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on Neurogenesis and Depressive 
Behaviors in Mice
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Abstract

Sigma-1 receptor (Sig-1R) is molecular chaperone regulating calcium 
efflux from the neuronal endoplasmic reticulum to mitochondria. Recent 
studies show that Sig-1R stimulation antagonizes depressive-like behav-
iors in animal models, but molecular mechanisms underlying this effect 
remain unclear. Here, we focus on the effects of Sig-1R ligands on hip-
pocampal neurogenesis and depressive-like behaviors. Sig-1R stimulation 
also enhances CaMKII/CaMKIV and protein kinase B (Akt) activities in 
hippocampus. Therefore, we discuss the fundamental roles of Sig-1R, 
CaMKII/CaMKIV and protein kinase B (Akt) signaling in amelioration of 
depressive-like behaviors following Sig-1R stimulation.
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Abbreviations

Akt protein kinase B
BDNF brain-derived neurotrophic factor
BrdU bromodeoxyuridine

CaMKII calcium/calmodulin-dependent pro-
tein kinase II

CaMKIV calcium/calmodulin- dependent pro-
tein kinase IV

CREB cAMP-responsive element binding 
protein

DG dentate gyrus
DHEA dehydroepiandrosterone
ER/SR endoplasmic/sacroplasmic reticulum
ERK extracellular signal-regulated kinase
LTP long-term potentiation
NMDAR N-methyl-D-aspartate receptor
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SERCA s a r c o p l a s m i c / e n d o p l a s m i c 
Ca2+-ATPase

Sig-1R sigma-1 receptor
SSRIs selective serotonin reuptake 

inhibitors

14.1  Introduction

Sig-1R has been cloned in humans and other spe-
cies [1–4], and in brain, Sig-1R protein is widely 
distributed in neurons and glial cells such as 
astrocytes, and is particularly enriched in pre-
frontal cortex, hippocampus and striatum [5, 6]. 
Sig-1R protein is primarily localized in mem-
branes of the endoplasmic/sarcoplasmic reticu-
lum (ER/SR), where it regulates Ca2+ signaling 
through the inositol 1,4,5-triphosphate receptor 
in close association with mitochondria [7, 8]. 
Sig-1R stimulation increases release of the neu-
rotransmitters dopamine and glutamate [9, 10]. 
However, mechanisms underlying these activities 
remain unclear.

Interestingly, restricted exposure of the hippo-
campus to X-irradiation blocks DG (dentate 
gyrus) neurogenesis and compromises the ability 
of anti-depressants to improve depressive behav-
iors [11]. Consistent with this observation, in 
post-mortem analysis of tissues from patients 
with major depressive disorders, chronic treat-
ment with tricyclic anti-depressants (TCAs) such 
as imipramine increases the number of neural 
progenitor cells in the DG [12]. Treatment with 
selective serotonin reuptake inhibitors (SSRIs) 
such as fluoxetine or fluvoxamine also improve 
impaired adult hippocampal neurogenesis in the 
rodent DG [11, 13]. The observations that these 
SSRIs and imipramine bind to Sig-1R [14] and 
that Sig-1R null mice exhibit depressive-like 
behaviors [15] suggest that Sig-1R stimulation 
mediates neurogenesis and improvement of 
depression following treatment with anti- 
depressants. Indeed, impaired depressive-like 
behaviors in olfactory bulbectomized (OVX) 
mice improve following chronic oral administra-
tion of dehydroepiandrosterone (DHEA), an 
endogenous Sig-1R ligand [16, 17].

Calcium/calmodulin-dependent protein kinase 
IV (CaMKIV) is a serine-threonine protein kinase 
activated by nuclear Ca2+ elevation that catalyzes 
phosphorylation of the cyclic AMP- responsive 
element binding protein (CREB) at residue Ser-
133 [18, 19]. In rodents, this modification regu-
lates expression of several genes, including BDNF, 
that function in synaptic plasticity [20], learning 
and memory [21–23], and emotional behaviors 
[24–26]. CaMKIV is widely distributed in neurons 
in the anterior cingulate cortex, somatosensory 
cortex, insular cortex, cerebellum, hippocampus, 
and amygdala, where it is localized primarily to 
nuclei [27]. As shown in Fig. 14.1, in mouse hip-
pocampus CaMKIV is expressed in immature 
neurons positive for PSA- NCAM (a marker of 
newly generated immature granule cells) and in 
neurons positive for calbindin, a marker of mature 
granule cells. CaMKIV is also expressed in radial 
glia and astrocytes labeled with anti-BLBP (brain 
lipid binding protein) [28]. Accumulating evi-
dence demonstrates that CaMKIV null mice dis-
play deficits in contextual and cued fear 
conditioning memory [29] and a decrease in anxi-
ety-like behaviors [29, 30]. Furthermore, treat-
ment with the typical SSRI fluoxetine fails to 
induce DG neurogenesis and does not have an 
anti-depressive effect in CaMKIV null mice [31].

