization
models for better performances. It is also useful for the microgrid operator to design
control policies for new applications.

2.2.3 Human Machine Interface (HMI)

HMI is a PC-based program for on-demand monitoring and collect system infor-
mation through microgrid communication network. This program should be cap-
able of visualizing and archiving the collected data and receiving commands and
additional information from operators. Some DGs need operator manual interpo-
lations for starting. In this case, the command of supervisory controller should be
transferred ahead of time to the HMI to inform operators to manually start the
selected DG at the right time. In addition, the operator should be capable of
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commanding supervisory controller through HMI to exclude a DG from the
microgrid control system for maintenance or include the maintained DG. Another
important role of enhanced HMI is in the case of failure of supervisory controller or
any special operation. In this case, HMI is used to control the system manually by
operator commands.

3 Optimization Techniques in Microgrid

Optimization is meant by solving a problem by mathematical modelling with hard
limitations or constraints, generalization and/or simplifications. After modelling, the
problem will be solved using arithmetical tools to realize the solution for the
problems [50–52]. Optimization is one of the major parts of the EMS; it optimizes
the power and economically dispatches the power available from the DGs among
the loads connected. Different optimization is performed by the EMS depending on
the applications (power management, EV charging and vehicle to grid). The opti-
mization is designed as nonlinear objective functions for different applications.
From the optimization point of view, these optimization techniques are broadly
classified into three categories [53]. The chapter is focused on mainly GA, PSO and
NSGAII optimization techniques for microgrid applications with MATLAB®

illustration. These Artificial intelligence based optimization techniques are inspired
by the biological phenomenon. These techniques are introduced to the power
system optimization area to reduce the complexity that is faced by the conventional
techniques. AI techniques optimize the objective function with respect to equality
and inequality constraints. Depending on the number of objective functions, AI
optimization techniques are classified into single objective and multi objective
optimization techniques [54–56].

3.1 Particle Swarm Optimization (PSO)

The PSO is a population based evolutionary computation technique developed by
Eberhart and Kennedy in 1995 [57]. It is based on the ideas of social behavior of
organisms such as animal flocking and fish schooling. Yoshida et al., proposed a
particle swarm optimization (PSO) for reactive power and voltage/var control
(VVC) considering voltage security assessment [58–60]. It determines an on-line
VVC strategy with continuous and discrete control variables such as AVR oper-
ating values of generators, tap positions of OLTC of transformers and the number
of reactive power compensation equipment. Park et al. (2005) suggested a modified
particle swarm optimization (MPSO) for economic dispatch with non-smooth cost
functions [61]. A position adjustment strategy is proposed to provide the solutions
satisfying the inequality constraints. The equality constraint is resolved by reducing
the dynamic search space. The results obtained from the proposed method are
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compared with those obtained by GA, tabu search (TS), evolutionary programming
(EP), and numerical methods. It has shown superiority to the conventional methods.
Wang et al. presented a modified particle swarm optimization (MPSO) algorithm to
solve economic dispatch problem. In this approach, particles not only studies from
itself and the best one but also from other individuals [62]. By this enhanced study
behavior, the opportunity to find the global optimum is increased and the influence
of the initial position of the particles is decreased. The particle also adjusts its
velocity according to two extremes. One is the best position of its own and the other
is not always the best one of the group, but selected randomly from the
group. Vlachogiannis and Lee formulated the multi-objective optimization problem
by considering generators power flow contribution in transmission line and cal-
culates using a parallel vector evaluated particle swarm optimization (VEPSO)
algorithm. VEPSO accounts for nonlinear characteristics of the generators and
lines. The contributions of generators are modeled as positions of agents in swarms.
Generator constraints such as prohibited operating zones and line thermal limits are
considered. It can obtain precise solutions compared to analytical methods [63].

PSO has its essence in social psychology, artificial life, as well as in computer
science and engineering. In PSO, the population is termed as “swarm” and the
individual in the swarm is termed as “particle”. Each particle is represented by its
position, and velocity in n-dimensional search space. The particles fly through the
problem hyperspace with some given initial velocities. In each iteration process, the
particles’ velocities are stochastically adjusted in consideration of the historical best
position of the particles. Thus, the movement of each particle naturally results to an
optimal or near-optimal solution. The particle has memory, and every particle keeps
track of its previous finest position and the comparable fitness value. The fitness
value is also stored and this value is termed as Pbest. When a particle captures all the
population as its topological neighbors, the best value is a global best and is termed
as Gbest. After determining the two best values, both velocity and positions of the
particle are updated according to Eqs. (1) and (2). Figure 6 shows the basic
flowchart of the PSO technique [64–69]. Figures 6 and 7 shows the basic
MATLAB® implementation of PSO algorithm used for wind power maximization
technique in microgrid (Fig. 8).

