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6.1 Introduction

Analytical chemistry is used across the pharmaceutical industry to quantify and

identify the components in drug substance, drug product, and raw material to ensure

that the final dosage form remains safe and efficacious from lot release throughout

the product’s shelf life. To understand any potential shifts in the components

impacting safety and efficacy, laboratories require analytical procedures which

are reliable, fit for purpose, and executed consistently over time. Analytical pro-

cedures provide the instructions used by the analyst to ensure consistent use of

laboratory equipment, solution preparation, measurement recording, and documen-

tation. As such, analytical procedures form a critical component in any quality

system. This chapter considers statistical methods that ensure that these procedures

are fit for their intended purpose.

Martin et al. (2013) describe a holistic view of the analytical procedure life

cycle. It frames this problem using concepts consistent with Quality by Design

(QbD), ICH Q8 (2009), the FDA method validation guidance (2015), and the FDA

process validation guidance (2011). The performance requirements of a procedure

are defined by the analytical target profile (ATP). The ATP defines the analyte to be

measured, the concentration range, procedure performance criteria, and product

specifications. The criteria and specifications are established to define the purpose

of the analytical procedure.

The analytical procedure life cycle is presented in the following three stages:

1. Stage 1: Procedure development and preparation for Stage 2.

2. Stage 2: Procedure performance validation (Qualification).

3. Stage 3: Procedure performance verification (Transfer and Monitoring).

The detail of each stage is discussed in this chapter. Other references of interest

not discussed in this chapter are USP <1030>, <1033>, and <1223>.
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6.2 Terminology

6.2.1 Description of an Analytical Procedure

An analytical procedure and relevant terms must be clearly defined in order to

design an appropriate analytical study. Descriptors such as “replicates” or “prepa-

rations” without further explanation often lead to confusion. Table 6.1 reports

terminology used to describe an analytical procedure.

Not all analytical procedures entail all descriptions shown in Table 6.1. For

example, liquid laboratory samples that require no further manipulations employ

only a test solution. Table 6.2 provides an example of an analytical procedure for a

solid dosing form.

Table 6.1 Analytical procedure terminology

Terminology Description

Laboratory sample The material received by the laboratory

Analytical sample Material created by any physical manipulation of the laboratory

sample such as crushing or grinding

Test portion The quantity (aliquot) of material taken from the analytical sample

for testing

Test solution The solution resulting from chemical manipulation of the test por-

tion such as chemical derivatization of the analyte in the test portion

or dissolution of the test portion

Reading (individual

determination)

The measured numerical value from a single unit of test solution

Reportable value A summary value of individual readings, such as an average, from

one or more units of a test solution. Replication may also occur

across any level of the study design

Table 6.2 An analytical procedure for solid dosage coated pills

Terminology Description

Laboratory

sample

100 coated pills

Analytical

sample

20 pills are removed from the laboratory sample and are crushed together in a

mortar and pestle (i.e., composted)

Test portion Replicate 1: 1 gram crushed powder

aliquot from analytical sample

Replicate 2: 1 gram crushed pow-

der aliquot from analytical sample

Test solution Replicate 1: Test portion is dissolved

in 1 L solvent

Replicate 2: Test portion is

dissolved in 1 L solvent

Reading (indi-

vidual

determination)

Reading 1 of rep-

licate 1: test

solution

Reading 2 of rep-

licate 1: test

solution

Reading 1 of

replicate 2: test

solution

Reading 2 of

replicate 2: test

solution

Reportable

value

Average value of four readings
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6.2.2 Measurement Error Models

In this chapter, we consider the reportable value to be the key output from an

analytical procedure and the focus of any investigation. In many cases, a particular

analytical procedure may be used for different applications, with a different defi-

nition for the reportable value in each application. However, for purposes of

discussion in this chapter, the term “reportable value” is used with the understand-

ing that it may not be unique to a particular analytical procedure. A model that is

useful for representing a reportable value is

Reportable Value ¼ True Value þ Systematic Bias þ Random Error ð6:1Þ

where the true value and the systematic bias are fixed constants and the random

error assigns a different error value to each reportable value. This relationship is

represented symbolically as

Y ¼ τ þ β þ E ð6:2Þ

where Y represents the reportable value, τ (tau) is the true value, β (beta) is the

systematic bias, and E is a random error with mean 0 and variance σ2. (Note that β is
not to be confused with its use as a regression slope in Sect. 2.12.) Model (6.2) uses

the convention described in Sect. 2.12.7 of representing constants with Greek letters

and random effects with upper case Latin letters. In many applications, σ2 may be

further decomposed into components that represent the various causes of

variability.

6.2.3 Accuracy

In this text, accuracy concerns the magnitude of the systematic bias, β. The bias is
defined as the long-run average of the difference, Y � τ. Note that bias can only be

determined if the true value, τ, is known. USP <1225> notes that a reference

standard or a well-characterized procedure can be used to assign the value of τ. For
relative content procedures used for large molecules, accuracy cannot be defined in

this manner. Relative content procedures, sometimes referred to as relative purity

procedures, include such procedures as size exclusion and cation exchange chro-

matography. Generally, minor species observed in purity procedures are product

related variants or degradants, and orthogonal procedures are typically not available

to provide a value for τ. Thus, the accuracy of the measurement as defined in this

context cannot be independently confirmed. In cases where τ is not available, ICH
Q2 (2005) states accuracy may be inferred once precision, linearity, and specificity

have been established.
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6.2.4 Precision

Precision of an analytical procedure is the degree of agreement among reportable

values when the procedure is applied repeatedly to multiple samplings (possibly

under different conditions) of a homogeneous test solution. The precision of an

analytical procedure is quantified by the magnitude of the variance σ2, or alterna-
tively in terms of the standard deviation, σ. The standard deviation is the preferable
measure of precision because it has the same measurement units as Y. The lesser the
value of σ, the better the precision. Precision of a test procedure may be influenced

by factors that vary during the normal use of the analytical procedure. These are

called ruggedness factors, and include factors such as analyst, day, and instrument.

6.3 Stage 1: Procedure Development (Pre-validation)

In order to maximize the likelihood of a successful validation, it is imperative that

all aspects of the procedure be well understood prior to the validation.

Pre-validation work allows one to best design the experiment employed in the

procedure validation. Martin et al. note that pre-validation experiments can be

leveraged to support the validation and may reduce work in the validation itself.

A lack of pre-validation work will often lead to a failed validation and costly

rework.

The following series of questions provided by the USP Statistics Expert Team

(2016) should be considered during pre-validation in order to ensure a successful

validation experiment.

1. What are the allowable ranges for operational parameters such as temperature

and time that impact the performance of the analytical procedure?

• Robustness of these ranges can be determined using statistical design of

experiments (DoE) as described in Chap. 3.

2. Are there ruggedness factors that impact precision?

• Factors such as analyst, day, and instrument that vary in routine use and impact

the precision of a test procedure are called ruggedness factors. When rugged-

ness factors impact precision, reportable values within the same ruggedness

grouping (e.g., analyst) are correlated. Depending on the strength of the

correlation, this may necessitate a statistical analysis that appropriately

accounts for this dependence. Ruggedness factors can be identified empirically

during pre-validation or based on a risk assessment. This topic is addressed in

more detail in Sect. 6.4.10.

3. Are statistical assumptions for data analysis reasonably satisfied?
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• These assumptions typically include normality, homogeneity of variance, and

independence of reportable values. It is useful during pre-validation to employ

statistical tests or visual representations to help answer these questions. USP

<1010> provides information on this topic as does Sect. 2.12.2.

4. What is the required analytical range for the procedure?

5. Do accepted reference values or results from an established procedure exist for

validation of accuracy?

• If not, ICH Q2 states accuracy may be inferred once precision, linearity, and

specificity have been established.

6. How many individual readings will be averaged to form a reportable value?

• To answer this question, it is necessary to understand the contributors to the

procedure variance and the procedure’s ultimate purpose. Estimation of var-

iance components during pre-validation provides useful information for mak-

ing this decision. A good rule of thumb is to replicate against the source

representing the largest component of variance.

