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9.1 Introduction

In all manufacturing settings, there is an inherent drive to improve product through

the reduction in process variation, implementing new technology, increasing

efficiency, optimizing resources, and improving customer experience through

innovation. In the pharmaceutical industry, these improvements come with added

responsibility to the patient such that product made under the post-improvement or

post-change condition maintains the safety and efficacy of the pre-change product.

As described in FDA comparability guidance (1996) and ICH Q5E (2004), regula-

tory agencies also recognize the importance in providing manufacturers the flexi-

bility to improve their manufacturing processes. Agencies also acknowledge that

some changes may not require additional clinical studies to demonstrate safety and

efficacy so that implementation may be more efficient and expeditious to benefit

patients. Activities performed when changes are made to the process include

demonstration of comparability in product parameters. The actual timing of each

activity and the statistical rigor required for the evaluation of pre- and post-change

product is linked to the stage of the product development (e.g., clinical versus

commercial material) and the scope of the change (e.g., process transfer with

similar scale versus a new cell line or formulation).

To set the stage for this chapter, the requirements of comparing pre- and post-

change product are reviewed. Comparability is defined by ICH Q5E as a demon-

stration that the quality attributes of the pre- and post-change product are highly

similar and that the existing knowledge is sufficiently predictive to ensure that any

differences in quality attributes have no adverse impact on safety or efficacy of the

drug product. Guidance provides the manufacturer with flexibility to adjust study

rigor based on the stage of development and prior knowledge.
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9.2 Statistical Methods for Comparability

The FDA comparability guidance (1996) recognized the need for manufacturers

to improve manufacturing processes and analytical methods without performing

additional clinical studies to demonstrate product safety and efficacy. This guidance

was extended in ICH Q5E to provide additional direction for comparing pre- and

post-change manufacturing processes. The direction is related to the scope of the

comparability exercise and the type of change under consideration. Major process

changes should consider a larger array of testing than those of lesser scope.

For example, a change of major scope might reasonably need to consider additional

pharmacokinetic (PK) or clinical studies, whereas a change with lesser scope

may rely only on analytical comparability for a set of critical quality attributes

(e.g., biological activity, purity, and protein structure).

Although product comparability guidance does not cover the comparison of

in-process parameters given similar process changes (e.g., site transfers, scale

changes, and equipment improvements), these issues are addressed in FDA guid-

ance (2011) and were discussed in Chaps. 3–5 of this book.

Across the regulatory documents, there are only high level recommendations for

the design of a comparability study and for setting acceptance criteria to assess the

impact of the change. These documents do not contain prescriptive rules for setting

acceptance criteria, study design, or statistical methods for analysis. This chapter

provides examples of how these issues might be addressed. The study design and

statistics associated with clinical, PK, and animal studies are out of scope.

The design and scope of an analytical comparability study will vary depending

on the product and process complexity, complexity of the change, and the stage of

the clinical/commercial life cycle. The analytical methods used for analytical

comparability minimally include lot release. In addition, non-routine methods

may be used to further understand the impact of the change on the biochemical,

biophysical, and biological properties of the product. Comparison of degradation

rates and degradation profiles from select analytical methods may also enhance the

understanding of the change on key product degradants. Typically, the conditions

considered for evaluating degradation rates are harsher than recommended storage

conditions. By design, the degradation observed for a product at recommended

storage conditions is small. Given the short period of time typically available for

implementing a change, evaluation of degradation rates under recommended stor-

age conditions provides only minimal insight into how a post-change molecule

degrades over time. Instead, the pre- and post-change products are held at stressed

stability conditions. These conditions may be used to detect potential impurities and

structural modifications not otherwise detected by lot release and in-process control

testing of non-degraded material. Analytical procedures used during the assessment

of drug substance and drug product comparability should be validated or qualified

as appropriate for their intended purpose (refer to Chap. 6 for more on this topic).

Chatfield et al. (2011) provide a nice description of statistical techniques that are

useful for demonstrating comparability. They differentiate between the statistical
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equivalence tests described in Chap. 2 and other comparability approaches.

Statistical equivalence testing provides a formal statistical approach in which

statistical decision errors can be controlled. Equivalence testing is particularly

desirable when

1. Summary measures such as means and slopes are relevant to the process change

2. Acceptance criteria that considers scientific importance can be defined a priori,

and

3. Data are amenable to the statistical requirements of equivalence testing.

If these conditions are satisfied, then equivalence testing provides the strongest

scientific evidence of comparability. Attributes that are not amenable to equiva-

lence testing can be evaluated with alternative comparability approaches including

graphical summaries and comparison of individual values to pre-specified ranges.

Table 9.1 presents typical comparability approaches categorized by application.

Tolerance intervals and equivalence testing are discussed in Chap. 2 and will be

demonstrated with examples in this chapter.

Once an approach has been selected, the comparability study is designed. Since

equivalence testing involves a statistical test, concepts typically associated with

hypothesis testing such as error rate and statistical power are employed to select an

appropriate study design. With the other approaches, the design will be determined

by availability of relevant pre-change data and heuristic rules used for defining

comparability. The final step is to collect the post-change data and compare it

against the pre-stated criteria. If all of the criteria are met, one declares the product

manufactured under the post-change process is comparable to the product

manufactured under the pre-change process. When one or more acceptance criteria

are not met, further investigation is required to determine if the pre- and post-

change product is comparable. This could include further characterization, analyt-

ical method improvement, or the performance of additional nonclinical or clinical

studies.

Table 9.1 A summary of the comparability approaches

Comparability

approach

Lot

release

Stability at

recommended storage

conditions

Stability at

stressed storage

conditions

Characterization

methods

Comparison of individual values

Visual

comparisons

X X X X

Tolerance intervals X X

Specifications X X

Limit evaluations X X X

Comparison of summary measures

Equivalence

testing

X X X
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9.2.1 Lot Release

Minimally, results from the post-change process are compared to the currently

approved lot release specification limits regardless of where the molecule is in its

development life cycle. As the complexity of the change increases, additional

assessment criteria may be required.

It may be desirable to retest pre-change lots at the same time that post-change

lots are tested. By recording these measurements in the same analytical run,

uncertainty related to precision and changes to analytical methods over time will

be mitigated. In order to use such a design, it must be assumed that product stability

(freeze-thaw or storage stability) has been demonstrated to be negligible.

Lot release tests are implemented early in clinical drug development to assess

safety and efficacy prior to product release. A subset of lot release tests may be

selected for comparability assessment. Typically these methods provide a quanti-

tative assessment of critical product quality attributes. As product progresses

through clinical development, a data set of analytical test results is accumulated.

These data allow an ongoing assessment of patient exposure to levels of product

quality attributes that may vary from lot-to-lot. Specifications and comparability

assessment criteria may be adjusted using these data during clinical development as

patient exposure experience is gained. These limits should factor in the ranges of

analytical test data as well as the statistical and operational components that

influence the variability of the analytical method (determined during method

validation) and the variability of the process (determined during process

characterization).

9.2.2 Stability at Recommended and Stressed Storage
Conditions

Stability at recommended storage condition is typically assessed by comparing

post-change stability results to pre-change stability data. The appropriate stability

indicating assays are identified and implemented as part of the normal GMP

stability program during clinical and commercial development. As product

progresses through clinical development, a data set of stability test results is

accumulated. These data allow an ongoing assessment of patient exposure to drug

substance/drug product stability profiles that may vary due to manufacturing and

formulation variability. Generally speaking, there is typically little to no degrada-

tion of product observed under recommended storage conditions. Appropriate

recommended storage stability comparability limits can be set using the specifica-

tion, visual assessments (chromatographic overlays), or limit tests. Because the

degradation profile estimated from the post-change data at recommended storage is

generally not extrapolated to the established expiry, care must be taken in setting

the acceptance criterion if an equivalence test is performed. This is because the
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pre-change product will have a slope which is estimated across the entire range of

shelf life whereas the post-change product will have limited information to estimate

the slope. This difference in range causes the variances for the two slope estimates

to differ, even if the processes are identical.

Stability at a stressed storage condition is also assessed by comparing post-

change stability results to the pre-change stability data. The stressed stability

conditions may be conducted under elevated temperatures or other stressed condi-

tions such as chemically induced oxidation. The selection of the stressed condition

will be based on the primary degradation pathway. In some cases one or more

analytical methods may detect degradation of the product. For stressed stability

studies, it is desired to compare the slope of the post-change data to the slope of the

pre-change data. Since the comparison of interest concerns the summary measure

slope, a test of equivalence is an appropriate choice to assess comparability. Such a

test is demonstrated in Sect. 9.4.2. It may also be appropriate to include a visual

assessment such as chromatographic overlays at specified time points. Appropriate

accelerated storage stability comparability criteria can be established and adjusted

during clinical development as patient exposure experience is gained.

