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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease affect-
ing spinal cord and brain motoneurons, leading to paralysis and early death. 
Multiple etiopathogenic mechanisms appear to contribute in the develop-
ment of ALS, including glutamate excitotoxicity, oxidative stress, protein 
misfolding, mitochondrial defects, impaired axonal transport, inflamma-
tion and glial cell alterations. The Sigma-1 receptor is highly expressed in 
motoneurons of the spinal cord, particularly enriched in the endoplasmic 
reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several 
evidences point to participation of Sigma-1R alterations in motoneuron 
degeneration. Thus, mutations of the transmembrane domain of the 
Sigma-1R have been described in familial ALS cases. Interestingly, 
Sigma-1R KO mice display muscle weakness and motoneuron loss. On the 
other hand, Sigma-1R agonists promote neuroprotection and neurite elon-
gation through activation of protein kinase C on  motoneurons in vitro and 
in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, 
the most usual animal model of ALS, with Sigma-1R agonists resulted in 
significantly enhanced motoneuron function and preservation, and 
increased animal survival. Sigma-1R activation also reduced microglial 
reactivity and increased the glial expression of neurotrophic factors. Two 
main interconnected mechanisms seem to underlie the effects of Sigma-1R 
manipulation on motoneurons: modulation of neuronal excitability and 
regulation of calcium homeostasis. In addition, Sigma-1R also contributes 
to regulating protein degradation, and reducing oxidative stress. Therefore, 
the multi-functional nature of the Sigma-1R represents an attractive target 
for treating aspects of ALS and other motoneuron diseases.
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16.1  Introduction: Motoneuron 
Diseases

Motoneuron diseases (MND) are progressive 
neurodegenerative disorders of wide etiology and 
clinical spectra, but with a common feature: the 
loss of lower and/or upper motoneurons. 
Amyotrophic lateral sclerosis (ALS) and spinal 
muscular atrophy (SMA) are the most frequent 
forms of MND and therefore the most studied. 
ALS was first described by Charcot in 1869 and 
is the most common type of MND in adults, with 
an incidence of 1–5 per 100.000. Concomitant 
degeneration of both upper (corticospinal/corti-
cobulbar) and lower (spinal/bulbar) motoneurons 
distinguishes ALS from other forms of MND 
[1–3]. The main neuropathological features of 
ALS include extensive loss of motoneurons in 
the anterior horns of the spinal cord and motor 
nuclei of the brainstem, degeneration of the corti-
cospinal tract, and degeneration and loss of large 
pyramidal neurons in the primary motor cortex, 
also accompanied by reactive gliosis around the 
areas of degeneration [3]. Cytoplasmic protein 
inclusions are common in the degenerating neu-
rons, which predominantly comprise a nuclear 
RNA processing protein, TDP-43 (TAR-DNA 
binding protein 43) [4] It has been classically 
considered that despite most ALS cases are spo-
radic (sALS), 5–10 % are familiar (fALS), related 
with several genetic mutations [1, 5]. No matter if 
they are sporadic or familiar, patients develop 
progressive weakness and muscle atrophy, with 
spasticity and contractures. Progressive weak-
ness may start distally or proximally in the upper 
or lower limbs and finally affect all muscles, 
including those related with breathing, speaking 
and swallowing. Patients die, mostly due to respi-
ratory failure, by 2–5 years after diagnosis [2, 6].

No effective treatment is presently available 
for ALS [1]. Patient care focuses on symptom-
atic treatments and physical therapy. Assisted 

ventilation and nutrition can transiently over-
come the loss of upper airway and respiratory 
muscular control [2]. A large number of thera-
peutic trials have been attempted, but it was not 
until the early 1990s that the first drug approved 
by the FDA for the treatment of patients with 
ALS reached the market: riluzole, an antigluta-
matergic agent that blocks the presynaptic 
release of glutamate. However, the efficacy of 
riluzole is questionable, with minimal therapeu-
tic benefits of about 3–4 months of survival 
increase [7]. One of the main concerns for 
developing new therapies is the lack of direct 
translation from promising preclinical findings 
to successful clinical results. Although the het-
erogeneous and complex nature of ALS has 
been studied extensively, the absence of early 
detection markers and proper biomarkers for the 
disease evaluation of patients does not allow 
identifying whether patients are at different 
stages or even developing the disease because 
of different underlying causes. These drawbacks 
often lead to a difficult interpretation of the 
results from clinical studies. In this sense, 
patients who develop the disease mainly because 
of defects in a particular pathway would display 
greatest benefit from the compounds that selec-
tively target that pathway. Interestingly and sup-
porting this idea, in most clinical trials, a subset 
of subjects showed improvement, but none of 
the compounds displayed an overarching effect 
on most patients. Therefore it seems that each 
clinical trial has been successful only in a select 
subset of individuals. Since ALS is a multifacto-
rial disease, future strategies should be focused 
on multi-target drugs or on combinatorial treat-
ments that might maximize the translational 
effects [1].

Frontotemporal lobal degeneration (FTLD or 
FTD) is the second most common type of demen-
tia after Alzheimer’s disease. It is caused by pro-
gressive neuronal atrophy and loss in the 

R. Mancuso and X. Navarro



237

frontotemporal cortex, and is characterized by 
personality and behavioral changes, as well as 
gradual impairment of language skills [8]. 
Traditionally, ALS and FTLD were considered as 
two distinct identities. However, novel evidence 
suggests that both pathologies belong to a clini-
cal continuum, with pure forms linked by over-
lapping syndromes. The first link established 
between FTLD and ALS was the identification of 
TDP-43 positive ubiquitinated cytoplasmic inclu-
sions in almost all ALS and more than a half 
FTLD patients [8, 9]. Although neuropsychologi-
cal testing shows normal cognition in the major-
ity of ALS patients, up to 50 % of them may 
present some degree of cognitive impairment, 
while 15–18 % meet the criteria for FTLD [10]. 
On the contrary, few patients with FLTD develop 
ALS [11]. Indeed, FTLD-only, ALS-only and 
coincident FTD-ALS cases were reported to 
occur inside the same family, supporting the 
hypothesis of a link between both pathologies. 
The recent finding of an hexanucleotid expansion 
in C9ORF72 constitutes a strong link between 
ALS and FTLD [12–15].

