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5.1 Introduction

The FDA Process Validation Guidance (2011) advocates a life cycle approach for

manufacturing to ensure the process can reliably and consistently provide quality

product that meets the therapy’s desired efficacy and safety profile. This life cycle

approach emphasizes collection and evaluation of appropriate data as evidence to

demonstrate that the process is in a controlled state to deliver quality product. It has

three stages:

1. Process design,

2. Process qualification, and

3. Continued process verification (CPV).

Chapter 3 discussed the process design stage in which state-of-the-art science

and engineering are used to design a process, statistical tools including design of

experiment are used to identify sources of variation, and risk assessment is used to

establish a control strategy for critical parameters and attributes. A quality by

design (QbD) approach is desired to build quality into the process.

Chapter 4 discussed process qualification, which included two substages:

1. Facility, equipment, and systems qualification and

2. Process performance qualification (PPQ).

Substage 1 ensures all facilities, equipment and systems meet cGMP and other

regulatory standards and that they are fit for the purpose of a reliable and controlled

process to deliver quality product. Substage 2 (PPQ) confirms that the process

performs as expected.
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The third stage of the FDA process validation considered in this chapter is called

continued process verification (CPV). In this stage, data are continuously collected

and evaluated to verify the process remains in the desired controlled state. Using the

analogy of an orbital spacecraft, process validation Stages 1 and 2 represent the

development of an orbital spacecraft and the successful launch into orbit. Stage

3 consists of the work done to ensure the spacecraft remains in orbit. This chapter

discusses the key components of CPV and statistical tools that are useful for this

purpose.

5.2 Components in Continued Process Verification

It is assumed that Stages 1 and 2 of the validation process provide a good

understanding of the manufacturing process and associated analytical methods.

Using risk assessment, quality by design, and appropriate quality systems (ICH

Q8 (R2), ICH Q9, ICH Q10), an appropriate control strategy will be in place, and

the process capability to deliver intended-for-use products will have been validated.

Alsmeyer and Pazhayattil (2014) described a simple case study of CPV for small

molecules. The BioPhorum Operations Group (BPOG 2014) provides a position

paper on CPV with a case study using a monoclonal antibody manufacturing

process. This study is a continuation of a case study in bioprocess development

using risk assessment and quality by design (CMC Biotech Working Group 2009).

These two case studies provide examples for the following discussion.

Figure 5.1 presents a simplified diagram of key parameters from different

sources that potentially need monitoring in Stage 3.

The parameters in Fig. 5.1 are classified into four sets:

1. Critical material attributes,

2. Critical process parameters,

3. Critical quality attributes, and

Critical Process ParametersCritical Material Attributes Critical Quality Attributes

Final Product

Analytical Methods

ProcessRaw Materials

Critical Method Attributes

Fig. 5.1 Manufacturing components and structure of CPV monitoring variables

174 5 GMP Monitoring and Continuous Process Verification. . .



4. Critical method attributes.

Because of the progression shown in Fig. 5.1, critical quality attributes are often

called lagging factors, and critical material attributes and critical process parame-

ters are called leading factors (Strickland and Altan 2016).

These categories may not be complete or non-overlapping, but are useful to help

determine the quantities that need to be monitored in Stage 3. Modifications of this

classification system can be considered for particular circumstances. This structure

is useful for understanding the sources of variation as emphasized in the FDA

validation guidance.

1. Critical material attributes (CMaAs) are properties or characteristics of input

materials used during the manufacturing process. For example, in a typical solid

dose manufacturing process, critical characteristics of API and excipients (e.g.,

water content) can be considered critical material attributes (Alsmeyer and

Pazhayattil 2014). In a monoclonal antibody manufacturing process, examples

of CMaAs include certain characteristics of working cells, key nutrient levels of

the cell culture, and glucose feed levels (BPOG 2014).