9.2.3 Characterization Methods

Biochemical, biological, and biophysical analyses are performed on new process

lots as appropriate. These lots are compared side-by-side to representative

pre-change lots as well as to the current reference standard. A side-by-side study

is conducted when an analytical method is not used routinely. A predetermined

number of batches are collected from both the pre-change and post-change process

and placed on the assay at the same point in time. This way, any differences

associated with the analytical method will not manifest itself as differences between

the two processes.

9.3 Comparability Examples for Individual Post-change
Values

In this section, several examples are provided where criteria for post-change

individual values are represented as ranges based on pre-change expectations.

Most typically, comparability is demonstrated if a defined percentage of the post-

change individual values fall within these ranges. The range criteria are computed

with pre-change data using tolerance intervals. In some cases, specification limits or

an LOQ may be appropriate for defining such criteria.

The following examples demonstrate how to compute prediction and tolerance

intervals for several types of data structures. Chapter 2 provides the formulas that
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are demonstrated in this section. The three-step comparability approach is as

follows:

1. Plot the data and visually compare the two groups.

2. Compute a tolerance interval using pre-change data.

3. Assess the post-change data by determining the percentage of post-change

values that fall in the tolerance interval.

Demonstration of comparability requires a pre-specified proportion of post-

change observations falling within the tolerance interval. Therefore, the width of

the computed interval is a key component in setting the interval-based acceptance

criteria. Confidence levels and proportions contained in a tolerance interval are

often based on the amount of both pre- and post-change data. Dong et al. (2015b)

offer considerations when using tolerance intervals to define the quality of a

pre-change process. In general, if the pre- and post-change data sets are small,

confidence intervals and coverage proportions must be reduced to provide mean-

ingful intervals. Use of 99% confidence or 99% coverage with small data sets will

result in intervals that are too wide to be useful in assessing comparability. In such

cases, specifications or other limit evaluations may be required to serve as criteria.

The pre-change data used to compute tolerance intervals must be assessed against

the statistical assumption of normality as described in Chap. 2.

9.3.1 Combining Pre-change Data Sets at Different Scales

This example considers a process transfer where pre-change data are available from

two manufacturing scales: a clinical scale and a commercial scale from a licensed

facility. The process in the licensed facility is to be transferred to a different

commercial facility at the same commercial scale (i.e., the post-change facility).

The parameter of interest is an in-process control parameter that measures yield in

kilograms with a specification of 40.8–75.0 kg. Figure 9.1 presents a plot of the

pre-change data. The n1 ¼ 5 lots on the left are from the clinical scale, and the n2
¼ 5 lots on the right are from the commercial scale. It is clear from the plot that the

yields differ between the clinical and commercial scale processes. The spread in the

data for the clinical and commercial scale appears similar.

These data are now combined to construct a tolerance interval to provide a

comparability criterion. Yields from the post-change process will be expected to

fall in this range. Since the spreads of the two scales in Fig. 9.1 are comparable, it is

desired to pool (combine) the two data sets for estimating the pre-change variance.

Since the commercial scale best represents the expected average of the post-change

facility, it is desired to center a tolerance interval on the commercial scale average.

The tolerance interval formula in Eq. (2.23) can be used to compute the desired

interval with some slight modifications. In particular, �Y now represents the sample

mean of the commercial scale, and S2 is replaced with the pooled variance estimate
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of the two scales. This pooled variance is denoted S2P and is defined in Eq. (2.56).

The value of K is defined in Eq. (2.25) with ne ¼ n2 ¼ 5 and ν ¼ n1 þ n2 � 2 ¼ 5þ
5� 2 ¼ 8: The required values to compute a two-sided 95% tolerance interval with

99% coverage are shown in Table 9.2.

The computed interval using (2.23) with K defined in (2.25) is

L¼ �Y � K
ffiffiffiffiffi
S2

p

U ¼ �Y þ K
ffiffiffiffiffi
S2

p

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ne

� �
Z2

1þPð Þ=2 � ν

χ2α:ν

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

5

� �
2:582 � 8

2:73

vuut
¼ 4:83

L¼ 56:36� 4:83� ffiffiffiffiffiffiffiffiffi
6:21

p ¼ 44:3

U ¼ 56:36þ 4:83� ffiffiffiffiffiffiffiffiffi
6:21

p ¼ 68:4

ð9:1Þ
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Fig. 9.1 Clinical and commercial scale pre-change data

Table 9.2 Values required to compute tolerance interval

Statistic description Notation Example values

Sample mean of commercial scale �Y 56.36

Pooled variance S2P in (2.56) 6.21

Error degrees of freedom ν ¼ n1 þ n2 � 2 8

Effective sample size ne ¼ n2 5

Confidence level 1� αð Þ 0.95

Proportion contained P 0.99
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The 95% tolerance interval containing 99% of all future observation is

44.3–68.4 kg which falls within the in-process specification of 40.8–75.0 kg.

The residuals formed by subtracting the appropriate scale mean from each obser-

vation are plotted in the normal quantile plot shown in Fig. 9.2. The plot suggests

the normality assumption is reasonable.

The advantage of combining the two data sets to estimate the variance is seen by

comparing the computed interval in (9.1) to an interval based solely on the

commercial lots. This calculation is

L¼ �Y � K
ffiffiffiffiffi
S2

p

U ¼ �Y þ K
ffiffiffiffiffi
S2

p

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ne

� �
Z2

1þPð Þ=2 � ν

χ2α:ν

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

5

� �
2:582 � 4

0:71

vuut
¼ 6:69

L¼ 56:36� 6:69� ffiffiffiffiffiffiffiffiffi
9:90

p ¼ 35:3

U ¼ 56:36þ 6:69� ffiffiffiffiffiffiffiffiffi
9:90

p ¼ 77:4

ð9:2Þ

This interval is so wide that it exceeds the specification range of 40.8–75.0 kg

and has no value as a comparability range.

Figure 9.3 presents the computed tolerance interval (dashed line) and the

specifications (solid line) with the pre-change data used in the computations. The

yields from the post-change facility are expected to fall in the tolerance interval.

Fig. 9.2 Normal quantile plot of yield residuals
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Figure 9.4 presents the computed intervals using the pre-change data with the

first six post-change yield values. Since all post-change values fall within the

tolerance interval, comparability has been demonstrated.

Fig. 9.3 Specifications and tolerance interval for yield data
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Fig. 9.4 Post-change yield data
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9.3.2 Tolerance Intervals with Replicate Measures
on Each Lot

Unlike the data presented in Sect. 9.3.1, this example considers a situation where

there are replicate measurements taken on all or a portion of the batches.

The appropriate formula for a tolerance interval for these data is provided in

Eq. (2.52). Figure 9.5 presents a data set with r ¼ 5 purity measurements taken

on each of a ¼ 11 lots in a pre-change data set. The lot release specification for this

parameter is a one-sided specification of�40.0%. The data are plotted in time order.

Calculation of the 95% tolerance interval that contains 99% coverage is shown

in Table 9.3. The Hoffman and Kringle interval referenced in Sect. 2.7.4 is

from 42.7 to 57.8 (calculations on spreadsheet at website).

Figure 9.6 is a plot of the pre-change data used to compute the tolerance

intervals, the specification (solid line), and the two-sided tolerance interval (long

dashed lines). Note that although the specification is one-sided on the lower end, the

comparability tolerance interval is still two-sided. Comparability is a comparison of

the two processes, apart from the specification. It is possible that two processes are

not comparable, but are both capable of meeting specification.

As an alternative to the interval computed in Table 9.3, one may choose to

compute the comparability interval using lot averages instead of individual values.

In this case, the averages are independent across lots, and so the tolerance interval is

computed using the independent formulas in Sect. 2.6.7. Figure 9.7 presents a plot

of the lot averages for the data set in Fig. 9.5, and Table 9.4 provides the tolerance

interval calculations based on formulas (2.23) and (2.25).

Figure 9.8 includes the tolerance intervals with the plot of lot averages.
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Fig. 9.5 Pre-change batch purity (%) plotted in time order
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As expected, the tolerance interval in Fig. 9.8 is tighter than the tolerance

interval in Fig. 9.6. This is because variability in lot means is smaller than

variability in individual values. One may construct comparability limits in either

manner as long as consistency is maintained between the limits and the post-change

values begin compared (i.e., either individual values or lot averages).

