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3.1 Introduction

This is the first of three chapters that describe statistical approaches related to the

three stages of process validation described in the FDA Process Validation Guid-

ance for Industry (2011). The three stages are

1. Process Design (Chap. 3),

2. Process Qualification (Chap. 4), and

3. Continued Process Verification (Chap. 5).

The three-stage process validation guidance aligns process validation activities

to the product life cycle concept. Along with existing FDA guidance, it links the

quality of the product with ensuring quality of the process, from product and

process design through mature manufacturing. The FDA process validation guid-

ance supports process improvement and innovation through sound science and

includes concepts from other FDA supported guidance, including the International

Conference on Harmonization (ICH) chapters Q8(R2) Pharmaceutical Develop-

ment (2009), Q9 Quality Risk Management (2005), and Q10 Pharmaceutical

Quality System (2008).

A goal of quality assurance is to produce a product that is fit for its intended use.

Very broadly, within the guidance, process validation is defined as the collection

and evaluation of knowledge, from the process design stage through commercial

production, which establishes scientific evidence that a process consistently

delivers quality product. This knowledge and understanding is the basis for

establishing an approach to control a manufacturing process that results in products

with the desired quality attributes. Across the three stages, the statistics contribution

is to iteratively work on understanding sources of variability and the impact of
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variability on the process and product attributes, build quality into the product and

process, and detect and control the variation in a manner commensurate with the

product risk and the patient needs.

This three-step approach assumes the following conditions:

1. Quality, safety, and efficacy are designed or built into the product.

2. Quality cannot be adequately assured merely by in-process and finished product

inspection or testing.

3. Each step of a manufacturing process is controlled to ensure that the finished

product meets all quality attribute specifications.

In slightly more detail, the three stages are

Stage 1—Process Design: The commercial manufacturing process is defined during

this stage based on knowledge gained through development and scale-up activ-

ities. The knowledge can be of several forms: fundamental science, mechanistic

or physics-based models, data-driven models based on previous compounds, and

experimental understanding of the product being developed. In the process

design stage various tools are employed to understand inputs to the process

(parameters and material attributes) and their effect on the outputs (quality

attributes). Throughout this development stage, decisions are made on how to

establish and control the process to ensure quality in the output. This design

stage can be in accordance with ICH Q8(R2) and ICH Q11 (2012) and as such

may be a key change in the focus of activity for many companies.

Stage 2—Process Qualification: Following a process design stage where sufficient

understanding has been gained to provide a high degree of assurance in the

manufacturing process, the process design is evaluated to determine if the

process is capable of reproducible commercial manufacturing. This stage has

two elements: (1) design of the facility and qualification of the equipment and

utilities and (2) process performance qualification (PPQ). This later element was

historically called process validation, and most often conducted by executing

three lots within predetermined limits.

Stage 3—Continued Process Verification: After establishing and confirming the

process, manufacturers should maintain the process in a state of control over the

life of the process, even as materials, equipment, production environment,

personnel, and manufacturing procedures change. The goal of the third valida-

tion stage is continued assurance that the process remains in a state of control

(the validated state) during commercial manufacturing. Systems for detecting

departures from the product quality are helpful to accomplish this goal. Data are

collected and analyzed to demonstrate that the production process remains in a

state of control and to identify any opportunities for improvement.

Stages 2 and 3 are discussed in Chaps. 4 and 5, respectively.
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3.2 More on PV-1

Inspection is too late, the quality or lack thereof, is already in the product. Inspection does

not improve the quality, nor guarantee quality. As Harold F. Dodge said, “You cannot

inspect quality into a product.”

“Quality cannot be inspected into a product or service; it must be built into it.”

W.E. Deming in Out of the Crisis (2000).
Joseph M. Juran, renowned quality guru, characterized the development process as a

hatchery for new quality issues and coined the term “quality by design” to describe the

comprehensive discipline required to pro-actively establish quality (Juran 1992).

The pharmaceutical industry has traditionally been highly dependent on

end-product testing and inspection. However, this has changed and continues to

develop. The appropriate balance of a holistic quality approach versus end-product

testing is now common across the industry. Concepts from ICH Q8–Q11 and the

FDA guidance for process validation facilitate a move from an inspection-based to

a design-based system. The focus of PV-1 is to design a product and associated

processing by identifying and controlling process inputs so that the resulting output

is of acceptable quality (defined as “what the patient needs”) and well-controlled.

The result of PV-1 is to create a manufacturing process with an appropriate risk-

based control strategy.

The PV-1 process progresses in the following manner:

1. Develop a Quality Target Product Profile (QTPP).

2. Iteratively design the active pharmaceutical ingredient (API) process, formula-

tion, analytical methods, and final drug product process to achieve the QTPP.

3. Define the “region of goodness” for each process and process input.

4. Determine critical parameters and propose a control strategy.

5. Transition to Manufacturing, PV-2.

The next sections of this chapter overview and connect statistically related tools

used in process design. These tools are used to identify good and flexible operating

regions, help to determine critical parameters, and propose a control strategy.

Figure 3.1 presents terminology and provides a high level summary of the QbD

development process. When starting to develop any product or process, the

unknown is called the “unexplored space.” The subset labeled “knowledge space”

consists of prior learnings on similar products, first principles understanding of the

present process, and empirical information from experiments and other data ana-

lyses. After assessing what is known and unknown, the task is to identify and

prioritize the knowledge necessary to produce a high quality, safe, and efficacious

product. Risk assessment helps in the prioritization and both statistical and

non-statistical tools are used to obtain the knowledge. Following an iterative

development cycle, the knowledge and scientific experience might lead to several

defined regions:

1. A process set point, where if needed, represents where the process is nominally

operated.
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2. A normal operating range (NOR) which accounts for variability in the set point.

3. A proven acceptable range (PAR) is a region of goodness which allows for

variability in incoming raw materials or otherwise permits flexibility in assuring

quality.

Based on knowledge gained through development, parameters and process

elements which must be controlled and monitored are identified via the “control

strategy.” This control strategy allows the manufacturing process to stay within a

region of goodness.

The following definitions are useful in navigating the PV-1 landscape.

1. Attribute: A characteristic or inherent property of a feature. This term is used in

two contexts. The first is as a reference to raw material or excipient features,

called material attributes. The other is in reference to the features of the drug

substance or drug product. These attributes are significant in defining product

safety and efficacy, and are termed critical quality attributes.

2. Control Strategy: A planned set of controls, derived from current product and

process understanding that ensures a consistent level of process performance

and product quality. The controls can include parameters and attributes related

to drug substance and drug product materials, facility and equipment operating

conditions, in-process controls, finished product specifications, and the associ-

ated methods and frequency of monitoring and control (ICH Q10 2008).

3. Critical Process Parameter (CPP): A process parameter whose variability has

an impact on a critical quality attribute and must be monitored or controlled to

ensure the process produces the desired quality (ICH Q8(R2)).

Unexplored Space

Knowledge Space

“Design” Space

NOR

PAR
(Proven Acceptable Range)

Explored with 
Acceptable Performance

NOR
(Normal Operating Range)

Operating Strategy based 
on Business Requirements

Explored Space
• DOE 
• Modeling
• Prior Knowledge
• First Principles

Risk Assessment to 
Prioritize Investigation

Control Strategy
Specifications

Tolerances

Fig. 3.1 Structure of PV-1 spaces and terminology
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4. Critical Quality Attribute (CQA): A physical, chemical, biological, or micro-

biological property or characteristic that should be within an appropriate limit,

range, or distribution to ensure the desired product quality (ICH Q8(R2)).

5. Design Space: The multidimensional combinations and interaction of input

variables (e.g., material attributes) and process parameters that have been

demonstrated to provide assurance of quality. Movement of a process within

the design space is not considered to be a change. Movement out of the design

space is considered to be a change and would normally initiate a regulatory

postapproval change process. Design space is proposed by the applicant and is

subject to regulatory assessment and approval (ICH Q8(R2)).

6. Knowledge Management: Systematic approach to acquiring, analyzing, stor-

ing, and disseminating information related to products, manufacturing pro-

cesses, and components. Sources of knowledge include prior knowledge

(public domain or internally documented), pharmaceutical development stud-

ies, technology transfer activities, process validation studies over the product

life cycle, manufacturing experience, innovation, continual improvement, and

change management activities (ICH Q10).

7. Life cycle: All phases in the life of a product from the initial development

through marketing until the product’s discontinuation (ICH Q8(R2)).

8. Normal Operating Range (NOR): A defined range within (or equal to) the

Proven Acceptable Range. It defines the standard target and range under which

a process operates.

9. Parameter: A measurable or quantifiable characteristic of a system or process

(ASTM E2363).

10. Process Design (PV-1): Defining the commercial manufacturing process based

on knowledge gained through development and scale-up activities.

11. Process Qualification (PV-2): Confirming that the manufacturing process as

designed is capable of reproducible commercial manufacturing.