2. Critical process parameters (CPPs) are those that relate to the manufacturing

process and directly impact product quality. CPPs should be identified in Stages

1 and 2 of process qualification, along with their control range (i.e., design

space). These parameters can appear in different unit operations for small

molecules (Fig. 2 of Alsmeyer and Pazhayattil 2014) or in different manufactur-

ing steps for monoclonal antibodies (Chap. 10 of BPOG 2014).

3. Critical quality attributes (CQAs) are properties and characteristics of the drug

substance or final product. CQAs must meet specifications in order to ensure that

the product quality supports its intended safety and efficacy for patients. Typical

CQAs relate to product strength, potency, identity, and purity. CQAs for one unit

operation may become CMaAs for a subsequent unit operation.

4. Critical method attributes (CMeAs), including critical reagent properties,

method parameters, and method accuracy and precision measures, are all can-

didates for continual monitoring in order to ensure the analytical methods

remain fit for purpose. These are often neglected, but much of the data used to

assess the CMaAs and CQAs are output from analytical methods. If the analyt-

ical methods are not validated and controlled for their intended accuracy and

precision, measured CMaAs and CQAs will be compromised. In addition to

minimizing the risk of poor measurements, this information is useful in trouble-

shooting non-conformances of a CQA to determine if the problem is attributable

to the manufacturing process or the analytical method.

According to quality by design principles, effective control of CMaAs and CPPs

should lead to high confidence that requirements on CQAs will be met. Therefore,

the FDA guidance on validation emphasizes sufficient understanding of the process,

and states that “Focusing exclusively on qualification efforts without also under-

standing the manufacturing process and associated variations may not lead to

adequate assurance of quality.” By monitoring parameters in all four categories,
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the CPV monitoring program provides evidence that the process is sufficiently

understood.

The structure presented in Fig. 5.1 implies the following:

1. If all CQAs are in control, the product quality is in control.

2. If all CMaAs and CPPs are in control, there is a high chance that CQAs will be in

control.

3. If all CMeAs are in control, it follows that all data represent the true state of the

product and process.

Data for the identified CMaAs, CPPs, CQAs, and CMeAs should be compiled in

a format amenable for trending and analysis using available software. The reader is

referred to Chap. 10 of BPOG (2014) for a well-structured list of variables to be

monitored in each step of a monoclonal antibody drug substance manufacturing

process.

5.2.1 Data Collection and Control Limits

Historical data from the four parameter groups discussed above are used for

constructing statistical control limits. Once sufficient process understanding is

achieved, control limits based on historical process performance are not expected

to require revision unless the process has been changed or impacted in some defined

manner (e.g., an investigation determines a process shift has occurred). Periodic

examination of the appropriateness of the limits may be undertaken based on the

frequency of manufacturing.

A sampling plan should be determined for each monitored variable. The plan

should include sampling frequency and the type of chart(s) used for trending. An

analysis plan should also be created, including the process for constructing control

limits, the frequency of analysis, how results will be interpreted, and actions to be

taken after a trend or out-of-control event is identified.

New data are best entered into the historical database in a timely manner for

trending and analysis so that any potential signals may be investigated in a

meaningful manner. Examining data with very low frequency limits the usefulness

of the CPV program because it reduces the ability to react to potential factors that

may lead to out-of-specification results or excursions from in-process control limits.

5.2.2 Monitoring

Consistent with the 2011 FDA guidance, the goal of CPV is “continual assurance

that the process remains in a state of control (the validated state) during commercial

manufacture.” This goal ensures that high quality products can be consistently
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supplied to patients. As such, an effective CPV program monitors the chosen

parameters for trends and defines actions to be taken if signals are identified.

If the CPV program identifies a signal, any of the critical material, process,

quality, or method attributes may require further examination. The investigation

type and rigor will depend on the specific attribute that displays the signal, the

scientific knowledge about the given parameter and process, an examination of

previous investigations, and an analysis of the current data set. One should not

assume that the signal is a result of inappropriately set limits and blindly reset

control limits so that the process appears in control. However, an examination of the

appropriateness of the limits may be considered should the data indicate a need for

such an assessment.