Table 9.3 Statistics needed to compute tolerance interval

Statistic Value

Confidence level 100 1� αð Þ% 95%

Proportion covered 100P% 99%

a 11

r 5

�Y 50.261

S2A 12.260

S2E 0.529

S2Total from Eq. (2.46) 2.875

m from Eq. (2.50) 13.65

m (rounded) 14

K 3.794

Z1þP
2

2.576

L from (2.52) 43.8

U from (2.52) 56.7

Fig. 9.6 Pre-change data acceptance criteria and specification
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9.4 Equivalence Testing for Summary Parameters

When summary parameters are informative, equivalence testing provides the stron-

gest statistical evidence of comparability. Equivalence testing is discussed in Sect.

2.11. Data used in an equivalence test can be either profile or non-profile. Non-

profile data are collected at a single point in time. Examples of non-profile data

include lot release or in-process control measurements. Profile data are collected

over time. In the context of comparability, a stability profile is of interest when data

are collected in this manner. Typically, non-profile data involve a comparison of

averages, and profile data involve a comparison of slopes.
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Fig. 9.7 Plot of lot averages for purity (%)

Table 9.4 Statistics needed to compute tolerance interval

Statistic Value

Confidence level 100 1� αð Þ% 95%

Proportion covered 100P% 99%

ne 11

�Y 50.261

S2 2.452

ν 10

χ2α : ν 3.940

Z1þP
2

2.576

K from (2.25) 4.286

L from (2.23) 43.6

U from (2.23) 57.0
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As noted in Sect. 2.11, the most challenging part of an equivalence test is often

establishment of the equivalence acceptance criterion (EAC). In the next two

sections, guidance is offered for both non-profile and profile data.

9.4.1 Equivalence Acceptance Criterion for Non-profile Data

The equivalence hypotheses used to demonstrate comparability with non-profile

data are

H0 : μPre � μPostj j � EAC

Ha : μPre � μPostj j < EAC
ð9:3Þ

where the subscripts denote the pre- and post-change conditions, respectively. As

discussed in Sect. 2.11, equivalence is assessed by constructing a two-sided 100

1� 2αð Þ% confidence interval on the difference μPre � μPost. The null hypothesis

H0 in Eq. (9.3) is rejected and equivalence is demonstrated if the entire confidence

interval falls in the range from �EAC to þ EAC.

When evaluating product comparability, the EAC defines the maximum differ-

ence in means that has no practical scientific impact. It is ideal if a subject matter

expert (SME) can define the EAC. In the absence of an SME definition, parameters

defined by specifications or other decision making limits are used in the decision

process.

To provide an example, consider a situation where the lot release specification

for protein concentration is LSL¼ 58.5 mg/mL and USL¼ 71.5 mg/mL.
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Fig. 9.8 Tolerance interval based on lot averages
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The pre-change process data are plotted in Fig. 9.9, and the descriptive statistics are

listed in Table 9.5. The data are independent with one value for each lot.

One might ask the question, “Given the pre-change process mean is

65.00 mg/mL and the standard deviation is 1.18 mg/mL, what is the maximum

allowable shift in the post-change mean that would not cause an unacceptable

probability for an out-of-specification (OOS) observation?” This question can be

answered by using a process capability index as presented in Eq. (5.13). This

capability measure is

Ĉ pk ¼ min
USL� �Y

3S
;
�Y � LSL

3S

� �
ð9:4Þ
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Fig. 9.9 Protein concentration (mg/mL) by lot

Table 9.5 Descriptive statistics for pre-change protein concentration

Statistic Value (mg/mL)

Mean �Yð Þ 65.00

Standard deviation (S) 1.18

Minimum 62.47

Maximum 67.02

Lot count 35
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Using the values in Table 9.5, the computed capability measure is

Cpk ¼ min
USL� μY

3σst
;
μY � LSL

3σst

� �

¼ min
71:5� 65:00

3� 1:18
;
65:00� 58:5

3� 1:18

� �
¼ min 1:84; 1:84½ � ¼ 1:84

ð9:5Þ

For this example, the two quantities within the parentheses are equal, implying

that the process is centered within the specification. For this example, let’s assume

that a capability of 1.5 is acceptable. This corresponds to a 0.0007% chance of an

individual value falling outside of the specification limits (see Montgomery 2013).

The largest mean protein concentration for the post-change process that meets this

requirement if the process shifts to the right is computed as follows:

1:5¼ 71:5� μPost
3� 1:18

μPost ¼ 71:5� 1:5� 3� 1:18 ¼ 66:19 mg=mL:

ð9:6Þ

Thus, the allowable shift from the present position is computed as66:19-65:00 ¼
1:19 mg=mL; or the equivalence acceptance criterion is EAC¼ 1.19 mg/mL.

Because the process is centered, a shift of the post-process change to the left

would provide the same EAC.

Figure 9.10 presents a simulated post-change data set with a mean of

66.19 mg/mL and standard deviation of 1.18 mg/mL next to the pre-change data
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Fig. 9.10 Graphical representation of an acceptable process shift
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distribution. This provides an effective representation of a process shift at the EAC.

It is clear from Fig. 9.10 that the amount of tolerable shift is small in order to

maintain a low percentage of observations exceeding the upper specification limit.

When no specification or SME defined EAC is available, one can define an EAC

based on behavior of the pre-change process and a visual assessment as in Fig. 9.10.

This approach describes the difference in means based on “expected” behavior of

the pre-change process as opposed to “acceptable” behavior in terms of safety or

efficacy. The notion of “expected” behavior is proposed by Hauk et al. (2008).

Pre-change process behavior is described with a statistical model that incorporates

the pre-change process average, lot-to-lot variation, and intermediate precision of

the analytical method.

The EAC is defined as the acceptable shift in population means expressed in

terms of the standard deviation of the pre-change response variance. This ratio is

called the effect size (ES). The ES is defined as

ES ¼ μPre - μPostj j
σPre

ð9:7Þ

and discussed in Sect. 2.8.2. An EAC describing the pre-change process is defined

as a function of an acceptable value for ES. In particular,

EAC ¼ ES� σPre ð9:8Þ

where σPre is estimated based on a sample of pre-change lots. In some situations, it

may be reasonable to replace σPre with an upper bound to account for sampling

error. This approach has been advocated by Limentani et al. (2005) using a

confidence coefficient of 80%.

An acceptable value of ES will depend on the application and rigor required to

demonstrate equivalence. For example, demonstration of analytical similarity of a

biosimilar may have a smaller ES compared to a demonstration of comparability for

a process transfer. Selection of ES in Eq. (9.8) is aided using SMEs and visual

representations. By visually representing a variety of ES values, the SME can

evaluate the overlap of the pre-change data and simulated post-change data.

Figure 9.11 represents four possible values of ES with the corresponding

overlapping coefficient as defined by Inman and Bradley (1989). This overlapping

coefficient is defined as

OVL ¼ 2� Φ � μPre � μPostj j
2σ

� �
ð9:9Þ

where σPre ¼ σPost ¼ σ and Φ(•) is the cumulative function of a standard normal

random variable. For example, if two distributions differ by one standard deviation,

then
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OVL¼ 2� Φ � μPre � μPostj j
2σ

� �

¼ 2� Φ � σ

2σ

� �
¼ 2� Φ �1

2

� �
¼ 2� 0:309 ¼ 0:62

ð9:10Þ

The pre-change population is represented by a red dashed line and the post-

change population is represented by a blue solid line in Fig. 9.11. In the top-left

panel, the effect size is zero which corresponds to 100% overlap between the pre-

and post-change populations. As the effect size increases, the amount of overlap

decreases. The most extreme case presented in Fig. 9.11 is an effect size of three. In

this situation there is only 13% overlap between the pre- and post-change

populations. There is an important consideration when using these plots to select

an acceptable value for ES. When the mean shift is equal to the ES in each panel of

Fig. 9.11, there is only a 5% chance that one will pass the statistical test of

equivalence. Thus, in order to reasonably pass a test of equivalence, the true

mean difference must be much less than the EAC.

Table 9.6 presents a summary table of eight pre-change process lots that are to be

used to define a statistically based EAC.