7. What are appropriate validation acceptance criteria?

• We provide discussion on this topic throughout Sect. 6.4.

8. How large a validation experiment is necessary?

• Validation experiments should be properly powered to ensure there are suffi-

cient data to conclude accuracy and precision can meet pre-specified accep-

tance criteria. Computer simulation is a useful tool for performing power

calculations as discussed in Sect. 6.4.8.

Based on the answers to these and similar questions, a suitable validation

experimental protocol may be designed.

6.4 Stage 2: Procedure Performance Validation
(Qualification)

As noted in ICH Q2, the objective of validation of an analytical procedure is to

demonstrate that it is suitable for its intended purpose. Suitability for intended

purpose can be expressed in several ways. For instance, when a reportable value is

used to disposition a product batch, suitability may be expressed in terms of

decision error rates (e.g., passing an unacceptable batch, or failing an acceptable

batch). In other cases, it may be sufficient to define suitability by placing limits on

the quality metrics of the analytical procedure itself (e.g., maximum bias or

precision). The life cycle approach suggests that these suitability metrics be

documented in an analytical target profile (ATP) statement that guides quality

decision making at all stages of the analytical procedure life cycle.
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As discussed in the introduction, the term validation aligns with the process

described in the USP document <1225>. In the life cycle approach described by

Martin et al., this validation process is referred to as qualification.

The validation experiment is the culmination of all the investigational work

needed to determine the operational details of the procedure. These details include

selected inputs, operating conditions, equipment, limits, ranges, replication strat-

egy, and other factors thought to potentially influence the outcome. The validation

experiment is the final check that a newly developed procedure is fit for use.

Traditionally, validation of accuracy and precision provide the essential evi-

dence that a procedure meets the requirements for the intended analytical applica-

tion. Accordingly, we focus on these two topics in this section. Other factors that

are typically characterized in a validation experiment are more descriptive in nature

(e.g., range, detection, and quantitation limits), or more internal to the analytical

procedure (e.g., linearity). For example, the impact of linearity is captured during

DoE, repeatability, and intermediate precision studies because each experiment

requires a calibration that includes the impact of the linearity. This is important

because the decision rule and ATP provide an overarching criterion for the valida-

tion study, and require identification and quantification of all potential uncertainty

components. For a full understanding of other characteristics, the reader should

consult USP <1225>.

6.4.1 Experimental Design for Validation of Accuracy
and Precision

A single experimental design will allow validation of both accuracy and precision.

As will be discussed, individual assessment of accuracy and precision is not

generally an effective approach. Such an approach is first described, and then better

approaches that address bias and precision together are presented.

An example is provided to demonstrate the statistical analysis that follows. This

example considers validation of a test procedure using high performance liquid

chromatography (HPLC). The measured drug substance (DS) is a USP compendial

substance, so information concerning τ is available. Three different quantities of

reference standard were weighed to correspond to three different percentages of the

test concentrations: 50, 100, and 150%. The unit of measurement for the reportable

value is the mass fraction of DS expressed in units of mg/g and τ ¼ 1000 mg=g for
all three concentrations. The DS product specification is from 980 to 1020 mg/g

(see Weitzel 2012). Similar experiments are often established with levels expressed

as a percent of the API label claim for the drug (as opposed to the weight of the

entire tablet). Table 6.3 presents the n¼ 12 reportable values and the computed

statistics.
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To begin, the following two assumptions are made:

1. Each row in Table 6.3 is independent. In Sect. 6.4.10 and Sect. 6.4.11, the

addition of ruggedness factors that invalidate this assumption is discussed. For

example, consider the ruggedness factor “day.” Suppose the experiment had

been run over four days. Each day a reportable value was obtained from each of

the three concentration levels: 50, 100, and 150. If there is variation in the

procedure across days, then reportable values made on the same day are corre-

lated and the assumption of independence is violated.

2. The standard deviation of the reportable value is constant across all three

concentration levels. Discussion of how to proceed if this assumption is not

met is provided in Sect. 6.4.9.

6.4.2 Confidence Intervals for Accuracy and Precision

The model in Eq. (6.2) is used to represent the data in Table 6.3 as

Yij ¼ τi þ βi þ Eij

i¼ 1, . . . , c concentration levelð Þ; j ¼ 1, . . . r;
ð6:3Þ

where Yij is the jth reportable value in the ith concentration level, τi is the known

true value of the ith concentration level, βi is the procedure bias in the ith concen-

tration level, and Eij is a random error specific to jth reportable value in the ith

concentration level. The random error is assumed to have a normal distribution with

mean 0 and variance σ2. For the data in Table 6.3, c ¼ 3, r ¼ 4, and so the total

sample size is n ¼ c� r ¼ 12. We present results for computing confidence

intervals on βi and σ2 that can be used for validation of accuracy and precision.

Table 6.3 Example data set for procedure validation

Test concentration (%) Test solution (plate or run) Reportable value (mg/g)

50 1 1000.57

50 2 996.93

50 3 1002.4

50 4 994.91

100 5 994.16

100 6 992.72

100 7 1000.03

100 8 1004.89

150 9 1002.53

150 10 1004.83

150 11 998.17

150 12 994.15
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6.4.2.1 Case 1: Bias Is Constant Across Concentration Levels

In this case, it is assumed thatβi ¼ β across all c concentration levels. Note this does
not require that τi be equal across concentration levels. Since there are an equal

number of reportable values for each concentration level, the estimator for β is

β̂ ¼

Xc

i¼1

�Yi � τið Þ

c
: ð6:4Þ

The bounds for a 100 1� αð Þ% two-sided confidence interval for β are

L¼ β̂ � t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

U ¼ β̂ þ t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

�Yi ¼

Xr

j¼1

Yij

r

�Y ¼

Xc

i¼1

Xr

j¼1

Yij

n

S2 ¼

Xc

i¼1

Xr

j¼1

Yij � �Y
� �2
n� 1

:

ð6:5Þ

Validation for precision typically requires only an upper bound, since it is

only problematic if the standard deviation is too large. A 100 1� αð Þ% upper

bound on σ is

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð ÞS2
χ2α:n�1

s
: ð6:6Þ

Note that (6.6) can be calculated with no knowledge of τi. Thus, although the

true value is required to estimate accuracy, it is not needed to estimate precision.

For the data shown in Table 6.3, τi ¼ τ ¼ 1000 mg/g for each concentration

level. The calculated statistics are �Y1 ¼ 998:70, �Y2 ¼ 997:95, �Y3 ¼ 999:92,
�Y ¼ 998:86, and S2 ¼ 18:55. Equation (6.5) is now simplified since all τi are
equal and provides the 90% confidence interval on β
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L¼ �Y � τ � t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

L¼ 998:86� 1000� 1:796

ffiffiffiffiffiffiffiffiffiffiffi
18:55

12

r
¼ �3:38 mg=g

U ¼ �Y � τ þ t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

U ¼ 998:86� 1000þ 1:796

ffiffiffiffiffiffiffiffiffiffiffi
18:55

12

r
¼ 1:09 mg=g

ð6:7Þ

Equation (6.6) provides the upper 95% confidence bound on σ

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð ÞS2
χ2α:n�1

s

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 1ð Þ18:55

4:57

r
¼ 6:68 mg=g

ð6:8Þ

6.4.2.2 Case 2: Bias Changes Across Concentration Levels

In this case, it is necessary to estimate the bias separately for each concentration

level. However, since the standard deviation is assumed equal across all concen-

tration levels, it is still possible to use all the data to estimate σ2. This is referred to

as “pooling.” In order to pool the variance estimates, an analysis of variance table is

constructed as shown in Table 6.4 (see Sect. 2.12.7 for more on the analysis of

variance).

where

S2C ¼
r
Xc

i¼1

�Yi � �Yð Þ2

c� 1

S2E ¼

Xc

i¼1

Xr

j¼1

Yij � �Yi

� �2
c r � 1ð Þ :

ð6:9Þ

Table 6.4 Analysis of

variance
Source of variation Degrees of freedom Mean square

Concentration c�1 S2C
Error c r � 1ð Þ S2E
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Since the bias is different across concentration levels, a separate confidence

interval is needed for each concentration level. The bounds for a 100 1� αð Þ%
two-sided confidence interval for βi are

Li ¼ �Yi � τi � t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r

Ui ¼ �Yi � τi þ t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r ð6:10Þ

where �Yi is defined in (6.5) and S2E is defined in (6.9).