16.2  Pathophysiological 
Mechanisms Underlying 
Motoneuron Death

The exact molecular pathway causing motoneu-
ron degeneration in ALS is unknown, but as with 
other neurodegenerative diseases, it is likely to be 
a complex interplay between multiple pathogenic 
mechanisms that may not be mutually exclusive 
and in which is still unknown the causative rela-
tion between them or whether they are the conse-
quence of an upstream disturbance [1, 5, 16].

The identification of underlying genetic 
defects of familial cases of ALS has allowed the 
development of relevant animal models of the 
disease in mice, rats, zebra fish and drosophila [1, 
4, 17–19], which have been essential for uncover-
ing morphological and molecular pathogenic 
events in vivo that are not possible to investigate 
in humans. The most widely used ALS models 
are transgenic mice over-expressing human 
mutated forms of the SOD1 gene, which recapit-

ulate the most relevant clinical and histopatho-
logical features of both familial and sporadic 
ALS.

Among the proposed pathophysiological 
mechanisms, excitotoxicity has been deeply 
explored. Neuronal injury caused by excitatory 
mediators may be due to failure in the neu-
rotransmitter clearance from the synaptic cleft 
or increased postsynaptic sensitivity to gluta-
mate. This enhanced excitatory input induces a 
massive calcium influx into the cytoplasm that 
damages the cells through the activation of 
calcium- dependent proteases, lipases and nucle-
ases. A large body of evidence implicates exci-
totoxicity as a mechanism contributing to 
motoneuron death in ALS, such as threefold 
increased levels of glutamate in CSF from ALS 
patients [20, 21]. Furthermore, overactivation of 
NMDA receptors and increased calcium perme-
ability of AMPA receptors have been described 
in ALS mouse models [1, 22–25]. Loss of the 
glial excitatory amino acid transporter 2 
(EAAT2) was also reported in ALS mouse mod-
els [26, 27].

Oxidative stress results from the imbalance 
between the production of reactive oxygen spe-
cies (ROS) and the biological capacity to remove 
ROS or repair ROS-induced damage. The analy-
sis of CSF and serum from ALS patients showed 
increased concentration of ROS compared to 
healthy subjects [28–31]. Evidence of oxidative 
stress damage to proteins [32], lipids [30] and 
DNA [33] was also reported to occur in ALS 
patients. Oxidative stress has been also docu-
mented in ALS mouse models [34, 35].

Mitochondria are the cellular organelle in 
charge of ATP production, calcium homeostasis 
maintenance and intrinsic apoptosis regulation. 
An important core of evidences implicates mito-
chondria as key players in ALS physiopathology 
[36]. Reduced mitochondrial DNA content asso-
ciated with increased mutations of mitochondrial 
DNA, and respiratory chain complexes dysfunc-
tion have been described in the spinal cord of 
ALS patients [37]. Mitochondrial function 
impairments affect also the skeletal muscle of 
ALS patients [38]. In vitro studies showed mito-
chondrial morphological and functional altera-
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tions in NSC-34 cells expressing mutant SOD1 
[39]. Experiments performed in mSOD1 mice 
also revealed early mitochondrial morphological 
abnormalities prior to onset of symptoms [40].

Neurons are polarized cells that require effi-
cient mechanisms to direct axonal vs. dendritic 
transport. Since neurons transmit signals along 
long distances, proteins and organelles have to 
travel more than in other cell types (axons of 
human motoneurons can reach 1 m long). Even 
within the axon, cargos must be delivered to spe-
cific compartments, thereby increasing the 
importance of axonal transport in motoneurons. 
Several works demonstrated the accumulation of 
neurofilaments in motoneuron cell bodies in 
human patients, suggesting that axonal transport 
is impaired in these cells [41–44]. Additionally, 
abnormalities of organelle axonal trafficking 
occur in ALS patients [45]. Axonal transport has 
been widely studied in animal models mimicking 
ALS. It has been demonstrated that transgenic 
mice overexpressing SOD1 transgene develop 
neuronal cytoskeletal pathology resembling 
human ALS [46]. Controversially, recent evi-
dence suggests that axonal transport deficits may 
evolve independently from motoneuron degener-
ation in mutant SOD1 mice [47]. Marinkovic 
et al. [47] demonstrated that mutant SOD1 axons 
are able to survive despite long-lasting transport 
deficits since these are present soon after birth, 
months before the first signs of muscle denerva-
tion [48–50].

Protein aggregates or inclusions have long 
been recognized as a pathological hallmark of 
several neurodegenerative disorders, including 
ALS, in which protein aggregates are common in 
spinal motoneurons [1]. Ubiquitin-positive inclu-
sions are characteristic of ALS histopathology. 
Nevertheless, it remains unclear whether inclu-
sion formation is responsible for cellular toxicity 
and ALS pathogenesis, if aggregates may be 
innocuous neurodegeneration-derived products, 
or if they may represent a protective reaction of 
the cell to reduce intracellular concentrations of 
toxic proteins. Several proteins are found form-
ing the intracellular inclusions in ALS, including 
neurofilaments [42–44], SOD1 [51–53], TDP-43 

[9, 54], FUS [55, 56], ubiquilin 2 [57] and 
C9OFF72 [12, 13].