The selected EAC using Eq. (9.8) is

EAC ¼ 2� 0:367 ¼ 0:73 ð9:11Þ
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Using Eq. (2.10) to incorporate an 80% upper bound on the variance, the EAC is

EAC¼ ES

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPre � 1ð ÞS2Pre
χ2α:nPre�1

s

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 1ð Þ � 0:367ð Þ2

3:82

s
¼ 0:99

ð9:12Þ

At this point, the SME can help evaluate the reasonableness of the EAC. If there

are repeated measures for each lot, one should consider working with lot averages

as discussed in Sect. 9.3.2.

Another option when basing the EAC on effect size is to perform the equivalence

test directly on the effect size. That is, change the hypotheses in Eq. (9.3) to

H0 :
μPre � μPostj j

σPre
� EAC

Ha :
μPre � μPostj j

σPre
< EAC

ð9:13Þ

A confidence interval can be computed to test the effect size in Eq. (9.13) using

results presented in Sect. 2.8.2. An example of such an application is provided in

Sect. 9.7.

9.4.2 Equivalence Acceptance Criterion for Profile Data

The previous section considered the computation of an EAC using non-profile data.

However, ICH Q5E also requires that the stability profiles of the pre- and post-

change products be highly similar. Burdick and Sidor (2013) provide an approach

for defining an EAC with profile data under stressed conditions.

For stability data, the stability profile of the pre-change product is compared to

the post-change product in order to determine if the degradation rates are highly

similar. The hypothesis test is focused on the difference between the pre- and post-

change degradation rates (slopes). The hypotheses are

H0 : βPre � βPostj j � EAC
Ha : βPre � βPostj j < EAC

ð9:14Þ

Table 9.6 Values required to

compute EAC
Description Value

Number of pre-change lots nPre ¼ 8

Pre-change sample standard deviation 0.367

Acceptable effect size 2
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where βPre is the slope of the pre-change profile and βPost is the slope of the post-
change profile. As in the non-profile case, the EAC is a pre-selected constant that

reflects the maximum allowable difference between two parameters such that they

can be deemed equivalent. The challenge with profile data is that degradation at

recommended storage conditions may be slow and differences are manifested over

a very long time period. Typically, product is exposed to non-recommended storage

conditions such as a higher temperature to accelerate degradation. The exposure of

product to specific accelerated conditions allows the stability profiles to be com-

pared in a more timely manner. When comparing degradation rates under either

recommended storage conditions or accelerated conditions, it is assumed that

reaction kinetics driving the stability properties are consistent between the

pre-and post-change processes. With this assumption, the slopes can be compared

using a statistical test of equivalence.

Under recommended storage conditions, the EAC may be directly linked to

product safety and efficacy through the use of the product’s specification. However,
under non-recommended storage conditions, the linkage to specifications is not

meaningful. For small molecules, it might be possible to establish EAC using

Arrhenius kinetics to link acceptable degradation rates at accelerated conditions

to product specifications at recommended conditions. However, such kinetics are

difficult to apply to biological product degradation mechanisms, and thus is not

considered a generally useful approach. Instead, with non-recommended storage

conditions, the EAC can be expressed as an effect size in much the same manner

described for non-profile data.

Assuming that the reaction kinetics driving the stability properties are consistent

between the pre- and post-change processes, the random intercept mixed model in

Eq. (2.115) is used to define the responses. The assumed model for establishing the

preliminary EAC using the pre-change data when all lots are measured at the same

time points is

Yij ¼ μþ Li þ βPre � tj þ Eij

i¼ 1, . . . , n; j ¼ 1, . . . , T
ð9:15Þ

where Yij is a response measured for lot i at time point j, μ is the average y-intercept

across all pre-change lots, βPre is the average slope across all pre-change lots, Li is a
random variable that allows the y-intercept to vary from μ for a given lot, Li has a

normal distribution with mean 0 and variance σ2L, tj is the time point for measure-

ment j of each lot, Eij is a random normal error term created by measurement error

and model misspecification with mean 0 and variance σ2E, n is the number of

sampled lots, T is the number of time points obtained for each pre-change lot, and

Li and Eij are jointly independent.

Once the model has been fit, the EAC is computed. The methodology used to

compute the EAC for profile data is similar to the concept presented in Sect. 9.4.1.

For the accelerated stability model in (9.15), consider the ordinary least squares

estimator of the slope based on the ith lot, β̂ i. The statistical test of equivalence is
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now based on comparing the distribution of the β̂ i for the pre- and post-change

processes. For the pre-change process, the distribution of β̂ i is normal with mean β
and variance

Var β̂
	 
¼ σ2E

SST

SST¼
XT
j¼1

tj � �t
	 
2

�t¼

XT
t¼1

tj

T
:

ð9:16Þ

Treating the pre-change process as the reference distribution, the EAC is

EAC ¼ ES�
ffiffiffiffiffiffiffiffiffiffi
σ2E
SST

:

r
ð9:17Þ

where an estimate σ2E is based on the pre-change sample. Typically, most of the

variability represented by σ2E is due to the analytical method error. If the analytical

method is well characterized, the intermediate precision may be used to estimate

σ2E. Should the intermediate precision not be available, σ2E may be obtained from the

pre-change data collected at the storage condition of interest. In some cases, it may

be reasonable to use a 100 1� αð Þ% upper bound on σ2E.
The next step in computing (9.17) is to determine an appropriate effect size,

ES. Similar to the non-profile case, it is helpful to evaluate the effect size visually.

Figure 9.12 displays plots of two processes for four values of ES. The figure

presents 15 randomly generated individual slope estimates from each process.

The pre-change slope estimates are represented by the solid lines and the post-

change process estimates by the dashed lines. All lines are emanating from the same

y-intercept in order to better focus on the differences in slopes. One can see from

Fig. 9.12 that an ES of three provides essentially two distinct distributions. This

suggests that an ES more extreme than three might be too great a separation to

declare populations comparable. Overlap of the distributions can be defined as with

non-profile data, suggesting a value of ES¼ 2 is reasonable. Recall that for a given

EAC, when the true difference in slopes is equal to the EAC, there is only a 5%

chance of passing the equivalence test.

To demonstrate, consider a pre-change data set collected for a purity assay over a

3 month time period. Samples are held at the stressed condition of 37∘C for the

entirety of the study. There are n ¼ 15 lots in the pre-change data set and all lots

have been evaluated at 0, 1, 2, and 3 months. Figure 9.13 consists of the individual

predicted slopes fit through each lot where all regression lines are emanating from

the average y-intercept of 86.0% to better visualize the range of slopes for the
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Fig. 9.13 Pre-change data with lot specific regression lines and common intercept
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Fig. 9.12 Plots of effect sizes (ES) with stability profiles (solid lines are the pre-change process
and dashed lines the post-change process)
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pre-change data. The slopes range from �0.056%/month (lot G) to �0.727%/

month (lot A). Table 9.7 lists the individual slope estimates for each lot.

The average slope is β̂ Pre ¼ �0:255. The value for the mean squared error is

obtained by regressing Purity on Time and Lot (as a random effect), and using the

estimate of σ2E. For this example, the mean squared error is σ̂ 2
E ¼ 0:200. The

associated degrees of freedom are nPre � T � 1ð Þ � 1 ¼ 15� 4� 1ð Þ � 1 ¼ 44:
Formula (9.17) is used to compute the EAC based on the pre-change data. Here

�t¼

XT
j¼1

tj

T
¼ 0þ 1þ 2þ 3ð Þ

4
¼ 1:5

SST ¼
XT
j¼1

tj � �t
	 
2 ¼ 0� 1:5ð Þ2 þ 1� 1:5ð Þ2 þ 2� 1:5ð Þ2 þ 3� 1:5ð Þ2 ¼ 5

ð9:18Þ

and so

EAC¼ ES

ffiffiffiffiffiffiffiffi
σ̂ 2
E

SST

r

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffi
0:200

5

r
¼ 0:40% per month

ð9:19Þ

The test of the hypotheses

H0 : βPre � βPostj j � 0:40% per month

Ha : βPre � βPostj j < 0:40% per month
ð9:20Þ

was performed by selecting six post-change lots, and subjecting them to the stressed

condition of 37∘C at 0, 1, 2, and 3 months. The slopes and average for these six lots

are shown in Table 9.8. The mean squared error is 0.183 withnPost � T � 1ð Þ � 1 ¼
17 degrees of freedom.