A 100 1� αð Þ% upper bound on σ is

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c r � 1ð ÞS2E
χ2α:c r�1ð Þ

s
: ð6:11Þ

The analysis of variance table for the data in Table 6.3 is shown in Table 6.5.

Using Eq. (6.10) a 90% two-sided confidence interval for the bias in the 100%

concentration level is

L¼ �Yi � τi � t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r

L¼ 997:95� 1000� 1:833

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:796

4

r
¼ �6:33 mg=g

U ¼ �Yi � τi þ t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r

U ¼ 997:95� 1000þ 1:833

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:796

4

r
¼ 2:23 mg=g:

ð6:12Þ

The confidence intervals for the 50 and 150% concentration levels are made in a

similar fashion.

A 95% upper bound on the (pooled) precision from (6.11) is

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c r � 1ð ÞS2E
χ2α:c r�1ð Þ

s

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 21:796ð Þ

3:33

r
¼ 7:68 mg=g:

ð6:13Þ

Table 6.5 Analysis of

variance for example data
Source of variation Degrees of freedom Mean square

Concentration 2 S2C ¼ 3:953

Error 9 S2E ¼ 21:796
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Note this upper bound is slightly greater than that computed in Case 1 because

there are fewer degrees of freedom associated with the pooled estimate of σ (11 in

Case 1 and 9 in Case 2). A plot of the data in Table 6.3 is shown in Fig. 6.1.

Note that the reportable values are centered at roughly the same value across

levels of concentration. This suggests the bias is constant and that Case 1 is the

more appropriate procedure. Also note that the spread appears constant across

concentration. This is consistent with the second assumption noted in Sect. 6.4.1.

6.4.3 Using Confidence Intervals to Validate Accuracy
and Precision

The confidence intervals provided in the previous section can be used to validate

accuracy and precision individually. Because bias can be either positive or nega-

tive, it is customary to perform a statistical test of equivalence to validate accuracy.

Tests of equivalence are discussed in Sect. 2.11. Assume Case 1 is appropriate and

Eq. (6.5) is used to compute a 90% two-sided confidence interval on the bias. A

pre-selected value of the equivalence acceptance criterion (EAC) to validate accu-

racy was selected to be 5 mg/g or 0.5% of the true value. (Section 6.4.4 discusses

considerations in selecting an appropriate EAC.) Since the 90% confidence interval

from L¼�3:38 mg/g to U¼ 1.09 mg/g falls completely in the range from –5 to

+5 mg/g, the statistical equivalence test is passed, and it can be claimed the

procedure is validated for accuracy.
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Fig. 6.1 Plot of data in Table 6.3
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To validate precision, the upper bound on the standard deviation must be less

than a pre-selected acceptance criterion. In our example, assume precision is

validated if it can be shown that the standard deviation is less than 7 mg/g. Since

the computed 95% upper bound in this example, U¼6.68 mg/g, is less than the

acceptance criterion of 7 mg/g, the procedure has been validated with respect to

precision.

6.4.4 Validation Criteria for Accuracy and Precision

As discussed in Sect. 2.11, acceptance criterion should ideally be defined by the

analytical scientist and not the statistician. The criterion must be meaningful in the

sense that it must define what is meant by “fit for purpose.” When validating

accuracy and precision individually, this is the most difficult part of the analysis.

This is because a procedure that has very small bias can accept a greater standard

deviation than a procedure with a large bias. Similarly, a procedure with a relatively

small standard deviation can accept a relatively large bias. For this reason, the

criteria for these two attributes are linked, making it difficult to get a good

assessment of individual criteria. Many companies, as well as industry standards

organizations, have default limits that are used for all validations. These may be

based on industry benchmarking, but it is arguable whether such an approach truly

demonstrates “fit for purpose.” For this reason, and to account for the relationship

between accuracy and precision as it relates to overall performance, we recommend

two other approaches for validation of accuracy and precision. We present these

approaches in the next two sections.

6.4.5 Validation of Accuracy and Precision Using Statistical
Intervals

Hubert et al. (2004, 2007a, b) proposed validation of both accuracy and precision

simultaneously rather than individually as described in the previous section. The

reasoning is to take advantage of the natural tradeoffs between these two charac-

teristics. For example, a procedure with a relatively small standard deviation can

accept a greater bias than a procedure with a larger standard deviation. Because the

intended purpose of an analytical procedure is to provide accurate and precise

measurements, one may consider that the procedure is validated if it is shown to

provide a high degree of assurance that future measured values will be close to their

true values. A criterion that can be used to simultaneously validate accuracy and

precision seeks to ensure
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Pr �λ < Y � τ < λð Þ � P, or
Pr �λþ τ < Y < λþ τð Þ � P

ð6:14Þ

where λ > 0 is an acceptable limit defined a priori to be consistent with the purpose

of the procedure. The term P is a desired probability value (e.g., P ¼ 0:90).
For example, a desired goal for a procedure that reports concentration in mg/mL

may be written in the following manner: “The procedure must ensure that at least

90% of the time, measurement error (i.e., the difference between the reported value

and the true value) is no greater than 0.5 mg/mL.” In terms of Eq. (6.14), this means

λ ¼ 0:5 mg/mL and P ¼ 0:90.
Equation (6.14) can be interpreted as either (1) the probability that the next

reportable value falls in the range from�λþ τ to λþ τ is greater than or equal to P,
or (2) the proportion of all future reportable values falling between �λþ τ and λ
þτ is greater than or equal to P. Accordingly, two statistical intervals have been

proposed for validating Eq. (6.14).

1. A prediction interval of reportable values (also referred to as an expectation

tolerance interval) and

2. A tolerance interval of reportable values (also referred to as a content tolerance

interval).

The prediction interval validates that (6.14) is true for the next reportable value,
whereas the tolerance interval validates that (6.14) is true for all future reportable

values with a specific level of confidence. Since the inference associated with the

tolerance interval concerns a larger set of values, the tolerance interval is always

wider than the prediction interval.

Both intervals can be used in the following manner to validate accuracy and

precision simultaneously:

1. Compute the appropriate statistical interval using Eq. (2.21) for the prediction

interval and Eq. (2.23) for the tolerance interval.

2. Compute a 100P% prediction interval or a 90% tolerance interval that contains

100P% of the population. A 90% confidence level for the tolerance interval will

provide a statistical test with a type I error rate (probability of rejecting the null

hypothesis when it is true) of approximately 5%.

3. If the computed interval falls completely in the range from �λþ τ to λþ τ,
criterion (6.14) is satisfied and the procedure is validated for both accuracy and

precision.

When computed by classical statistical methods (as we do below in this section)

the interpretation of these intervals is as follows. When the interval estimation

methodology is applied repeatedly to many (i.e., an infinite number) of hypothetical

future data sets of size n from possibly many different populations, each prediction

interval obtained has a 100P% probability of containing the hypothetical next

reportable value. Similarly, each 100 1� αð Þ% tolerance interval has a 100 1� αð Þ
%probability of containing at least 100P% of hypothetical future reportable values.
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Our inference about the truth (or not) of relationship (6.14) is thus based on the

properties of the statistical procedure. Whether (6.14) is true for any particular

sampled population is unknown because it depends on parameters whose values are

unknown. In Sect. 6.4.7, Bayesian interval estimation is introduced as a more direct

alternative to validation using (6.14).

Huber et al. recommend the testing strategy based on the prediction interval.

Yang and Zhang (2015) recommend the tolerance interval. The tolerance interval is

the appropriate choice if one desires a statistical test in which the type I error rate is

controlled. The tolerance interval is therefore more consistent with the approach

described in Sects. 6.4.2 and 6.4.3.

