Adapting Consistency in Constraint Solving

Amine Balafrej^{1(⊠)}, Christian Bessiere², Anastasia Paparrizou², and Gilles Trombettoni²

 TASC (INRIA/CNRS), Mines Nantes, Nantes, France amine.balafrej@mines-nantes.fr
 CNRS, University of Montpellier, Montpellier, France bessiere@lirmm.fr

Abstract. State-of-the-art constraint solvers uniformly maintain the same level of local consistency (usually arc consistency) on all the instances. We propose two approaches to adjust the level of consistency depending on the instance and on which part of the instance we propagate. The first approach, parameterized local consistency, uses as parameter the stability of values, which is a feature computed by arc consistency algorithms during their execution. Parameterized local consistencies choose to enforce arc consistency or a higher level of local consistency to a value depending on whether the stability of the value is above or below a given threshold. In the adaptive version, the parameter is dynamically adapted during search, and so is the level of local consistency. In the second approach, we focus on partition-one-AC, a singleton-based consistency. We propose adaptive variants of partitionone-AC that do not necessarily run until having proved the fixpoint. The pruning can be weaker than the full version, but the computational effort can be significantly reduced. Our experiments show that adaptive parameterized maxRPC and adaptive partition-one-AC can obtain significant speed-ups over arc consistency and over the full versions of maxRPC and partition-one-AC.

1 Introduction

Enforcing local consistency by applying constraint propagation during search is one of the strengths of constraint programming (CP). It allows the constraint solver to remove locally inconsistent values. This leads to a reduction of the search space. Arc consistency is the oldest and most well-known way of propagating constraints [Bes06]. It has the nice feature that it does not modify the structure of the constraint network. It just prunes infeasible values. Arc consistency is the standard level of consistency maintained in constraint solvers. Several other local consistencies pruning only values and stronger than arc consistency have been proposed, such as max restricted path consistency or singleton arc consistency [DB97]. These local consistencies are seldom used in practice because of the high computational cost of maintaining them during search. However, on

The results contained in this chapter have been presented in [BBCB13] and [BBBT14]. This work has been funded by the EU project ICON (FP7-284715).

[©] Springer International Publishing AG 2016

C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 226–253, 2016.
DOI: 10.1007/978-3-319-50137-6_9

some instances of problems, maintaining arc consistency is not a good choice because of the high number of ineffective revisions of constraints that penalize the CPU time. For instance, Stergiou observed that when solving the scen11, an instance from the radio link frequency assignment problem (RLFAP) class, with an algorithm maintaining arc consistency, only 27 out of the 4103 constraints of the problem were identified as causing a domain wipe-out and 1921 constraints did not prune any value [Ste09].

Choosing the right level of local consistency for solving a problem requires finding a good trade-off between the ability of this local consistency to remove inconsistent values, and the cost of the algorithm that enforces it. The works of [Ste08] and [PS12] suggest to take advantage of the power of strong propagation algorithms to reduce the search space while avoiding the high cost of maintaining them in the whole network. These methods result in a heuristic approach based on the monitoring of propagation events to dynamically adapt the level of local consistency (arc consistency or max restricted path consistency) to individual constraints. This prunes more values than arc consistency and less than max restricted path consistency. The level of propagation obtained is not characterized by a local consistency property. Depending on the order of propagation, we can converge on different closures. In other work, a high level of consistency is applied in a non exhaustive way, because it is very expensive when applied exhaustively everywhere in the network during the whole search. In [SS09], a preprocessing phase learns which level of consistency to apply on which parts of the instance. When dealing with global constraints, some authors propose to weaken arc consistency instead of strengthening it. In [KVH06], Katriel et al. proposed a randomized filtering scheme for AllDifferent and Global Cardinality Constraint. In [Sel03], Sellmann introduced the concept of approximated consistency for optimization constraints and provided filtering algorithms for Knapsack Constraints based on bounds with guaranteed accuracy.