Physiologically, accumulation of misfolded 
proteins elicits the endoplasmic reticulum (ER) 
stress response. ER-resident chaperones sense 
the accumulation of misfolded proteins and acti-
vate the Unfolded-Protein Response (UPR), 
which leads to the suppression of general transla-
tion and ER-associated protein degradation. 
However, prolonged UPR activation may trigger 
apoptotic signaling [58]. The addition of CSF 
from ALS patients induces ER stress on cultured 
NSC-34 cells and primary rat spinal motoneuron 
cells [59]. Considerable evidence implicates ER 
stress as an important feature of motoneuron 
degeneration in ALS. UPR markers are up- 
regulated in sALS patients [60] as well as in 
mutant SOD1 rodent models [61, 62]. 
Interestingly, a longitudinal gene expression pro-
file in mutant SOD1 mice revealed early up- 
regulation of several UPR markers prior to 
muscle denervation in vulnerable motoneurons 
(innervating fast fatigable muscles, e.g. extensor 
digitorum longus) compared to resistant moto-
neurons (innervating slow muscle fibers, e.g. 
soleus). Similar changes eventually occurred in 
disease-resistant motoneurons but 25–30 days 
later [62], suggesting a role for ER stress in deter-
mining the susceptibility of motoneurons in ALS.

Neighboring glial cells also play a crucial role 
in the motoneuron degeneration occurring in 
ALS [1, 63, 64]. Clement et al. [65] generated 
chimeric mice expressing mSOD1 in specific cell 
lines and demonstrated that normal motoneurons 
developed ALS signs when surrounded by mutant 
SOD1-expressing glia. To further explore the 
contribution of microglia in ALS, double trans-
genic mice were generated expressing the Cre–
Lox recombination system to selectively suppress 
the mutant SOD1 expression in motoneurons or 
microglia. Mutant SOD1 deletion in motoneu-
rons lead to delayed disease onset but no modifi-
cations of disease progression once initiated. On 
the other hand, mutant SOD1 suppression in 
microglia and macrophages did not alter disease 
onset but significantly prolonged mice survival. 
These findings suggest that disease onset and 
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progression might be related to different mecha-
nisms [66, 67]. It is also accepted that astrocytes 
play a role in ALS. Astrocytes derived from post-
mortem tissue of familial and sporadic ALS 
patients are toxic to motoneurons but not to 
GABAergic neurons. Blocking mSOD1 expres-
sion produced significant neuroprotective effects 
on ALS-derived astrocytes [68].

Neuroinflammation is a common pathological 
event of neurodegenerative disorders [69] and its 
modulation has been proposed as an important 
potential therapeutic target [70]. In ALS, moto-
neuron damage leads to the activation of microg-
lia, astrocytes and the complement system, 
further contributing to neurodegeneration [71, 
72]. Spinal cord tissue and CSF from sporadic 
and familial ALS cases present increased microg-
lial activation and T cells infiltration [73, 74] as 
well as higher concentration of some proinflam-
matory mediators, including monocyte chemoat-
tractant protein 1 (MCP-1) and IL-8 [75]. Gene 
array analysis of mutant SOD1 mice revealed an 
enhanced expression of inflammatory-related 
molecules especially at late stages of the disease 
[76, 77].

RNA processing abnormalities were first 
related to MND by the description of Spinal 
Motor Neuron protein 1 (SMN1) mutations as a 
cause of SMA [78]. The SMN proteins play a 
role in the assembly of small ribonucleoproteins, 
which participate in pre-mRNA splicing [79]. 
Later identification of TDP-43, a RNA-DNA 
binding protein, as a major component of the 
ubiquitinated protein inclusions in ALS patients 
[9] focused the attention to RNA processing 
alteration as an important pathophysiological 
mechanism of the disease. TDP-43 is predomi-
nantly localized in the nucleus where it is impli-
cated in several events for RNA processing, 
including transcriptional regulation, alternative 
splicing and microRNA processing. ALS-related 
TDP-43 positive cytoplasmic inclusions are pres-
ent in neuronal and non-neuronal cells, excluding 
those based on mSOD1 and FUS mutations [54, 
80]. Recent studies have evaluated the RNA- 
binding targets of TDP-43 [81–83] and revealed 
that TDP-43 binds to several RNA target mole-
cules (about 30 % of the mouse transcriptome). 

Such high level of intronic binding suggests a 
nuclear function for TDP-43. In fact, blocking 
tardbp43 expression using antisense oligonucle-
otides in adult mouse striatum altered the expres-
sion levels of 601 mRNA and changed the 
splicing pattern of 965 mRNA transcripts, includ-
ing some relevant to neurodegeneration, such as 
progranulin, choline acetyltransferase or FUS 
[81]. TDP-43 alteration might potentially alter 
the transcriptional process of crucial genes for 
motoneuron homeostasis. Additional evidence 
about dysregulated RNA processing as motoneu-
ron injury contributor in ALS arises from the 
detection of RNA oxidation biomarkers in human 
ALS and mSOD1 mice [84]. Since the discovery 
of C9ORF72 hexanucleotide (G4C2) repeat 
expansions as a frequent cause of ALS and FTD, 
efforts have been conducted for investigating 
linked pathophysiological abnormalities. Repeat 
containing RNA foci in these patients suggested 
a deleterious gain of function. Repeats are able to 
form G-quadruplexes, which may be able to 
facilitate the binding and sequestration of differ-
ent RNA binding proteins to the repeat [85]. 
Subsequently, these proteins are not able to exe-
cute their normal functions. Another mechanism 
is the possible occurrence of repeat-associated 
non-ATG (RAN) translation along the 
 hairpin- forming repeat. This results in aggregates 
containing different dipeptide repeat proteins 
in patients with the C9ORF72 repeat expansion 
[15, 86]. Recently, two independent studies used 
engineered drosophila to express high repeat 
expansions of G4C2 [87, 88], and established a 
strong connection between defective nuclear traf-
ficking and neurodegeneration in these flies.