In cases where the monitoring program detects a signal, the implications may

differ depending on which of the following two cases occurs:

1. One or more CQAs are trending out of control.

a. One should first examine the analytical method performance. If the method

appears out of control, a thorough investigation into the method should be

undertaken. Determine if the correct CMeAs are being monitored, if they are

being monitored with the appropriate frequency, and if the method is fit for

purpose. If the investigation finds that the analytical method is out of control,

it should be improved, samples should be re-tested using the updated method,

and the quality attribute can then be re-assessed.

b. If all CMeAs are in control, the out-of-control signal for the CQA is con-

firmed. The signal is attributed to some portion of the manufacturing process.

It is now necessary to examine CMaAs and CPPs.

c. If one or more of the CMaAs or CPPs are out of control, the process should be

re-calibrated. The investigation may indicate the process is not well under-

stood, and more study of the process is warranted. The resulting investigation

may lead to a new control and monitoring strategy, possibly including new

monitoring variables or control limits.

2. All CQAs are within control, but out-of-control signals occur for other attributes.

a. If some CMaAs or CPPs are out of control, this implies the upstream

parameters may not truly impact the CQA. One should investigate whether

the out-of-control variable should continue to be monitored using a risk

assessment.

b. If some CMeAs are out of control, there are two possibilities:

i. The product quality is consistent, but the method aberration is not large

enough to change the method performance or severely affect the quality

attribute data.

ii. The CQAs are within control only because of a serious method aberration.

In fact, the CQAs may be out of control, but data distortion due to the

method produces a misleading result. In either case, the method and its

control strategy should be reviewed. Perhaps an adjustment of the control
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strategy solves the problem, or a partial validation or re-validation of the

method is warranted. In this situation, product samples may need to be

re-tested using a calibrated method.

5.3 Statistical Tools for CPV

Statistical quality tools are used to verify that CQAs are being properly controlled

throughout CPV. Statistical control charts, process capability assessment, and

acceptance sampling methodology are among the statistical quality applications

used to achieve the process monitoring and improvement required in CPV. This

section introduces some of these statistical applications applied to CPV. ASTM

(2010) provides useful material for further reading.

5.3.1 Acceptance Sampling

Acceptance sampling plans can be incorporated into the overall strategy of CPV for

ensuring product quality. The majority of acceptance sampling plans involve

attribute sampling, or variables described as qualitative or nominal. However, in

many cases quality attributes are physical measurements on a continuous or quan-

titative scale. In such cases lot acceptance is based on the percentage of individual

values in a lot that satisfy a numerical specification.

Acceptance sampling consists of a sampling design and a set of rules for making

decisions based on the resulting sample. For situations where only a single sample

is selected, the two decisions are

1. Accept the lot or

2. Reject the lot.

3. In a pre-planned multiple sample design, a third decision is to select another

sample and then decide to either accept the lot, reject the lot, or continue

sampling.

The fundamental tool for selecting a sampling plan is the operating characteristic

(OC) curve. An OC curve is a bi-variate graph with probability of passing a lot on

the vertical axis and the percentage of units that do not meet the specification limits

on the horizontal axis. Figure 5.2 provides an example of an OC curve for an

attribute sampling plan in which a sample of 80 items is selected at random from a

lot. A lot is “accepted” if there are fewer than two non-conforming (defective) units

in the sample. The lot is “rejected” if there are two or more non-conforming units in

the sample. The terms “accepted” and “rejected” in this context are used in a

generic sense. The action that results from either conclusion depends on the

particular application.
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From Fig. 5.2 is seen that this plan virtually ensures no lot is accepted if the

percentage of defective units in the lot exceeds 8%. If the percentage of defective

units is 2%, the probability of accepting the lot based on this sampling plan is

52.3%.