In this chapter, we propose two approaches for adapting automatically the level of consistency during search. Our first approach is based on the notion of stability of values. This is an original notion independent of the characteristics of the instance to be solved, but based on the state of the arc consistency algorithm during its propagation. Based on this notion, we propose parameterized consistencies, an original approach to adjust the level of consistency inside a given instance. The intuition is that if a value is hard to prove arc consistent (i.e., the value is not stable for arc consistency), this value will perhaps be pruned by a stronger local consistency. The parameter p specifies the threshold of stability of a value v below which we will enforce a stronger consistency to v. A parameterized consistency p-LC is thus an intermediate level of consistency between arc consistency and another consistency LC, stronger than arc consistency. The strength of p-LC depends on the parameter p. This approach allows us to find a trade-off between the pruning power of local consistency and the computational cost of the algorithm that achieves it. We apply p-LC to the case where LC is max restricted path consistency. We describe the algorithm p-maxRPC3 (based on maxRPC3 [BPSW11]) that achieves p-max restricted path consistency. Then, we propose ap-LC, an adaptive variant of p-LC that uses the number of failures

in which variables or constraints are involved to assess the difficulty of the different parts of the problem during search. ap-LC dynamically and locally adapts the level p of local consistency to apply depending on this difficulty.

Our second approach is inspired by singleton-based consistencies. They have been shown extremely efficient to solve some classes of hard problems [BCDL11]. Singleton-based consistencies apply the singleton test principle, which consists of assigning a value to a variable and trying to refute it by enforcing a given level of consistency. If a contradiction occurs during this singleton test, the value is removed from its domain. The first example of such a local consistency is Singleton Arc Consistency (SAC), introduced in [DB97]. In SAC, the singleton test enforces are consistency. By definition, SAC can only prune values in the variable domain on which it currently performs singleton tests. In [BA01], Partition-One-AC (which we call POAC) has been proposed. POAC is an extension of SAC that can prune values everywhere in the network as soon as a variable has been completely singleton tested. As a consequence, the fixpoint in terms of filtering is often quickly reached in practice. This observation has already been made on numerical constraint problems. In [TC07, NT13], a consistency called Constructive Interval Disjunction (CID), close to POAC in its principle, gave good results by simply calling the main procedure once on each variable or by adapting during search the number of times it is called. Based on these observations, we propose an adaptive version of POAC, called APOAC, where the number of times variables are processed for singleton tests on their values is dynamically and automatically adapted during search. A sequence of singleton tests on all values of one variable is called a varPOAC call. The number k of times varPOAC is called will depend on how effective POAC is or not in pruning values. This number k of varPOAC calls will be learned during a sequence of nodes of the search tree (learning nodes) by measuring stagnation in the amount of pruned values. This amount k of varPOAC calls will be applied at each node during a sequence of nodes (called exploitation nodes) before we enter a new learning phase to adapt k again. Observe that if the number of varPOAC calls learned is 0, then adaptive POAC will mimic AC.

The aim of both of the proposed adaptive approaches (i.e., ap-LC and APOAC) is to adapt the level of consistency automatically and dynamically during search. ap-LC uses failure information to learn what are the most difficult parts of the problem and it increases locally and dynamically the parameter p on those difficult parts. APOAC measures a stagnation in number of inconsistent values removed for k calls of varPOAC. APOAC then uses this information to stop enforcing POAC. APOAC avoids the cost of the last calls to varPOAC that delete very few values or no value at all. We thus see that both ap-LC and APOAC learn some information during search to adapt the level of consistency. This allows them to benefit from the pruning power of a high level of consistency while avoiding the prohibitive time cost of fully maintaining this high level.

The rest of the paper is organized as follows. Section 2 contains the necessary formal background. Section 3 describes the parameterized consistency approach and gives an algorithm for parameterized maxRPC. In Sect. 4, the adaptive

variant of parameterized consistency is defined. Sections 5 and 6 are devoted to our study of singleton-based consistencies. In Sect. 5, we propose an efficient POAC algorithm that will be used as a basis for the adaptive versions of POAC. Section 6 presents different ways to learn the number of variables on which to perform singleton tests. All these sections contain experimental results that validate the different contributions, Section 7 concludes this work.

2 Background

A constraint network is defined as a set of n variables $X = \{x_1, \ldots, x_n\}$, a set of ordered domains $D = \{D(x_1), \ldots, D(x_n)\}$, and a set of e constraints $C = \{c_1, \ldots, c_e\}$. Each constraint c_k is defined by a pair $(var(c_k), sol(c_k))$, where $var(c_k)$ is an ordered subset of X, and $sol(c_k)$ is a set of combinations of values (tuples) satisfying c_k . In the following, we restrict ourselves to binary constraints, because the local consistency (maxRPC) we use here to instantiate our approach is defined on the binary case only. However, the notions we introduce can be extended to non-binary constraints, by using maxRPWC for instance [BSW08]. A binary constraint c between c_i and c_i will be denoted by c_{ij} , and c_i will denote the set of variables c_i involved in a constraint with c_i .