Table 9.7 Slope estimates

of the pre-change lots
Lot ID Slope Lot ID Slope

A �0.727 I �0.165

B �0.090 J -0.402

C �0.610 K �0.082

D �0.092 L �0.115

E �0.368 M �0.188

F �0.137 N �0.521

G �0.056 O �0.220

H �0.059 Average �0.255
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By pooling the two mean squared errors in Table 9.9, the estimate of σ2E is

σ̂ 2
E ¼ 44� 0:200þ 17� 0:183

61
¼ 0:195: ð9:21Þ

Because the same time points are used for each data set,SST ¼ 5 for both groups,

and a 90% two-sided confidence interval on the difference in slopes is

β̂ Pre � β̂ Post � t0:95:61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2
E

SST

1

nPre
þ 1

nPost

� �s

L ¼ �0:255� �0:459ð Þ � 1:67ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:195

5

1

15
þ 1

6

� �s
¼ 0:045% per month

U ¼ �0:255� �0:459ð Þ þ 1:67ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:195

5

1

15
þ 1

6

� �s
¼ 0:363% per month

ð9:22Þ

As shown in Fig. 9.14, the confidence interval from 0.045 to 0.363% falls

between the EAC range of�0.40 to +0.40%/month. This demonstrates equivalence

of slopes.

9.5 Design and Power Considerations

Before performing any equivalence test, it is important to plan a design that has a

good chance of passing when the groups are indeed equivalent. First, the collected

samples for the study should be run in a random order to minimize the impact of

bias. The randomization of the samples should be discussed with the laboratory

Table 9.9 Summary of slopes and mean squared errors

Group Slope average Mean squared error Error degrees of freedom

Pre-change �0.255 0.200 44

Post-change �0.459 0.183 17

Table 9.8 Slope estimates

of the post-change lots
Lot ID Slope

P �0.547

Q �0.576

R �0.613

S �0.460

T �0.362

U �0.196

Average �0.459
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prior to sample collection so that any logistics with sample freezing and run order

can be agreed upon. Second, the study owner should understand the format of

the data set. This includes significant figures, labeling format, and administration

of the data set. Data precision should align with the maximum precision allowed by

the analytical method. If data are overly rounded, the parameter estimates will be

over- or underestimated depending on the direction of the rounding. Section 2.3

provides more discussion on this topic.

Power is the probability of rejecting the null hypothesis for a given value of the

parameter of interest. It is important to properly power a statistical test in order to

ensure that equivalence can be demonstrated when it is present. Recommendations

for determining the number of post-change lots in an equivalence study are

discussed in the next two sections.

9.5.1 Non-profile Data

Recall the equivalence test used to demonstrate comparability with non-profile

data is

H0 : μPre � μPostj j � EAC

Ha : μPre � μPostj j < EAC
ð9:23Þ

As discussed in Sect. 2.11, equivalence is assessed by constructing a two-sided

100 1� 2αð Þ% confidence interval on the difference μPre � μPost. The null
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Fig. 9.14 Results of equivalence test on slopes
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hypothesis H0 in Eq. (9.23) is rejected and equivalence is demonstrated if the entire

confidence interval falls in the range from �EAC to þ EAC.

Power is defined as the probability of rejecting H0 and claiming equivalence

for a given value of μPre � μPostj j. By definition, if the value μPre � μPostj j ¼
EAC, then the power is equal to α. Typically, α ¼ 0:05 and one constructs a

100 1� 2αð Þ% ¼ 90% confidence interval on the difference μPre � μPost. For values
of μPre � μPostj j less than EAC, the power is greater than 0.05, and for values greater
than EAC, it is less than 0.05. Figure 9.15 presents a power curve for the

EAC¼ 0.734 with a standard deviation of 0.367.

As expected, increasing the number of post-change lots from 3 to 6 increases the

power for any given value ofδ ¼ μPre � μPostj j. In order to determine an appropriate

number of post-change lots, we recommend a power somewhere between at least

0.74–0.87 when μPre � μPostj j ¼ 0:083� EAC. This assumes one is using a

two-sided 90% confidence interval to conduct the test. Applying this rule to our

example, a sample size of three post-change lots is minimally sufficient and six

post-change lots provides more than adequate power.

The power curve in Fig. 9.15 was computed using the SAS program PROC

POWER. This code is shown below for the case where nPost ¼ 6 post-change lots

are tested against nPre ¼ 8 pre-change lots assuming μPre � μPostj j ¼
0:083� EAC ¼ 0:061. The computed power from this code is 0.923.

proc power;

twosamplemeans test¼equiv_diff

lower¼�0.734

Fig. 9.15 Power curve with δ ¼ μPre � μPostj j, nPre ¼ 8, σ ¼ 0:367, and EAC¼ 0.734
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upper¼0.734

meandiff¼0.061

stddev¼0.367

power¼.

groupns¼(8 6);

run;

If software is not available to perform this calculation, one can write a simple

simulation code to compute the power. Consider the same example shown in

Fig. 9.15. A simulation can be constructed using Excel by following these steps

and using the pooled confidence interval shown in Eq. (2.56):

1. Select values for δ ¼ μPre � μPostj j, σ, nPr e, and nPost. For our example select

δ ¼ 0:061, σ ¼ 0:367, nPre ¼ 8, and nPost ¼ 6.

2. Simulate a random value for �YPre � �YPost using the formula

�YPre � �YPost ¼ μPre � μPost þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

1

nPre
þ 1

nPost

� �s

¼ 0:061þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:367ð Þ2 1

8
þ 1

6

� �s ð9:24Þ

where Z is a randomly simulated standard normal random variable.

3. Simulate a random value for S2P using the formula

S2P ¼ σ2

nPre þ nPost � 2
�W ¼ 0:367ð Þ2

8þ 6� 2
�W ð9:25Þ

whereW is a chi-squared random variable with nPre þ nPost � 2 degrees of freedom.

4. Compute L and U using Eq. (2.56) to form a 90% confidence interval on

μPre � μPost.
5. If the confidence interval in step 4 falls between –EAC and +EAC, increase a

counter by one, and simulate another iteration of steps 1–5. Repeat 10,000 times.

Figure 9.16 shows the first 25 rows of an Excel spreadsheet with 10,000

iterations of the simulation. (The entire spreadsheet is available at the website for

this book.) Note that in Excel, W needs to be determined by first using the random

uniform function since a chi-squared generator is not available. The percentage of

the simulated 10,000 values that falls within the range –EAC to +EAC is 0.922.

This matches to two decimal places the value computed using PROC POWER.
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9.5.2 Power Considerations with Profile Data

The equivalence test used to demonstrate comparability with profile data as

described in (9.14) is

H0 : βPre � βPostj j � EAC

Ha : βPre � βPostj j < EAC
ð9:26Þ

Equivalence is demonstrated if a two-sided100 1� 2αð Þ%confidence interval on

βPre � βPost falls in the range from �EAC to þ EAC. A simulation to determine

power can be constructed using Excel by following these steps and using the pooled

confidence interval shown in Eq. (9.22):

1. Select values for EAC, βPre � βPostj j, σ2E, T, SST, nPr e, and nPost. For our example

assume we select EAC¼ 0.40%, βPre � βPostj j ¼ 0:083� EAC ¼ 0:033,

σ2E ¼ 0:20, T ¼ 4, SST ¼ 5, nPre ¼ 15, and nPost ¼ 6. Assuming we will

be pooling the data to estimate error, the error df is nPre þ nPostð Þ � T � 1ð Þ�
2¼ 61.

2. Simulate a random value for β̂ Pre � β̂ Post using the formula

β̂ Pre � β̂ Post ¼ βPre � βPost þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2E
SST

1

nPre
þ 1

nPost

� �s

¼ 0:033þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20

5

1

15
þ 1

6

� �s ð9:27Þ

where Z is a randomly simulated standard normal random variable.