When deciding whether to accept or reject a lot, there are two types of errors

1. Rejecting a good lot (Type 1 error) and

2. Accepting a bad lot (Type 2 error).

The risk of committing a Type 1 error is referred to as the producer’s risk and is

denoted by the Greek letter α. The risk of committing a Type 2 error is called the

consumer’s risk and is denoted by the Greek letter β. Definitions for “good” and

“bad” are typically defined in terms of the percentage of non-conforming (defec-

tive) units in the sample. Acceptance quality level (AQL) is the percentage of

defective units on the horizontal axis associated with the 95% probability of

acceptance on the vertical axis. The lot tolerance percent defective (LTPD) is the

percent of defective on the horizontal axis associated with the 10% probability of

acceptance. It is also useful to define AQL and LTPD in terms of the proportions

p1 ¼ AQL
100% and p2 ¼ LTPD

100%. The AQL and LTPD values for Fig. 5.2 are shown in

Fig. 5.3.

Determination of acceptable values for AQL and LTPD require assessment of a

variety of criteria including risks, costs, and consumer requirements. The first step

in this process is to classify the severity of the defects that might occur. Typical

classifications are Critical, Major, and Minor. Defectives of the same category

would generally be expected to have the same values for AQL and LTPD.

Fig. 5.2 OC curve with sample size ¼ 80 and acceptance number ¼ 1
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To demonstrate how acceptance sampling can be used in CPV, consider a quality

attribute monitored in Stage 3 to ensure it maintains the same quality level attained

in Stages 1 and 2. Values will conform to an acceptable quality level if they do not

exceed an upper specification limit (USL).
A random sample of size n is selected and the quality attribute is measured for

each item. The sample mean is then compared to the quantity

A ¼ USL� kS ð5:1Þ

where S is the sample standard deviation and k is a constant that is a function of

AQL and LTPD. The process is considered acceptable if the sample mean of the

n items is less than or equal to A. Schilling and Neubauer (2009, p. 186) provide the
following approximate formulas for both k and n using what is called the k-method:

k¼ Z1�p2Z1�α þ Z1�p1Z1�β

Z1�α þ Z1�β

n¼ Z1�αþZ1�β

Z1�p1
�Z1�p2

� �2

when the variance is known

n¼ Z1�αþZ1�β

Z1�p1
�Z1�p2

� �2

1þ k2

2

� �
when the variance is unknown

ð5:2Þ

where Zδ is the percentile of a standard normal distribution with area δ to the left.

To illustrate how acceptance sampling may be applied to Stage 3, consider a

power fill process. Suppose that during Stages 1 and 2, the net weight of each vial

should be at least 25 g. To determine whether the process maintains this quality

level, an acceptance sampling plan requires that the process should be accepted

Fig. 5.3 AQL and LTPD for Fig. 5.2
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95% of the time when the proportion of net weight vials below 25 g is AQL¼ 0.5%,

and should be rejected 90% of the time when the proportion of net weight

vials less than 25 g is LTPD ¼ 5%. The specification above can be expressed

using acceptance sampling terminology as determining a sampling plan with

p1 ¼ AQL
100% ¼ 0:005, p2 ¼ LTPD

100% ¼ 0:05, α¼ 0.05, and β¼ 0.10. Using these values

and assuming that the variance of the process is unknown, Z1�p1 ¼ 2:576,

Z1�p2 ¼ 1:645, Z1� α¼ 1.645, and Z1� β¼ 1.282, k¼ 2.05 and n¼ 31(rounding

up). If the variance is known, the sample size reduces to n¼ 10 (rounding up).

Schilling and Neubauer (2009) and Burdick and Ye (2016) provide more

in-depth discussions of acceptance sampling. Kiermeier (2008) provides R-code

for many of the required calculations.

5.3.2 Statistical Control Charts

Statistical control charts are useful for continually verifying that a process remains

in control. The main goal of statistical control charting is to use probability theory

to determine whether an observed deviation is due to a chance cause (also known as

a common cause) or to an assignable cause. If a control chart signals the occurrence

of an assignable cause, the process is stopped and appropriate actions are taken to

eliminate the assignable cause. In addition, preventive actions are put in place to

reduce the chance that the assignable cause reappears in the future. One set of rules

generally used to determine when an assignable cause occurs is provided by

Nelson (1984).