To demonstrate, consider Case 1 (bias constant) and analyze the data in

Table 6.3. Suppose (6.14) is defined so that λ ¼ 0:015� τ ¼ 15 mg=g and

P ¼ 0:90. Thus, we seek to validate the claim

Pr �λþ τ < Y < λþ τð Þ � P

Pr �15þ 1000 < Y < 15þ 1000ð Þ � 0:90

Pr 985 < Y < 1015ð Þ � 0:90:

ð6:15Þ

From Eq. (2.21) the 90% prediction interval is computed as

L¼ �Y � t 1þPð Þ=2:n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

� �
� S2

s

L¼ 998:86� 1:796

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 18:55

s
¼ 990:8 mg=g

U ¼ �Y þ t 1þPð Þ=2:n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

� �
� S2

s

U ¼ 998:86þ 1:796

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 18:55

s
¼ 1006:9 mg=g:

ð6:16Þ

From Eq. (2.23) using an exact K value of 2.414, the 90% tolerance interval that

includes 90% of the future population of reportable values is

L¼ �Y � K
ffiffiffiffiffi
S2

p

L¼ 998:86� 2:414
ffiffiffiffiffiffiffiffiffiffiffi
18:55

p ¼ 988:5 mg=g

U ¼ �Y þ K
ffiffiffiffiffi
S2

p

U ¼ 998:86þ 2:414
ffiffiffiffiffiffiffiffiffiffiffi
18:55

p ¼ 1009:3 mg=g:

ð6:17Þ

Since both intervals (6.16) and (6.17) fall within the range from 985 to 1015

defined in (6.15), both intervals validate the procedure. As described, the tolerance
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interval is wider than the prediction interval, since it makes an inference to a larger

set of values. It is also true that the tolerance interval provides a statistical test with

a type I error rate near 5%.

One final comment concerning application of this approach. When validated

individually, each test has a type I error rate of 5% and the combined error rate can

be as high as 10%. Thus, it is not unreasonable to apply a 10% type I error rate with

the simultaneous methods described in this section. This means one could use an

80% confidence level for the two-sided tolerance interval. In the present applica-

tion, the 80% tolerance interval that contains 90% of all future reportable values is

from 989.6 to 1008.1 mg/g. This compares to the previously computed 90%

tolerance interval of 988.5 mg/g to 1009.3 mg/ml.

6.4.6 Validation of Accuracy and Precision Based on Out-of-
Specification Rates

A typical application for an analytical procedure is lot (batch) release. After a lot is

manufactured, a reportable value of the product quality is obtained using the

analytical procedure. If the reportable value falls within the lower specification

limit (LSL) and upper specification limit (USL), it is deemed as satisfying the

quality requirement. However, if it falls outside of this range, action must be taken

to determine the lot disposition. Thus, an obvious criterion for procedure validation

is the probability that a reported value is out-of-specification (OOS). If the process

is operating as designed, then a reported OOS alarm in most cases is “false,” and

can lead to unnecessary time and expense in further examination of the lot. The

probability statement in (6.14) can be adapted to consideration of the OOS rate by

defining�λþ τ ¼ LSL and λþ τ ¼ USLwhere LSL and USL are the process lower

and upper specifications, respectively, and it is assumed the process is symmetric

about τ (i.e., LSLþ USLð Þ=2 ¼ τ). Thus, (6.14) is rewritten as

Pr �λþ τ < Y < λþ τð Þ � P

Pr LSL < Y < USLð Þ � P

π � 1� P

ð6:18Þ

where π ¼ 1� Pr LSL < Y < USLð Þ is the probability of an OOS signal. A 95%

upper bound can be constructed on π using the process described in Sect. 2.6.5. If

the upper bound is less than 1�P, then (6.18) is satisfied and the analytical

procedure is validated.

To demonstrate for the present Case 1 example, LSL¼ 980 mg/g, USL¼
1020 mg/g, �Y ¼ 998:86, S2 ¼ 18:55, and P¼ 0.90. Following the instructions

from Eqs. (2.17) to (2.19) with α ¼ 0:10 in (2.19), we compute KLSL ¼ 4:38 and

KUSL ¼ 4:91. Since both of these values exceed n� 1ð Þ= ffiffiffi
n

p ¼ 12� 1ð Þ= ffiffiffiffiffi
12

p ¼
3:175, K* ¼ min 4:38; 4:91ð Þ ¼ 4:38, λU ¼ 9:51, and U ¼ 0:003. Since this upper
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bound is less than 1�P¼ 1-0.90¼ 0.10, the procedure is validated against the OOS

criterion.

There is an interesting relationship between the upper bound on π and the

tolerance interval used to validate (6.14) when �λþ τ ¼ LSL and λþ τ ¼ USL.
To demonstrate, consider a situation where there is only an upper specification,

USL. Let U1 represent the 95% upper tolerance bound that exceeds 100P% of the

population computed with (2.28) and the exact value of K1. Let U2 represent the

upper 95% confidence bound computed using KUSL in Eq. (2.14). WhenU1 ¼ USL,
it must be true that U2 ¼ 1� P. Thus, the two rules for validation are exactly the

same, and have a type I error rate of 0.05. Although the situation with two-sided

specifications involves approximations, the two approaches will also generally

provide the same result, and the type I error rate is very close to 0.05.

One final adjustment is required for application of this approach. To this point,

only the measurement error has been quantified. However, if specifications are used

to define “fitness for purpose,” it is necessary to also account for process variation.

To do this, let σ2P represent the variance of the manufacturing process and σ2 the
variance of the reportable value. (The statistic S2 is an estimator for σ2). Now define

ρ ¼ σ2P
σ2P þ σ2

: ð6:19Þ

which represents the proportion of the total variance in the reportable value due to

the process. An empirical estimate of σ2P might be available from process data, but if

not, a subject manner expert can generally provide a reasoned guess for ρ. For
example, if the procedure is a bioassay, it is expected that variance due to the

analytical procedure is greater than the process variance, and so a value of ρ ¼ 0:2
might be reasonable. In contrast, a procedure with relatively little measurement

error might employ ρ ¼ 0:8.
With a known or well-informed value for ρ, the total of process and measure-

ment variance is written as

σ2P þ σ2 ¼ σ2
σ2P
σ2

þ 1

� �
¼ σ2

ρ

1� ρ
þ 1

� �
¼ σ2

1

1� ρ

� �
: ð6:20Þ

The confidence interval for π is now computed as before, but with S2 replaced

with S2* ¼ S2 1
1�ρ

h i
.

In the present example, assume that ρ ¼ 0:5. Performing the previous calcula-

tions with S2* ¼ S2 1
1�ρ

h i
¼ 18:55 1

1�0:5

	 
 ¼ 37:1, we obtain KLSL ¼ 3:096 and

KUSL ¼ 3:471, K* ¼ min 3:096; 3:471ð Þ ¼ 3:096, λU ¼ 6:545, and U ¼ 0:029.
Since this upper bound is less than 1�P¼1-.90¼0.10, the procedure is validated

against the OOS criterion.

Burdick et al. (2005) provide an approach for estimating false failure rates and

missed fault rates. As noted earlier, the false failure rate is generally very close to
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the observed OOS rate. However, it is also of interest to know if the missed fault

rate is acceptably low. By defining criteria based on misclassification rates, a

procedure can be validated using upper confidence bounds on these rates.

Other approaches for establishment of criteria are provided by Chatfield and

Borman (2009).

6.4.7 A Bayesian Approach

It is also possible to estimatePr �λ < Y � τ < λð Þdirectly using a Bayesian approach
(see Sect. 2.13 for a discussion of Bayesian statistics). The validation criterion is thus

satisfied if this estimated probability exceeds P. A Bayesian tolerance interval is

provided in Wolfinger (1998) and can be computed using the statistical software

package WinBUGS (Ntzoufras 2009 or Spiegelhalter et al. 1996).