16.3  Structure and Functions 
of Sigma-1 Receptor

The Sigma-1R is a transmembrane protein found 
in the ER [89, 90], which is highly expressed in 
motoneurons and other cells in the spinal cord 
[89, 91–94]. Although it was initially classified 
as an opioid receptor, further experiments showed 
that its properties were distinct from known opi-
oid receptors [95]. A 223 amino acids Sigma-1R 
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protein has been cloned from several mammals, 
and contains 90 % identical and 95 % similar 
amino acid sequences across species, with both 
the N- and C-termini on the same side of the 
membrane facing the cytoplasm [90, 96], and can 
be present in monomeric or oligomeric forms 
even in the absence of ligand [97, 98]. The 
N-terminus, of approximately 110 amino acids, 
determines the diversity of intracellular interac-
tions of Sigma-1R with a variety of proteins [99–
102]. Many synthetic compounds have been 
characterized as selective modulators of the 
Sigma-1R [103], and several endogenous mole-
cules have been proposed to be Sigma-1R ligands 
as well, including lipid steroids (DHEA, proges-
terone and pregnenolone sulfate) [104], lipid 
sphingosine derivatives [105] and N,N-dimethyl 
tryptamine (DMT) [106]. It is plausible that these 
compounds regulate Sigma-1R function in differ-
ent tissues according to their availability.

This receptor has the ability to translocate 
from the ER to the plasma membrane and 
mitochondria- associated membranes [90, 107, 
108]. In the nervous system, Sigma-1R mediates 
regulation of a wide range of processes, such as 
neuritogenesis [109], modulation of K+ channels 
[110] and N-methyl-D-aspartate (NMDA) recep-
tors activity [111], ER-mitochondria communi-
cation [90], modulation of G-protein couples 
receptors (GPCRs), Ca2+ homeostasis [90], and 
microglial activity [112]). The Sigma-1R appears 
as a pluri-functional target involved in a broad 
range of cellular processes and, thereby, its mod-
ulation might provide better translational out-
comes than drugs acting selectively on one of 
these multiple aspects.

Langa et al. [113] developed homozygous 
Sigma-1R knock out mice, which showed to be 
fully fertile and with no obvious behavioral alter-
ations. However, further careful analyses revealed 
alterations of hippocampal neurogenesis [114, 
115], ethanol consumption [116], retinal function 
[117, 118], anxiety, memory impairments [119] 
and, most relevant, motor dysfunction and loss of 
neuromuscular junctions [120, 121].

16.4  Sigma-1 Receptor 
and Motoneurons

To fully understand the mechanisms underlying 
Sigma-1R role in motoneurons, it is important to 
know its subcellular localization in the cells. It 
has been shown that Sigma-1R is enriched in the 
subsurface cisternae in postsynaptic C-terminals 
of motoneurons [120]. Synaptic innervation onto 
motoneurons is complex, with synapses involv-
ing all the major neurotransmitters, that have 
been classified as S, M, T F, P and C-boutons/
terminals (referring to the pre- or postsynaptic 
structure, respectively) [122]. C-terminals are 
large cholinergic postsynaptic sites with a unique 
ultrastructure seen at the electron microscopy 
level. They are referred to as “C” because of the 
subsurface cisternae of smooth endoplasmic 
reticulum adjacent to the plasma membrane, and 
are large synapses found only on soma and proxi-
mal dendrites of motoneurons [123]. Presynaptic 
C-boutons originate from a group of cholinergic 
interneurons located near the spinal cord central 
canal, which have been shown to increase moto-
neuron excitability and, thus, potentiate muscle 
contraction [124]. Interestingly, Sigma-1R is spe-
cially enriched in the subsurface cisternae under-
lying the postsynaptic membrane of C-boutons in 
motoneurons. Diverse alterations of C-boutons 
have been reported in animal models of ALS and 
spinal cord injury [125–128]. The postsynaptic 
membrane of C-boutons is rich in numerous pro-
teins, including m2-type muscarinic receptors 
(m2AChR) [129–131], voltage-gated Kv2.1 
[132], Kv1.4, Kv1.5 [110] and Ca2+-activated K+ 
(SK) channels [133], connexin 32 [134], VAMP-2 
[129], Sigma-1R [135] and neuregulin-1 [136]; 
whereas the presynaptic element contains, at 
least, neuregulin-1 receptors ErbB2 and ErbB4 
[136]. In contrast, the role of subsurface cisternae 
in postsynaptic densities where Sigma-1 recep-
tors are located is still unknown, but believed to 
couple the electrical activity of the plasma mem-
brane with intracellular signaling involving the 
ER [137, 138].
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Cholinergic innervation onto motoneurons 
plays a role in modulating the excitability of the 
cells during locomotion [124, 139]. Interestingly, 
Sigma-1R, m2AChR and SK channels have spe-
cial relevance regarding motoneurons excitabil-
ity. Indeed, it has been proposed that differential 
expression of SK2.2 and SK2.3 channels in neu-
rons is a marker for α-motoneurons innervating 
fast or slow muscle fibers modifying the hyper-
polarization properties of the plasma membrane 
[133]. Miles et al. [139] described how choliner-
gic innervation on motoneurons increases 
excitability during fictive locomotion by acting 
on m2AChR, whereas motoneurons lacking 
Sigma-1R have increased excitability [140]. 
Sigma-1R has been also shown to interact with 
diverse potassium channels, thereby shaping neu-
ronal excitability [99, 110, 141, 142] (Fig. 16.1).