To briefly demonstrate this process, we present results for an individual value

chart. An individual value chart is used in Stage 3 to monitor individual values of

CQAs for released lots. Suppose that a CQA used for lot disposition is monitored in

an individual control chart. A sample of n lots is selected and a single CQA

measurement is taken from each lot. The collected sample is represented as Y1 ,
Y2 , . . . , Yn. For the procedure that follows, it is assumed that when the process is in

control, the sample of n lots behaves as a random sample selected from a normal

population with mean μ and standard deviation σ. Based on the probabilities of the

normal distribution, the probability that a single observation exceeds the range from

μ� 3σ to μ+ 3σ is roughly 99.73%. The first rule presented by Nelson (1984) states

than an individual value that falls outside this range is a signal that the process is out

of control. In practice, μ and σ are unknown and must be estimated from the sample.

An unbiased estimator for the unknown process mean μ is the sample average,

�Y ¼

Xn
i¼1

Yi

n
: ð5:3Þ
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An estimate of σ using a moving range of two consecutive measurements in the

sample is

MR

1:128

MR ¼

Xn�1

i¼1

Yiþ1 � Yij j

n� 1

ð5:4Þ

An individual control chart is established by plotting a run chart for the sample

values, with horizontal reference lines at �Y to represent the center line (CL),

LCL¼ �Y � 3� MR

1:128

LCL¼ �Y � 2:66�MR

ð5:5Þ

to represent the lower control limit (LCL), and

UCL ¼ �Y þ 2:66�MR ð5:6Þ

to represent the upper control limit (UCL). Figure 5.4 presents an example of an

individual value chart.

A moving range chart as shown in Fig. 5.5 is useful to complement the infor-

mation provided by the individual control chart. A moving range chart has a

horizontal reference line at MR and an upper control limit (UCL) of

UCL ¼ 3:267�MR:
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Fig. 5.4 Individual value control chart
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Figures 5.4 and 5.5 were obtained from a sample of n ¼ 26 released lots of a

manufacturing process. The measured CQA is concentration expressed as percent-

age of label claim. A summary of the calculated results are shown in Table 5.1.

A graphical inspection of the plots indicates that none of the individual values or

moving ranges are outside their respective control limits. This suggests that the

process is in a state of statistical control.

Since decisions based on control charts are based on probability, there is a risk

that a future individual value will fall outside the control limits, even though the

process is truely in control. Similarly, there is a chance that a future individual value

will fall within the control limits, even if an assignable cause is present. The

consequences of such errors can be severe, and need to be considered in

establishing a risk strategy. These risks can be dramatically increased if one were

to use either two or four standard deviation control limits. Two standard deviation

limits would result in nuisance signals, whereas four standard deviation limits

would fail to detect shifts due to an assignable cause. The three standard deviation

control limits described above provide a good balance between these two risks.
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Fig. 5.5 Moving range control chart

Table 5.1 Computations for control charts

Chart Reference line Value

Individuals CL �Y ¼ 100:10

LCL LCL ¼ �Y � 2:66�MR ¼ 96:48

UCL UCL ¼ �Y þ 2:66�MR ¼ 103:73

Moving range CL MR ¼ 1:364

UCL UCL ¼ 3:267�MR ¼ 4:46
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Many other types of control charts are used throughout Stages 1–3 of the

validation process, and there is a wealth of references on this topic. Interested

readers are referred to ASTM (2010), Montgomery (2013), Wheeler (2012), ASTM

E2587 (2016) and Altan et al. (2016).

5.3.3 Process Capability and Performance Assessment

When a manufacturing process is in statistical control, this does not necessarily

imply that it is producing products that meet predetermined quality specifications.

Therefore, it is not only important to evaluate process stability (statistical control)

during CPV, but it is also equally important to monitor the process capability (i.e.,

the ability to produce products that conform to specifications). Monitoring process

capability often provides potential focal points for process improvement. Addition-

ally, it can be used to assess any improvements to process capability after process

improvements have been implemented. Process capability indices identify the need

to reduce common cause variation or to compare processes.