The WinBUGS code required for Case 2 is shown below:

# data

Level[] Y[]

1 1000.57

1 996.93

1 1002.4

1 994.91

2 994.16

2 992.72

2 1000.03

2 1004.89

3 1002.53

3 1004.83

3 998.17

3 994.15

END

# more data

list(n=12, c=3, tau=1000)

model{

# Priors

for(i in 1:c){ beta[i] ~ dnorm(0,0.000001) }

sigma ~ dunif(0, 100)

precision <- pow(sigma,-2)

# Likelihood

(continued)
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for(obs in 1:n){

Dif[obs] <- Y[obs] - tau

Dif[obs] ~ dnorm (beta[ Level[obs] ],precision)

}

}

Boxplots that compare the posterior distributions for beta[i] are shown in

Fig. 6.2. The distributions are labeled with the concentration level index (i.e.,

[1]¼ 50, [2]¼ 100, [3]¼ 150). These boxplots are created by WinBUGS and are

different than those described in Sect. 2.4. Boxes represent inter-quartile ranges and

the solid black line at the (approximate) center of each box is the mean. The arms of

each box extend to cover the central 95% of the distribution. The horizontal line

behind the boxes is the overall mean of the posterior means.

The two-sided 90% credible interval for beta2 is�5.885 to +3.307 which may be

compared to the classical frequentist two-sided 90% confidence interval computed

in (6.12) of �6.33 to +2.23. The upper 95% credible bound for sigma is 8.49 which

may be compared to the classical frequentist upper 95% confidence bound of 7.68

shown in (6.13). Figure 6.2 supports the conclusions from Fig. 6.1 that Case

1 (constant bias) provides a more appropriate model for these data.

The WinBUGS code required for Case 1 is shown below:

[1] [2]
[3]

box plot: beta

-5.0

0.0

5.0

Fig. 6.2 Comparison of

posterior distributions
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# data

Y[]

1000.57

...

END

# more data

list(n=12, tau=1000)

# Let WinBUGS pick initials

model{

# Priors

beta ~ dnorm(0,0.000001)

sigma ~ dunif(0, 100)

precision <- pow(sigma,-2)

# Likelihood

for(obs in 1:n){

Dif[obs] <- Y[obs] - tau

Dif[obs] ~ dnorm (beta,precision)

}

}

The posterior sample obtained from executing this code was imported into R for

further analysis. This sample consists of 300,000 pairs of values for β and σ drawn

from their joint posterior. A two-sided 90% central credible interval for β can be

obtained using the R function

quantile(beta,c(0.05,0.95))

The interval is �3.50 to +1.22 mg/g which is comparable to the corresponding

classical frequentist interval of �3.38 to +1.09 that was computed in (6.7).

A one-sided upper 95 credible bound for sigma can be obtained using the

following R function:

quantile(sigma,c(0.95))

The resulting upper bound is 7.204 mg/g which is comparable to the classical

frequentist upper bound of 6.68 mg/g computed in (6.8).
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It is of interest to estimate the posterior probability that 90% of future values will

be within τ � λ where τ ¼ 1000 and λ ¼ 15. This can be obtained using the

following two lines of R code:

Content <- pnorm(tau + lambda, tau + beta, sigma) - pnorm(tau

- lambda, tau + beta, sigma)

mean(Content >= 0.9)

The result is 0.989. Since this value is greater than 0.90¼ 90%, the method is

validated. The frequentist approach computes an upper bound on

Pr �λ < Y � τ < λð Þ using results from Sect. 2.6.5. An example of this approach

was given in (6.18) where λ ¼ 20:
A sample of 100,000 draws from the posterior predictive distribution of future

reportable results may be obtained using the following random normal R function:

Y.fut <- rnorm(100000,beta+tau,sigma)

The central two-sided 90% credible posterior predictive interval of future values

may be obtained using the R function

quantile(Y.fut,c(0.05,0.95))

The resulting interval is from 990.3 to 1007.5 which may be compared to the

classical prediction interval of 990.8–1006.9 computed in (6.16).

It is of interest to estimate the posterior predictive probability that future values

will be within τ � λ. This can be obtained using the following two lines of R code:

Y.fut.in <- (tau - lambda <= Y.fut) & (Y.fut <= tau + lambda)

mean(Y.fut.in)

The resulting probability is 0.989. There is no comparable classical frequentist

estimate available.

It is of interest to estimate the posterior predictive probability that future values

will be OOS (outside 980 to 1020). The following two lines of R code will provide

this estimate:

OOS <- (Y.fut <= 980) & (1020 >= 1020)

mean(OOS)
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The resulting probability is 0.00137 which can be compared to the result

obtained previously using classical frequentist approaches of 0.003 shown in

Sect. 6.4.6.

A Bayesian content tolerance interval to contain 90% of future values with 90%

credibility can be obtained using Algorithm 11.2 of Krishnamoorthy and Mathew

(2009). The R code is a bit more involved because it requires an iterative search.

The implementation of this algorithm in R is given below.

P<-0.90; C<-0.90

L<- tau + beta + qnorm((1-P)/2,0,sigma)

U<- tau + beta + qnorm((1+P)/2,0,sigma)

ndraws<-length(L)

mu.bar <- mean(c(L,U))

intervals<-1000 # 10000 takes too long

mu.2.range <- seq(min(U),max(U), ( max(U)-min(U) )/intervals

)

PP <- matrix (rep(NA,3*length(mu.2.range)),ncol=3)

i <-0

for(mu.2 in mu.2.range){

i<-i+1

mu.1 <- -mu.2 + 2*mu.bar

PP[i,]<-c(mu.1,mu.2,mean((U<=rep(mu.2,ndraws))&(L>=rep

(mu.1,ndraws))))

}

# select values in PP for which the proportion covered is

near C

# may need to adjust the factors of C to select a narrow range

of values close to C

PP.out<- PP[ (PP[,3]<=1.02*C) & (PP[,3]>=0.98*C),]

TI <- c(mean(PP.out[,1]),mean(PP.out[,2]))

TI

The resulting Bayesian content tolerance interval is 986.5 to 1011.3 which is

comparable to the 988.5–1009.3 as computed in (6.17).

While the Bayesian results are quite close to those obtained using classical

statistical methods, the interpretation of these intervals and probabilities are differ-

ent from the frequentist interpretations. The Bayesian results were obtained using

relatively uninformative prior distributions for β and σ. Had more informative

distributions been available, the estimates could be much different, and arguably

more informative. The other difference is that the Bayesian methodology replaces

analytical solutions (some of which are necessarily approximate) with computer
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algorithms for which there are no approximations. However, these computer algo-

rithms have their own challenges related to Markov Chain Monte-Carlo (MCMC)

convergence verification and the requirement for large MCMC samples to mini-

mize simulation error. An additional advantage of the Bayesian approach is that it is

easily extended to more complex models for which frequentist analytical

approaches are intractable.

6.4.8 Power Considerations

As noted in Sect. 6.3, it is important to conduct pre-validation work to gain

understanding of the procedure. Part of this work should include a power analysis

to determine the probability of passing validation under given scenarios. Computer

simulation is extremely useful for this purpose. Statistical power is defined as the

probability that one meets the acceptance criterion given a true value of the

parameter of interest. To demonstrate, a simulation program was written to deter-

mine the power of a validation test based on the requirement that the probability of

an OOS (π) is less than 1�P¼ 0.10 with a type I error rate of 5%. The specifications

are LSL¼ 980 and USL¼ 1020. The test is to be conducted as described in

Sect. 6.4.6. The simulation was conducted with 100,000 iterations. Table 6.6 pre-

sents the results for validation designs with n¼ 6, n¼ 12, and n¼ 20 using a 90%

confidence coefficient (type I error rate of 0.05). Table 6.7 reports the same design

with an 80% confidence coefficient (type I error rate of 0.10).

Note that the power in the last row where π ¼ 0:10 is the estimated type I error

rate. Since these values are all less than the desired rate (0.05 in Table 6.6 and 0.10

in Table 6.7), this provides an additional argument for applying an 80% confidence

coefficient on the confidence interval for π. The simulation results also show that

with the typical sample sizes used in a validation study, the criterion (1� P ¼ 0:10
in this case) must be much greater than the true value of π in order to provide a

reasonable chance of passing the validation.