14.2  Critical Role for Sig1-R 
in Depression

The depressive-like behaviors shown by Sig-1R 
null mice [15, 32] are associated with impaired 
neurogenesis in the hippocampal DG [33]. 
Sig-1R null male mice show depressive behav-
iors and reduced hippocampal neurogenesis, phe-
notypes not seen in female mice [34]. Enhanced 
estradiol (E2) levels may account for the absence 
of depressive-like phenotypes in female Sig-1R 
nulls, as E2 deprivation by ovariectomy in female 
mice elicits depressive-like behaviors in Sig-1R 
null mice [34]. E2 administration to male Sig-1R 
null mice rescues depressive-like behaviors, and 
src-dependent NMDAR phosphorylation is asso-
ciated with amelioration of depressive-like 
behaviors in male hippocampus [34]. These find-

K. Fukunaga and S. Moriguchi



203

Fig. 14.1 CaMKIV co-localizes with the neuronal 
markers PSA-NCAM and calbindin but not with the 
glial marker brain lipid binding protein (BLBP) in the 
dentate gyrus. Confocal microscopy images showing 
double immunofluorescence staining of the adult DG for 

CaMKIV and BLBP, PSA-NCAM or calbindin, as indi-
cated. Merged images show nuclear staining with 4′, 
6-diamidino-2-phenylindole dihydrochloride (DAPI) 
(blue) (Modified from Moriguchi et al. [28])
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ings suggest overall that NMDAR activation by 
Sig-1R mediates E2-induced neurogenesis and 
amelioration of depressive-like behaviors, either 
directly or indirectly.

Such phenotypes have been confirmed by phar-
macological experiments. Indeed, among antide-
pressants, fluvoxamine and sertraline show a high 
affinity for Sig-1R, while fluoxetine, citalopram, 
and imipramine show low [35]. Specifically, the 
order of affinity of SSRIs for Sig-1R is: fluvox-
amine (Ki = 36 nM) > sertraline (Ki = 57 nM) > 
fluoxetine (Ki = 120 nM) > citalopram (Ki = 
292 nM) > paroxetine (Ki = 1893 nM) [35]. On the 
other hand, inhibitory constants (Ki) for inhibition 
of serotonin uptake into rat brain are: paroxetine 
(Ki = 0.7 nM) > citalopram (Ki = 2.6 nM) > sertra-
line (Ki = 3.4 nM) > fluvoxamine (Ki = 6.2 nM) > 
fluoxetine (Ki = 14 nM) [36]. Although Sig-1R is 
predominantly expressed in the mitochondrion-
associated ER membrane (MAM) with the IP3 
receptor, once Sig-1R binds ligand, it translocates 
to the plasma membrane, activating NMDAR and 
elevating Ca2+ at postsynaptic regions.

Interestingly, Sig-1R levels are relatively 
decreased in hippocampus of CaMKIV null mice, 
and fluvoxamine or SA4503 treatment rescues 
those levels and improves paroxetin-resistant 
depressive-like behaviors in CaMKIV mutant 
mice (Fig. 14.2). Sig-1R is highly expressed in 
astrocytes in the DG subgranular zone, a region 
stimulated with fluvoxamine or SA4503. SA4503 
completely rescues impaired neurogenesis in 
CaMKIV null mice (Fig. 14.3) [28]. Likewise 
treatment with fluvoxamine or SA4503, but not 
paroxetine, also rescues reduced ATP production 
seen in hippocampus of CaMKIV null mice. This 
lack of effect by paroxetine suggests that Sig-1R 
stimulatory action rather than inhibition of sero-
tonin reuptake is critical for fluvaxamine’s anti- 
depressive activity. However, lack of amelioration 
by fluoxetine as reported by Sha et al. [33] cannot 
be explained by low affinity for Sig-1R. The Sig- 
1R- specific agonist SA4503 ameliorates impaired 
adult hippocampal neurogenesis in DG and 
depressive behaviors in CaMKIV null mice [28]. 
However, mechanisms underlying depressive 
behaviors in CaMKIV mice are largely unknown, 
although reduced CREB/BDNF activity and 

impaired neurogenesis seen in these mice play a 
role. More importantly, decreased phosphoryla-
tion of CREB, Akt and CaMKII seen in CaMKIV 
null mice is restored by treatment with fluvox-
amine or SA4503.