When a process is in statistical control, its quality is predictable. Thus, before

assessing process capability, it is necessary that the process be in a state of

statistical control. It is common to define process capability in units of standard

deviations of the controlled process. We will denote this process standard deviation

as σ. In particular, it is common to look at the relationship between the standard

deviation and the range between the upper and lower specification limits. This

capability index is defined as

Cp ¼ USL� LSL

6σ
ð5:7Þ

where LSL is the lower specification limit and USL is the upper specification limit.

When process data are well represented with a normal distribution and the

process is centered between the upper and lower specification limits (i.e.,

the process mean ¼(LSL +USL)/2), the capability index Cp can be expressed as

the number of units that are outside of specification. In particular, the proportion

of defective product (expressed in parts per million (ppm)) is related to Cp by the

equation

ppm defective ¼ 1, 000, 000� 2Φ �3Cp

� � ð5:8Þ

where Φ is the cumulative standard normal distribution. For example, assume that

the process is centered about the specification limits and that Cp ¼ 1. Then
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ppm defective ¼ 1, 000, 000� 2Φ �3� 1ð Þ
¼ 1, 000, 000� 2�Φ �3ð Þ
¼ 1, 000, 000� 2� 0:00135
¼ 2, 700 ppm:

ð5:9Þ

Thus, a Cp ¼ 1 corresponds to a centered process that produces 2700 ppm

outside of the specification limits. This relationship between Cp and ppm can be

used to establish acceptable values for Cp. Since Cp < 1 implies that more than

2700 ppm will be out of the specification limits, and Cp > 1 implies less than

2700 ppm out of the specification limits, it is seen that the process improves as Cp

increases. In addition to describing the overall capability of a process, Cp can be

used to determine where to focus process improvement efforts.

The capability index Cp is not appropriate when a process is operating off-center.

In such cases, an alternative capability index is defined as

Cpk ¼ min
USL� μ

3σ
;
μ� LSL

3σ

� 	
ð5:10Þ

where μ is the (off-centered) process mean.

Because μ and σ are typically unknown, they must be estimated from a sample.

There are several ways to estimate σ, and this unfortunately has created much

confusion as to what is the “correct” manner. As in most statistical procedures, the

“correct” manner depends on the situation. We demonstrate one approach, but

encourage the reader to read more on this topic in the references provided at the

end of this section.

Because the control chart in Sect. 5.3.2 indicates the process is stable, we

consider the sample to be a random sample of n ¼ 26 from a process with mean

μ and standard deviation σ. Thus we will use the sample mean �Y as an estimator for

μ and the sample standard deviation S as an estimator for σ. A point estimator and

100(1–α)% lower confidence bound on Cp using these estimators is

bCp ¼ USL� LSL

6� S

L¼ bCp �
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2α:n�1

n� 1

r ð5:11Þ

where

S¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Yi � �Yð Þ2

n� 1

vuuut
�Y ¼

Xn
i¼1

Yi

ð5:12Þ
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and χ2α:n�1 is the chi-squared percentile with n� 1 degrees of freedom and area α to

the left. The lower bound on Cp can be used to answer the question, “What is the

smallest value of Cp consistent with the uncertainty in the data?” A process is

considered capable if L is greater than the desired value for Cp.

A point estimator and 100(1� α)% lower confidence bound on Cpk is

bCpk ¼ min
USL� �Y

3S
;
�Y � LSL

3S

� 	
L¼ bCpk 1� Z1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9nbC2
pk

þ 1

2 n� 1ð Þ

s24 35 ð5:13Þ

where Z1� α is the percentile of a standard normal distribution with area 1–α to

the left.

Assume that the specification limits are LSL ¼ 95% and USL ¼ 105%. Calcu-

lations for (5.11) and (5.13) are provided in Table 5.2 using the data from Sect.

5.3.2 where �Y ¼ 100:10 and S ¼ 1.40.