Table 6.6 Power for several

designs with 90% confidence
True value of π n¼ 6 n¼ 12 n¼ 20

0.001 0.566 0.875 0.997

0.005 0.375 0.644 0.941

0.010 0.270 0.455 0.808

0.10 0.041 0.028 0.039

Table 6.7 Power for several

designs with 80% confidence
True value of π n¼ 6 n¼ 12 n¼ 20

0.001 0.775 0.968 0.999

0.005 0.586 0.842 0.983

0.010 0.455 0.684 0.919

0.10 0.087 0.068 0.086
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6.4.9 Violation of Homogeneity Across Concentration Levels

Procedures based on chemical or biological principles will sometimes demonstrate

different variances as concentrations vary. This violates one of the assumptions

made during discussions to this point. In such a situation, it is sometimes possible to

transform the data so that the standard deviations can be assumed equal across the

concentration range. The analyses that combine the data from all concentration

levels as described above can then be performed using the transformed data, with

appropriately transformed validation criteria.

It is extremely important that pre-validation work be used to determine neces-

sary transformations that will allow the pooling of data across concentration levels.

Failure to do so could lead to either unnecessary experimentation, or an under-

powered validation experiment. Section 4.3 of USP chapter <1032> presents an

excellent review of this topic. The normality transformations described in Sect.

2.6.10 also often stabilize the variance.

6.4.10 Experimental Designs to Incorporate Ruggedness
Factors

In order to validate a procedure across the total environment in which it is expected

to operate, it is sometimes necessary to manipulate ruggedness factors in the

experimental design. Examples of ruggedness factors include analysts, equipment,

and days. Table 6.8 reports the same data shown in Table 6.3, but with information

concerning the analyst that performed the preparation work for the assay.

We again assume that the reportable value has a constant variance across all

three concentration levels, and that bias is constant (Case 1) so that we may

Table 6.8 Example data set with ruggedness factors

Test concentration (%) Analyst Test solution (plate or run) Reportable value (mg/g)

50 1 1 1000.57

50 1 2 996.93

50 2 3 1002.4

50 2 4 994.91

100 3 5 994.16

100 3 6 992.72

100 4 7 1000.03

100 4 8 1004.89

150 5 9 1002.53

150 5 10 1004.83

150 6 11 998.17

150 6 12 994.15
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combine all concentration levels into a single data set. Unlike the previous analysis

with Table 6.3, the 12 rows in Table 6.8 are not independent unless analysts do not

impact the reportable value. For example, rows 1 and 2 were both prepped by

analyst 1. If analyst impacts the reportable value, the values in rows 1 and 2 are

more similar with each other than with the values in other rows of the table. In such

a situation, we state the responses made by the same analyst are correlated. We

described such a situation previously in Sects. 2.7 and 2.12.7.

In the present example, represent the reportable value with the statistical model

Yij ¼ τ þ Ai þ Eij

i ¼ 1, . . . , a analystð Þ; j ¼ 1, . . . r;
ð6:21Þ

where Yij is the reportable value for the j
th replicate of the ith analyst. The number of

analysts in this example is a¼ 6, and each analysts performs r¼ 2 independent

repetitions. The random error Ai represents between analyst variability. It is

assumed to have a mean of zero and a variance σ2A. The random error Eij is the

within analyst variability which has an assumed mean of zero and variance σ2E. The
parameter τ represents the true value (1000 mg/g for all concentration levels in our

example).

The ANOVA table for model (6.21) is shown in Table 6.9. Formulas for S2A and

S2E are provided in Table 2.16. The numerical values for the data in Table 6.8 are

shown in Table 6.10.

The model shown in (6.21) assumes that analyst is a random effect. That is, a

sample of six analysts used in the experiment is viewed as a random sample from a

population of analysts that will perform the procedure in the future. In some

situations, it may be reasonable to treat analyst as a fixed effect. This case is

considered in the next section.

The total variance associated with the procedure is the sum of the variance

components,σ2Total ¼ σ2A þ σ2E ¼ θ1 � θ2ð Þ=r þ θ2 ¼ θ1=r þ 1� 1=rð Þθ2. This sum
is called the intermediate precision. The estimator for the intermediate precision is

S2Total ¼
S2A
r
þ r � 1ð ÞS2E

r
: ð6:22Þ

Table 6.9 ANOVA for model (6.21)

Source of variation Degrees of freedom Mean square Expected mean square

Between analysts n1 ¼ a� 1 S2A θ1 ¼ σ2E þ rσ2A
Within analysts n2 ¼ a r � 1ð Þ S2E θ2 ¼ σ2E

Table 6.10 ANOVA, for

example
Source of variation Degrees of freedom Mean square

Between analysts n1 ¼ 5 S2A ¼29.165

Within analysts n2 ¼ 6 S2E ¼9.708
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Using the Satterthwaite approximation given in (2.120), the degrees of freedom

associated with this estimator is

m ¼ S4Total
S4A

r2 � n1
þ r � 1ð Þ2 � S4E

r2 � n2

ð6:23Þ

Using the data in Table 6.10,

S2Total ¼
29:165

2
þ 1� 1

2

� �
9:708 ¼ 19:437 ð6:24Þ

and

m ¼ 19:437ð Þ2
29:165ð Þ2
22 � 5

þ 2� 1ð Þ2 � 9:708ð Þ2
22 � 6

¼ 8:13 ¼ 8 roundedð Þ ð6:25Þ

Notice that S2Total ¼ 19:437 is greater than the estimate of the measurement

variability obtained when assuming all 12 rows of the data table are independent

S2 ¼ 18:55
� �

: This demonstrates the problem of not properly modeling the rugged-

ness effects to account for correlation. Namely, one will underestimate the true

procedure variance, and possibly validate a procedure that is not truly fit for purpose.

The prediction and tolerance intervals used for validation in the previous section

can be easily modified for this correlated condition. In particular, simply replace S2

with S2Total and the error degrees of freedom n� 1ð Þ with m (rounded to the nearest

integer). The formula for �Y remains unchanged. Thus, the 90% prediction interval is

computed as

L¼ �Y � t 1þPð Þ=2:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
� S2Total

s

L¼ 998:86� 1:86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 19:437

s
¼ 990:3 mg=g

U ¼ �Y þ t 1þPð Þ=2:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
� S2Total

s

U ¼ 998:86þ 1:86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 19:437

s
¼ 1007:4 mg=g

ð6:26Þ

The 90% tolerance interval that contains 90% of the population is computed as
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L¼ �Y � K
ffiffiffiffiffiffiffiffiffiffi
S2Total

q

L¼ 998:86� 2:59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:437

p ¼ 987:4 mg=g

U ¼ �Y þ K
ffiffiffiffiffiffiffiffiffiffi
S2Total

q

U ¼ 998:86þ 2:59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:437

p ¼ 1010:3 mg=g

ð6:27Þ

where

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
Z2

1þPð Þ=2 � m

χ20:1:m

vuuut

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

6� 2

� �
1:64ð Þ2 � 8

3:49

vuuut ¼ 2:59:

ð6:28Þ

Note that both of the computed intervals are wider than their counterparts

computed earlier (990.8 to 1006.9 for the prediction interval and 988.5 to 1009.3

for the tolerance interval). This difference occurs for two reasons:

1. S2Total is generally greater than S2 and
2. The error degrees of freedom, m, is generally less than n�1.

Thus, incorporation of ruggedness effects requires more experimental runs to

obtain the same power as a completely independent design. If during pre-validation

work a ruggedness factor has been discovered to not impact the intermediate

precision, do not include it in the analysis. This will needlessly decrease statistical

power.

The intervals in (6.26) and (6.27) can be recommended for validation as

described in this chapter. The same substitutions can be applied to the formulas

described in Sect. 6.4.6 to estimate OOS.

To finish the example, we now account for the process variation assuming ρ
¼ 0:5 and compute the tolerance interval using S2*Total ¼ S2Total= 1� ρð Þ ¼ 38.873.