12. Process Validation: The collection and evaluation of data, from PV-1 through

PV-3, which establishes scientific evidence that a process is capable of consis-

tently delivering quality products.

13. Process Capability: Ability of a process to manufacture and fulfill product

requirements. In statistical terms, process capability is measured by comparing

the variability and targeting of each attribute to its required specification. The

capability is summarized by a numerical indexCpk (see Chap. 5 for information

on this topic). A process must demonstrate a state of statistical control for

process capability to be meaningful.

14. Process Parameter: A process variable (e.g., temperature, compression force)

or input to a process that has the potential to be changed and may impact the

process output. To ensure the output meets the specification, ranges of process

parameter values are controlled using operating limits.

15. Process Robustness: The ability of a manufacturing process to tolerate the

variability of raw materials, process equipment, operating conditions, environ-

mental conditions, and human factors. Robustness is an attribute of both
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process and product design (Glodek et al. 2006). Robustness increases with the

ability of a process to tolerate variability without negative impact on quality.

16. Proven Acceptable Range: A characterized range of a process parameter for

which operation within this range, while keeping other parameters constant,

will result in producing a material meeting relevant quality criteria (ICH Q8

(R2)).

17. Quality: The suitability of either a drug substance or drug product for its

intended use. This term includes such attributes as the identity, strength, and

purity (ICH Q6A 1999), ICH Q8(R2)).

18. Quality by Design: A systematic approach to process development that begins

with predefined objectives and emphasizes product and process understanding

based on sound science and quality risk management (ICH Q8(R2)).

19. Quality Risk Management: A systematic process for the assessment, control,

communication, and review of risks to the quality of the drug (medicinal)

product across the product life cycle (ICH Q9).

20. Quality Target Product Profile (QTPP, pronounced Q-tip): A prospective

summary of the quality characteristics of a drug product that ideally will be

achieved to ensure the desired quality, taking into account safety and efficacy

of the drug product (ICH Q8(R2)).

21. Risk: The combination of the probability of occurrence of harm and the

severity of that harm (ICH Q9).

22. Risk Assessment: A systematic process of organizing information to support a

risk decision to be made within a risk management process. It consists of the

identification of hazards and the analysis and evaluation of risks associated

with exposure to those hazards (ICH Q9).

23. State of Control: A condition in which the set of controls consistently provides

assurance of continued process performance and product quality (ICH Q10).

3.3 Iterative Process Design

Once the QTPP has been developed, product and process design can begin.

Process design is the activity of defining the commercial manufacturing process

that will be reflected in master production and control records. The goal of this

stage is to design a process suitable for routine commercial manufacturing that

can consistently deliver a product that meets the acceptance criteria of its quality

attributes.

Process design is iterative and can include all processes associated with the

product: API process, formulation, analytical methods, and final product processes.

Not all processes are developed in the same manner. For example, the API synthesis

process is not developed in the same fashion as a formulation process or an

analytical method.
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Step 1: Form a team.
A systematic team-based approach to development is the most efficient manner

to develop a robust process. This team should include expertise from a variety of

disciplines including process engineering, industrial pharmacy, analytical chemis-

try, microbiology, statistics, manufacturing, and quality assurance.

Step 2: Define the process.
Typically, a manufacturing process is defined by a series of unit operations or a

series of synthesis steps. Prior to initiation of any studies, the team needs to agree

which unit operations, reactions, or steps are included in the process. To aid in this

definition, the team creates a map or flowchart of the process.

A process is a combination of people, machines, methods, measurement sys-

tems, environment, and raw materials that produces the intended output. Figure 3.2

displays a process flow diagram for a dry granulation process. Once the process has

been defined, meaningful groupings of the unit operations are developed to form the

basis for experimentation. Figure 3.3 provides a schematic of these grouping or

“focus areas.” The parameters (inputs) and attributes (outputs) for each focus area

are discussed and studied in detail. The team discusses a focus area and identifies

the attributes and parameters that could potentially affect each attribute. Figure 3.4

provides an Ishikawa diagram (also known as a cause and effect or fishbone

diagram) which is helpful in mapping potential sources of parameter variability

by categories (e.g., machine, method, manpower, and environment) that could

influence attributes.

Blend-1 Sieve Blend-2 Sieve Blend-3

CompactMillBlend-4Compress

Fig. 3.2 Process flow diagram for a dry granulated product

Blend-1 Sieve Blend-2 Sieve Blend-3

CompactMillBlend-4Compress

Focus Area 1 

Focus Area 2 Focus Area 3

Fig. 3.3 Process map with experimental focus areas
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Step 3: Prioritize Team Actions
All attributes and parameters should be evaluated in terms of their roles in the

process, and on their impact on the final product or in-process material. They should

also be reevaluated as new information becomes available.

Following the relationship building of the Ishikawa diagram, the team will select

attributes that best define the process. It is typical to perform a risk assessment to

prioritize actions taken by the team in developing the process. As per the Pareto

principle, it is important to identify the significant parameters for further study. Not

all parameters will have an impact and prior knowledge of this improves the impact

of the planned studies. Prioritization establishes a risk-based approach to develop-

ment. Table 3.1 provides the results of a risk assessment.

• The attributes from the Ishikawa diagram are listed across the top and the team

of knowledgeable experts rates their importance from 1 to 10, with 10 being the

most important in impacting the final product quality.

• The parameters are listed down the left side and the hypothesized or known

strength of the relationship between the attribute and parameter is supplied in

each box.

• The score is determined for each parameter by multiplying the attribute score

and the parameter strength and summing across the attributes. For example, the

score for the excipient attribute is 10� 10 + 5� 7 + 5� 10 + 9� 10

+ 1� 7¼ 282.

• The score is sorted from high to low and the strategy to study each parameter is

determined.

• The team’s actions and the work performed in developing the product are

prioritized based on importance as indicated by the total score.

Table 3.1 Risk assessment matrix

Attribute Rank 10 7 10 10 7

Attribute
Parameter

Genotoxic
Impurity

Tablet 
Potency

Drug Release 
Rate

Shelf 
Life

Content 
Uniformity Score Strategy

Sampling Method 9 5 5 5 9 288 MSA

Excipient 
Attribute 10 5 5 9 1 282 DoE

Drug Particle Size 1 9 9 1 9 236 Model

Roll Force 1 9 5 1 9 196 DoE

Screen Size 1 5 1 1 5 100 DoE

Blend Speed 1 5 1 1 5 100 Model

Blend Size 1 5 1 1 5 100 Model

Roll Gap Width 1 5 1 1 5 100 DoE

Compression 
Force 1 1 5 1 1 84 DoE
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Step 4: Take Action to Understand and Solidify Functional Relationship
Throughout the product life cycle, various studies can be initiated to discover,

observe, correlate, or confirm information about the product and process. Knowl-

edge exists in many forms including fundamental knowledge, data-driven models

from experimentation, data-driven models on related compounds or equipment, and

experimental studies meant to establish or confirm relationships. Studies to gain

knowledge are planned for areas where information does not exist. These studies

should be planned and conducted according to sound scientific principles and

appropriately documented.

Ultimately, the result of the functional understanding is coined as a knowledge

space. The region defined as the design space is a subset of the knowledge space.

Operation within the design space will ensure product quality. Note that this is

clearly not the traditional statistical definition, as a design space in statistics refers

to the study range. The design space is meant to be defined in a multifactor fashion

and is optional from a regulatory perspective. Another region traditionally defined

to represent a region of goodness is the proven acceptable range (PAR). This range

has traditionally, although not exclusively, been set in a univariate manner. Rather

than compare and contrast a design space with a PAR, suffice it to say each can be

called a “region of goodness.” This term is used in future discussion in this chapter

to cover both regions. For more on the topic of design space see the papers by

Peterson (2004, 2010), Vukovinsky et al. (2010a, b, c), and Stockdale and

Cheng (2009).

An initial set point is established within the region of goodness to define the

nominal operating condition. Around that point, a normal operating range (NOR) is

defined that considers expected operational variability. In the ICH literature, the

NOR is permitted to vary within the region of goodness. For example, incoming

raw material variability might necessitate a change in set point and NOR or

additional process understanding at scale could be used to establish a new set

point within the region of goodness.

Step 5: Confirm
Once an NOR is determined, the selected operating conditions or ranges are

confirmed. In many cases the NOR has been determined based on experimental

design and predictive modeling, but it hasn’t been run at either development or full

scale. The paper champion needs to be realized and the knowledge confirmed. The

initial confirmation might be at development scale (Garcia et al. 2012). The

ultimate confirmation, process qualification, is usually conducted at the

manufacturing facility where the product will be produced.

