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Sigma-1 Receptors Fine-Tune 
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Abstract

The endoplasmic reticular (ER) protein sigma-1 receptor (Sig-1R) has 
been implicated in CNS disorders including but not limited to neurodegen-
erative diseases, depression, amnesia, and substance abuse. Sig-1Rs are 
particularly enriched in the specific domain where ER membranes make 
contacts with the mitochondria (MAM). Within that specific domain, Sig-
1Rs play significant roles governing calcium signaling and reactive oxy-
gen species homeostasis to maintain proper neuronal functions. Studies 
showed that the Sig-1R is pivotal to regulate neuroplasticity and neural 
survival via multiple aspects of mechanism. Numerous reports have been 
focusing on Sig-1R’s regulatory effects in ER stress, mitochondrial func-
tion, oxidative stress and protein chaperoning. In this book chapter, we 
will discuss the emerging role of Sig-1R in balancing the populations of 
neuron and glia and their implications in CNS diseases.
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7.1	 �Introduction

Neurons are functionally polarized cells extended 
with neurites. Among neurites, axons are distinct 
from other dendrites due to their specialization in 
conducting signal propagation and protein trans-
port in the neural circuit. Axonal guidance and 
pathfinding are precisely governed during neuro-
nal developments. Failures or malfunction in 
axonal maintenance, regeneration and target rec-
ognition have been implied in the pathogenesis 
of several CNS disorders such as Alzheimer’s 
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disease, Parkinson’s disease, stroke and spinal 
cord injuries [1–3].

The axonal pathfinding in the developing ner-
vous system is orchestrated by cytoskeletal ele-
ment polymerizations as well as the regulation of 
microtubule-associated proteins and the Rho-
GTPases family. In addition, guidance cues and 
other stimuli such as extracellular signaling pro-
teins also contribute to the precision of axonal 
pathfindings. These factors include growth fac-
tors, matrix glycoproteins, and integrin receptors. 
Emerging evidence indicates that local axonal 
translation plays important roles in axonal main-
tenance [4, 5]. Many local translational mecha-
nisms for mitochondrial proteins are responsible 
for preventing free radical production and oxida-
tive damage and thus may be contributing to axo-
nal health [5–7]. Recent reports also indicated that 
mitochondrial biogenesis is not limited to the cell 
body, but also occurs locally in axons [8–10].

7.2	 �The Role of Sig-1R 
in Neurogenesis and Axon 
Guidance

We recently discovered that the sigma-1 receptor 
(Sig-1R), an ER chaperone protein that resides in 
the ER and mitochondrial contacting site (also 
known as MAM) [11], is essential for neurogen-
esis in dentate gyrus of adult hippocampus [12] 
and is pivotal to maintain dendritic arborization 
via the regulation of mitochondrial functions dur-
ing neuronal development [13]. In addition, axon 
extensions are regulated by Sig-1R activities [14, 
15]. In Sig-1R depleted neurons, the growth 
cones exhibit reduction in size and in Rac GTPase 
specific GEF Tiam1 intensities. Sig-1R depletion 
also caused significant reduction in axonal den-
sity as well as decreased mitochondrial number 
and mobility [15]. These findings further support 
the important notion of Sig-1Rs in maintaining 
neuronal survival and their implications in many 
CNS disorders.