Vi
kþ 1 ¼ Vi

k þC1R1 Pbest � Xi
k

� �þC2R2 Gbest � Xi
k

� � ð1Þ

Xi
kþ 1 ¼ Xi

k þVi
kþ 1 ð2Þ

3.2 Genetic Algorithm (GA)

A genetic algorithm (GA) is a search and enhancement strategy which works by
imitating the evolutionary standards and chromosomal handling in common
hereditary qualities. GA starts its search in a random manner as a rule coded in
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double strings. Each iteration is relegated a fitness which is straightforwardly
identified with the target dimensions of the search. From there on, the number of
inhabitants in arrangements is altered to another population by applying three
operators like to normal hereditary operator reproduction, crossover, and mutation.
It works iteratively by progressively applying these three operators in every gen-
eration till an end paradigm is fulfilled. GAs has been effectively applied to various
optimization problems due to their straightforwardness and global approach.
(Fig. 9)
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(i) Basic Concepts and working principle

The GA is an iterative technique and works with a self-contained arrangement in
iteration. GA works with various solutions (known as population) in the every
iteration. A flowchart of the working standard of a basic GA is depicted in Fig. 10.
Without any knowledge of the problem, GA starts its search from a random pop-
ulation of solutions. If a termination criterion is not satisfied, three different oper-
ators—reproduction, crossover and mutation—are applied to update the population
of strings. One iteration of these three operators is known as a generation in the case
GAs. Since the representation of a solution in a GA is like a characteristic chro-
mosome and GA operators are like genetic operators, the above method is known as
a GA. Figure 11 shows the basic working principle and steps involved in GA.
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(ii) Various Steps involved in GA Procedure

The various steps that are included in the GA process are representation,
reproduction, crossover and mutation [70–74].
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(a) Representation

The first step in the GA is the represent the codes in the form of binary string as
given in the example below.

11010|fflffl{zfflffl}
x1

1001001|fflfflfflfflffl{zfflfflfflfflffl}
x2

010|{z}
x3

. . . 0010|ffl{zffl}
xN

ð3Þ

The ith problem variable is coded in a binary substring of length li, the total
number of alternatives allowed in that variable is 2li . The lower bound solution xi

min

is represented by solution (0, 0, 0 … 0) and the upper bound solution xi
max is

represented by the solution (1, 1, 1 … 1). The other substring si decodes to a
solution xi as follows:

xi ¼ xmin
i þ xmax

i � xmin
i

2li � 1
DVðsiÞ ð4Þ

where, DV (si) is the decoded value of string si. The decoded value of the binary
substring s � ðsl�1sl�2. . .s2s1s0Þ is calculated by

Pl�1
j¼0 2

j, where sj 2 0; 1f g. The
length of substring is usually decided by precision needed in a variable. For
example if three decimal places of accuracy are needed in the ith variable, total
number of alternatives in the variable must be set equal to 2li and li can be computed
as follows:

li ¼ log2
xmax
i � xmin

i

ei

� �
ð5Þ
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Parrent 1 0 0
Parrent 1

Parrent 2

0 0

1 1

Parrent 1 0 0

Parrent 2 1 1

0 0 0 1 1 1

1 1 1 0 0 0

�����
����� Child 1

Child 2
0 0 0 0 0 ! 0 0 1 0 0
Parrent 2 1 1

ð6Þ

Here, the parameter ei is desired precision in ith variable. The total string length
of a N variable solution is then l ¼ PN

i¼1 li. In the population of, 1 bit strings are
made indiscriminately (at each of positions, there is an equivalent likelihood of
making a 0 or 1). Once such string is made, the principal li bits can be extricated
from the complete string and relating estimation of the variable xi can be figured
utilizing Eq. 4 and utilizing the lowerpicked and maximum breaking points of
variable x1. This procedure is preceded until all N-variables are gotten from com-
plete string. Consequently, a 1-bit string speaks to a complete arrangement indi-
cating all N variables particularly. Once these qualities are known, the objective
function f(x1, x2, xN), can be registered.

In a GA, every string made either in the initial population or in the resulting
generation must be allotted a fitness value which is identified with objective
function value. For maximization problems, a string’s fitness can be equivalent to
string’s objective function value. In minimization problem, the objective is to
discover an answer having least objective function value. In this way, the fitness can
be figured as the negative of the goal work with comparable objective function
value get larger fitness.