As will always be the case, Cpk is less than Cp. Some interpret Cp to be the

maximum attainable capability that is achieved when the process is centered. Using

equation (5.8) and the lower bound of Cp provides the estimated out-of-specifica-

tion rate of

ppm defective¼ 1, 000, 000� 2Φ �3� 0:91ð Þ
¼ 1, 000, 000� 2�Φ �2:73ð Þ
¼ 1, 000, 000� 2� 0:0032
¼ 6, 400 ppm:

ð5:14Þ

A process performance index is closely related to a process capability index.

These are typically represented as Pp and Ppk. A capability index is typically used in

a prospective assessment where a process has been demonstrated to be in statistical

Table 5.2 Computations for capability indexes

bCp ¼ USL�LSL
6�S ¼ 105�95

6�1:40 ¼ 1:19

95%L ¼ bCp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2α:n�1

n�1
¼ 1:19�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:61
26�1

¼ 0:91
qr

bCpk ¼ min
USL� �Y

3S
;
�Y � LSL

3S

� 	
¼ min

105� 100:10

3� 1:40
;
100:10� 95

3� 1:40

� 	
¼ 1:17
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control. Such an assessement focuses on the ability of the process to meet specifi-

cations in the future. A process performance index is used in a retrospective

assessment to examine past process behavior and determine how a process will

perform in the future if left unchanged. The process under examination may or may

not be in statistical control. Some authors differentiate a capability index from a

performance index by the manner in which the standard deviation is computed. The

capability index employs an estimate of short-term variance, and the performance

index employs an estimate of long term variance. More information on the topics

considered in this section are provided in Altan et al. (2016), ASTM E2281 (2015)

and Montgomery (2013).

5.3.4 Out of Specification and Corrective and Preventative
Action (CAPA)

The goal of the CPV program is to detect a process shift before an out-of-specifi-

cation result is observed. Typically, an out-of-specification result leads to a rigorous

investigation, and may ultimately lead to rejection of the batch. Results that do not

meet specifications may be observed for unit operations where the CPV program

has previously detected signals or where the monitored attribute has displayed less

than ideal process capability. However, out-of-specification results may also be

obtained for parameters where the CPV program has not previously detected any

concerns.

An overall examination of the CPV strategy should be part of any investigation

into out-of-specification results. The level of scrutiny given to the CPV monitoring

for the given parameter will depend on previous investigations and corrective

actions already in place. If the CPV program has previously detected an issue

with a given parameter, then the monitoring program is likely functioning properly,

and investigative efforts might focus on the effectiveness of previous corrective

actions. In contrast, if the CPV program has not previously detected any potential

issues, an examination into whether the current monitoring strategy is effective

should be undertaken.

When a non-conformity occurs, the following steps are required to investigate

and take actions for correction.

1. The magnitude and scope of its risk should be assessed. If there is minimum risk,

perhaps no further action is needed. Otherwise, a root cause analysis should be

conducted to identify the assignable cause and a solution should be identified.

2. Corrective and preventive actions are taken to eliminate the root cause of the

non-comformity and prevent its future occurence.

3. The attribute associated with the non-conformance must be closely monitored to

verify that it is now consistently in control and in specification.
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This process is demonstrated in the following example. Suppose the potency of a

batch of biological product exceeds the upper specification limit. Since potency is a

critical quality attribute, the risk of this excursion non-conformity is high. Such a

non-conformance could potentially lead to safety problems for patients. Accord-

ingly, a root cause analysis is conducted using the process described in Sect. 5.2.2.

The performance of the analytical method for potency is first examined. Assume

there is an upward trending in the potency of the negative control. This suggests

there was a change in the reference standard. Further investigation leads to the

discovery that the shelf-life of the reference standard has been extended twice. To

determine if this was the root cause, a new reference standard was qualified and

compared to the original reference standard. The comparability analysis showed

that the method performance was highly similarly to the method performance when

using the previous reference standard before the shelf-life extension. Another few

samples from the same batch of the biological produt were tested using the new

reference standard and the results were all within specification (corrective action).