The resulting tolerance interval from 986.1 to 1011.6 falls within the range from

LSL¼ 980 to USL¼ 1020, and the procedure is validated as fit for purpose.

We have considered the case where there is only a single ruggedness factor. If

more ruggedness factors are included, more power is lost for a fixed number of

experimental runs due to additional partitioning of σ2Total. Again, one is reminded to

not employ ruggedness factors unless they have a demonstrable impact on the

intermediate precision.

If a ruggedness factor can be more properly considered as a fixed effect rather

than a random effect, power will not be as dramatically impacted. This topic is

discussed in the next section.
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6.4.11 Incorporating Fixed Effect Ruggedness Factors

In some situations, ruggedness factors are more properly treated as fixed effects.

For example, suppose that a major contributor to the intermediate precision of an

analytical procedure is the instrument used in the procedure. Suppose there are four

instruments in the laboratory, and these will be the only instruments used to perform

the procedure in the foreseeable future. Since these are the only four instruments

that will be used when performing the procedure, instrument is a fixed effect. Even

though it is a fixed effect, differences among the instruments will contribute to the

total variation, since only one instrument will be selected for a given application.

Thus, it is still necessary to account for this component of variance in the interme-

diate precision.

As another example, Schwenke and O’Connor (2008) argue that in many cases,

analysts can be considered a fixed effect. They argue an analyst is a trained

professional proficient on the procedure through a lab-sponsored training program.

As such, they are viewed as fixed effects since the training program has made them

interchangeable. In many labs, only a small set of analysts perform a given

procedure. If they are all used in the validation process, then assuming analyst to

be fixed effect is a reasonable assumption.

Analysis of the data in Table 6.8 is now performed assuming analyst to be a fixed

effect. The statistical model used to describe the fixed design is

Yij ¼ τ þ αi þ Eij

i¼ 1, . . . , a analystð Þ; j ¼ 1, . . . r;
ð6:29Þ

where Yij is the reportable value for the j
th replicate of the ith analyst. The term αi is a

fixed unknown constant that represents the ith analyst and replaces the random

variable Ai shown in the random model (6.21). The variance of the a values of αi is
defined as

σ2α ¼

Xa
i¼1

α2i

a� 1
: ð6:30Þ

The random error Eij has an assumed mean of zero and variance σ2E. The
parameter τ represents the true value (1000 mg/g for all concentration levels in

our example). The total variance associated with the procedure is the sum of the

variance components, σ2Total ¼ σ2α þ σ2E.
Using an approximation described in Dolezal et al. (1998), all the formulas

described in the previous section can be used with a fixed effect by simply replacing

n1 with n�1 where
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n*1 ¼
n1 þ 2λ½ �2
n1 þ 4λ

λ¼ n1
2

S2A
S2E

n2 � 2

n2

� �
� 1

� �
:

ð6:31Þ

In the present example,

λ¼ 5

2

29:165

9:708

6� 2

6

� �
� 1

� �
¼ 2:507

n*1 ¼
5þ 2� 2:507½ �2
5þ 4� 2:507

¼ 6:673

m¼ 19:437ð Þ2
29:165ð Þ2
22�6:673

þ 2� 1ð Þ2 � 9:708ð Þ2
22 � 6

¼ 10:55 ¼ 11 roundedð Þ:

ð6:32Þ

Thus, the degrees of freedom used in the prediction and tolerance intervals has

increased from m ¼ 8 to m ¼ 11, and length of the intervals will be properly

reduced. In this problem, the 90% tolerance interval that contains 90% of the

population computed in (6.27) assuming random analysts is from 987.4 to

1010.3 mg/g. If analysts are treated as fixed, then the interval that results replacing

m ¼ 8 with m* ¼ 11 is from 988.3 to 1009.5 mg/g. Although the difference is

relatively modest in this example, this adjustment will have a major impact on

results when a¼ 2 or 3.

This example demonstrates the importance of identifying whether ruggedness

factors are fixed or random in the validation experiment. If the validation experi-

ment includes all levels of a ruggedness factor that will be employed in the future,

then properly treating it as a fixed effect will increase the likelihood of a successful

validation.

6.5 Stage 3: Procedure Performance Verification
and Analytical Procedure Transfer

Once the validation is done, it is important to continually monitor the performance

of the analytical procedure. A useful statistical tool for this purpose is a control

chart of measurements made with the reference standard (refer to Chap. 5 for

information on control charts). It is also good practice to perform a system suit-

ability test before every application. USP, ICH, and FDA all provide recommen-

dations as to the need for system suitability tests. Procedures used for this purpose

will vary by the procedure and the company.

The purpose of an analytical procedure transfer is to ensure that the receiving

laboratory can perform an analytical procedure with the same ability as the trans-

ferring laboratory.
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6.5.1 Objectives and Regulatory Guidance for Transfers

Some guidance for procedure transfers is provided in General USP

Chapter <1224>. The purpose of <1224> is to summarize the types of transfers

that may occur, including the possibility of waiver of any transfer, and to outline the

potential components of a transfer protocol. However, the chapter does not provide

any statistical methods.

A procedure transfer study requires a preapproved transfer protocol that includes

details pertaining to the procedure, the sample types being tested, and

predetermined acceptance criteria. The acceptance criteria often consider both

bias and variability. The acceptance criteria must be satisfied in order to success-

fully demonstrate the receiving lab is qualified to perform the analytical procedure.

6.5.2 Experimental Designs for Transfers

USP <1224> refers to three types of studies employed in procedure transfer:

1. Comparative testing,

2. Covalidation, and

3. Re-validation.

As described in <1224>, comparative testing requires the analysis of a

predetermined number of samples of the same lot by both the transferring and the

receiving labs. (More than one lot can be employed if the measurements of the two

labs are properly matched.) Covalidation occurs when more than one lab is

involved in the initial procedure validation. Re-validation occurs when the receiv-

ing lab performs its own independent validation of the procedure.

Statistical designs are not provided in USP <1224>, and so the procedure

transfer design is typically determined by the individual company. Consider the

summary data in Table 6.11 where each lab is assignedn ¼ 10 independent samples

from the same lot of material. The response variable is the amount of active

ingredient measured in mg.

Table 6.11 Summary of procedure transfer

Parameters Point estimator Computed estimate

μ1—Mean of transferring lab �Y1 247.7

μ2—Mean of receiving lab �Y2 249.4

σ21—Variance of transferring lab S21 10.2

σ22—Variance of receiving lab S22 27.1
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6.5.3 An Equivalence Test for Bias

Bias between the labs is defined as the difference in the lab averages, μ1 � μ2. The
equivalence test described in Sect. 2.11 based on the 90% confidence interval on the

difference in means can be used for this purpose. Since the two samples are

independent, the appropriate confidence interval on the mean difference is provided

in Eq. (2.58) where we assume variances are not equal. Based on historic reference

sample measurements in the transferring lab, the EAC is taken to be 10 mg. Thus,

the 90% confidence interval on the difference μ1 � μ2 must fall entirely within the

range from �10 to +10 mg.

We begin by computing the degrees of freedom for the confidence interval.

df ¼
S21
n1
þ S22

n2

� �2

S41
n21 n1 � 1ð Þ þ

S42
n22 n2 � 1ð Þ

¼
10:2
10

þ 27:1
10

� �2
10:2ð Þ2

10ð Þ2 10� 1ð Þ þ
27:1ð Þ2

10ð Þ2 10� 1ð Þ

¼ 14:9 ¼ 15 roundedð Þ:
ð6:33Þ

The lower and upper bounds of the confidence interval are now computed as

L¼ �Y1 � �Y2 � t1�α=2:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

¼ 247:7� 249:4� 1:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:2

10
þ 27:1

10

r
¼ �5:1 mg

U ¼ �Y1 � �Y2 þ t1�α=2:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

¼ 247:7� 249:4� 1:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:2

10
þ 27:1

10

r
¼ 1:7 mg:

ð6:34Þ

Since the 90% confidence interval falls entirely within the range from �10 to

+10 mg, equivalence of means between the laboratories has been demonstrated.