There are number of advantages for utilizing a string representation to code
variables. In the first place, this permits a protecting between working of GA and
actual problem. The same GA code can be utilized for various problems by just
changing meaning of coding a string. This permits a GA to have broad pertinence.
Second, a GA can exploit the likenesses in string coding to make its search quicker,
a matter which is vital in working of a GA.

(b) Reproduction

Reproduction (or selection) is typically the principal operator connected to a
population. Reproduction chooses best strings in a population and structures a
mating pool. The crucial thought is that above-normal strings are picked from the
present population and copies of them are embedded in the mating pool. The
normally utilized reproduction operator is the proportionate determination operator,
where a string in the present population is chosen with likelihood relative to the
string’s fitness. That is the ith population is generated based on a probability
function fi. One approach to accomplish this proportionate choice is to utilize a
roulette-wheel with the boundary set apart for every string proportionate to the
string’s fitness.
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(c) Crossover

The crossover operator is an operator in GA which is applied next to the string in
the mating pool. In this operation two strings are selected from the mating pool
randomly and some portion of the strings will get exchanged to produce the new
offspring. In a single crossover operation each string will cut at arbitrary points and
right side of each string swaps each other as shown below:

Parrent 1 0 0
Parrent 2 1 1

���� 0 0 01 1 1
0 0
1 1

���� 1 1 10 0 0
Child 1
Child 2

ð7Þ

It is fascinating to note from the development that good substrings from either
parent string can be joined to frame better kid string if a fitting site is picked. Since
the information of a suitable site is normally not known, an arbitrary site is gen-
erally picked. In any case, understand that the decision of an arbitrary site does not
make this search operation irregular. With a random point the crossover on two 1—
bit parent strings, the search can just find at most 2(i − 1) distinctive strings in the
search space, while there are a sum of 2i strings in the search space. With an
arbitrary space, the kids strings delivered could conceivably have a blend of good
substrings from parent strings relying upon whether the intersection site falls in the
proper site or not. If great strings are made by crossover; there will be more
duplicates of them in the following mating pool produced by the generation
operation. If great strings are not made by crossover; they won’t get by past people
to come, since reproduction won’t choose poor strings for the following mating
pool. In a two-point crossover operation, two irregular locales are picked. This
thought can be reached out to make multi-point crossover operator and the
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1st Parent genetic code
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 010100101010

011100100010

Situation after crossover

Fig. 12 Crossover mechanism of a genetic algorithm
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compelling of this augmentation is known as a uniform crossover operator. In a
uniform crossover for paired strings, every piece from either parent is chosen with a
probability of 0.5. The fundamental motivation behind the crossover operator is to
seek the parameter space. Other perspective is that the search should be performed
in an approach to safeguard the data put away in the parent string maximally, on the
grounds that these parent strings are occurrences of good strings chose utilizing the
reproduction operator. In the single-point crossover operator search is not broad,
but rather the most extreme data is saved from parent to offspring. In another ways,
in the uniform crossover, the search is exceptionally broad however least data is
saved amongst parent and offspring strings. On other hand the crossover probability
is utilized as a part of the population. In the event that a crossover probability of pc
is utilized then 100 pc % strings in the population are utilized as a part of the
crossover operation and 100(1 − pc) of the population are basically duplicated to
the new population. Figure 12 shows the crossover mechanism of a GA.

(d) Mutation

Crossover operator is fundamentally in charge of the search part of GA, even in
spite of the fact that the mutation operator is likewise utilized for this reason
sparingly. The mutation operator changes a1 to a0 and the other way around with a
little mutation probability pm:

0 0 0 0 0 ! 0 0 1 0 0 ð8Þ

In the above given example the third bit is changed from 0 to 1. This trans-
formation will affect in the new generation and the mutation operator is used to give
best fitness value for the newly generated offspring.

After reproduction, crossover and mutation are applied to entire population, one
generation of GA is finished. These three operators are basic and direct. The
reproduction operator chooses great strings and the crossover operator recombines
good substrings from two good strings together to ideally frame a superior sub-
string. The mutation operator adjusts a string locally to ideally make a superior
string. Despite the fact that none of these cases ensured and/or tried while making
another population strings, it is normal that if poor strings are made they will be
dispensed with by the reproduction operator in next generation to come and if good
strings are made, they will be stressed. To make a speedier meeting of a GA to real
problems, particular operator are frequently created and utilized, yet the above three
operators depict basic operations of a GA and encourage a relatively simpler
numerical treatment.