Sigma-1R co-localizes with neuregulin-1 
expressed at the motoneuron C-boutons postsyn-
aptic membrane [136]. Neuregulin-1 is a neuro-
trophic factor essential for the normal 
development and function of the nervous system 
[143]. Neuregulin-1 ErbB receptors are also 
located in the presynaptic terminals of C-boutons. 
Neuregulin-1/ErbB system alterations have been 
related to ALS, with reduced neuregulin-1 type 
III expression in the spinal cord of ALS patients 
and mouse models [144]. Loss-of-function muta-
tions on the gene encoding for ErbB4 receptor 
produce late-onset ALS in patients [145]. 
Although no link between Sigma-1R and neureg-
ulin- 1 has been established yet, it is likely that 
Sigma-1R serves as a chaperone for neuregulin-1 
at subsurface cisternae of motoneurons, as it has 
been shown to participate in the post-translational 
processing of other neurotrophic factors [146] 
(Fig. 16.1).

Little is known about endogenous ligands for 
Sigma-1R. It has been shown that N,N- 
dimethyltryptamine (DMT) is an endogenous 
agonist for the Sigma-1R [147] and that 
Indole(ethyl)amine N-methyltransferase 
(INMT), the enzyme that converts the amino acid 
tryptophan into DMT, co-localizes with 
Sigma-1R at C-terminals of motoneurons [135]. 
Endogenous steroids have been shown to act as 

Sigma-1R agonists, including dehydroepiandros-
terone (DHEA) sulfate and pregnenolone sulfate 
[148]. Nevertheless, further studies are needed to 
elucidate the mechanisms by which Sigma-1R 
function is endogenously modulated and how 
this affects motoneuron physiology (Fig. 16.1).

16.5  Evidences of Sigma-1 
Receptor Contribution 
in Motoneuron Disease

There is a body of evidence suggesting that 
Sigma-1R alterations lead to motoneuron dys-
function and degeneration [121, 140]. Mutations 
in a highly conserved region of the transmem-
brane domain of the Sigma-1R were described in 
ALS patients. The mutation produces an aberrant 
subcellular distribution of the receptor in NSC34 
cells, and cells expressing the mutant protein are 
more prone to undergo apoptosis induced by ER 
stress [149]. Sigma-1R was found to abnormally 
redistribute in alpha-motoneurons of ALS 
patients and form ubiquitinated aggregates that 
lead to UPR. Additionally, Sigma-1R levels were 
found reduced in samples of ALS patients [150]. 
Other mutations in the 3′-untranslated region 
(UTR) of the Sigma-1R gene were described in 
affected individuals with the FTD-ALS pedigree 
[151].

Interestingly, Sigma-1R KO mice display 
locomotor deficits associated with muscle weak-
ness, axonal degeneration and motoneuron loss 
[121, 140]. Altered Sigma-1R function in moto-
neurons has been also shown to disrupt 
ER-mitochondria contacts and affect intracellular 
calcium signaling, leading to activation of ER 
stress and to defects in mitochondrial dynamics 
and transport [121]. Crossing Sigma-1R KO 
mice with mutant SOD1 mice (SOD1G93A) exac-
erbated the motor phenotype and accelerated the 
end stage of the disease [140]. Conversely, stimu-
lating Sigma-1R function using the agonists 
PRE-084 or SA4503 has been shown protective 
in both in vitro and in vivo models of mutant 
SOD1 ALS [94], as well as in non-SOD1 linked 
MND [152].
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A note of caution must be taken since there is 
controversy about the expression profile of 
Sigma-1R in mutant SOD1 ALS models. 
Analysis of Sigma-1R in protein extracts from 
lumbar anterior spinal cord showed no changes in 
the amount of Sigma-1R expressed [94], whereas 
immunohistochemical analysis revealed 
decreased labeling of Sigma-1R at the C-boutons 
of SOD1 lumbar motoneurons at early pre- 
symptomatic stages of the disease [127].

16.6  Potential Mechanisms 
on Sigma-1  Receptor- 
Mediated Therapeutic 
Actions

The Sigma-1R has been shown to be a target for 
the treatment of a variety of chronic neurological 
diseases, including pain [153–155], depression 
[148], Alzheimer’s [156–158], Parkinson’s [159], 
and Huntington [160] diseases, schizophrenia 

Fig. 16.1 Sigma-1 receptor localization at the C-boutons 
and its pleiotropic role in the motoneuron. Sigma-1 recep-
tor is located at the endoplasmic reticulum subsynaptic 
cisterna of the cholinergic synapses, from where it may 
interact both with elements of the plasma membrane (e.g. 
ion channels) or the cytoplasm (e.g. mitochondria). 
Sigma-1 receptor modulates the activity of several iono-
tropic and metabotropic receptors, including M2AchR, 
NMDA, dopaminergic D1 and opioid receptors. Further 

studies are needed to elucidate how Sigma-1 receptor 
interacts with ion channels (Kv or SK) and other elements 
present at the C-boutons, such as Connexin32, VAMP-2 
and Neuregulin1. The Sigma-1 receptor is also able to 
interact with BiP, a chaperone of the endoplasmic reticu-
lum, and to participate in the interactions between the 
endoplasmic reticulum and the mitochondria. For further 
details, see the Sect. 16.4 text
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[161], stroke [162, 163], ischemia [164], 
degeneration of retinal neurons [117, 118], and 
selective cholinergic lesions [156]. The adminis-
tration of Sigma-1R ligands has promoted neuro-
protection after several types of insults, including 
excitotoxic damage [165], hypoxia-mediated 
neurotoxicity [166], oxidative stress-induced cell 
death [167] and glucose deprivation [164].