Delta: assumed difference in means 0.061
Assumed SD 0.367
Sample size for the pre change 8
Sample size for the post change 6
Two-sided conf level 0.9 Power 0.922
Two-sided t-value 1.782
EAC 0.734

Simulation Z W uniform W chi-square Diff sample means (9.24) Pooled Variance (9.25) L (2.59) U (2.59) CI between -EAC EAC
1 -0.357000545 0.42527543 12.2568888 -0.009758455 0.137572341 -0.366773681 0.347256771 1
2 -0.524848929 0.4741966 11.64982271 -0.04302645 0.130758581 -0.391088179 0.305035279 1
3 0.458624072 0.566148869 10.56925263 0.151900508 0.118630172 -0.179626378 0.483427394 1
4 -0.307602477 0.419446394 12.33138051 3.2373E-05 0.138408442 -0.358066096 0.358130842 1
5 -2.053966455 0.436414686 12.11592975 -0.346101601 0.135990205 -0.701057982 0.008854781 1
6 0.280442691 0.261787774 14.63877075 0.116584485 0.164306783 -0.273581064 0.506750035 1
7 0.071702289 0.836085086 7.315417391 0.075211584 0.082108854 -0.20060233 0.351025497 1
8 0.054455995 0.4242378 12.27011139 0.071793323 0.137720753 -0.285414423 0.429001069 1
9 -0.380582605 0.839381085 7.268366943 -0.014432482 0.081580756 -0.289357991 0.260493027 1

10 0.760979901 0.216803491 15.46861979 0.211828235 0.173621078 -0.189243814 0.612900285 1
11 -0.748975708 0.231269265 15.18888123 -0.087448972 0.170481269 -0.48487793 0.309979986 1
12 0.808336154 0.202185125 15.76610812 0.22121437 0.176960111 -0.183695968 0.626124708 1
13 0.223501502 0.382610553 12.81525564 0.105298591 0.143839497 -0.259758049 0.47035523 1
14 0.082598035 0.653004547 9.577125928 0.07737115 0.10749446 -0.238212296 0.392954596 1
15 0.746547357 0.633075961 9.804854988 0.208967667 0.110050509 -0.110345776 0.52828111 1
16 -1.452704055 0.140842921 17.23852588 -0.226929798 0.193486651 -0.650325727 0.196466131 1
17 1.281673576 0.308297983 13.8821385 0.315031103 0.155814279 -0.064917456 0.694979662 1
18 -0.327878524 0.129520554 17.56591448 -0.003986393 0.197161288 -0.431383913 0.423411126 1
19 -0.913512395 0.007263405 27.18644017 -0.12006058 0.30514287 -0.651768081 0.411646921 1
20 -0.400232238 0.913663137 6.047608267 -0.018327091 0.067878859 -0.269104518 0.232450335 1
21 0.827576514 0.383739738 12.80005278 0.225027861 0.143668859 -0.13981218 0.589867901 1
22 1.772223186 0.481612598 11.56022349 0.412259337 0.129752912 0.06553867 0.758980005 0
23 -0.385275598 0.936460463 5.563720062 -0.015362646 0.062447658 -0.255898184 0.225172892 1
24 0.491164656 0.007812738 26.96677776 0.158350138 0.302677361 -0.371204948 0.687905223 1
25 -0.894633558 0.942533647 5.418214126 -0.116318745 0.060814487 -0.353688126 0.121050636 1

Fig. 9.16 Simulated power spreadsheet
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3. Simulate a random value for σ̂ 2
E using the formula

σ̂ 2
E ¼

σ2E
Error df

�W

¼ 0:20

61
�W

ð9:28Þ

whereW is a chi-squared random variable with 61 error degrees of freedom for this

example.

4. Compute L and U using Eq. (9.22) to form a 90% confidence interval on

βPre � βPost.
5. If the confidence interval in step 4 falls between –EAC and +EAC, increase a

counter by one, and simulate another iteration of steps 1–5. Repeat 10,000 times.

Figure 9.17 shows the first 25 rows of an Excel spreadsheet with 10,000

iterations of the simulation. The percentage of the simulated 10,000 values that

falls within the range –EAC to +EAC is 0.975, which exceeds the target of 0.87.

It is important to note the impact of SST on power. In the previous example, time

points were at 0, 1, 2, and 3 months. If the timeframe is increased, the power will

increase for the same number of lots. For example, suppose we select the three time

points 0, 3, and 6 months. Our range is now 6 months instead of only 3 months.

Using Eq. (9.19) we have SST¼ 18 and given the same EAC, the power is

increased to almost 1.0.

Delta: assumed difference in slopes 0.033
Variance Sigma^2_E 0.2
Sample size for the pre change 15
Sample size for the post change 6
Error df 61
SST 5
Two-sided conf level 0.9 Power 0.975
Two-sided t-value 1.729
EAC 0.4

Simulation Z W uniform W chi-square Diff sample means (9.27) Pooled Variance (9.28) L (9.22) U (9.22) CI between -EAC EAC
1 -0.357000545 0.42527543 62.4261843 -0.001489529 0.204676014 -0.170481168 0.16750211 1
2 -0.524848929 0.4741966 61.04777877 -0.017705224 0.200156652 -0.184820733 0.149410285 1
3 0.458624072 0.566148869 58.52491969 0.077307295 0.191884983 -0.086318676 0.240933265 1
4 -0.307602477 0.419446394 62.59355026 0.003282777 0.205224755 -0.165935245 0.1725008 1
5 -2.053966455 0.436414686 62.10844188 -0.165432011 0.203634236 -0.333993027 0.003129004 1
6 0.280442691 0.261787774 67.60844306 0.060093338 0.221667026 -0.115772826 0.235959502 1
7 0.071702289 0.836085086 50.2238738 0.039927099 0.164668439 -0.111651164 0.191505362 1
8 0.054455995 0.4242378 62.45591999 0.038260949 0.204773508 -0.130770933 0.207292831 1
9 -0.380582605 0.839381085 50.09376796 -0.003767773 0.164241862 -0.155149575 0.14761403 1

10 0.760979901 0.216803491 69.34148331 0.106517643 0.227349126 -0.07158829 0.284623576 1
11 -0.748975708 0.231269265 68.76101338 -0.039357928 0.225445946 -0.216716816 0.13800096 1
12 0.808336154 0.202185125 69.9547871 0.111092692 0.229359958 -0.067799153 0.289984536 1
13 0.223501502 0.382610553 63.67174131 0.054592296 0.208759808 -0.116076917 0.22526151 1
14 0.082598035 0.653004547 56.11914653 0.040979728 0.183997202 -0.119247881 0.201207337 1
15 0.746547357 0.633075961 56.67968794 0.105123327 0.185835042 -0.055902504 0.266149157 1
16 -1.452704055 0.140842921 72.93374974 -0.107344545 0.239127048 -0.290005656 0.075316566 1
17 1.281673576 0.308297983 65.99775278 0.156821431 0.216386075 -0.016937204 0.330580066 1
18 -0.327878524 0.129520554 73.5841801 0.001323925 0.241259607 -0.182149872 0.184797723 1
19 -0.913512395 0.007263405 91.27474884 -0.055253682 0.299261472 -0.25959545 0.149088086 1
20 -0.400232238 0.913663137 46.58077555 -0.005666108 0.152723854 -0.151643358 0.140311143 1
21 0.827576514 0.383739738 63.63809658 0.112951487 0.208649497 -0.057672629 0.283575603 1
22 1.772223186 0.481612598 60.84207369 0.204213026 0.199482209 0.037379308 0.371046743 1
23 -0.385275598 0.936460463 45.10331355 -0.004221159 0.147879717 -0.147864682 0.139422364 1
24 0.491164656 0.007812738 90.89488417 0.080451014 0.298016014 -0.123465099 0.284367126 1
25 -0.894633558 0.942533647 44.64791449 -0.053429813 0.146386605 -0.196346326 0.0894867 1

Fig. 9.17 Simulated power spreadsheet for profile data
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9.6 Reporting Analytical Comparability Results

Once the EAC has been defined, it is time to collect the post-change data using

the study design outlined in the analytical comparability protocol. Regardless of the

approach, plots of the raw data and descriptive statistics should be part of the

analysis. For non-profile data, plot the pre-change data and post-change data in

time order along with descriptive statistics. For profile data, plot the raw data and

the average slope for the pre- and post-change data and report the appropriate

descriptive statistics. Additional plots and results are required if an equivalence test

is performed. We now provide some examples.

9.6.1 Reports for Individual Post-change Values

When the acceptance criterion is based on pre-change data, the subsequent analysis

consists of evaluating each post-change value relative to the acceptance criterion

and the specification. It is recommended to plot the post-change and pre-change

data by time-ordered batch ID (trend plot). This plot provides a visual assessment of

any shift in the post-change mean along with changes in variability. Inclusion of

reference lines for a specification or the acceptance criterion is a matter of personal

preference. However, in cases where the data are far away from the specification,

the excessive white space between the specification and the actual data may not be

of value. In addition, the raw data are difficult to see because they are isolated to a

narrow range of the y-axis. A rule of thumb for graphing data is to retain approx-

imately one-third of the graph for white space.