Step 6: Document Control Plan
Justification of the controls should be sufficiently documented and internally

reviewed to verify and preserve their value for use or adaptation later in the process

life cycle. Process knowledge and understanding is the basis for establishing an

approach to process control for each unit operation. Strategies for process control

can be designed to reduce input variation, adjust for input variation during

manufacturing, or combine both approaches. Manufacturing controls mitigate

variability to assure quality of the product. Controls can consist of material analysis
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and equipment monitoring at significant processing points (21 CFR 211§ 211.110

(c)). Decisions regarding the type and extent of process controls can be aided by

earlier risk assessments, then enhanced and improved as process experience is

gained. The degree of control over attributes and parameters should be commen-

surate with their risk to the process. In other words, a higher degree of control is

appropriate for attributes and parameters that pose a higher risk. The planned

commercial production and control records, which contain the operational limits

and overall strategy for process control, should be carried forward to the next stage

for confirmation.

Step 7: Iterate as Needed
Typically, all development decisions are not made in one shot. This is an

iterative process that continues as new information becomes available.

3.4 PV-1 Statistical Tools

Knowledge is defined as facts, information, and skills acquired through experience

or education. It is the theoretical or practical understanding of a subject. Knowledge

does not need to be recreated ab initio for every product being developed, but

should be created where necessary. That is, in the design process, teams leverage

relevant existing data along with fundamental knowledge to make initial decisions,

perform risk assessments that identify gaps, and take actions to gain more knowl-

edge. Figure 3.5 summarizes statistical tools that are important in PV-1. These tools

include data-based decision making, data collection and experimental design,

QbD
Process

Understanding

“Design Space” as a 
Mathematical Model

Statistics Tools:
Visualization, Intervals, 
Sampling, Simulation, 

Modeling, DoE
PPQ

Verification

Science

Mechanistic
Models

Engineering

Holistic
Control

Strategy  

Statistics tools: 
Risk mitigation, confidence, 

process/ product performance

Design space can be a 
mathematical expression of 
process understanding, which then 
feeds into the development of an 
appropriate control strategy.

Statistical tools are useful to 
understand risk, confidence levels, 
process performance, along with 
other supporting science & risk 
based rationale when deciding the 
overall control strategy.

The area of the design space 
where we plan to operate could

be verified during PPQ, but 
otherwise PPQ remains essentially 
the same as it should be driven by 

process understanding and the 
holistic control strategy.

region of goodness

PV-2

Region of goodness as a

Fig. 3.5 Application of statistical tools in PV-1
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descriptive data analysis, and complex modeling. These tools are used to gather,

summarize, or quantify knowledge in PV-1.

Some of the PV-1 statistical tools are

1. Visualization: It is said that a picture is worth a thousand words. The benefit of

effective and simple display of information cannot be overstated and the ability

to take a set of data, summarize the information, and visually display this

information is both an art and a science. A primary goal of data visualization

is to communicate information clearly and efficiently in order to induce the

viewer to think about the substance being displayed without distorting or

misrepresenting the information. There are many graphical tools available in

spreadsheet and statistical software programs. It is necessary to learn these

tools in order to present a meaningful data analysis. Section 2.4 provides more

discussion on this topic.

2. Simple Descriptive Statistics: Descriptive statistics is the discipline of quanti-

tatively describing a set of data. This usually includes a description of the

central tendency of the data (mean, geometric mean, median, or mode) and a

measure of the dispersion or variability in the data (range, standard deviation,

or variance). The data summary can be displayed visually as a boxplot by itself

or with other groups of similar data as a comparison. Section 2.4 provides more

discussion on a boxplot.

3. Statistical Intervals (Confidence, Prediction, and Tolerance): Statistical inter-

vals are the most useful tools for quantifying uncertainty. Section 2.5 discusses

these tools in detail.

4. Sampling Plans: In pharmaceutical development and manufacturing, sampling

is used in many applications. Included are sampling processes used for making

batch release decisions, demonstrating homogeneity of drug substance and

drug product, accepting batches of raw material, and selection of units for

environmental monitoring. Examples of sample plans are discussed throughout

this book.

5. Monte Carlo Simulation: Simulation is most useful for studying future events

that can be predicted from historical data and theorized or established models.

The impact of considered changes can be simulated to obtain an understanding

of future outcomes under various possible scenarios. Simulation applications

are provided throughout this book.

6. Measurement System Analysis (MSA): These analyses are referred to as

repeatability and reproducibility (R&R) in some industries. They involve the

design and analysis of experimental data to understand, quantify, and reduce

the variability in the measurement system (analytical method). Variability in

the measurement system is normally reduced to categories of bias, linearity,

stability, repeatability, and reproducibility. These types of data analysis are

critical for the development of useful analytical methods, and are discussed in

Chap. 6.

7. Hypothesis Testing: Hypothesis testing is a formal statistical process of com-

parison and inference. Such tests are often required by regulatory agencies in

many evaluations. This topic is discussed in Sect. 2.10.
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8. Models and Modeling: Prior to running experiments, information based on

either first-principles or data-driven models should be exercised to help inform

relationships.

9. Data-driven Modeling: Data-driven models are developed through fitting

models to data. In PV-1, there is often data related to the process or compound

being developed. Sometimes, as is the case with material property data, chem-

ical structure data, and processing data, small to large data sets exist and data-

driven models are developed to best express relationships. In the case of a

material property data base, relationships between material properties and

product attributes would be examined and data-driven models developed to

predict product properties based on the material attributes. These data-driven

models permit a decrease in experimentation, or at least provide a starting point

for further experimentation. Common modeling techniques include simple

linear regression, partial least squares, regression trees, and machine learning

algorithms.

10. First-principle or Fundamental Models: First-principle, engineering, physics,

or fundamental models explain relationships between parameters, material

attributes, or manufacturing factors and product attributes. These models seek

to predict product attributes directly from established laws of science.

11. Design of Experiments (DoE): DoE is a highly used tool in investigating

unknown relationships within the framework of PV-1. DoE provides a system-

atic approach to study prioritized factors and establish a relationship with

quality or in-process attributes. More information on DoE is provided in

Sect. 3.5.

3.5 Design of Experiments

To call in the statistician after the experiment is done may be no more than asking him to

perform a post-mortem examination: he may be able to say what the experiment died of.

R. A. Fisher (1890–1962)

DoE has become a bedrock of the framework of PV-1. Why has this become

such an integral part of the process? The strength of DoE is in the application of a

systematic approach to data-based decision making along with the selection of a

study design. Because of the complexity of most processes, several factors are

usually studied in a series of experiments. Historically, students learn to vary

one-factor-at-a-time (OFAT) and this practice is applied on the job in research,

development, and manufacturing. A reason provided in support of this approach is

that if more than one factor is changed, the experimenter will not be able to

determine which factor was responsible for the change in the response. In reality,

the proper selection of experimental runs combined with the proper analysis

removes this source of concern. In addition, there are two major deficiencies with

an OFAT study. The first is that there are often interactions between the parameters

under study. An interaction means that the effect a process parameter has on the
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response may depend on the levels of another process parameter. Statistical exper-

imental designs that permit the estimation of interactions will allow for their study,

whereas OFAT studies do not. The other deficiency of OFAT is that data previously

collected to study other factors is set aside and new data are collected. The structure

of the statistical experimental design allows all the data from the entire study to be

used to draw conclusions on each factor. This results in savings of both time and

money over the OFAT process. In fact, the statistical design approach provides a

proper design structure that when combined with the analysis method maximizes

the amount of information for the minimum number of runs (i.e., the knowledge

development process is highly efficient)

Many textbooks and papers have been written on this subject, and the reader is

encouraged to have some of these books in a personal library. Three books are Box

et al. (2005), Montgomery (2012), and Morris (2011). Since so much is available on

the topic, there is no intention to provide comprehensive technical details in this

book. Rather, the focus in this chapter is on the high level application of DoE within

a PV-1/QbD environment.

Underlying all processes are mathematical and statistical models, the behavior of

which is interrogated via experimentation. Designing an efficient process with an

effective process control strategy is dependent on the process knowledge and

understanding obtained. DoE studies can help develop process knowledge by

revealing relationships between process parameters and the resulting quality attri-

butes measured on process outputs. Efficiently determining an approximate equa-

tion representing the underlying physical equation is best accomplished by DoE and

an effective experimental strategy. The experimental design process is only one

element of QbD, and it closely follows the QbD process as shown in Fig. 3.6.

Determine Experimental 
Objective and Scope

Formalize Study Attributes 
Based on Objective

Prioritize Study Parameters;
Consider  Risk Assessment

Select Experimental Design 
Considering Sequential 

Experimentation

Run Experiment

Analyze Data and Draw Conclusions

Confirm Results

Iterate:
Formulate Next 

Experiment

Fig. 3.6 Experimental

design flowchart
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As shown in Fig. 3.6, the experimental process consists of the following seven

steps:

1. Determine the experimental objective and scope: Before initiating any series of

experiments, define the purpose of the study. Is the goal to improve yield,

increase selectivity or the reaction, achieve a particular dissolution profile

while minimizing content variability, or optimize a potency method? It is very

important to be clear about the purpose of the experiment and the decisions to be

based on the study. Under the QbD paradigm, agreement on the goal and

alignment on the experimental objective is especially important. Everyone on

the team needs to be progressing toward the same goal.