In a primary rat hippocampal neuron model, 
we employed Sig-1R knockdown (KD) using 
the  AAV transduction. Sig-1R deficiency 
induces non-neuronal cell proliferation as indi-
cated by DAPI staining. Non-neuronal cell pro-
liferation is an early sign of gliosis, and is 
usually accompanied by astrocytic activation. 
Axons were visualized by immuostaining with 
the α-acetylated tubulin. We noticed that the 
Sig-1R KD neurons exhibited disoriented axon 
projections (Fig. 7.1). Wild type (WT) hippo-
campal neurons displayed structurally orga-
nized axon networks and connections, while the 
axons of the KD neurons established abnormal 
circular routes and displayed a disoriented phe-
notype. These findings suggest that Sig-1R defi-
ciency may lead to poor arborization of 
presynaptic axons and fewer synapse forma-
tions. Regressive axon growth is essential to 
coordinate functional axon connections. Axon 
pruning occurs constantly during axon pathfind-
ing and elongation. Axons may dislocate and 
mistarget if left without proper pruning. In addi-
tion, aberrant axon pathfinding has been associ-
ated with neurological diseases [16]. Though 
Sig-1Rs have been shown to participate in axon 
elongations [14, 15], surprisingly, Sig-1R antag-
onists induced aberrant axon elongation in a pri-
mary mouse cortical neuron model. 1 μM 
BD-1063 significantly increased axon elonga-
tions in neurons as indicated by phospho neuro-
filament immunostaining (Fig. 7.2). Similar 
results were observed using another Sig-1R spe-
cific antagonist haloperidol (data not shown). 
Perhaps it is too early to conclude that inactiva-
tion of Sig-1R enhances axonal activities and 
elongation. Rather, antagonizing Sig-1Rs may 
disrupt the well-orchestrated mechanisms that 
are tightly associated with pruning and guid-
ance. This leads to the hypothesis that Sig-1Rs 
may be involved in axon guidance/pathfinding 
as well as in axon pruning and facilitate axon 
targeting to proper functional areas to form 
functional synapses.
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Fig. 7.1  Sig-1R is required to maintain neuronal 
polarity. Equal density of cultured hippocampal neurons 
were infected with an AAV vector expressing a short hair-
pin RNA (shRNA) sequence for Sig-1R. Ten days after 
transduction, neurons were immunostained with the axon 
marker acetylated alpha tubulin (green). Depletion of 

Sig-1R disrupts axon polarity and arborization as axons in 
the Sig-1R KD groups wrapped around neuronal somas 
and failed to display proper connections. Though the pop-
ulation of neurons in both control and KD groups is simi-
lar, Sig-1R KD cultures may be more susceptible to gliosis 
as indicated by more non-neuronal DAPI staining (blue)
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7.3	 �Conclusions

Non-neuronal cells are abundant in the central 
nervous system (CNS) and without doubt par-
ticipate in axon signaling. Astroglia play impor-
tant roles and indispensable contributions in 
many CNS processes including shaping memory 
formation and recovery from CNS injury. It has 
been well recognized that the bidirectional 
astrocyte-neuron communication is part of the 
axon pruning/pathfinding [17]. A single astro-
cyte can form synaptic islands by enwrapping a 
maximum of eight neuron somas and making 
contact with 300–600 neuronal dendrites [18]. 
At the synaptic clefts, astrocytes and neurons 
form the so-called “tripartite synapse” to estab-

lish bidirectional communications [19, 20]. 
Astrocytes can trigger the exocytotic release of 
gliotransmitters including glutamate, GABA, 
NMDA receptor co-agonist D-serine and ATP/
adenosine, as well as neurotrophic factors [21]. 
On the other hand, reactive astrocytes can func-
tion as the extrinsic inhibition at the lesion site to 
inhibit axon growth [22, 23]. Sig-1Rs are 
enriched in astrocytes [24].

Accumulating evidence shows that Sig-1Rs 
exert regulatory effects on neuropathic pain [25], 
traumatic brain injury-induced inflammatory 
responses [26], as well as psychostimulants-
induced autophagy [27] and neuroinflammation 
responses [28] via the astrocytic or microglial acti-
vation. Thus, Sig-1Rs may oversee axon guidance/

Fig. 7.2  Aberrant axon 
elongation induced by 
Sig-1R antagonist. 
Primary mouse cortical 
neurons were treated with 
the Sig-1R antagonist 
BD-1063 (1 μM) at days 
in vitro (DIV) 7. Axon 
lengths were observed at 
DIV10 by immunostaining 
of phospho neurofilament 
(pNF-H, SMI 31). Neurons 
treated with BD-1063 
(right panels) showed 
significantly longer axons 
than the control neurons 
(left panels)
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pathfinding via the precise glia-neuron communi-
cation networks (Fig. 7.1) as well as govern the 
functional axon growth via the mechanisms that 
regulate recessive events (Fig. 7.2). Sig-1R ligands 
may exert great therapeutic potentials in establish-
ing functional neuronal networks in this regard.
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