A value $v_j \in D(x_j)$ is called an arc consistent support (AC support) for $v_i \in D(x_i)$ on c_{ij} if $(v_i, v_j) \in sol(c_{ij})$. A value $v_i \in D(x_i)$ is arc consistent (AC) if and only if for all $x_j \in \Gamma(x_i)$ v_i has an AC support $v_j \in D(x_j)$ on c_{ij} . A domain $D(x_i)$ is arc consistent if it is non empty and all values in $D(x_i)$ are arc consistent. A network is arc consistent if all domains in D are arc consistent. If enforcing arc consistency on a network N leads to a domain wipe out, we say that N is arc inconsistent.

A tuple $(v_i, v_j) \in D(x_i) \times D(x_j)$ is path consistent (PC) if and only if for any third variable x_k there exists a value $v_k \in D(x_k)$ such that v_k is an AC support for both v_i and v_j . In such a case, v_k is called witness for the path consistency of (v_i, v_j) .

A value $v_j \in D(x_j)$ is a max restricted path consistent (maxRPC) support for $v_i \in D(x_i)$ on c_{ij} if and only if it is an AC support and the tuple (v_i, v_j) is path consistent. A value $v_i \in D(x_i)$ is max restricted path consistent on a constraint c_{ij} if and only if there exist $v_j \in D(x_j)$ maxRPC support for v_i on c_{ij} . A value $v_i \in D(x_i)$ is max restricted path consistent if and only if for all $x_j \in \Gamma(x_i)$ v_i has a maxRPC support $v_j \in D(x_j)$ on c_{ij} . A variable x_i is maxRPC if its domain $D(x_i)$ is non empty and all values in $D(x_i)$ are maxRPC. A network is maxRPC if all domains in D are maxRPC.

A value $v_i \in D(x_i)$ is singleton arc consistent (SAC) if and only if the network $N|_{x_i=v_i}$ where $D(x_i)$ is reduced to the singleton $\{v_i\}$ is not arc inconsistent. A variable x_i is SAC if $D(x_i) \neq \emptyset$ and all values in $D(x_i)$ are SAC. A network is SAC if all its variables are SAC.

A variable x_i is partition-one-AC (POAC) if and only if $D(x_i) \neq \emptyset$, all values in $D(x_i)$ are SAC, and $\forall j \in 1 \dots n, j \neq i, \forall v_j \in D(x_j), \exists v_i \in D(x_i)$ such that $v_j \in AC(N|_{x_i=v_i})$. A constraint network N = (X, D, C) is POAC if and only if

all its variables are POAC. Observe that POAC, as opposed to SAC, is able to prune values from all variable domains when being enforced on a given variable.

Following [DB97], we say that a local consistency LC_1 is stronger than a local consistency LC_2 ($LC_2 \leq LC_1$) if LC_2 holds on any constraint network on which LC_1 holds. It has been shown in [BA01] that POAC is strictly stronger than SAC. Hence, SAC holds on any constraint network on which POAC holds and there exist constraint networks on which SAC holds but not POAC.

The problem of deciding whether a constraint network has solutions is called the *constraint satisfaction problem (CSP)*, and it is NP-complete. Solving a CSP is mainly done by backtrack search that maintains some level of consistency between each branching step.

3 Parameterized Consistency

In this section, we present an original approach to parameterize a level of consistency LC stronger than arc consistency so that it degenerates to arc consistency when the parameter equals 0, to LC when the parameters equals 1, and to levels in between when the parameter is between 0 and 1. The idea behind this is to be able to adjust the level of consistency to the instance to be solved, hoping that such an adapted level of consistency will prune significantly more values than arc consistency while being less time consuming than LC.

Parameterized consistency is based on the concept of stability of values. We first need to define the 'distance to end' of a value in a domain. This captures how far a value is from the last in its domain. In the following, rank(v, S) is the position of value v in the ordered set of values S.