2. Formalize study attributes based on the objective: Agree on the attributes

(responses or outputs) to study in the experiment. Attributes should be aligned

with the experimental objective. In addition, an important consideration at this

stage is inclusion of attributes that are not primary to the objective. Selected

attributes should include those directly related to the experimental objective, and

those not of primary interest, but with an ability to impact the study later in the

process. In addition, selection of a measurement system, how responses will be

measured, and the required level of precision should all be considered before

running the experiment.

3. Prioritize study parameters which may affect the responses: Define the factors

(e.g., process parameters, material attributes, and starting materials) that are

hypothesized to have an impact on the quality attribute responses. Scientifically

analyze the issue at hand and the process under study in order to determine all

the possible factors influencing the situation. This could be achieved by exam-

ining literature reports or other prior knowledge, employing fundamental or

mechanistic understanding, or through preliminary laboratory experiments.

Judicious selection of factors is important in keeping the number of experiments

manageable. Consider the appropriateness of a single large design, or a series of

reduced sequential designs. A risk assessment can be used to prioritize variables

for DoE studies. There are two ways to usefully categorize process performance

parameters. One is traditionally statistical, and the other is of special consider-

ation within the pharmaceutical industry. In each case, there are special issues

with each parameter type that should be addressed prior to designing and

running the experiment.

a. Control and noise factors: Selecting factors to control is not always an easy

decision. In fact, even if a factor is not one of the process parameters to be

controlled during manufacturing (so-called noise factors), it might be bene-

ficial to control the noise factor during experimentation. For example, humid-

ity at the site might be an uncontrollable factor during manufacturing.

However, if an effect on response attributes can be demonstrated during

experimentation which might drive improvement of the manufacturing pro-

cess to mitigate the effect of humidity. Thus, it is important to consider all

factors that can impact values of the quality attributes in designing your

experiment.
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b. Scale dependent vs. scale independent or scalable: Parameters that are scale

independent or scalable can be studied at a smaller scale than full scale

commercial manufacturing and results are applicable for full scale. With

scale dependent parameters, there is a dependency of the results based on

the scale of the equipment. A strategy is needed to assess the DoE results at

scale. Examples of scale independent factors include pressure, temperature,

and Gerties roller compactors. Examples of scale dependent factors include

mixing rpm and high sheer granulation.

In addition to defining process parameters, it is necessary to define the

experimental domain by assigning the upper and lower limit ranges to all

continuous variables. For discrete variables, one must define categories.

Probably the most difficult component of designing an experiment is selec-

tion of the levels or ranges for each parameter. Consider an experiment with

the process performance parameter “revolutions per minute (rpm)”. How

does one decide to set the low and high study levels to (75, 125), as

opposed to (50, 100) or (50, 150), or (75, 150)? Selection of such ranges

depends on the experimental objective and the overall development strat-

egy. In general, the range limit span should be as wide as is practical, but

neither too large nor too narrow. If limits are too narrow, there is a risk of

not seeing the parameter effect. If the range is too wide, the parameter will

be characterized on a macro level, but may not provide information on the

micro level and hide effects of other parameters. It is often helpful to

examine existing experimental data, fundamental knowledge, and similar

compounds or processes of interest.

4. Select experimental design and consider sequential experimentation: Experi-

mental design is based on the following principles:

a. Randomization: Statistical methods require that observations be indepen-

dently distributed random variables, and randomization helps make this

assumption valid. Randomizing helps “average out” uncontrolled noise vari-

ables (lurking or extraneous variables). There are situations where the exper-

iment is not run in a completely randomized fashion due to practical

situations. However, this should be by design and the data analyzed in a

manner consistent with the design.

b. Blocking: Blocking removes unwanted variability and allows focus on the

factors of interest. Pairing is a special type of blocking. As an example,

consider a comparison of the bias for two analytical methods. It is expected

that there will be variation among the test samples measured in the experi-

ment. For that reason, a paired design requires that each method be used to

measure each test sample. In this manner, variation among test samples will

not manifest in differences between the measured values from the two

analytical methods.

c. Replication: Replication allows the estimate of experimental error to be

obtained. This estimate is the basic unit of measurement for determining

whether observed differences in the data are statistically different.
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Replication represents the between run variability. True replication means

that the process is completely restarted for each replicate run. Often times, the

person running the experiment will merely take repeated measures from a

single experimental setup. This is not a true replication, but rather repetition.

The manner in which one employs these three principles is impacted by the

realities of the scale of the design, and time and other resource constraints. If

is easy to get confused by the many statistical designs that are described in the

literature.

Design selection is largely dependent on the objective, goals, process knowl-

edge, and the stage of the experimentation. Sections 3.5.1 and 3.5.2 provide

high level descriptions of some common experimental designs.

5. Run the experiment: The details in this step are often ignored. It is extremely

important that the one who carries out the experiment understands the underly-

ing details of the experiment. In general, run the experiments in a random order

to distribute unknown sources of variability and minimize the effect of system-

atic errors on the observations. It may be tempting to re-order for convenience,

but running an experiment in such a non-random pattern can create problems

with the data analysis. Some designs can account for planned restrictions on

randomization (e.g., split-plot or hard-to-change factors). However, any such

restrictions should be built into the experimental design.

It is important for the person running the experiment to understand the

process. The person should understand the difference between experimental

factors and factors which should stay fixed during the entire DoE. It may be

tempting for those who truly understand the process to make slight tweaks to try

and “save” a run. Such adjustments are not allowed, and risk destroying the

study conclusions. Review the experimental protocol and determine if there is

something that should be changed before running the experiment. Record actual

levels of the process parameters and note if they deviate from the planned levels.

Record other unexpected events.

6. Analyze the data and draw conclusions: If care was taken in setting up the

experimental plan and the experiments were executed as expected, then the

data analysis will be relatively straightforward. It might be necessary to meet

with a subject matter expert should any of the data appear as outliers, or if the

analysis results have influential observations or the models don’t appear to be

feasible.

7. Confirm results and document: Verify as necessary the decisions made based on

the experimental data and the model. It is very important to perform confirma-

tion runs as necessary to verify the best predicted condition. Often times, the best

model predicted condition or region has not been run in the experiment, so

physical confirmation is highly recommended. Plan the next sequential design, if

appropriate.

Results of the experimental effort must be documented. Recommended docu-

mentation should include a brief description of the background information that led

to the experimentation, the objective, study process parameters (including names,
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levels, and units), response attributes (including measurement method), details of

replication and randomization, the design matrix, a summary of the data, the

statistical methods and software used in the analysis, and summary results.

3.5.1 Full and Fractional Factorial Experiments

The factorial family provides powerful and flexible designs for collecting informa-

tion on main effects and interactions in a minimum number of runs. They are highly

flexible and can be used in the screening and interaction phases and as a base for

optimization. The ability to add onto these designs facilitates sequential experi-

mentation and enhanced refinement of knowledge.

To execute, factors for experimentation are selected and a fixed number of

“levels” (usually high-low) are defined for each parameter. A full factorial design

considers all possible combinations of the levels of each input factor. This design

permits estimation of the main effects and interactions. In general, assume there are

‘1 levels for the first factor, ‘2 levels for the second factor, and ‘k levels for the kth
and last factor. The complete arrangement of ‘1 � ‘2 � . . .� ‘k experimental

combinations is called a full factorial design (e.g., a 2� 2� 3 full factorial design

yields 12 experimental runs). A full factorial design including five factors varying

each factor across two levels is written as 25, and has 32 experimental runs.

The 25 full factorial design permits estimation of the five main effects, 10 -

two-way interactions, 10 three-way interactions, five four-way interactions, and one

five-way interaction. The remaining experimental run is used to estimate an

overall mean.

It is usually not required to estimate all multifactor interactions, and so a specific

fraction of the full factorial is selected. This necessarily results in a reduction of the

number of experimental runs. This so-called fractional factorial design is a math-

ematically correct subset of the full factorial that permits estimation of main effects

and some subset of interaction effects. Some loss in experimental information (i.e.,

resolution) generally results by fractionating, but knowledge of the desired infor-

mation can be used a priori to select an appropriate fraction. For example, a half

fraction of the 25 full factorial design includes 25�1 ¼ 16 runs. This design permits

estimation of the main effects and all of the 10 two-factor interactions. Figure 3.7

displays a 2-level full factorial with 3 factors (A, B, C) on the left, and a half

fraction of that design on the right.

Understanding the structure of a factorial experiment is important as a base to

understanding all designed experiments. An experiment to study the effect of

factors A and B on attributes of interest would consist of the four unique runs:

(A low, B low), (A low, B high), (A high, B low), and (A high, B high). This is

denoted as a 22 full factorial experiment, and is shown in Table 3.2. A full factorial

experiment to study three factors at two levels, 23, has eight unique runs as shown in

Table 3.3.
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As noted earlier, it is generally accepted that even complicated relationships

between parameters and attributes can have a large proportion of the relationship

explained by linear effects. Less can be explained by interactions, and even less

from nonlinear or quadratic effects. Hence, 2-level factorial experiments are all that

is required in many cases.