Regarding motoneurons, the selective 
Sigma-1R agonist PRE-084 has been reported to 
exert positive effects on motoneuron death. PRE- 
084 administration promotes neuroprotection 
and neurite elongation through activation of pro-
tein kinase C (PKC) on motoneurons in an in 
vitro organotypic model of excitotoxic lesion 
[168]. Moreover, administration of PRE-084 sig-
nificantly prevented the marked death of spinal 
motoneurons after spinal root avulsion in adult 
rats, an effect that was associated with attenuat-
ing ER stress within motoneurons and promoting 
the expression of GDNF by surrounding glial 
cells [93]. Remarkably, treatment of SOD1 mice 
with Sigma-1R agonists resulted in significantly 
improved motoneuron function and preservation, 
and increased animal survival [94, 152, 169, 
170]. Several mechanisms have been hypothe-
sized to underlie motoneuron protection in ALS 
models (Fig. 16.2). Sigma-1R agonists adminis-

tration resulted in increased PKC-specific phos-
phorylation of NR1 subunits present in spinal 
motoneurons, likely reducing the calcium perme-
ability of NMDA receptors and its influx into 
motoneurons, thereby attenuating excitotoxicity 
[94, 111]. Sigma-1R agonists, such as SKF10097 
and PRE-084, have been reported to also sup-
press NMDA currents in rat retinal ganglion cells 
and cortical neurons through a PKC-dependent 
mechanism, leading to reduction of calcium 
influx into the cytoplasm [111, 166]. Sigma-1R 
agonists administration also reduced microglial 
and astroglial reactivity in the mutant SOD1 and 
in the wobbler ALS mouse models, and enhanced 
glial expression of neurotrophic factors, such as 
BDNF [94, 152]. In this sense, Sigma-1R activa-
tion has been linked to modulation of multiple 
aspects of microglial activation in vitro [171, 
172], as well as to increase the glial expression of 
neurotrophic factors after spinal root avulsion [93].

Overall, two main interconnected mechanisms 
are likely to underlie the direct effect of Sigma-1R 
manipulation on motoneurons: the modulation of 
the neuronal excitability and the calcium homeo-
stasis. The Sigma-1R is located in C-terminals in 
close proximity to Kv2.1 and SK channels, which 
appear as two suitable candidates for the 
Sigma-1R modulation of postsynaptic excitabil-

Fig. 16.2 Schematic representation of the effect of ago-
nizing the Sigma-1 receptor in ALS mouse models. (a) 
Wild type spinal cord motoneurons project their axons 
from the anterior horn of the spinal cord through the ante-
rior root to reach the skeletal muscles. (b) ALS spinal 
cord suffers a dramatic death of motoneurons, accompa-
nied by loss of neuromuscular connections and ventral 
root motor axons. In addition, non-neuronal cells prolifer-

ate and become activated across the spinal cord, contribut-
ing to the disease progression. (c) Sigma-1 receptor 
agonists are able to prevent the loss of neuromuscular 
connections and motor axons, as well as the death of 
motoneuron cell bodies in the spinal cord. Furthermore, 
Sigma-1R agonists reduce microglial reactivity, despite 
no changes are observed in astrocytosis
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ity of motoneurons. A body of evidence indicates 
that inhibition of m2AChR and/or activation of 
Kv2.1 and/or SK channels in C-terminals con-
tribute toward reduction of motoneuron excitabil-
ity [124, 133, 139]. Although the mechanisms by 
which Sigma-1R activates Kv2.1 and/or SK 
channels and thus decreases motoneuron excit-
ability are still unclear, it has been shown within 
other systems that Sigma-1R can modulate activ-
ities of SK channels and a variety of Kv type 
channels [99, 142, 173]. Sigma-1R can form 
complexes with a variety of G-protein coupled 
receptors (GPCRs) that can subsequently alter 
ionotropic receptors including opioid and dopa-
minergic D1 receptors [174, 175] (Fig. 16.1).

As previously mentioned, Sigma-1R is located 
in the subsurface cisternae of C-terminals under-
lying the plasma membrane of motoneurons [89, 
120]. Such physical proximity between the 
plasma membrane and the subsynaptic cisternae 
in C- terminals (less than 10 nM) makes direct 
molecular interaction possible for proteins 
located in adjacent membranes. Indeed, the 
Sigma-1R is characterized by a unique mode of 
action in regulating both the calcium entry at the 
plasma membrane level (e.g. via potassium chan-
nels, voltage-sensitive Ca2+ channels, etc.) and 
calcium mobilization from the endoplasmic 
stores (e.g. via IP3 receptors). The ER supplies 
calcium directly to mitochondria via inositol 
1,4,5-triphosphate receptors (IP3 receptors) at 
close contacts between the two organelles 
referred to as mitochondrial-associated ER mem-
branes (MAM). Sigma-1R is a calcium-sensitive 
and ligand operated chaperone at MAM, nor-
mally forming a complex with another chaper-
one, binding immunoglobulin protein (BiP), 
which normally prevents the Sigma-1R from 
translocation. Upon ER calcium depletion or via 
ligand stimulation, Sigma-1R dissociates from 
BiP, leading to prolonged calcium signaling into 
mitochondria via IP3 receptors. Sigma-1R trans-
location has been shown to occur under chronic 
ER stress conditions. Indeed, increasing 
Sigma-1R in cells counteracts ER stress response, 
whereas decreasing its expression enhances 
apoptosis [90]. Subsequently, activity of both 
Kv2.1 and SK channels has been shown to be 

modulated by calcium, either directly or indi-
rectly through Ca/calmodulin/calcineurin depen-
dent mechanisms [176, 177] (Fig. 16.1).

In addition, Sigma-1R also contributes to 
maintenance of protein quality by regulating pro-
tein degradation and stability. Indeed, abnormal 
Sigma-1R accumulation is found in neuronal 
nuclear inclusions in neurodegenerative diseases 
[151, 178]. Sigma-1R participation in the degra-
dation of misfolded protein via the ER machinery 
linked to the ubiquitin-mediated UPR suggests 
that Sigma-1R may function to counteract this 
pathological mechanism and promote survival in 
affected motoneurons. Ligand activation may 
promote and stabilize Sigma-1R oligomers, thus 
conferring improved chaperone functionality to 
the receptor [90].