3.3 Non Dominated Sorting Genetic Algorithm II (NSGAII)

The major drawback of the PSO and GA explained in the previous sections are they
are applicable to only for single objective optimization problems. As we are
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considering the microgrid the optimization problem will be multi objective function
based. In this case the non-dominated sorting genetic algorithm ii (NSGAII) is the
suitable option [75].
Basic operation

Figure 13 shows the basic operation modes of the NSGAII. The population is
initialized randomly as in the case of GA. Once the population in initialized the
population is sorted in light of non-domination into every front. The primary front
being totally non-dominating set in the present population and the second front
being ruled by the individuals in the primary front just and the front goes so on.
Each individual in the every front are appointed rank (fitness) values or taking into
account front in which they belongs to. Individual in primary front are given a
fitness value of 1 and people in second are relegated fitness value as 2 and so on
[76].

A crowding distance also calculated for each individual in order to make the
iterative process fast. The crowding distance gives the idea about how far an
individual each other. The large average crowding distance is the best indication of
diversity of the search space. Based on the rank and the crowding distance the
parents are selected and from these parents the offspring are produced by crossover
and mutation. The newly generated population is again sorted on non-dominated
manner and best individuals will select from this sorting. The basic steps involved
in NSGAII is explained [77].

(i) Population Initialization

The population is initialized based on the problem range and constraints if any.

(ii) Non-Dominated sort

The second step is to sort the population initialized based on the rank for better
population by a non-dominated sorting method. The steps involved in
non-dominated sorting are described below:

Pt

Qt

Rt

F1

F2

F3

Non dominated 
sorting

Crowding
distance 
sorting

Selection
+

Crossover
+

Mutation

Rejected

Pt+1

Qt+1

Fig. 13 NSGAII operation modes
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• Initialize Sp = ф. This set of individuals that are being dominated by p.
• Initialize np = 0. The number of individuals that dominate p.
• for each individual q in P

– if p dominated q then
add q to the set Sp i.e. Sp = Sp[ {q}

– else if q dominates p then
increment the domination counter for p i.e. np = np + 1

• if np = 0 i.e. no individuals dominate p then p belongs to the first front; Set rank
of individual p to one i.e. prank = 1. Update the first front set by adding p to front
one i.e. F1 = F1 [ {p}

• This is carried out for all the individuals in main population P.
• Initialize the front counter to one. i = 1
• Following is carried out while the ith front is nonempty i.e. Fi 6¼ ф.

– Q = ∅. The set for storing the individuals for (i + 1)th front.
– for each individual p in front Fi

for each individual q in Sp (Sp is the set of individuals dominated by p)

• nq = nq − 1, decrement the domination count for individual q.
• If nq = 0 then none of the individuals in the subsequent fronts would

dominate q. Hence set qrank = i + 1. Update the set Q with individual
q i.e. Q = Q [ q.

– Increment the front counter by one.
– Now the set Q is the next front and hence Fi = Q.

(iii) Crowding Distance

Once the non-dominated sort is finished the crowding distance is allotted. Since
the individuals are chosen taking into account rank and crowding distance every
one of the people in the population are relegated a crowding distance value.
Crowding distance is relegated front wise and looking at the crowding distance
between two individuals in various fronts is meaningless. The crowing separation is
ascertained as below:

• For each front Fi, n is the number of individuals.

– Initialize the distance to be zero for all the individuals i.e. Fi (dj) = 0, where
j corresponds to the jth individual in front Fi.

– for each objective function m

Sort the individuals in front Fi based on objective m i.e. I = sort(Fi, m).
Assign infinite distance to boundary values for each individual in Fi i.e.
I (d1) = ∞ and I (dn) = ∞
for k = 2 to (n − 1)
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IðdkÞ ¼ IðdkÞþ Iðkþ 1Þm� Iðk � 1Þm
fmax
m � fmin

m
ð9Þ

• I(k).m is the value of the mth objective function of the kth individual in I

The basic idea behind the crowding distance is to find out the Euclidian distance
between the two individual in the same front.

(iv) Selection

After initialization, non-dominated sorting and assigning crowding distance,
next stage is selection using a crowding distance comparison operator (n) and the
comparison process is as explained below:

(a) Non-domination rank prank i.e. individuals in front Fi will have their rank as
prank = i.

(b) Crowding distance Fi(dj)

• p ≺ n q if

– prank < qrank or
– if p and q belong to the same front Fi then Fi(dp) > Fi(dq) i.e. the

crowing distance should be more.

The individuals are selected by binary tournament selection procedure using the
crowd selection operator.

(v) Genetic Operators

The genetic operation is carried out by simulated binary crossover and poly-
nomial mutation.