14.3  CaMKII Activation by Sig-1R 
Stimulation

It is important to understand how CaMKII is acti-
vated by Sig-1R stimulation, as CaMKII auto-
phosphorylation is closely associated with 
neuronal NMDAR activity. Chronic administra-
tion of a Sig-1R agonist is required for CaMKII 
activation in neurons [28] and Sig-1R activation 
potentiates NMDAR-mediated responses in neu-
rons [37–41]. For example, Sig-1R stimulation 
increases the number of NMDARs expressed at 
the plasma membrane. In rats, 90 minutes after 
intraperitoneal administration of Sig-1R agonists 
such as (+)-SKF10, 047, PRE-084 or (+)-pen-
tazocine, synthesis of the NMDAR subunit pro-
teins GluN2A and GluN2B and the postsynaptic 
density protein 95 (PSD-95) is enhanced hippo-
campus, effects totally abolished by treatment 
with the protein synthesis inhibitor anisomycin 
[41]. Although mechanisms potentially stabiliz-
ing newly synthesized NMDARs by Sig-1R 
remain unclear, direct interaction of Sig-1R with 
NMDAR has been documented: Sig-1R directly 
interacts with the GluN1 subunit of NMDAR 
through its N-terminal region [42]. When Sig- 
1R- FLAG is coexpressed with either GluN1 or 
GluN2A in embryonic kidney tsA 201 cells, only 
GluN1 colocalizes with Sig-1R-FLAG. In addi-
tion, the Sig-1R agonist dehydroepiandrosterone 
(DHEA) stimulates protein kinase C activity and 
promotes phosphorylation of NMDAR at GluN1 
(Ser-896) in olfactory bulbectomized (OBX) 
mice. Increased NMDAR phosphorylation levels 
are closely associated with CaMKII activation in 
OBX mice and reportedly improve memory defi-
cits. DHEA is an abundant, endogenous neuroac-
tive steroid that has anti-amnesic effects through 
Sig-1R stimulation [43]. Dehydroepiandrosterone 
sulfate (DHEAS) also stimulates phosphoryla-
tion of NMDAR at GluN1 (Ser-896) through 
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Sig-1R stimulation in spinal cord, an event that 
mediates NMDA-induced pain behavior in mice 
[44]. Taken together, Sig-1R promotes stability 
and intracellular trafficking of NMDAR and 

increases its phosphorylation through protein 
kinase C, thereby stimulating CaMKII activity.

Although CaMKIV has been proposed to 
mediate CREB (Ser-133) phosphorylation, 

Fig. 14.2 Fluvoxamine or SA4503 treatment but not 
paroxetine rescues decreased Sig-1R expression and 
ATP production in the dentate gyrus of CaMKIV null 
mice. (a, b) Confocal microscopy images showing double 
staining for Sig-1R (green), PSD95 (a) or synaptophysin 
(b) (red) and merged images in hippocampal slices. Far 
right columns show high magnification images of boxed 
regions in the adjacent image. (c) Representative images 