In addition to the graphical presentation, descriptive statistics should be

presented in the analysis. When the sample size of the post-change data set is at

least four lots, the descriptive statistics (mean, standard deviation, minimum, and

maximum) should be presented for both the pre- and post-change data sets. If there

are fewer than four lots in the post-change data set, providing the minimum and

maximum values is adequate. Table 9.10 reports descriptive statistics, types of

Table 9.10 Guidance on presentations for reporting comparability results for individual post-

change values

Item

Sample size

1–3 lots �4 lots

Descriptive statistics Mean ✓

Standard deviation ✓

Variance Optional

Range (minimum and maximum value) ✓ ✓

Confidence interval on the mean Optional

Plots Trend plot ✓ ✓

Boxplot Optional

Individual value plot Optional
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plots, and guidance on sample size for presentation. Items with a check mark are

strongly recommended. Optional plots and descriptive statistics are listed as such. If

there is a blank, the use of that plot or statistic is not recommended.

9.6.2 Reports for Equivalence Testing with Non-profile Data

Once the data for the post-change process have been collected, the equivalence test

is performed. This test is performed by computing a two-sided 90% confidence

interval on the difference in means. Equivalence is demonstrated if both bounds fall

within the range from –EAC to +EAC. The confidence intervals are computed using

one of the intervals shown in Table 9.11.

Table 9.12 summarizes useful plots and descriptive statistics for reporting an

equivalence test. Check marks denote recommendations and optional items are

defined as such.

To demonstrate, consider a non-profile analysis of lot release data for

protein concentration measured in mg/mL. There are nPre ¼ 35 lots of pre-change

product and nPost ¼ 3 lots of post-change product. The equivalence hypotheses of

interest are

Table 9.11 Confidence intervals used with equivalence tests of mean

Data structure

Compute the two-sided confidence

interval with equation

Independent measurements with equal variances (2.56)

Independent measurements with unequal

variances

(2.58)

Dependent measurements (2.71)

Table 9.12 Guidance on presentations for reporting comparability results for equivalence tests

with non-profile data

Item Guidance

Descriptive statistics Mean ✓

Standard deviation ✓

Variance Optional

Range (minimum and maximum value) Optional

Confidence interval on the mean Optional

Confidence interval on the difference in means ✓

Plots Trend plot ✓

Boxplot Optional

Individual value plot ✓

Equivalence plot ✓
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H0 : μPre � μPostj j � 2:0 mg=mL

Ha : μPre � μPostj j < 2:0 mg=mL:
ð9:29Þ

Table 9.13 shows the statistics recommended in Table 9.12.

Figure 9.18 presents the trend plot recommended in Table 9.12. Figure 9.19

presents the individual value plot, and Fig. 9.20 the equivalence plot.

It is clear that there are no unexpected trends in the post-change data relative to

the pre-change lots. For this example, the specification reference lines are added to

the trend plot.

The plus signs in Fig. 9.19 represent the pre- and post-change process means.

This plot is valuable as it gives a visual assessment of the two process means

relative to each other along with the spread of the data.

Table 9.13 Recommended descriptive statistics in Table 9.12

Statistic Protein concentration (mg/mL)

Pre-change mean 65.00

Post-change mean 65.29

Difference in means (�d) �0.29

Pre-change standard deviation 1.18

Post-change standard deviation 0.48

90% margin of error (ME) 0.73

Lower bound of 90% CI on difference from (2.56) �1.46

Upper bound of 90% CI on difference from (2.56) 0.88

EAC 2.0

Conclusion Statistically equivalent
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Fig. 9.18 Trend plot with pre-change data (circle) and post-change data (triangle)
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The confidence interval in Fig. 9.20 assumes equal variances and is computed

with Eq. (2.56). Since the confidence interval in Fig. 9.20 falls completely inside the

EAC of �2:0, evidence has been provided that the pre- and post-change processes

are statistically equivalent.
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Fig. 9.19 Individual value plot recommended in Table 9.12
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Fig. 9.20 Equivalence plot recommended in Table 9.12
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Burdick et al. (2011) developed a trend chart that can be used to visually present

the test of equivalence. This chart is shown in Fig. 9.21 for the data described in this

section.

The lines in Fig. 9.21 represent algebraic re-expressions of the equivalence

inequalities. In the present example, equivalence is demonstrated using Eq. (2.56) if

�YPre � �YPost �ME > �EAC and

�YPre � �YPost þME < EAC where

ME ¼ t1�α=2:nPreþnPost�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Pooled

1

nPre
þ 1

nPost

� �s ð9:30Þ

Equation (9.30) can be rewritten as

�YPost þME < �YPre þ EAC, and

�YPost �ME > �YPre � EAC
ð9:31Þ

Define the lower test limit LTL ¼ �YPost �ME, the upper test limit

UTL ¼ �YPost þME, the lower equivalence limit LEL ¼ �YPre � EAC, and the

upper equivalence limit UEL ¼ �YPre þ EAC. Average equivalence is demonstrated

whenUTL<UEL and LTL> LEL. Visually this translates into having both theUTL
and LTL (short dashed lines) falling within UEL and LEL (long dashed lines).

Fig. 9.21 Trend chart with equivalence test
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Using the data in Table 9.13, LTL ¼ �YPost �ME ¼ 65:29� 1:17 ¼ 64:12,

UTL ¼ �YPost þME ¼ 65:29þ 1:17 ¼ 66:46, LEL ¼ �YPre � EAC ¼ 65:00� 2:00

¼ 63:00, and UEL ¼ �YPre þ EAC ¼ 65:00þ 2:00 ¼ 67:00. Since LTL and UTL
are contained within UEL and LEL, equivalence is demonstrated. Note that when

using this visualization technique, some individual values are likely to fall outside

the limits, because the limits are based on means.

9.6.3 Reports for Equivalence Testing with Profile Data

Table 9.14 summarizes the recommended descriptive statistics and plots for profile

data.

Recall the example to test the hypotheses in (9.20) presented in Sect. 9.4.2.

Table 9.15 provides a tabular summary of the equivalence test. Figures 9.22 and

9.23 present the two recommended plots. Since the lower and upper confidence

bounds fall within the range from –EAC to +EAC, the two processes are statisti-

cally equivalent.

Table 9.14 Guidance on presentations for reporting comparability results for equivalence tests

with profile data

Item Guidance

Descriptive statistics Slope for each process ✓

Confidence interval on the difference in slopes ✓

Standard deviation for each process slope Optional

Range (minimum and maximum slope for each process) Optional

Individual slopes for each lot Optional

Confidence interval on the slope Optional

Plots Regression plot ✓

Equivalence plot ✓

Regression plot with normalized y-intercept for each lot Optional

Table 9.15 Tabular summary of equivalence test results

Statistic Value

Pre-change slope �0.255%/month

Post-change slope �0.459%/month

Difference in slopes 0.204%/month

SST from (9.18) 5

Lower bound of 90% CI on difference from (9.22) 0.045%/month

Upper bound of 90% CI on difference from (9.22) 0.363%/month

EAC 0.40%/month

Conclusion Statistically equivalent
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9.7 Analytical Similarity for Biosimilar Products

In this section, we provide statistical methods for demonstrating analytical similar-

ity between a proposed biosimilar product (BP) and its associated reference product

(RP). The Biologics Price Competition and Innovation Act (BPCIA) of 2009

created an abbreviated licensure pathway for biological products shown to be
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Fig. 9.23 Equivalence plot

Fig. 9.22 Regression plot
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highly similar to an FDA licensed biological product (also known as the reference

product). Biosimilarity means that the biological product is highly similar to the RP

notwithstanding minor differences in clinically inactive components and that there

are no clinically meaningful differences between the BP and RP in terms of safety,

purity, and potency of the product (FDA 2015b). A biosimilar sponsor can rely on

existing scientific knowledge about the safety and effectiveness of the RP, and

consequently enable a BP to be licensed based on less than a full complement of

preclinical and clinical data typically required with a section 351(a) marketing

application.

The underlying assumption of this abbreviated pathway is that if a molecule is

shown to be analytically and functionally similar to an RP, it will behave like the

RP in the clinic. FDA recommends that sponsors use a stepwise approach of data

collection and the evaluation of residual uncertainty (FDA 2015b). This approach

begins with the assessment of analytical similarity, which includes comparisons of

structural and functional attributes between the BP and RP. Animal studies are

conducted to address any remaining uncertainties concerning the proposed

biosimilar product before initiation of clinical testing of the product in human

subjects. The stepwise approach continues with clinical studies including assess-

ment of immunogenicity and pharmacokinetics or pharmacodynamics to establish

safety and efficacy equivalency as needed. Approval of biosimilar applications is

based on the totality of the evidence and information submitted in the application.