Definition 1 (Distance to end of a value). The distance to end of a value $v_i \in D(x_i)$ is the ratio

$$\Delta(x_i, v_i) = (|D_o(x_i)| - rank(v_i, D_o(x_i))) / |D_o(x_i)|,$$

where $D_o(x_i)$ is the initial domain of x_i .

We see that the first value in $D_o(x_i)$ has distance $(|D_o(x_i)| - 1)/|D_o(x_i)|$ and the last one has distance 0. Thus, $\forall v_i \in D(x_i), 0 \leq \Delta(x_i, v_i) < 1$.

We can now give the definition of what we call the parameterized stability of a value for arc consistency. The idea is to define stability for values based on the distance to the end of their AC supports. For instance, consider the constraint $x_1 \leq x_2$ with the domains $D(x_1) = D(x_2) = \{1, 2, 3, 4\}$ (see Fig. 1). $\Delta(x_2, 1) = (4-1)/4 = 0.75$, $\Delta(x_2, 2) = 0.5$, $\Delta(x_2, 3) = 0.25$ and $\Delta(x_2, 4) = 0$. If p = 0.2, the value $(x_1, 4)$ is not p-stable for AC, because the first and only AC support of $(x_1, 4)$ in the ordering used to look for supports, that is $(x_2, 4)$, has a distance to end smaller than the threshold p. Proving that the pair (4, 4) is inconsistent (by a stronger consistency) could lead to the pruning of $(x_1, 4)$. In other words, applying a stronger consistency on $(x_1, 4)$ has a higher chance to lead to its removal than applying it to for instance $(x_1, 1)$, which had no difficulty to find its first AC support (distance to end of $(x_2, 1)$ is 0.75).

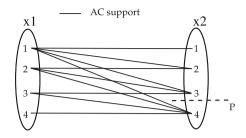


Fig. 1. Stability of supports on the example of the constraint $x_1 \le x_2$ with the domains $D(x_1) = D(x_2) = \{1, 2, 3, 4\}$. $(x_1, 4)$ is not p-stable for AC.

At this point, we want to emphasize that the ordering of values used to look for supports in the domains is not related to the order in which values are selected by the branching heuristic used by the backtrack search procedure. That is, we can use a given order of values for looking for supports and another one for exploring the search tree.

Definition 2 (p-stability for AC). A value $v_i \in D(x_i)$ is p-stable for AC on c_{ij} iff v_i has an AC support $v_j \in D(x_j)$ on c_{ij} such that $\Delta(x_j, v_j) \geq p$. A value $v_i \in D(x_i)$ is p-stable for AC iff $\forall x_j \in \Gamma(x_i)$, v_i is p-stable for AC on c_{ij} .

We are now ready to give the first definition of parameterized local consistency. This first definition can be applied to any local consistency LC for which the consistency of a value on a constraint is well defined. This is the case for instance for all triangle-based consistencies [DB01,Bes06].

Definition 3 (Constraint-based p**-LC).** Let LC be a local consistency stronger than AC for which the LC consistency of a value on a constraint is defined. A value $v_i \in D(x_i)$ is constraint-based p-LC on c_{ij} iff it is p-stable for AC on c_{ij} , or it is LC on c_{ij} . A value $v_i \in D(x_i)$ is constraint-based p-LC iff $\forall c_{ij}, v_i$ is constraint-based p-LC on c_{ij} . A constraint network is constraint-based p-LC iff all values in all domains in D are constraint-based p-LC.

Theorem 1. Let LC be a local consistency stronger than AC for which the LC consistency of a value on a constraint is defined. Let p_1 and p_2 be two parameters in [0..1]. If $p_1 < p_2$, then $AC \leq constraint$ -based p_1 - $LC \leq constraint$ -based p_2 - $LC \leq LC$.

Proof. Suppose that there exist two parameters p_1 , p_2 such that $0 \le p_1 < p_2 \le 1$, and suppose that there exists a p_2 -LC constraint network N that contains a p_2 -LC value (x_i, v_i) that is p_1 -LC inconsistent. Let c_{ij} be the constraint on which (x_i, v_i) is p_1 -LC inconsistent. Then, $\nexists v_j \in D(x_j)$ that is an AC support for (x_i, v_i) on c_{ij} such that $\Delta(x_j, v_j) \ge p_1$. Thus, v_i is not p_2 -stable for AC on c_{ij} . In addition, v_i is not LC on c_{ij} . Therefore, v_i is not p_2 -LC, and N is not p_2 -LC.