of immunoblots using antibodies against Sig-1R and 
quantitative analyses. (d) Quantitative analyses of ATP 
production. Vertical lines show SEM (**, p < 0.01 versus 
wild-type mice. ++, p < 0.01 versus CaMKIV null mice. 
##, p < 0.01 versus fluvoxamine-treated CaMKIV null 
mice.††, < 0.01 versus SA4503-treated CaMKIV null 
mice. Modified from Moriguchi et al. [28]
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CaMKII primarily accounts for CREB phosphor-
ylation and BDNF expression in CaMKIV null 
mice, an idea confirmed by the fact that expres-
sion of BDNF mRNA containing exons I or IV is 
upregulated in the DG of CaMKIV null mice by 
Sig-1R stimulation. Likewise, Sun et al. [45] 
reported that unlike CaMKIV, CaMKII regulates 
CREB activity through phosphorylation of CREB 
at residue Ser-142 (in addition to Ser-133). 
CaMKII overexpression increases levels of 
BDNF transcripts containing exon IV in NG108–
15 cells [46]. NMDAR stimulation [9, 47, 48] 
and increases in ATP production [8] by Sig-1R 
ligands are two of the mechanisms underlying 
CaMKII activation in neurons. Increased ATP 
production enhances Ca2+ storage in the ER by 
stimulating the sarcoplasmic/endoplasmic Ca2+-
ATPase (SERCA) pump, which can promote 
Ca2+-induced Ca2+-release from the ER and in 
turn activate neuronal CaMKII activity. The 
observation of depression-like behaviors in 
CaMKIV null mice is important, as those behav-
iors are closely associated with decreased neuro-

genesis in the hippocampal DG, and CaMKIV is 
expressed highly in pyramidal neurons in both 
CA1 and CA3 regions and in DG granule cells 
[28]. Like CaMKIV null mice, CaMKIIα hetero-
zygous knockout mice show increased numbers 
of immature granule cells in the hippocampal DG 
and a decreased number of mature granule cells 
[49]. Moreover, analysis proliferation by BrdU 
incorporation shows that the number of BrdU- 
positive cells slightly increases in CaMKIIα het-
erozygous knockout mice [49]. Thus, both 
CaMKIV and CaMKIIα likely function in prolif-
eration and/or maturation of granule cells in the 
mouse DG.

14.4  Sig1-R Plays a Critical Role 
in BDNF Expression

Enhanced adult hippocampal neurogenesis is 
associated with activation of both PI3K/Akt [17, 
50, 51] and CREB/BDNF pathways [17, 50]. 
Both pathways are essential for neuronal prolif-

Fig. 14.3 Fluvoxamine or SA4503 but not paroxetine 
enhances hippocampal neurogenesis in CaMKIV null 
mice. (a) Confocal microscopy images showing double 
staining for BrdU (green), NeuN (red) and merged images 
in hippocampal slices from wild-type mice, CaMKIV null 
mice, paroxetine-treated CaMKIV null mice, fluvoxamine- 
treated CaMKIV null mice, SA4503-treated CaMKIV 
null mice, NE100 (Sig-1R antagonist) plus fluvoxamine- 
treated CaMKIV null mice and NE100 plus SA4503- 
treated CaMKIV null mice. Mice were injected with 
BrdU on the first day of drug treatment and then for 5 

consecutive days during the 2 weeks of drug treatment. 
Mice were treated with paroxetine, fluvoxamine, or 
SA4503 treatments for 2 weeks (n = 8). (b) Quantitative 
analyses of the number of BrdU/NeuN double-positive 
cells in the DG (n = 8). Vertical lines show SEM. **, 
p < 0.01 versus wild-type mice. ++, p < 0.01 versus 
CaMKIV null mice. ##, p < 0.01 versus fluvoxamine- 
treated CaMKIV null mice. ††, <0.01 versus SA4503- 
treated CaMKIV null mice (Modified from Moriguchi 
et al. [28])
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eration and maturation [52], and their activation 
by Sig-1R agonists may antagonize depressive 
behaviors. For example, stimulation of Sig-1R by 
fluvoxamine or SA4503 markedly activates 
PI3K/Akt and CREB/BDNF signaling in DG of 
CaMKIV null mice. Akt activation by fluvox-
amine and SA4503 is also associated with tyro-
sine kinase signaling that promotes NMDAR 
activation [53] or NMDAR-dependent BDNF 
expression though CaMKII signaling [54]. In 
addition to CaMKII-dependent BDNF expres-
sion, chaperone activity is crucial for BDNF mat-
uration and release of BDNF from neurons [55, 
56]. In rat neuroblastoma B104 cells, SA4503 
treatment increases the secretion of BDNF (pro 
plus mature BDNF) [55]. Fujimoto et al. [55] 
have proposed that chronic treatment with 
SA4503 potentiates post-translational processing 
of BDNF by activating Sig-1R chaperone activity 
at the ER membrane.