An example is now provided to demonstrate the power of the two-level

factorial structure. In the development of a wet granulation process, it is desired

to study the impact of impeller speed, binder level, and binder addition rate on the

average particle size (D50). Since it is desired to look at all possible combinations

of the three process parameters, the selected design is the 23 full factorial

experiment shown in Table 3.4. The experiment was run in a random order and

three replicated center point conditions were run in addition to the eight factorial

1 1

C C

-1 -1

-1 -1
-1 -1

1 1

1 1

B B

A A

Fig. 3.7 Two level three full factorial (left) and half fraction factorial (right)

Table 3.2 22 full factorial

experiment
Standard order A B

1 Low Low

2 Low High

3 High Low

4 High High

Table 3.3 23 full factorial

experiment
Standard order A B C

1 Low Low Low

2 Low Low High

3 Low High Low

4 Low High High

5 High Low Low

6 High Low High

7 High High Low

8 High High High
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runs (not shown in the table). The results are in Table 3.4 in standard order

without the center points to simplify the analysis and more effectively demon-

strate the power of the analysis.

In the analysis of this particular experiment, it is possible to obtain the linear

effects of the parameters (A, B, C), the two-way interactions

A� B, A� C, B� Cð Þ, and the three-way interaction A� B� Cð Þ. Now, replace
the word “low” in Table 3.4 with a “�1” and the word “high” with a “1”, as shown

in Table 3.5. Notice that the sum of multiplied values in the same row of any two

columns is equal to zero. In matrix algebra nomenclature, such columns are said to

be linearly independent. An experimental design in which all columns are linearly

independent is said to be an orthogonal design. An orthogonal design permits

estimation of all of the effects individually without interference from any other

effects. Notice that each column in Table 3.5 is unique. All eight values of D50 will

be used to estimate all seven effects.

Table 3.6 displays this same information in an alternate form. White space in

Table 3.6 indicates the correct �1 or 1 positioning of the data for each effect.

Data analysis will normally be conducted using a computer program. For this

example, a simple analysis representation which will match a computer analysis is

shown in Table 3.7. Each D50 value is placed in the column of its row

Table 3.4 Wet granulation design with particle size data

Standard order Impeller speed (A) Binder level (B) Binder addition rate (C) D50

1 Low Low Low 156.5

2 Low Low High 146.3

3 Low High Low 198.8

4 Low High High 209.5

5 High Low Low 158.4

6 High Low High 161.6

7 High High Low 136.4

8 High High High 142.7

Table 3.5 23 design illustrating all estimable effects

Standard

order

Impeller

speed (A)

Binder

level (B)

Binder

addition rate

(C) A�B A�C B�C A�B�C D50

1 �1 �1 �1 1 1 1 �1 156.5

2 �1 �1 1 1 �1 �1 1 146.3

3 �1 1 �1 �1 1 �1 1 198.8

4 �1 1 1 �1 �1 1 �1 209.5

5 1 �1 �1 �1 �1 1 1 158.4

6 1 �1 1 �1 1 �1 �1 161.6

7 1 1 �1 1 �1 �1 �1 136.4

8 1 1 1 1 1 1 1 142.7
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corresponding to the level of the performance parameter for which it was collected.

For example, in the first row, A is at level �1, and so D50 in the first row is placed

in the �1 column of A. From this display, patterns may become apparent, and

certainly, data from standard order trial numbers 3 and 4 appear greater than the rest

of the data.

To perform the analysis, add each column of values and place the sum in the row

labeled “Total.” For example, the sum for Impeller (A) at �1 is 156.5 + 146.3

+ 198.8 + 209.5¼ 711.1. Next average each column by dividing the column total by

the total number of observations included in the total (4 in this example). For

Impeller (A) at �1, the average is 711.1/4¼ 177.78. Comparing the average

between the low and high level of each factor, it is observed that some of the

differences are large (e.g., 177.78 versus 149.78 for Impeller (A)) and some of the

differences are small (e.g., 162.53 versus 165.03 for Binder Addition Rate (C)). The

difference between the +1 average and the �1 average is summarized into a factor

effect shown in the last row of the table. By this method, the effect of A is found by

149.78� 177.78¼�28. From this row, it can be seen that A � B, A, and B are the

largest effects.

Table 3.8 presents results of a regression model as described in Sect. 2.12 that is

fit to include the three large effects (A,B, A � B) using the data in Table 3.5.

Note the intercept term is the overall average of all eight values of D50. The

regression estimate (slope) for each parameter is equal to the effect value in

Table 3.7 divided by two. Recall that the effect is the difference from low (�1)

to high (+1), whereas the slope is the difference for one unit change (e.g., from �1

to 0 or from 0 to +1). Since the overall average of the attribute D50 represents a

Table 3.6 Alternative representation of Table 3.5

Random
Order Trial

Number

Standard
Order Trial

Number

Response
(Observed

Value)
Impeller (A) Binder Level (B)

-1

156.5

146.3

198.8

209.5

158.4

161.6

136.4

142.7

-1 -1 -1 -1 -1 -11

1

2

3

4

5

6

7

8

8 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Total

Number of Values

Average

Effect

1 1 1 1 1 1

Binder AddRate
(C)

AB AC BC ABC
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model baseline, the estimates describe the amount of change from baseline as a

given factor moves from �1 (low) to +1 (high).

As discussed in Sect. 2.12, existence of an interaction A � B means that the

effect of A on the response attribute depends on the selected level for B. This means

information from two levels of each parameter is required to decompose the shape

of the interaction. In the case of the example, the existence of the A� B interaction

points to its strength but not to the functional nature. The functional nature can be

described using an interaction plot.

Two interaction plots are provided in Fig. 3.8 for factors P and Q. The vertical

axis represents the response attribute, and the horizontal axis shows the two levels

of Q. There is one line on the plot for each level of P. The circles represent the

average of the response attribute at the given combination of P and Q.

No interaction exists between P and Q in the plot on the left. This is because the

lines are parallel, and the amount of change in the response attribute as Q changes

from �1 to +1 is constant for both values of P. The y-intercept is different for the

two lines, but the rate of change (slope) is identical. Thus, the change in the

response attribute as a function of Q is not dependent on the setting for P. Such

effects are said to be additive rather than interactive. Similarly, the change in the

response as a function of P is not dependent on the setting for Q. (This can be

demonstrated by placing P on the horizontal axis, and drawing a line for each level

of Q.)

The interaction plot on the right of Fig. 3.8 indicates a strong interaction between

P and Q. Notice that as Q moves from �1 to +1 when P¼ 1, there is a decrease in

the average response. However, if P¼�1, movement of Q from �1 to +1 results in

an increase in the average of the response. This is an important discovery when

interactions of this magnitude exist, and provides important information to be

considered in process development.

Fig. 3.8 Examples of

interaction plots

Table 3.8 Estimates of

regression slopes
Term Estimate Prob> |t|

Intercept 163.775 <0.0001

Impeller speed (A) �14 0.0024

Binder level (B) 8.075 0.0169

Binder level (B)*Impeller speed (A) �18.3 0.0009
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The analysis of the data from these two graphs is provided in Table 3.9. The no

interaction graph on the left of Fig. 3.8 shows visually that as Q changes from low to

high, there is a 1 unit change in the response. As P changes from low to high, there

is also a 1 unit change in the response and there is no dependency between P and

Q. Note the sum that defines the effect of the interaction is 0. This must be true

when there is no interaction, and the lines when graphed will be parallel. On the

other hand, the interaction graph on the right shows there is not consistent behavior

in the effect of Q changing between P low and P high. Table 3.9 calculates the

effects given this situation. In this case, the effect of P changing from low to high is

1, the effect of Q changing from low to high is 0, and the effect of the interaction is

1. The weight of importance in correctly understanding the situation has shifted

from an individual parameter effect to the interaction effect.

3.5.2 Other Experimental Designs

Other experimental designs are now briefly discussed.

1. Plackett–Burman Designs (PBD): The PBD design is used in screening where

one has a large set of candidate factors and it is necessary to select a small set of

the most important factors. Unlike the factorial design structure, the PBD design

is constructed in multiples of four rather than powers of two. For example, a PBD

design with 12 runs may be used for an experiment containing up to 11 factors.

These very economical screening designs are most normally used when only

main effects are of interest and are most useful if you can safely assume that

interactions are not significant. Another useful application is in ruggedness

testing or confirmation within a region of goodness where there should not be

an effect on the attributes of interest. Alias structures can be very messy in some

situations and it is advised that someone with experience in experimental design

be consulted in selecting an appropriate design. Because these designs are used

for screening, follow-on designs are usually conducted with the process param-

eters identified as significant. PBDs are difficult to augment except under specific

circumstances when combined with a computer optimal design.