(a) Simulated binary crossover

The simulated binary crossover is inspired from nature and is mathematically
given as follows.

c1;k ¼ 1
2

1� bkð Þp1;k þ 1þ bkð Þp2;k
� 	 ð10Þ

c2;k ¼ 1
2

1þ bkð Þp1;k þ 1� bkð Þp2;k
� 	 ð11Þ

Here, ci,k is the ith offspring with kth component, pi,k is the selected parent and
bk(� 0) is a sample from, a random number generated with the probability density,
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pðbÞ ¼ 1
2

gc þ 1ð Þbgc ; if 0� b� 1 ð12Þ

pðbÞ ¼ 1
2

gc þ 1ð Þ 1

bgc þ 2 ; if b[ 1 ð13Þ

This distribution can be obtained from a uniformly sampled random number
u between (0, 1). ηc is the distribution index for crossover. That is

bðuÞ ¼ 2u
1

gþ 1 ð14Þ

bðuÞ ¼ 1

2 1� uð Þ½ � 1
ðgþ 1Þ

ð15Þ

(b) Polynomial Mutation

The polynomial mutation can be given mathematically as,

ck ¼ pk þðpuk � plkÞdk ð16Þ

where, ck and pk are the offspring and parent respectively with upper bound pu
k and

lower bound pu
l on the parent component. dk is the small deviation as given below,

dk ¼ 2rkð Þ 1
gm þ 1�1 if rk\0:5 ð17Þ

dk ¼ 2 1� rkð Þ½ � 1
gm þ 1 if rk � 0:5 ð18Þ

where ηm is the mutation distribution index and rk is the random space between (0,
1)

(vi) Recombination and Selection

The last stage of iteration is to combine the offspring with the current generation
to obtain the best fitness individuals. In this process the superiority is ensured due to
the involvement of all the current and previous best solutions. The new generation
is filled by every front in this manner until the population size surpasses the present
population size. If by including every one of the individual in front Fj the popu-
lation surpasses N then individual in front Fj are chosen based on their crowding
distance in the descending manner until the population size is N. By this method the
process repeats generates the new generations.

This chapter explained the most efficient optimization tools that can be used for
microgrid optimization purpose. Besides this a lot of tools are available in the
literature (refer Table 4).
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4 Illustration of NSGAII in Microgrid Application

This section illustrates the simulation of the above explained three optimization tool
in modified IEEE 14 bus test system.

4.1 Microgrid Modeling

Figure 15 shows the test system used for analyzing the proposed NSGAII opti-
mization algorithm (Fig. 14). The microgrid under the analysis consists of solar PV,
fuel cell distributed generation sources and the loads under consideration are

START

Initialize Po, set I=0

I>Imax?

Non-dominated sort PI calculate 
crowding distance of PI

Creating QI by tournament, crossover and mutation

Elitism: RI=PIUQI

Non-dominated sort RI; Calculate crowding distance 
of RI

Select S members from R1 to from PI-1 using <n
operator

I=I+1

END
YES

NO

Fig. 14 NSGAII flowchart
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frequency dependent load, voltage dependent loads, MIX loads and PQ loads. The
goal of the optimization problem is to maximize the safe instantaneous system
loadability, minimize the total losses, and the total grid emission. Voltage and angle
instability are the main limiting factors for synchronous operation of distributed
generators hence grid control authorities are limiting the distributed generator
penetration level for maintaining grid stability. Optimal DG placement methodol-
ogy for maximizing the system loadability has been suggested by taking into
account, small signal stability, voltage sensitivity index and line stability index.

The proposed algorithm for finding the optimal location of distributed generator
for maximizing the system loadability has been implemented using MATLAB®.
The performance of the algorithm is studied on IEEE 14 bus standard test system.
The power flow analysis is carried out using Newton Raphson method. The test
system used in this work is shown in Fig. 15. All per-unit quantities used in this
study are on a 100-MVA base. Wind farm consisting of 300 wind turbines and 600
MVA/69 kV capacity has been connected to bus 3 as identified using wind farm
placement index by creating another bus (bus 15) through a transformer of tap ratio
unity. Maximum penetration of wind power can be achieved by connecting wind

C

1

2

3

4
5

C

C

G

G

6

7
9

10

1112

13
14

8

Distribution section

Transmission section

Synchronous compensators

GeneratorsG

C

C
SOFC

Wind
generator

15

Fig. 15 Proposed microgrid
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turbine generator at bus 3, solid oxide fuel cell (SOFC) generator is connected at
bus 10 and Solar PV generator (Spv) is connected as a static generator at bus 14.
Loads were modeled as static loads (constant PQ) with constant power factor, and
increased according to Eqs. (1) and (2). The decision variables considered are the
locations of fuel cell, voltage and angle settings of the slack buses, and voltage
settings of the PV buses. All the buses of the system except the voltage controlled
bus and the bus with generators are selected to be the optimal location of the fuel
cell. In this case, buses 4, 5, 7, 9, 10, 11, 12 and 13 are suitable for DG placement as
they already has generators on them.