FDA guidance on this topic has been published including FDA (2015a, b, c). There

is also a planned guidance on statistical methods to demonstrate analytical similar-

ity due in 2016.

Although statistical approaches used to demonstrate similarity are generally the

approaches used for comparability, there are some important differences that are

now described.

9.7.1 Differences Between Comparability and Similarity

Burdick et al. (2016) have described several features that distinguish demonstration

of similarity between an RP and a BP from an assessment of comparability. Key

differences include the following:

1. Lack of RP knowledge in a similarity assessment relative to knowledge

concerning the pre-change process in a comparability assessment. Lack of RP

product knowledge includes such items as

a. RP process changes which may make pooling of data inappropriate for

statistical analysis.

b. RP process deviations resulting in quality within permitted specifications but

outside expected variability. For example, a sampled RP lot may have a

measured value that is out of trend with respect to other RP values, even if
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the release of the lot was justified based on impact to quality, safety, and

efficacy.

c. Linkage between drug substance (DS) and drug product (DP) lots is not

identifiable from sampled RP lots in similarity assessments. If sampled DP

lots were manufactured with the same DS, they are correlated, and the

assumption of independence required in many statistical calculations is not

appropriate.

2. RP target specifications and in-process control (IPC) limits are not known for the

majority of the analytical methods in a similarity assessment. This lack of

knowledge makes the selection of meaningful acceptance criteria more difficult.

3. The sampling process used to collect the RP lots has an inherent bias that leads to

RP lots being generally older than newly manufactured TP lots. This bias is

especially problematic for stability indicating methods.

These differences present some important limitations to the statistical methods

that have been recommended for demonstration of analytical similarity. We now

review a statistical approach suggested by FDA as described in an FDA ODAC

briefing document (2015d), Chow (2014, 2015), Dong et al. (2015a), Dong (2015),

Shen et al. (2015), Tsong (2015) and Tsong et al. (2015).

9.7.2 Risk Categories for Critical Quality Attributes

Demonstration of analytical similarity begins with the assessment of the relative

criticality of quality attributes. Table 9.16 reports the three categories described by

the FDA in the previously mentioned references.

Tier 1 attributes require the most statistically rigorous evidence of similarity.

This evidence is provided using a statistical test of equivalence. Tier 2 quality

attributes require a lesser level of statistical rigor. The recommended approach for

Tier 2 attributes are quality ranges. Finally, Tier 3 attributes can be examined using

graphical display. Each of these approaches is now described below.

Table 9.16 Risk categories

Risk

category Definition

Tier 1 High impact on activity, PK/PD, safety, or immunogenicity

Where practical the attributes measured require a statistical test of equivalence

between the proposed biosimilar product and the RP

Tier 2 Moderate impact on activity, PK/PD, safety, or immunogenicity

Attributes measured are consistent with a statistical quality range

Tier 3 Low impact on activity, PK/PD, safety, or immunogenicity

Descriptive raw data and graphical presentations of similarity
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9.7.3 Tier 1 Testing

Table 9.17 reports a data set from Table 6 of the FDA (2016) document presented as

part of the Arthritis Advisory Committee Meeting for ABP 501, a proposed

biosimilar to Humira (adalimumab). The quality attribute comes from an apoptosis

inhibition bioassay and is measured in %. This assay measures the primary mech-

anism of action for the product.

Demonstration of statistical equivalence for a Tier 1 attribute requires testing the

following set of hypotheses:

H0 : μB � μRj j � 1:5σR
H1 : μB � μRj j < 1:5σR

ð9:32Þ

where μB is the mean of BP, μR is the mean of the RP, and σR is the standard

deviation for the RP. The value of 1.5 was established by the FDA based on

numerous simulation studies and is described in Shen et al. (2015).

Equivalence testing is described in Sect. 2.11, with EAC ¼ 1:5σR in this

application. A 90% confidence interval on the difference is computed assuming

equal variances using the formula in (2.56),

S2P ¼
nB � 1ð ÞS2B þ nR � 1ð ÞS2R

nB þ nR � 2
¼ 10� 1ð Þ 4:1ð Þ2 þ 21� 1ð Þ 5:7ð Þ2

10þ 21� 2
¼ 27:6

L¼ �YB � �YR � t1�α=2:nBþnR�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P

1

nB
þ 1

nR

� �s

L¼ 104� 105� 1:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:6

1

10
þ 1

21

� �s
¼ �4:1

U ¼ �YB � �YR þ t1�α=2:nBþnR�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P

1

nB
þ 1

nR

� �s

U ¼ 104� 105þ 1:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:6

1

10
þ 1

21

� �s
¼ 2:1

ð9:33Þ

Table 9.17 Summary of adalimumab data

Product

Number of

batches

Sample

mean (%)

Sample standard

deviation (%)

Min

(%)

Max

(%)

ABP 501(BP) nB ¼ 10 �YB ¼ 104 SB ¼ 4:1 98 110

US-licensed

Humira (RP)

nR ¼ 21 �YR ¼ 105 SR ¼ 5:7 95 114
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(Note the reported interval in the FDA report was computed to a greater decimal

precision.) The EAC is determined by replacing σR with SR to yield

EAC ¼ 1:5� 5:7 ¼ 8:6. Since the interval from �4.1 to 2.1 falls entirely within

the range from �8.6 to 8.6, equivalence has been demonstrated.

One problem with this approach discussed by Burdick et al. (2016) concerns the

fact that σR is estimated using SR to define EAC. The consequence of estimating

EAC is that the confidence interval in Eq. (9.33) does not maintain the desired

probability of rejecting H0 when H0 is true. This increases the risk of passing the

test when the BP is not equivalent to the RP. This problem can be resolved by

changing the hypotheses in (9.32) to

H0 :
μB � μR

σR

����
���� � 1:5

Ha :
μB � μR

σR

����
���� < 1:5

ð9:34Þ

Note that (9.34) is equivalent to (9.32). The only difference is that σR has moved

to the left-hand side of the equation, and EAC ¼ 1:5 is now a known constant.

The hypotheses in (9.34) are tested by constructing a 90% confidence interval on

the effect size,
μB�BμR

R

σR
, as described in Sect. 2.8.2.

To demonstrate, the confidence interval on the effect size for the data in

Table 9.17 using the procedure described in Sect. 2.8.2 yields

tcalc ¼
�YB � �YRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2P
1

nB
þ 1

nR

� �s

¼ 104� 105ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:6

1

10
þ 1

21

� �s ¼ �0:5

ð9:35Þ

and the resulting confidence interval is from�0.8 to 0.4. Since the entire confidence

interval falls in the range from �1.5 to +1.5, equivalence is demonstrated.

Yang et al. (2016) have studied the impact on the recommended Tier 1 test when

the RP lots are correlated. They show that when RP lots are correlated, the

probability of rejecting H0 when H0 is true (i.e., falsely concluding equivalence)

will increase, and the probability of passing when the products are equivalent will

decrease. As noted in Sect. 9.7.1, linkage between drug substance (DS) and drug

product (DP) is often not identifiable from sampled RP lots. If sampled RP lots were

manufactured with the same DS, they are correlated, and the Tier 1 equivalence test

is impacted. Yang et al. describe approaches to mitigate this problem, but sponsors

of biosimilar products are cautioned to avoid correlation by selecting a small

number of lots at any given time, and spreading purchase of RP lots over as long

a time period as feasible.
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9.7.4 Tier 2 Testing

Tier 2 testing uses a quality range approach. The quality range is defined as

μR � K � σR ð9:36Þ

where K is appropriately justified. In practice, μR is estimated with �YR and σR is

estimated with SR. The biosimilar product passes Tier 2 if a predefined proportion

(e.g., 90%) of the measured assay responses from the biosimilar lots falls within the

quality range. Yang et al. provide results that justify the use of K ¼ 3, and

demonstrate that correlation among RP lots will cause the quality range to be too

tight, because the lot-to-lot variation will not be fully represented.

The quality interval for the data in Table 9.17 is computed as

�YR � K � SR

105� 3� 5:7

L ¼ 87:9%

U ¼ 122:1%

ð9:37Þ

To pass the Tier 2 test, nine of the ten biosimilar lots (90%) must fall in the range

from 87.9 to 122.1%. Since the range of the biosimilar shown in Table 9.17 is from

98 to 110%, all ten lots fall in the quality range, and Tier 2 similarity is

demonstrated.

More information on the strategy demonstrated in this example is presented by

Velayudhan et al. (2016).
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