Rugaiganisa (2016) has proposed an approach for setting the EAC for the

equivalence test. As an alternative to this procedure, one may wish to establish

transfer criteria using an ATP as described by Martin et al. (2013).
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6.5.4 Tests for Precision

Precision of a procedure is described by the magnitude of the variance (or standard

deviation). As discussed in Schwenke and O’Connor (2008), the necessity and form
of an equivalence test for precision is not obviously apparent. If the receiving lab

provides better precision, that is a good thing, even if the two procedure precisions

are not equivalent. Thus, a difference testing approach as opposed to equivalence

testing might be considered.

In particular, one might test the null hypothesis σ21 � σ22 versus the alternative

hypothesis σ21 < σ22 and conclude the receiving lab is no worse than the transferring
lab if one does not reject the null hypothesis. Such a test could be performed by

computing an upper bound on the ratio σ21/σ
2
2 as described in Sect. 2.8.3. If this

upper bound is greater than 1, then one is unable to reject the null hypothesis, and

will conclude the procedure transfer is successful. However, one would need to

ensure that the power associated with the test is sufficiently high to discover a

situation where σ21 < σ22.
Alternatively, one might compute a range of expected variances in the receiving

lab based on the variance in the transferring lab. The receiving lab passes the

transfer if the computed variance falls in this range. Such an approach is similar

to using a control chart or a system suitability test. A 95% upper prediction bound

based on n1 observations to contain the variance of a future sample of size n2 from
the same normal population is

U ¼ S21 � F0:95,n2�1,n1�1 ð6:35Þ

(see page 64 of Hahn and Meeker (1991)).

That is, if the receiving lab is performing the procedure in the same manner as

the transferring lab, the transfer criteria are satisfied if S22 � Uwhere U is defined in

(6.35). To demonstrate, using the data in Table 6.11,

U¼ S21 � F0:95,n2�1,n1�1

¼ 10:2� 3:18 ¼ 32:4:
ð6:36Þ

Since S22 ¼ 27:1 is less than 32.4, the procedure transfer satisfies the precision

requirement.
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Dewé W, Feinberg M, Lallier M, Laurentie M, Mercier N, Muzard G, Nivet C, Valat L, Rozet

E (2007a) Harmonization of strategies for the validation of quantitative analytical procedures:

a SFSTP proposal—part II. J Pharm Biomed Anal 45:70–81

Hubert Ph, Nguyen-Huu J-J, Boulanger B, Chapuzet E, Cohen N, Compagnon P-A, Dewé W,

Feinberg M, Laurentie M, Mercier N, Muzard G, Valat L, Rozet E (2007b) Harmonization of

strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part III.

J Pharm Biomed Anal 45:82–96

International Conference on Harmonization (2005) Q2 (R1) Validation of analytical procedures:

text and methodology

International Conference on Harmonization (2009) Q8 (R2) Pharmaceutical development

Krishnamoorthy K, Mathew T (2009) Statistical tolerance regions. Wiley, Hoboken

Martin GP, Barnett KL, Burgess C, Curry PD, Ermer J, Gratzl GS, Hammond JP, Herrmann J,

Kovacs E, LeBlond DJ, LoBrutto R, McCasland-Keller AK, McGregor PL, Nethercote P,

Templeton AC, Thomas DP, Weitzel J (2013) Stimuli to the revision process: lifecycle

management of analytical procedures: method development, procedure performance qualifi-

cation, and procedure performance verification. Pharm Forum 39(5). http://www.usp.org/

uspnf/notices/stimuli-article-lifecyclemanagement-analytical-proceduresposted-comment.

Accessed 11 Mar 2014

Ntzoufras I (2009) Bayesian modeling in WinBUGS. Wiley, New York

Rugaiganisa A (2016) Comparative analytical method transfer. Presentation at the 2016 ASA

Biopharmaceutical Section Regulatory-Industry Statistics Workshop, September

Schwenke JR, O’Connor DK (2008) Design and analysis of analytical method transfer studies.

J Biopharm Stat 18:1013–1033

Spiegelhalter D, Thomas A, Best N, Gilks W (1996) BUGS 0.5 Examples Volume 1(version i).

Accessed 21 April 2014. http://www.mrc-bsu.cam.ac.uk/bugs/

USP Statistics Expert Team (2016) In-process revision: <1210> Statistical tools for procedure

validation. Pharm Forum 42(5). http://www.usppf.com/pf/pub/index.html

USP 39-NF 34 (2016) General Chapter <1010> analytical data—interpretation and treatment.

US Pharmacopeial Convention, Rockville

USP 39-NF 34 (2016) General Chapter <1030> biological assay chapters—overview and glos-

sary. US Pharmacopeial Convention, Rockville

USP 39-NF 34 (2016) General Chapter <1032> design and development of biological assays.

US Pharmacopeial Convention, Rockville

USP 39-NF 34 (2016) General Chapter <1033> biological assay validation. US Pharmacopeial

Convention, Rockville

USP 39-NF 34 (2016) General Chapter <1223> validation of alternative microbiological

methods. US Pharmacopeial Convention, Rockville

USP 39-NF 34 (2016) General Chapter <1224> transfer of analytical procedures. US Pharmaco-

peial Convention, Rockville

224 6 Analytical Procedures

http://www.usp.org/uspnf/notices/stimuli-article-lifecyclemanagement-analytical-proceduresposted-comment
http://www.usp.org/uspnf/notices/stimuli-article-lifecyclemanagement-analytical-proceduresposted-comment
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.usppf.com/pf/pub/index.html


USP 39-NF 34 (2016) General Chapter <1225> validation of compendial procedures.

US Pharmacopeial Convention, Rockville

Weitzel MLJ (2012) The estimation and use of measurement uncertainty for a drug substance test

procedure validated according to USP<1225> Accred Qual Assur 17:139–146

Wolfinger RD (1998) Tolerance intervals for variance component models using Bayesian simu-

lation. J Qual Technol 30:18–32

Yang H, Zhang J (2015) Validation based on total error: a generalized pivotal quantity approach to

analytical method. PDA J Pharm Sci Technol 69:725–735

References 225


	Chapter 6: Analytical Procedures
	6.1 Introduction
	6.2 Terminology
	6.2.1 Description of an Analytical Procedure
	6.2.2 Measurement Error Models
	6.2.3 Accuracy
	6.2.4 Precision

	6.3 Stage 1: Procedure Development (Pre-validation)
	6.4 Stage 2: Procedure Performance Validation (Qualification)
	6.4.1 Experimental Design for Validation of Accuracy and Precision
	6.4.2 Confidence Intervals for Accuracy and Precision
	6.4.2.1 Case 1: Bias Is Constant Across Concentration Levels
	6.4.2.2 Case 2: Bias Changes Across Concentration Levels

	6.4.3 Using Confidence Intervals to Validate Accuracy and Precision
	6.4.4 Validation Criteria for Accuracy and Precision
	6.4.5 Validation of Accuracy and Precision Using Statistical Intervals
	6.4.6 Validation of Accuracy and Precision Based on Out-of-Specification Rates
	6.4.7 A Bayesian Approach
	HeadingsFPar10002900538
	HeadingsFPar20002900538
	HeadingsFPar30002900538
	HeadingsFPar40002900538
	HeadingsFPar50002900538
	HeadingsFPar60002900538
	HeadingsFPar70002900538
	HeadingsFPar80002900538
	HeadingsFPar90002900538
	HeadingsFPar100002900538

	6.4.8 Power Considerations
	6.4.9 Violation of Homogeneity Across Concentration Levels
	6.4.10 Experimental Designs to Incorporate Ruggedness Factors
	6.4.11 Incorporating Fixed Effect Ruggedness Factors

	6.5 Stage 3: Procedure Performance Verification and Analytical Procedure Transfer
	6.5.1 Objectives and Regulatory Guidance for Transfers
	6.5.2 Experimental Designs for Transfers
	6.5.3 An Equivalence Test for Bias
	6.5.4 Tests for Precision

	References