4.2 Modelling of the Robust Controller

With the knowledge of the maximum loading condition the system operator can
take corrective actions to provide a maximum security margin. The load is
increased in the system by:

PDiðkÞ ¼ kPDi ; i ¼ mþ 1; . . .Nb ð18Þ

QDiðkÞ ¼ kQDi ; i ¼ mþ 1; . . .Nb ð19Þ

where PDi is the base case total active loads at bus i and Nb is the total number of
buses in the system, k 2 R is a loading parameter, i.e., a scalar independent
parameter that multiplies all generator and load powers.

(i) Objective Function and Constraints

The optimal location and settings of SOFC is formulated as a real constrained
mixed integer non-linear multi-objective optimization problem. The combined
objective function is defined as

MinimizeFðx; uÞ ¼ ½F1ðx; uÞ;F2ðx; uÞ;F3ðx; uÞ� ð20Þ

F1 represents the objective function to maximize the system load ability given
by,

MaximizeF1ðx; uÞ ¼
XNb

i¼1

PDiðkÞ ð21Þ

F2 represents the function to minimize the system losses given by,

MinimizeF2ðx; uÞ ¼
XNb

i¼1

PGi �
XNb

i¼1

PDi ð22Þ
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F3 represents the function to minimize the fuel cell generator and substation bus
emissions [99].

MinimizeF3ðx; uÞ ¼
X

EFC þ
X

EGrid ð23Þ

The load factor k represents the variation of system real and reactive loads PDi

and QDi, defined as in Eqs. (21) and (22) where, m is the total number of generator
buses, k = 1 indicates the base load case. The fuel cell generator and the substation
bus emissions are given by [75].

EFC ¼ NOxFC þ SO2FC ¼ ð0:03þ 0:006Þlb=MWh �P
PFC

EGrid ¼ NOxGrid þ SO2Grid ¼ ð5:06þ 7:9Þlb=MWh �P
Psub

)
ð24Þ

where EFC is the emission of SOFC, EGrid is emission of large-scale sources
(substation bus that connects to grid), NOxFC is nitrogen oxide pollutants of SOFC,
SO2FC is sulphur oxide pollutants of SOFC, NOxGrid is nitrogen oxide pollutants of
grid and SO2Grid is sulphur oxide pollutants of grid.

Objective function should be optimal, considering technical constraints.
Figure 16 show the basic block diagram of the control strategy implemented in this
work. The data from the IEEE 14 bus test system is fetched by the NSGAII
controller and after manipulating the data the NSGAII is fed back the control
signals to the DFIG based wind generating system to maximize the penetration.

(ii) Equality Constraints

The optimization problem is subjected to the equality constraints as given in
Eq. (25). Total real and reactive power of the system is taken as inequality con-
straints. The total real and reactive power generation by each generator should be
maintaining the load-generation profile.
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Pi ¼ PGi � PDi � Vij j
XNb

j¼1

Vj

�� �� Yij�� �� cos di � dj � hij
� �

Qi ¼ QGi � QDi � Vij j
XNb

j¼1

Vj

�� �� Yij�� �� sin di � dj � hij
� � ð25Þ

Here Pi and Qi are the injected real and reactive power to the system, PGi and
QGi are the real and reactive power generation, PDi and QDi are the real and reactive
power demanded by the load and Nb is the total number of buses.

(iii) Inequality constraints

They are the limits of maximum and minimum allowable operating values of
different power system parameters for stable grid operation. They include generator
active power (PGi ) limit, reactive power (QGi ) limit, voltage (Vi) limit, and phase
angle (di) limit which are restricted as follows.

Pmin
Gi

�PGi �Pmax
Gi

Qmin
Gi

�QGi �Qmax
Gi

Vmin
i �Vi �Vmax

i
dmin
i � di � dmin

i

9>>=
>>; ð26Þ

The constraint of transmission loading (Pij) i.e., line flow limit is represented as

Pij

�� ���Pmax
ij ð27Þ

The loading factor of each bus also consider as an inequality constrain and its
limit is given by,

1� k� kmax ð28Þ

The loading factor should me maintain with in the safe limit in order to load the
bus safely.