Finally, modulation of Sigma-1R may also 
contribute to neuroprotection by reducing oxida-
tive stress. It was shown that depletion of 
Sigma-1R leads to increased oxidative stress and 
abnormal mitochondrial membrane potential, 
thus triggering cytochrome C release and ele-
vated caspase-3 cleavages [179].

16.7  Bases of Motoneuron 
Vulnerability

Understanding the bases of motoneuron vulnera-
bility is crucial for developing novel strategies to 
cope with MND. In this section we focus on 
those aspects of motoneuron vulnerability that 
are related to mechanisms in which Sigma-1R 
plays a relevant role: the alteration of excitability 
properties of motoneurons and calcium homeo-
stasis. As previously mentioned, ALS is a degen-
erative disease in which lower and upper 
motoneurons are selectively vulnerable, but 
interestingly some groups of motoneurons are 
relatively resistant to the disease process. It has 
been hypothesized that the differential suscepti-
bility of motoneuron populations might be related 
to their excitability properties. Indeed, a consis-
tent clinical feature of ALS is the preservation of 
eye movements and the external sphincters func-
tion. Pathological studies confirmed that there is 
relative sparing of the cranial motor nuclei of the 
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oculomotor, trochlear and abducens nerves, and 
of the Onuf’s nucleus in the sacral spinal cord, 
which innervates the external sphincter of the 
pelvic floor [180]. Although neuronal numbers 
are relatively well-preserved in these resistant 
motor nuclei, some pathological changes resem-
bling those observed in ventral spinal cord moto-
neurons are present, but to a lesser degree [181, 
182]. Oculomotor nuclei are also relatively 
spared in mutant SOD1 mouse models [183]. The 
pattern of innervation of extraocular muscles is 
different from other skeletal muscles. 
Neuromuscular junctions are distributed through-
out the fiber length at a high density [184], and 
show some structural peculiarities [185]. About 
20 % of the extraocular muscles fibers are inner-
vated by multiple neuromuscular junctions [186]. 
Oculomotor motor units are amongst the smallest 
seen in any skeletal muscle [187], with high fir-
ing discharge rates. Even in the primary position 
of gaze, 70 % oculomotor neurons are active, 
commonly discharging at 100 Hz [188]. In con-
trast, there is strong experimental evidence of a 
special susceptibility of large, phasic motoneu-
rons in the degenerative process of ALS. 
Electromyographic analysis performed in ALS 
patients revealed that the larger and stronger 
motor units are clearly more affected by the dis-
ease [189], and histopathological studies have 
described a preferential degeneration of large 
motoneurons in ALS [190]. In mutant SOD1 
models, selective vulnerability of large fast- 
fatigable hindlimb motor units before the onset of 
clinical symptoms was reported, followed by 
affectation of fast fatigue-resistant motor units at 
symptoms onset, but with sparing of slow motor 
units [191]. This is consistent with the rapid 
denervation of extensor digitorum longus muscle 
(rich in fast fatigable motor units) and the resis-
tance of soleus muscle (with mainly slow motor 
units) described along disease progression in 
SOD1G93A mice [192, 193].

Understanding the differences in properties of 
vulnerable vs. resistant motoneurons may pro-
vide insights into the mechanisms of neuronal 
degeneration, and identify targets for therapeutic 
manipulation. In an interesting study Brockington 
et al. [194] performed a microarray analysis to 

compare the gene expression profile of isolated 
motoneurons from the ALS-resistant oculomotor 
nuclei and ALS-vulnerable spinal cord motoneu-
rons from post-mortem ALS patients tissue. They 
found nearly 2000 genes differentially expressed 
by the two motoneurons subtypes, participating 
in synaptic transmission, ubiquitin-dependent 
proteolysis, mitochondrial function, transcrip-
tional regulation, immune system functions and 
the extracellular matrix. They further focused on 
glutamate and GABA neurotransmission. The 
AMPA glutamate receptor consists of four sub-
units, GluR1–GluR4, and the presence of the 
GluR2 subunit determines the calcium permea-
bility of the receptor. In the absence of GluR2, 
the AMPA receptor–ion channel complex 
becomes permeable to calcium. Gene array 
results showed up-regulation of the GluR2 sub-
unit in resistant oculomotor motoneurons relative 
to the vulnerable lumbar motoneurons, thus 
reducing calcium influx into the cells. On the 
other hand, GABA is the most widely distributed 
inhibitory neurotransmitter in the CNS and acts 
through the interaction with GABA-A (ligand- 
gated chloride channel) and GABA-B (metabo-
tropic) receptors. In oculomotor motoneurons, 
there is up-regulation of six GABA-A receptor 
subunits and of GABA-B receptor subunit 2 rela-
tive to spinal motoneurons, leading to an 
increased inhibition. Other studies performed in 
mSOD1 models confirmed these findings, reveal-
ing an excitatory/inhibitory imbalance affecting 
synaptic inputs into spinal motoneurons [23]. To 
test the hypothesis that inhibitory interneuron 
innervation of motoneurons was abnormal in 
ALS, Chang and Martin [195, 196] measured 
GABAergic, glycinergic and cholinergic immu-
noreactive terminals on spinal motoneurons of 
SOD1G93A mice. They found reduction of glycin-
ergic innervation from pre-symptomatic age (8 
weeks), before loss of choline acetyltransferase- 
positive boutons, whereas no significant differ-
ences in GABAergic boutons density were found 
along age.