From this analysis, it was concluded that the excursion was due to method drift. A

new process was established to monitor the stability of the reference standard

(preventive action). If no aspects of the analytical method had been discovered to

be the root cause, a further drill down to the manufacturing process would have

been required.

Regulatory agencies expect companies to verify that changes made in response

to a CAPA actually work to eliminate the root cause of a non-conformance failure.

To do this, it is required to examine data collected after the CAPA and demonstrate

that the failure rate intended to be improved by the CAPA satisfies the desired goal.

Typically a protocol is drafted that states a post-change sample must satisfy some

test criterion related to an upper value for the new defective rate. Burdick and Ye

(2016) provide an example of such an application.

5.4 A CPV Protocol and Relation to Annual Product
Review

Although CPV is a Stage 3 process validation activity, it should be kept in mind

during Stage 1 when collected process knowledge will inform which control points

should be monitored and incorporated into the CPV program. The parameters to be

monitored under the CPV plan should be largely defined and understood prior to

Stage 2 so that important data for generating the Stage 3 CPV limits can be

gathered. The CPV protocol should be a living document throughout the first two

stages of process validation. When sufficient data are collected to reliably estimate

the expected process variability, the CPV protocol should be modified and assessed

at some frequency as defined in procedures.
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As knowledge of the process accumulates during development and validation,

the CPV protocol is updated regarding the variables to be monitored, their sampling

plan, monitoring chart type, and control limits.

A good CPV protocol should minimally include the following information:

1. Product information.

2. Personnel, roles, and responsibilities. A designated statistician or someone

trained in statistical techniques should be involved throughout the product life

cycle.

3. A structured table for all monitored parameters categorized into CMaAs, CPPs,

CQAs, CMeAs, and variables corresponding to each attribute. The table should

also include the sampling plan, control chart type, and initial limits. Specify

which attributes should be monitored with a particular frequency.

4. A description of the process for periodic examination of the appropriateness of

the limits and the method for adjusting limits based on updated process

knowledge.

5. Identification of the database warehouse and analysis software.

6. All relevant data and knowledge (e.g., design space) accumulated from Stages

1 and 2 should be organized and included for determination of initial control

limits.

7. Description of planned analyses, including frequency of analyses, format of

documentation, and result evaluation.

8. An appropriate action plan should be established to address aberrant results.

Procedures should clearly define what kinds of aberrant results can be handled

by designated personnel, and what results require escalation to upper

management.

9. A plan for change management should be defined. Over the life cycle of the

product, some aspects of the monitoring plan may need to be changed or updated

due to an accumulation of experiences and process knowledge, or in response to

regulatory requirements.

The CPV protocol should align with the PPQ protocol created in Stage 2. The

CPV protocol will specify a frequency for analysis of given parameters, but data

should be assessed annually, at a minimum. Since an annual product review (APR)

is required for several regulatory jurisdictions, coordinating the annual CPV

reporting cycle with the APR cycle is most efficient from an analysis perspective.

The CPV protocol should meet the minimum data analysis requirements for the

APR. The APR is also a good time to evaluate the performance of the CPV

protocol.
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5.5 Statistical Support

The FDA guidance on validation defines process validation as “the collection and

evaluation of data, from the process design stage through commercial production,

which establishes scientific evidence that a process is capable of consistently

delivering quality products.” This definition characterizes process validation as a

joint work between scientists and statisticians, and requires a full integration of

statistical involvement throughout the process.

The word “statistical” or “statistics” appears 12 times in the guidance, which

highlights the importance of quantitative data analysis methods in the CPV pro-

gram. Regarding CPV at Stage 3, the guidance specifically emphasizes, “We

recommend that a statistician or person with adequate training in statistical process

control techniques develop the data collection plan and statistical methods and

procedures used in measuring and evaluating process stability and process capabil-

ity.” Additionally, it states “We recommend that the manufacturer use quantitative,

statistical methods whenever appropriate and feasible.” We strongly recommend

that adequate statistical resources are made available for process validation and that

statisticians be an integral part of the team throughout all three stages of process

validation.
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