(iv) Power System Stability Constraints

The optimization problem here is carried out by considering the stability of the
entire power system. To enhance and ensure the stability of the system after
implementing the control algorithm some power system constraints and indices are
also incorporated with the control system.

(v) Small signal stability

Small signal stability ensures the stability of the power system in S domain
(Eigen value stability) [78]. For the small signal stability analysis, the power system
with distributed generators is modelled as a set of differential equations and a set of
algebraic equations as given below:
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_x ¼ f ðx; yÞ
0 ¼ gðx; yÞ ð29Þ

Here x; y represents the vector of the state variables and the vector of the
algebraic variables respectively. f , g are the vector of differential equations and the
vector of algebraic equations.

The Eigen value analysis is carried out by the analysis of the state matrix As. The
state matrix As is obtained by manipulating the complete Jacobian matrix Ac that is
defined by the linearization of the DAE system equations Eq. (19) at the equilib-
rium point.

D _x
0


 �
¼ fx fy

gx gy


 �
Dx
Dy


 �
¼ Ac

Dx
Dy


 �
ð30Þ

The state matrix As is obtained by eliminating the algebraic variables and, thus, it
is implicitly assumed that gy is not singular (i.e., absence of singularity-induced
bifurcations):

As ¼ fx � fyg
�1
y gx ð31Þ

(vi) Fast voltage stability indices (FVSI)

Fast voltage stability index (FVSI) is utilized in this paper to assure the safe bus
loading [79]. The FVSI is given in Eq. (32).

FVSIi;j ¼ 4Z2Qj

V2
i X

ð32Þ

Here Z represents the impedance of the system, Qj represents the reactive power
and Vi is the voltage at ith bus. The line that exhibits FVSI close to 1.00 implies that
it is approaching its instability point. If FVSI goes beyond 1.00, one of the buses
connected to the line will experience a sudden voltage drop leading to the collapse
of the system. FVSI index incorporation in the controller assures that no bus will
collapse due to overloading.

(vii) Line stability index

The line stability index symbolized by Lmn is formulated based on a power
transmission concept in a single line. The line stability index Lmn is given by [80],

Lmn ¼ 4QrX

Vsj j sin h� dð Þ½ �2 ð33Þ
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Here X is the line reactance, Qr is the reactive power at the receiving end, Vs is
the sending end voltage, h is the line impedance angle, and d is the angle difference
between the supply voltage and the receiving voltage. The value of Lmn must be less
than 1.00 to maintain a stable system.

(viii) Line stability factor

System Stability is also assured by Line Stability Factor (LQP) as given in (24).
The LQP should be less than 1.00 to maintain a stable system [81].

LQP ¼ X
V2
i

� 
XP2

i

V2
i

þQj

� 
ð34Þ

4.3 Analysis of NSGAII Optimization Method in Microgrid

Maximum load ability analysis discussed in previous section has been applied to
modified IEEE 14-bus standard test system. The optimization result recorded the
maximum instantaneous safe bus loading, when fuel cell was placed at bus 4. Total
generation and load at maximum system loading is given in Table 1.

From the table it is obvious that with optimal placement and setting of SOFC,
more load demand can be met. In the present work, for IEEE 14 bus test system
1.46 p.u additional active load i.e. an increase of 56.37% loading could be handled
without driving the system into instability. Accordingly the line limit settings and
slack limit settings are considered in the control algorithm.

The system active power losses for the three case studies analyzed viz. base case,
base case with DG, and at maximum loading condition, is shown in Table 2. From
the table it can be seen that as the system is integrated with DG, the losses are
significantly reduced.

Table 1 Generation and load at maximum system loading

System loadability PG (pu) QG (pu) PL (pu) QL (pu)

Base loading 2.73 1.09 2.59 0.81

At maximum loading 4.21 1.52 4.05 1.28

Difference (max load-Base load) 1.48 0.43 1.46 0.47

Table 2 System losses

Plossbase (pu) Ploss (pu) with controller Plossbase (pu) without controller

0.066053284 0.106365669 0.164010957
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Table 3 shows the fuel cell and grid emissions for the three cases considered.
The proposed robust controller is efficient to obtain an optimal solution where the
emissions are the least. Voltage profile of power system with DG at bus 4 and
without DG is compared in Fig. 17. The variation of voltage at each bus is studied
to analyze the impact of loadability enhancement through fuel cell DG placement.
The x axis indicates the bus numbers 1 through 15 and y axis represents the voltage
magnitude in per unit. It can be seen that at maximum system loading the voltages
are maintained within the stipulated limits of 0.9 and 1.1 p.u. Here base case
indicates without any microgrid integration. Without controller indicate the oper-
ation of grid with microgrid without the proposed controller. The third case is the
operation of the microgrid with the integration of proposed NSGAII controller.