Table 3.9 Calculations of interaction example

Run

Response, No 
Interaction

P      
(-1)

P      
(1)

Q     
(-1)

Q     
(1)

P*Q Low,  No 
Interaction

P*Q High, No 
Interaction

Response, Yes 
Interaction

P      
(-1)

P      
(1)

Q     
(-1)

Q     
(1)

P*Q Low, Yes 
Interaction

P*Q High, Yes 
Interaction

1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
3 3.5 3.5 3.5 3.5 4.5 4.5 4.5 4.5
4 4.5 4.5 4.5 4.5 3.5 3.5 3.5 3.5

Total 14 6 8 6 8 7 7 14 6 8 7 7 8 6
Number of 

Values
4 2 2 2 2 2 2 4 2 2 2 2 2 2

Average 3.5 3 4 3 4 3.5 3.5 3.5 3 4 3.5 3.5 4 3
Effect 0 11 1 1 0
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2. Central Composite Designs (CCD): The CCD is used in optimization or to map a

region of interest in more detail. These are response surface designs to which a

full quadratic model can be fit. The CCD is part of the factorial family of designs

and contains a factorial or fractional factorial design that is augmented with both

center and axial points. As the name implies, axial points appear on the axis

outside of the cube defined by the full factorial corner points. If the distance from

the center of the design to a factorial point is defined to be�1unit for each factor,

then the distance from the center of the design to an axial point is�α with jαj is
greater than or equal to 1. The precise value of the distance depends on the

properties desired for the design and on the number of factors included in the

design. The axial points require that each design factor can be changed across

either three or five levels. Similarly, the number of center points depends on

preferred design properties.

3. Box–Behnken Designs (BBD): The BBD is a three-level design used for fitting

response surfaces. BBDs are experimental designs used to fit a model which

includes main effects, two-factor interactions, and quadratic effects. They are

formed by combining 2k factorials with incomplete block designs. In the exper-

iment, each factor is placed at one of three equally spaced values, usually coded

�1, 0, +1. The design itself is structured as a series of two level (full or

fractional) factorial designs (�1, +1) in usually 2–3 factors while the other

factors are kept at the center (0) values. In this design, several center points

are run. The structure of the BBD provides a convenience of not running at

extremes, should the extreme be a concern. However, the predictive ability is not

generally as good as the CCD. Like a CCD, these designs can be augmented. The

augmentation for BBD permits estimation of cubic and quartic effects. In the

case of 3–4 factors, the BBD will require a fewer number of experiments than

the CCD.

4. Split-Plot Fractional Factorial Designs: Split-plot designs are required when

there are constraints on randomization of the experimental runs. For example,

the temperature of an incubator cannot be randomly changed across units placed

in the same incubator. Factors such as temperature in this example are referred to

as hard to change factors. Hard to change factors appear often in CMC applica-

tions, and proper analysis of the data requires proper recognition of these factors

in the experimental design.

5. Mixture Designs: Mixture designs include factors that are compounds or ingre-

dients in a mixture. The objective of these experiments is to determine the

optimal proportion of each ingredient in order to accomplish some objectives.

6. Computer Optimal Designs: Computer optimal designs allow alternatives that

are not considered in the more classical designs. In particular, they allow

definition of an experimental range that is not defined by a cube or sphere.

They also allow selection of specific models that might include a pre-selected

subset of interactions. They also allow the opportunity to select designs with

small sample sizes relative to the number of parameters to be estimated. These

designs are popular as they can reduce the required number of experiments and

are helpful in augmenting experimental runs to a previously designed study.
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They can also be helpful in tricky situations, such as when there are an uneven

number of levels of the experimental factors, when certain combinations of the

factors cannot be run, or when multiple level discrete factors combine with

continuous and mixture factors. Care should be given in employing this design

as the design is only optimal if the pre-specified model is current. This requires

understanding of the underlying mathematics of statistical experimental design

and practical knowledge of the process under study. Two popular criteria include

both D-optimal and I-optimal designs. The D-optimality criterion minimizes the

joint confidence region of the regression coefficients, and I-optimality mini-

mizes the average prediction variance over the design space.

There are many other designs that are useful in special applications, and new

designs to be developed. Some of these other designs include saturated designs

(designs where the number of parameters is equal to the number of data points),

definitive screening designs, and hybrid designs. Information on these designs can

be found in the statistical literature.

3.5.3 Experimental Strategy

Determination of an experimental strategy is both an art and a science. If research

studies are sequential in nature or cover multiple unit operations, it may be

advantageous to break up a study into parts. Strategy depends on prior knowledge,

available time, and material and equipment availability. Regardless of the particular

intricacies of a situation, it is best to make decisions as expeditiously and efficiently

as possible. To do so, a hierarchical effect principle is employed. Many processes

involve complicated relationships between process parameters and attributes. In

general, the large portion of the relationship can be explained by the linear effect,

less by interactions between parameters, and less again by a nonlinear or quadratic

effect. It takes two experiments (low, high) to estimate a linear trend, four exper-

iments to estimate an interaction between two parameters, and three to five exper-

iments (depending on the nonlinearity) to estimate curvature. This generality is

consistent with a strategy to first understand linear relationships and interactions,

and then examine curvature as needed.

Consider two such examples:

• HPLC process parameters are known to be linear in their effect on certain

attributes. The signature for a new piece of HPLC equipment may be unknown,

but the underlying trend in the parameter to attribute relationships could be well

known based on prior fundamental and experimental knowledge. A couple of

familiarization runs plus a screening design combined with prior knowledge

might be all that is needed to establish the functional relationship between the

process parameter and attribute for the compound being developed.

• In developing understanding around an active ingredient‘s synthetic route with

minimal prior knowledge, one might require all stages of experimentation. As a
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first familiarization step, a small number of experiments at the extremes could be

run to gain knowledge on the compound and equipment. A screening experiment

could then be run to identify the significant few from the trivial many parame-

ters. Once the important 3–5 parameters are determined, a factorial or central

composite design is run to estimate interactions and quantify nonlinearities.

In each of these examples, a scientist works to understand the particular strategy

and integrate all prior knowledge and tools in order to set up the most efficient

experimental strategy. Table 3.10 presents the four stages of strategy:

1. Familiarization,

2. Screening,

3. Interaction, and

4. Optimization.

Each stage is now described in more detail.

1. Familiarization: As the name implies, the basic purpose of this phase is to better

understand the problem at hand. The experimenter should keep in mind that

engaging in a full DoE without a basic understanding of the system practically

assures a study of limited value. If the system is well known, this step can be

skipped. There are no set guidelines or specific requirements for executing

familiarization runs as part of an experimental design (with perhaps the

Table 3.10 Overview of experimental strategy by level of understanding

Familiarization
Phase

Screening
Phase

Interaction
Phase

Optimization
Phase

# Parameters
(Factors) 2 - 15 5 - 15 2 - 8 2 - 5

# Experiments 2 – few 11 – 19 7 – 35 11 - 31

Questions to 
be Answered

If there is little 
knowledge about 

the study 
environment, a 

couple of runs to 
establish ranges 
and investigate 
the system is 

valuable.  Need 
to be aware of 

when to stop and 
move on to 

formal efforts.

What factors 
should be further 

studied?
Is there a workable 

solution?
Should the ranges 
be adjusted in the 

next study?
Is there an area or 

direction of 
goodness?

Are any responses 
nonlinear?

What is the control 
strategy?

Are the center 
points repeatable 
and reproducible?

Which factors 
interact?

Is there a potential 
solution?

Is there an area or 
direction of 
goodness?

Are any responses 
nonlinear?

What is the control 
strategy?

Are the center 
points 

repeatable and 
reproducible?
Are nonlinear 

responses 
adequately 
modelled?

Is there an area 
or direction of 

goodness?
What is the 

control 
strategy?

Little System Knowledge Detailed Understanding
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exception of the initial runs in a sequential simplex). However, a familiarization

phase is essential. The following outcomes would generally describe a success-

ful completion of this stage:

• Any new equipment has been tested and enjoys a degree of reliability.

• Potential performance parameters have been identified with some degree of

certainty.

• A range for the performance parameters has been defined that appears

practical from a process point of view (i.e., not difficult to control and are

scalable) and provide results that are not extraordinarily atypical.

• At least several replicate runs have been completed to estimate the system

variability.

2. Screening: The main purpose of a screening design is to select a small number of

performance parameters from a large set of potential parameters in a minimal

number of experiments. Many times, one can identify several potential perfor-

mance parameters after only a few experiments. At this very early stage, the

relative impact of these parameters on the quality attributes may be based more

on prior knowledge than on empirical experimentation. Since there is a severe

penalty in terms of the number of experiments required to complete a full

factorial design, the wise experimenter will embark on a full DoE with only

those process parameters that are truly important in this stage.

Screening designs are obtained by using fractional factorial designs, Plackett–

Burman designs, or computer optimal designs. One drawback to screening designs

is they have a complicated confounding of interactions. However, any process

parameters that affect the attributes to an extent greater than the experimental

error will be identified. Although some modeling can be done with the data, the

basic idea is that once a screening design is completed, the experimenter will

eliminate the superfluous variables and embark on a more detailed study of the

important process parameters using higher resolution factorial designs.