Definition 3 can be modified to a more coarse-grained version that is not dependent on the consistency of values on a constraint. This will have the advantage to apply to any type of strong local consistency, even those, like singleton arc consistency, for which the consistency of a value on a constraint is not defined.

Definition 4 (Value-based p**-LC).** Let LC be a local consistency stronger than AC. A value $v_i \in D(x_i)$ is value-based p-LC if and only if it is p-stable for AC or it is LC. A constraint network is value-based p-LC if and only if all values in all domains in D are value-based p-LC.

Theorem 2. Let LC be a local consistency stronger than AC. Let p_1 and p_2 be two parameters in [0..1]. If $p_1 < p_2$ then $AC \leq value$ -based p_1 - $LC \leq value$ -based p_2 - $LC \leq LC$.

Proof. Suppose that there exist two parameters p_1 , p_2 such that $0 \le p_1 < p_2 \le 1$, and suppose that there exists a p_2 -LC constraint network N that contains a p_2 -LC value (x_i, v_i) that is p_1 -LC-inconsistent. v_i is p_1 -LC-inconsistent means that:

- 1. v_i is not p_1 -stable for AC: $\exists c_{ij}$ on which v_i is not p_1 -stable for AC. Then $\nexists v_j \in D(x_j)$ that is an AC support for (x_i, v_i) on c_{ij} such that $\Delta(x_j, v_j) \geq p_1$. Therefore, v_i is not p_2 -stable for AC on c_{ij} , then v_i is not p_2 -stable for AC.
- 2. v_i is LC inconsistent.
 - (1) and (2) imply that v_i is not p_2 -LC and N is not p_2 -LC.

For both types of definitions of p-LC, we have the following property on the extreme cases (p=0,p=1).

Corollary 1. Let LC_1 and LC_2 be two local consistencies stronger than AC. We have: value-based 0- $LC_2 = AC$ and value-based 1- $LC_2 = LC$. If the LC_1 consistency of a value on a constraint is defined, we also have: constraint-based 0- $LC_1 = AC$ and constraint-based 1- $LC_1 = LC$.

3.1 Parameterized MaxRPC: p-maxRPC

To illustrate the benefit of our approach, we apply parameterized consistency to maxRPC to obtain the p-maxRPC level of consistency that achieves a consistency level between AC and maxRPC.

Definition 5 (p-maxRPC). A value is p-maxRPC if and only if it is constraint-based p-maxRPC. A network is p-maxRPC if and only if it is constraint-based p-maxRPC.

From Theorem 1 and Corollary 1 we derive the following corollary.

Corollary 2. For any two parameters p_1 , p_2 , $0 \le p_1 < p_2 \le 1$, $AC \le p_1$ -max $RPC \le p_2$ -max $RPC \le maxRPC$. 0-maxRPC = AC and 1-maxRPC = maxRPC.

Algorithm 1. Initialization(X, D, C, Q)

```
1 begin
         foreach x_i \in X do
 \mathbf{2}
              foreach v_i \in D(x_i) do
 3
                   foreach x_i \in \Gamma(x_i) do
 4
                        p-support \leftarrow false;
 5
                        foreach v_i \in D(x_i) do
 6
 7
                             if (v_i, v_j) \in c_{ij} then
                                  LastAC_{x_i,v_i,x_j} \leftarrow v_j;
 8
                                  if \Delta(x_i, v_i) \geq p then
 9
                                       p-support \leftarrow true;
10
11
                                       LastPC_{x_i,v_i,x_j} \leftarrow v_j;
                                       break;
12
                                  if searchPCwit(v_i, v_i) then
13
                                       p-support \leftarrow true;
14
                                       LastPC_{x_i,v_i,x_i} \leftarrow v_j;
15
                                       break;
16
                        if \neg p-support then
17
                             remove v_i from D(x_i);
18
                             Q \leftarrow Q \cup \{x_i\};
19
                             break;
20
              if D(x_i) = \emptyset then return false;
21
22
         return true:
```

We propose an algorithm for p-maxRPC, based on maxRPC3, the best existing maxRPC algorithm. We do not describe maxRPC3 in full detail, as it can be found in [BPSW11]. We only describe procedures where changes to maxRPC3 are necessary to design p-maxRPC3, a coarse grained algorithm that performs p-maxRPC. We use light grey to emphasize the modified parts of the original maxRPC3 algorithm.