Figure 18 shows the generations at different buses. It can be seen that with
optimal placement and setting of fuel cell at bus 4, the conventional generations can
be reduced and the whole load disturbance is absorbed by the fuel cell. Bus 3 has
the largest load share and the robust controller is able to accurately locate the best
suitable location for placement of fuel cell at bus 4. During the maximum loading
the fuel cell share 2.32 pu, from the base case value of 0.30 pu.

Table 3 Grid emission comparison

Grid emission (lb) SOFC emission (lb)

EGrid EFC

Base case
loading

Without
NSGAII

With
NSGAII

Base case
loading

Without
NSGAII

With
NSGAII

30.43561 29.64276 9.84164 0 0.124312 0.011075
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Fig. 17 Voltage profile
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Figure 19 shows the maximum loadability at different buses with and without
DG. It can be seen that bus 3 has the largest load share. The loading of the IEEE 14
bus test system without integration of DG can only be increased up to 1.2 times.
With the optimal placement and setting of SOFC at bus 4 the loadability was able to
be increased from the base case loading of 2.59 p.u to 4.9 p.u.

In Fig. 20 line power flows with and without DG is shown. The line active
power flows increases as the system loading is increased. The stability constraints
assure that the increase in line flows are within the permissible limits as per the
standards of IEEE 14-bus system.

The stability constraints at the best compromise solution represented by their
eigenvalue, FVSI, LSI and LQP are shown in Figs. 21 and 22. It is evident that the
incorporation of small signal stability constraint into the robust controller assures
grid stability. Also it can be seen that voltage and line stability indices (FVSI and
LQP) are well within acceptable limits.

Fig. 18 Generation scheduling

Fig. 19 Load scheduling
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Table 4 Different heuristic and meta-heuristic optimization algorithm and their applications in
microgrid

Optimization strategy Algorithm Application References

Heuristic and
metaheuristicoptimization

Evolutionary Algorithm (EA) Power generation
optimization,
selection and DG
sizing

[82]

Genetic Algorithm (GA) Power generation
optimization,
selection and DG
sizing

[82]

DG placement [83]

Scheduling of
operation

[83]

Simulated Annealing (SA) Power generation
optimization and
sizing

[84]

DG placement [85]

Particle Swarm Optimization
(PSO)

Sizing of DG and ES [86]

DG placement [87]

Scheduling of
operation

[88]

Artificial Immune System
(AIS)

DG placement [89]

VACCINE-AIS DG placement [90]

Scheduling of
operation

[91]

Multi-Dimensional PSO
(MDPSO)

DG placement [92]

Mesh Adaptive Direct Search
(MADS)

Scheduling of
operation

[93]

Modified Gravitational
Search Algorithm (MGSA)

Scheduling of
operation

[94]

Adaptive Modified Firefly
Algorithm (AMFA)

Scheduling of
operation

[95]

Gravitational Search
Algorithm (GSA)

Scheduling of
operation

[96]

Self-Adaptive GSA (SGSA) Scheduling of
operation

[97]

Bacterial Foraging Algorithm
(BFA)

Scheduling of
operation

[98]

Competitive Heuristic
Algorithm for Scheduling
Energy-Generation (CHASE)

Scheduling of
operation

[99]
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5 Summary

In this chapter, a comprehensive analysis of artificial intelligence optimization
methods are used for microgrid technologies and described in details. The different
challenges and steps involved in the microgrid energy management system have
been reviewed. Artificial intelligence based optimization techniques such as GA,
PSO and NSGAII have been studied and analyzed for the microgrid application.
Among these, NSGAII algorithm is found to be suitable for the microgrid opti-
mization due to its fast operation, which is the desirable quality for a real time
controller. The NSGAII algorithm is applied to the microgrid for solving the
MOOM. Power system security and stability are considered as the constraints for
the optimization problem. The control algorithm maximizes the system loadability
to a safe limit without violating any power system security constraint. The best
location for the placement of fuel cell has been identified through the static voltage
study and the grid settings by the controller. The proposed control algorithm was
tested and verified on IEEE 14-bus standard test system using Newton Raphson
power flow method and modal analysis. Total system losses and grid emissions are
significantly reduced by the NSGAII. The voltage profile, real power flow and
stability indices are plotted for stability analysis purpose. The different heuristic and
meta-heuristic algorithms that can be used for the microgrid planning, optimization
and management are given in Table 4.
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