Screening designs can also be used for purposes that don’t require additional

experimentation. One such case is the confirmation of an area of robustness. In

demonstrating robustness, key process parameters are studied across their

recommended manufacturing ranges and the responses or quality attributes are

measured. The effects of raw materials and environmental or human factors may

be considered in the experiment as noise factors. Noise factors are controlled at the

time of the DoE and then left uncontrolled in process operation. Robustness

demonstration can be conducted in conjunction with the optimization phase. Var-

iability reduction activities take place in manufacturing, but are best performed

early in the development life cycle.

3. Interaction: The interaction phase permits study of interactions between the

input process parameters. During this phase fewer input factors are studied as

compared to the screening phase, because knowledge of interaction effects

requires more testing than knowledge of main effects. There may also be a

greater level of process understanding. The several process parameters being
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studied are believed more likely significant than the many studied in the screen-

ing phase. If there are no more than 5–6 process parameters, and only 2-factor

interactions are of interest, the screening and interaction phase may be

conducted at the same time.

Possible designs considered in this phase include fractional to full factorial

designs, depending on the level of interaction required in the study. Data from

the screening design can be used in a “fold-over” study (Box et al.) to reduce the

total number of runs. A computer optimal design may be used if the region is of

unusual shape, if a known model exists, or if design modifications are required

unexpectedly in the process of running the experiment (e.g., design repair).

4. Optimization: Optimization refers to examination of nonlinear effects, usually

quadratic effects, about a smaller region of interest (e.g., the NOR). This

typically occurs following the interaction and the screening phases. Designs

used in this phase include central composite designs, optimal designs, and Box–

Behnken designs. The most popular designs in this phase are central composite

designs as in many cases information from experiments included in the screen-

ing and interaction phase can be reused and included in the study design and

analysis. Note that the screening, interaction, and optimization phases do not

need to be sequential and can be conducted simultaneously.

Strategic questions to answer that are crucial to proper execution of an experi-

ment include the following:

1. How will the responses be measured? What measurement system will be used?

What is the expected variability?

2. What performance parameter factors are hypothesized to have the largest effect

on the quality attributes of interest?

3. Are there any known interactions between factors? Increased prior knowledge

can help in decreasing the required experiments.

4. How will the rest of the parameters and material attributes be controlled or

blocked during the experiment?

5. Are there noise factors which cannot be controlled? How can their effect be

minimized? Should blocking be used to minimize the effect of the hard to

control sources of variability?

6. Can the entire experiment be randomized or is this not practical? Should there be

a partial randomization scheme?

7. How many replicates are needed for each attribute in an experimental run? It is

often both acceptable and necessary to perform unreplicated experiments, but it

is important to understand the considerations of these experiments. For example,

consider tablet potency as a quality attribute for a study. How will potency be

measured? Certainly not by a single replicate assay injection from a single tablet.

More likely, it could be measured as the average of two replicate HPLC

injections from a composite of five tablets. In general, knowledge of past

estimates of variability for similar compounds or similar processes will help

inform the replicate strategy. Ultimately, this subject is important to ensure

3.5 Design of Experiments 143



sufficient statistical power to detect differences which are meaningful to the

experimental objective.

8. Will center points be used to estimate variability? For example, in a 16 run

factorial design, it is usually of benefit to run at least three center points at the

beginning, middle, and end of the experiment. These center points are used to

assess variability across the experiment and also to judge nonlinearity or curva-

ture in the experimental space.

9. Is it expected that center points will be in the center of the experimental design,

or will those points be at a manufacturing set point that may be off-center in the

experimental space? What is the effect to the properties of the experimental

design if the points are off-center?

3.6 Nominating a Parameter as Critical

The assessment of critical quality attributes (CQAs) and the control of critical

process parameters (CPPs) that affect these attributes is an important component

of the overall control strategy for drug substance and drug product manufacturing.

There are many different approaches for assessing process parameter criticality,

and although the determination of criticality is not primarily a statistics function,

statistics can play a part in helping to identify CPPs.

One particular challenge involves assessing when a relationship between a

process parameter and a CQA represents a significant impact on that CQA. For

example, Fig. 3.9 provides two statistically significant relationships between a CQA

and a process parameter across the explored space. Both equations are statistically

significant, however, it is clear that the blue equation has a practically more

meaningful relationship than the green equation. The blue equation has a chance

of producing product outside specification if operated within the range, whereas,

the green equation does not. Assessing impact based solely on statistical signifi-

cance (p-value) is not appropriate, because statistical significance does not take into
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account the strength of the relationship relative to the relevant quality requirements.

Ignoring this fact can lead to the inclusion of relatively unimportant process

parameters as critical elements of the control strategy. Including these unimportant

process parameters as CPPs is undesirable as it effectively dilutes the focus on

process parameters that are truly important for ensuring product quality. It can

also place an unnecessary burden on manufacturing operations resulting in an

increased cost.

An alternative two-step procedure is provided by Wang et al. (2016).

Step 1: Perform a process risk evaluation for each relevant CQA.
For each CQA, evaluate the data set responses across the investigated range

without focusing on any single or particular parameter. A Z-score assessment is

employed to determine how close the results are to the specification or targeted

response for the attribute. The Z-score is calculated as

Z* ¼ min
U � �x

S
;
�x� L

S

� �

�x ¼ average of data across the explored space,

S ¼ standard deviation of data across the explored space,

U ¼ upper target or specification, and

L ¼ lower target or specification:

ð3:1Þ

It is not necessary to have both an upper and lower limit to calculate Z*. In the

case of a one-sided specification, Z* is simply the single value corresponding to the

specification of interest.

Figure 3.10 provides an illustration for a one-sided Z*. For this case, if “spec-

ification #1” is the upper specification limit, then the Z* for this data is expected to

be small, indicating that the data is at risk of being greater than the upper specifi-

cation limit at some operating conditions in the explored space. Alternatively, for

“specification #2,” the data is far from the specification limit indicating that there is

no risk of being beyond the specification for a well-controlled process operating

within the explored space.

In Fig. 3.10 cutoff values for Z* of 2 and 6 were selected as decision points in the

analysis. Say that potency is a CQA and the analysis of the DoE data found a

significant relationship between potency and milling speed, roll force, and com-

pression force. The prediction equation is

Potency ¼ 98þ 2:5 �Millspeed� 0:5� Roll forceþ 1:5
� Compression force ð3:2Þ

• If Z* is less than 2, then all of the parameters in the significant model are CPPs.

For the potency example, mill speed, roll force, and compression force are all

significant.
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• If Z* is greater than 6, then none of the parameters in (3.2) are CPPs. For the

potency example, the response is performing similar to the green line in Fig. 3.9.

Hence, there is no risk across the explored region and no CPPs.

• If Z* is between 2 and 6, then go to Step 2.

Step 2: Assess the criticality of individual parameters as necessary.

This step is performed if Z* is between 2 and 6. Here, the fitted statistical model

is utilized to quantify individual parameter effects against the proposed specifica-

tion. This is termed the 20% rule for this application. For the potency CQA, if the

specification is 95–105%, then the specification width is 10%. This specification

width is multiplied by 20% to yield 2% for this example. As the mill speed

coefficient in (3.2) is greater than 2%, the mill speed is a practically meaningful

CPP. The other two parameters, roll force and compression force, are not CPPs.

3.7 Determining a Region of Goodness

A significant outcome of the DoE is determination of a region of goodness to

operate the process. For example, two responses, impurity 1 and impurity 2, were

studied in a two-factor (B, C) full factorial design with replicated center points.

From the experimental data, models were developed and summarized in a contour

plot (see Fig. 3.11).

It is desired to minimize impurity. The arrows in Fig. 3.11 show the direction of

this minimization, or the so-called direction of goodness. For impurity 1, the

Fig. 3.10 Potential Z-score cutoff values for determining significance
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combination of factor B at the low level with factor C at the high level is the best

combination to minimize impurity 1. For impurity 2, factor B at the low level is the

best, and factor C has no impact.

Assume the specification for each impurity is 0.10%. Examination of Fig. 3.11

shows the region and boundary where each impurity is less than 0.1%. It is common

to summarize this information by providing pass (orange) and fail (gray) regions as

shown in Fig. 3.12. The orange region represents an area where both 0.10%
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specification limits are simultaneously met. However, across this region, there are a

range of success probabilities. That is, based on Fig. 3.11, it is expected that there

will be a higher probability to pass the specification of 0.1% in the upper left

quadrant of the region than in the rest of the space. The predicted value at point #1

in Fig. 3.12 for impurity 1 and 2 is 0.01. The predicted value at point #2 for impurity

2 is close to 0.10. It makes sense that although the orange region will produce

product that passes specifications, the probability of passing a specification of

0.10% must be greater at point #1 than point #2. In general, at the impurity limit

of 0.10% it is expected that the probability of passing the specification is about 50%

and in the region of overlapping requirements there is less than a 50% probability of

passing. An improvement to examining the pass/fail plot in Fig. 3.12 is to assess the

probability of passing and make decisions based on this probability.