In addition, a link between Akt and CREB 
activities has been demonstrated in neural pro-
genitor cells stimulated by fibroblast growth fac-
tor- 2 (FGF-2), a factor is essential for proliferation 
of hippocampal progenitors [57]. FGF-2 and 
insulin-like growth factor-1 (IGF-1) also report-
edly enhance proliferation of adult hippocampal 
neural progenitors [57]. Both mitogens stimulate 
Akt signaling [57]. In addition, conditional 
knockout of CREB in mice impairs in vivo prolif-
eration of hippocampal neural progenitors [58]. 
Although the source of hippocampal FGF-2 and 
IGF-1 has not been defined, both mitogens are 
likely derived from astrocytes, based on studies 
of Shetty et al. [59]. In this context, our observa-
tion of immunohistochemical localization of 
Sig-1R in hippocampal astrocytes is particularly 
relevant. Cao et al. [60], using IP3 receptor type 2 
transgenic mice, reported that ATP release from 
astrocytes is critical for anti-depressants to be 
effective. CaMKIV is not expressed astrocytes 
and co-localizes with PSA-NCAM and calbindin 
but not with BLBP in the DG [28]. We confirmed 
that CaMKIV is expressed in differentiating and 
mature dentate granule cells but not in neural 
stem cells or glial cells. Since Sig-1R is highly 
expressed in astrocytes of the subgranular zone 
and postsynaptically in CA1 and CA3 regions 

and its stimulation promotes hippocampal ATP 
production, Sig-1R stimulation of both astrocytes 
and postsynaptic neurons likely mediates Sig-1R 
stimulation-induced neurogenesis. A model of 
Sig-1R function in both neurogenesis and regula-
tion of BDNF expression is shown in Fig. 14.4. 
Sig-1R stimulation by fluvoxamine or SA4503 
promotes NMDAR function, increasing CaMKII 
activity. This in turn potentiates LTP through 
AMPAR phosphorylation and BDNF expression 
via CREB phosphorylation, even in the absence 
of CaMKIV activity. BDNF expression promotes 
increased Akt phosphorylation and neurogenesis. 
Sig-1R stimulation by fluvoxamine or SA4503 
also enhances ATP production by enhancing 
mitochondrial Ca2+ entry. All of these activities 
likely antagonize depressive-like behaviors in 
rodent models.

14.5  Sig-1R Plays a Critical Role 
in Heart and Other Diseases

Depression is associated with substantial risk of 
developing heart failure and is independently 
associated with increased cardiovascular morbid-
ity and mortality. Likewise, cardiovascular dis-
ease can lead severe depression. Thus, SSRI 
therapy has been strongly recommended to 
reduce cardiovascular disease-induced morbidity 
and mortality. We recently observed very high 
expression of Sig-1R in rat heart tissue [61] and 
determined that in rodent heart, the receptor is a 
direct target of SSRIs [62] and DHEA [63] in 
eliciting cardioprotection in both pressure over-
load (PO)-induced and transverse aortic constric-
tion (TAC)-induced myocardial hypertrophy 
models. Our findings suggest that SSRIs such as 
fluvoxamine protect against PO- and TAC- 
induced cardiac dysfunction by upregulating 
Sig-1R expression and stimulating receptor- 
mediated Akt-eNOS signaling [63]. In addition, 
myocardial infarction with aortic banding elicits 
depressive-like behaviors in mice [64, 65]. 
Intracerebroventricular injection of the Sig-1R 
agonist PRE084 in myocardial infarction mice 
improved both depressive behaviors and cardiac 
dysfunction, with lowered sympathetic activity 
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and recovery of Sig-1R expression in brain. 
Similarly, loss of Sig-1R activity mediates 
depressive-like behaviors in streptozotocin- 
induced diabetic rats [66]. The hypothalamic- 
pituitary- adrenal axis likely functions in 
perturbed central nervous system (CNS) activity 
mediated by Sig-1R loss in heart failure and dia-
betes. As yet, potential inflammatory cytokines 
or hormones that antagonize CNS Sig-1R signal-
ing have not been identified. However, ameliora-
tion of depressive-like behaviors by Sig-1R 
agonists is particularly important for clinical 
therapeutics. In addition, the pathophysiological 
relevance of Sig-1R-mediated changes in ATP 
production remains unclear. To resolve the ques-
tion, future studies should focus on development 
of the specific Sig-1R ligands useful in clinic 
settings.
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