Interestingly, the increased excitation and 
reduced inhibition onto motoneurons has been 
hypothesized as a protective compensatory reac-
tion rather a detrimental phenomenon [197]. As 
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above mentioned, oculomotor nucleus motoneu-
rons are strongly resistant to degeneration, but 
have particular physiological characteristics, 
including high discharge rates [188]. In turn, vul-
nerable fast-fatigable spinal motoneurons are 
those with larger cell bodies and more phasic 
activity pattern. Surprisingly, early administra-
tion of an AMPA receptor agonist protected spi-
nal motoneurons whereas an AMPA receptor 
antagonist enhanced motoneurons pathology in 
SOD1G93A mice [197]. Furthermore, the authors 
proposed that reduction of gephyrin (an inhibi-
tory synapse marker), increase of serotonin 
labeled area in the ventral spinal cord and 
increased C-boutons size and number are protec-
tive compensatory reactions that promote moto-
neuron survival. In agreement with these findings 
an abnormal response of the potassium-chloride 
co-transporter 2 (KCC2) in mutant SOD1 moto-
neurons in response to axonal damage and deaf-
ferentation [198] was recently described. KCC2 
is a transmembrane chloride extruder that main-
tains low intracellular chloride levels, thereby 
allowing GABA and glycine to exert inhibitory 
transmission during adulthood [199–201]. Under 
normal conditions, KCC2 is down-regulated after 
motoneuron insults thus promoting increased 
excitability needed for axonal regeneration [202, 
203]. In contrast, mutant SOD1 motoneurons 
were unable to down-regulate their KCC2 and 
thus did not become hyperexcitable even when 
already disconnected from their muscles [198]. 
Further studies revealed that functional overload 
is able to rescue motor units in mutant SOD1G93A 
mice [204], supporting the hypothesis of hypoex-
citability as one potential factor underlying selec-
tive motoneuron damage.

In vitro studies of motoneuron excitability also 
show discrepancies regarding whether hypo- or 
hyperexcitability is a susceptibility factor for 
motoneurons in ALS. Changes in excitability 
have been reported to occur very early in mutant 
SOD1 mice [205]. Motoneurons from mutant 
SOD1 embryos recorded in culture show signs of 
hyperexcitability [206, 207], as well as motoneu-
rons in in vitro preparation of mutant SOD1 
embryonic spinal cords [208] or from the hypo-

glossal nucleus in the brainstem [209]. Contrarily, 
Pambo–Pambo et al. [210] did not observe any 
change in spinal motoneurons excitability proper-
ties, whereas Bories et al. [211] and Leroy et al. 
[212] reported spinal motoneurons to be hypoex-
citable. A note of caution must be taken within 
this context since most of these studies were per-
formed at developmental stages, when the matu-
ration of the spinal circuitry is not yet completed.

Motoneurons express low levels of cytosol 
calcium-binding proteins compared to other neu-
ronal populations, with motoneuron populations 
that are typically lost earlier during the disease 
course showing the lowest expression levels, sug-
gesting that reduced cytosol calcium buffering 
contributes to the selective vulnerability of moto-
neurons [213, 214]. In fact, ALS-vulnerable spi-
nal and brainstem motoneurons display low 
endogenous Ca2+ buffering capacity, 5–6 times 
lower than that of ALS-resistant motoneurons 
(i.e. oculomotor motoneurons), making them 
more susceptible to excitotoxic insults [215]. 
However, this view may not agree with the above 
mentioned oculomotor motor units properties 
since, although this motoneuron population is 
highly active, it is not vulnerable to ALS.

Interestingly, novel evidence has recently 
pointed out the potential contribution of 
C-boutons as participating in ALS pathophysiol-
ogy [127, 140]. As described in Sect. 16.4, the 
postsynaptic membrane of C-boutons is rich in 
numerous proteins, including Sigma-1R [135], 
M2 muscarinic receptors [129–131], voltage- 
gated Kv2.1 [132] and Ca2+−activated K (SK) 
channels [133], connexin 32 [134], VAMP-2 
[129], and neuregulin-1 [136]; whereas the pre-
synaptic element contains, at least, neuregulin-1 
receptors ErbB2 and ErbB4 [136]. Several altera-
tions that may be related to C-bouton have been 
reported in ALS. It has been shown that  mutations 
in Sigma-1R cause juvenile ALS [149, 150]. In 
agreement with this observation, knocking down 
Sigma-1R in mutant SOD1 mice leads to reduced 
lifespan [140], whereas treatment with a 
Sigma-1R agonist is neuroprotective [94]. Other 
morphological alterations appear to be present in 
ALS-linked mutations of VAMP- associated pro-

R. Mancuso and X. Navarro



247

tein B, which is abnormally aggregated in 
C-boutons altering their function (VAPB, ALS8) 
[216]. The neuregulin1/ErbB system is also 
involved in ALS pathogenesis since ErbB4 muta-
tions leading to a reduced autophosphorylation of 
ErbB4 receptors are associated with a hereditary 
late onset form of ALS [145], and neuregulin1/
ErbB signaling alterations have been also 
observed in SOD1G93A mice [144].

16.8  Conclusions

Overall, mutations of Sigma1-R have been 
reported in ALS in human patients, and sigma-
 1R modulation has proven to protect motoneu-
rons in vitro and in in vivo models of traumatic 
injury to motoneurons and neurodegeneration. 
Although the exact molecular mechanisms 
underlying such effect have not been elucidated 
yet, Sigma-1R is a pleiotropic target, involved in 
several functions, many of them related to the 
pathophysiology of MND, including modulation 
of neuronal excitability, calcium homeostasis, 
and ER and mitochondrial activity. Thus, the 
multi-functional nature of the Sigma-1R provides 
an attractive target for treating ALS. Further 
human trials will be needed to assess whether 
pharmacologically targeting Sigma-1R is a suit-
able tool to protect motoneurons in MND.
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