Peterson et al. (2009) proposed an approach to calculate the probability of

simultaneously passing all relevant specifications using seemingly unrelated regres-

sion (SUR) and has also, although unpublished, outlined a parametric bootstrap

simulation approach to calculating this probability across the space of interest.

Using a bootstrap method, the probability to simultaneously pass multiple

specifications is provided in Fig. 3.13. The levels on these contours now show the

probability of passing while taking into account the predictive distribution, not

simply the average prediction.

This more descriptive probability can be used to make better informed decisions

about the process. That is not to say that the method is perfect or cannot be

improved. A Bayesian approach to specify a range of parameter and variability

estimates might help stabilize predictions in some cases.
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Continuing the earlier example of the two impurities, assume the process was

initially set to operate at the point indicated by a star in Fig. 3.14. Following the

probability calculation, it is determined that there is a 70% chance of passing both

specifications simultaneously. There could be several solutions that may improve or

remediate this probability, and knowledge of the estimated probability is a step in

proposing the process.

• It may be that the process is improved by downstream processing. So although

there may be a cost associated with a 70% probability of passing at this stage, the

probability will be improved in the future.

• It may be that the experiment was performed sub-scale. There is a known

improvement to the probability when performed at scale.

• The set points of parameters B and C may need to be adjusted to improve the

probability of passing.

• The initial specifications on the impurities of 0.1% may need to be increased.

The effect of increasing the specification to 0.3% is provided in the right-hand

side of Fig. 3.15.

• Finally, true process variability may be greater or less than the magnitude

realized in the experimental data. The simulation can be performed again with

the more appropriate error structure.

3.8 Process Capability and Process Robustness

The process capability index, abbreviated broadly asCpk, is a widely used summary

statistic describing the ability of a process to produce output within specification

limits. The index plays a prominent role in PV-3, and is discussed in Chap. 5 of this

book. An assessment of capability is also useful in PV-1. Obtaining a meaningful

estimate of process capability early in a product’s life cycle is difficult because
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many lots are needed to provide a meaningful capability index. For these indices to

have predictive meaning, the process must have demonstrated adequate statistical

control prior to their calculations. This effort requires at least 25 lots.

Within the last decade, the concept and industrial practices of QbD have led to

greater process understanding in R&D leading to increased knowledge of process

capability that is not specifically captured by the small number of lots manufactured

early in a product’s life cycle. Although there may only be a couple produced lots,

the scientific understanding, fundamental knowledge, and development experience

is substantial and provides an opportunity to assess process capability. A proposal

for a robustness calculation, meant to distinguish an early estimate of control and

capability developed within a QbD framework from the rigorous assessment of

control and capability implied by a capability statistic was proposed by Vukovinsky

et al. (2017). This contour-based tool calculates the percent out-of-specification (%

OOS), based on the mean, standard deviation, and specification of an attribute. The

contours provide a clear visualization of the ability of the process to meet the

specification, making it a useful tool for products in development as well as new

and marketed products. Figure 3.15 provides an example contour plot for potency,
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based on a sample size of only 10 lots resulting in a mean potency of about 98.4%, a

standard deviation between lots of 0.5%, and a specification of 95–105%.

These %OOS contour regions use the following coloring scheme:

• Green: less than a 0.27% OOS rate (good performance).

• Yellow: greater than or equal to 0.27% OOS rate and less than 3% (further

discussion required).

• Red: greater than 3% OOS rate (requires improvement).

The OOS% contour levels of 0.27, 0.006, and 6e-5 displayed on the plot are

approximately related to Cpk values of 1, 1.33, and 1.67, respectively. Associating

the green contour with 0.27% OOS implies a minimum Cpk of one in transition to

manufacturing.

Once a process robustness contour plot is constructed, the relative location of the

present process within the colored contour is examined to assess the product

performance. In Fig. 3.15 the “X” represents the location of the attribute of interest.

The ultimate goal for the product should be emphasized more than the color zone

containing the “X”. The relative location provides information concerning the

sensitivity of the attribute to change in the sample mean and sample standard

deviation and can guide the search for potential improvements in product perfor-

mance or the need to modify data-driven specifications. As with any summary

statistic, there is variability in the %OOS estimates. This variability is described in

Fig. 3.15 footnote as an upper confidence estimate on the %OOS. This estimated

upper bound is based on the data, and can be quite wide for a small sample size. The

fundamental, scientific, and experimental understanding of the process gained

through the design process along with the calculated bound should be considered

in process decisions.

Once constructed, the contour plots should support an active discussion about

the product performance amongst a cross-functional team. In general, data external

to the summarized lot data, estimates of variability components from methods and

processes, or knowledge from modeling efforts on similar products can be used to

assess potential future process behavior and expectations. All of these discussions

can use the robustness contour as a foundation.

3.9 Control Strategy Implementation

ICH Q8(R2) documents a “Minimal Approach” to Control Strategy which is

contrasted with the “Enhanced, Quality by Design Approach.” Here, criticality of

parameters is determined following scientific investigation through the QbD

process.

The concept of criticality can be used to describe any material attribute, char-

acteristic of a drug substance, component, raw material, drug product or device,

process attribute, parameter, condition, or factor in the manufacture of a drug
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product. The assignment of attributes or parameters as critical or non-critical is an

important outcome of the development process and provides the foundation for the

control strategy. Critical Process Parameters (CPPs), the relationship between

Critical Quality Attributes (CQAs) and Critical Process Parameters (CPPs), and

the ranges for CPPs (PAR and NOR) are documented as a control plan. The control

strategy provides a plan to prevent operating in regions of limited process knowl-

edge or those that are known to cause product failure.

Underlying the criticality assignment process is the concept that the primary

assessment and designation of criticality should be made relative to the impact that

quality attributes or process parameters have on the safety, efficacy, and quality of

the product. The material in Sect. 3.6 provides one option to determine criticality.

Once criticality is determined, a control strategy that focuses on the most appro-

priate control points and methods is developed.

ICH Q10 defines a control strategy as

a planned set of controls derived from current product and process understanding that

assures process performance and product quality. The controls can include parameters and

attributes related to drug substance and drug product materials and components, facility and

equipment operating conditions, in process controls, finished product specifications and the

associated methods and frequency of monitoring and control.

QbD also introduced the concept of a traditional versus a dynamic control

strategy. In a traditional control strategy, any variability in process inputs (such

as quality of the feed material or raw materials) results in variability in the quality

of the product because the manufacturing controls are fixed. In a dynamic control

strategy, the manufacturing controls can be altered (within the region of goodness)

to remove or reduce the variability caused by process inputs.

A holistic control strategy mitigates any risk from a single unit operation. The

control strategy includes the process definition, control limits of process parame-

ters, and release limits, amongst other considerations. It is important in determining

the manufacturing process that specifications be set appropriately (see Chap. 7).

A statistically related example illustrates the translation from an equation

derived from a DoE to a control strategy. Here, dissolution (Diss) is found to be a

function of API particle size (API), magnesium stearate surface area (MgSt),
lubrication time (LubT), and compression force (Crush F).

Diss ¼ 108:9� 11:96� API � 7:556� 10�5 �MgSt� 0:1849� LubT

� 3:783� 10�2 � CrushF� 2:557� 10�5 �MgSt� LubT:
ð3:3Þ

Assume these parameters are both statistically significant and their effect on

dissolution is practically meaningful. Equation (3.3) describes the current under-

standing and can be used to define meaningful limits on the parameter specifications

and process controls. Using this information, quality is built into the process by

managing the process inputs. Although there may not be direct control of Diss, it
might be controlled upstream by one of the variables on the right of Eq. (3.3).
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• API: To control dissolution, it is important to maintain the D90 API particle size

within a certain range. Here, the predicted equation is used to determine the

range of 5–30 μm and the high shear wet milling equipment is set to achieve a

value within this range.

• MgSt: The surface area of the magnesium stearate (lubricant) particles is

controlled to ensure dissolution. This assurance is performed upon receipt of

the MgSt from the supplier.

• LubT: Lubrication time is controlled between 1 and 8 min via automated

equipment.

• CrushF: Tablet hardness is controlled by the crushing force at the time of

compression to a targeted amount and within an acceptable range.

All decisions concerning the CQA are documented within a control plan.

3.10 Preparation for Stage PV-2

After the control strategy has been defined and the product and process ranges are

established, product and process qualification (PV-2) is performed to demonstrate

that the process will deliver a product of acceptable quality if operated within the

region of goodness. This will also confirm whether the small and/or pilot-scale

systems used to establish the region of goodness can accurately model the perfor-

mance of the manufacturing scale process. PV-2 is really a confirmation of the

understanding and control strategy. Following PV-2, the regulatory filing is com-

piled, which includes the acceptable ranges for all critical operating parameters that

define the manufacturing process.
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