maxRPC3 uses a propagation list Q where it inserts the variables whose domains have changed. It also uses two other data structures: LastAC and LastPC. For each value (x_i, v_i) , LastAC_{x_i, v_i, x_j} stores the smallest AC support for (x_i, v_i) on c_{ij} and LastPC_{x_i, v_i, x_j} stores the smallest PC support for (x_i, v_i) on c_{ij} (i.e., the smallest AC support (x_j, v_j) for (x_i, v_i) on c_{ij} such that (v_i, v_j) is PC). This algorithm comprises two phases: initialization and propagation.

In the initialization phase (Algorithm 1) maxRPC3 checks if each value (x_i, v_i) has a maxRPC-support (x_j, v_j) on each constraint c_{ij} . If not, it removes v_i from $D(x_i)$ and inserts x_i in Q. To check if a value (x_i, v_i) has a maxRPC-support on a constraint c_{ij} , maxRPC3 looks first for an AC-support (x_j, v_j) for (x_i, v_i) on c_{ij} , then it checks if (v_i, v_j) is PC. In this last step, changes were

Algorithm 2. checkPCsupLoss (v_i, x_i)

```
1 begin
 2
         if LastAC_{x_i,v_i,x_i} \in D(x_i) then
              b_i \leftarrow max(LastPC_{x_i,v_i,x_i}+1,LastAC_{x_i,v_i,x_i});
 3
         else
 4
              b_i \leftarrow max(LastPC_{x_i,v_i,x_i}+1,LastAC_{x_i,v_i,x_i}+1);
 5
         foreach v_i \in D(x_i), v_i \geq b_i do
 6
 7
              if (v_i, v_i) \in c_{ii} then
 8
                   if LastAC_{x_i,v_i,x_i} \notin D(x_i) \& LastAC_{x_i,v_i,x_i} > LastPC_{x_i,v_i,x_i} then
 9
                     LastAC_{x_i,v_i,x_i} \leftarrow v_i;
                    if \Delta(x_i, v_i) \geq p then
10
                         LastPC_{x_i,v_i,x_i} \leftarrow v_i;
11
                         return true;
12
                   if searchPCwit(v_i, v_i) then
13
                         LastPC_{x_i,v_i,x_i} \leftarrow v_i;
14
                         return true;
15
         return\ false;
16
```

necessary to obtain p-maxRPC3 (lines 9–12). We check if (v_i, v_j) is PC (line 13) only if $\Delta(x_i, v_i)$ is smaller than the parameter p (line 9).

The propagation phase of maxRPC3 involves propagating the effect of deletions. While Q is non empty, maxRPC3 extracts a variable x_i from Q and checks for each value (x_j, v_j) of each neighboring variable $x_j \in \Gamma(x_i)$ if it is not maxRPC because of deletions of values in $D(x_i)$. A value (x_j, v_j) becomes maxRPC inconsistent in two cases: if its unique PC-support (x_i, v_i) on c_{ij} has been deleted, or if we deleted the unique witness (x_i, v_i) for a pair (v_j, v_k) such that (x_k, v_k) is the unique PC-support for (x_j, v_j) on c_{jk} . So, to propagate deletions, maxRPC3 checks if the last maxRPC support (last known support) of (x_j, v_j) on c_{ij} still belongs to the domain of x_i , otherwise it looks for the next support (Algorithm 2). If such a support does not exist, it removes the value v_j and adds the variable x_j to Q. Then if (x_j, v_j) has not been removed in the previous step, maxRPC3 checks (Algorithm 3) whether there is still a witness for each pair (v_j, v_k) such that (x_k, v_k) is the PC support for (x_j, v_j) on c_{jk} . If not, it looks for the next maxRPC support for (x_j, v_j) on c_{jk} . If such a support does not exist, it removes v_j from $D(x_j)$ and adds the variable x_j to Q.

In the propagation phase, we also modified maxRPC3 to check if the values are still p-maxRPC instead of checking if they are maxRPC. In p-maxRPC3, the last p-maxRPC support for (x_j, v_j) on c_{ij} is the last AC support if (x_j, v_j) is p-stable for AC on c_{ij} . If not, it is the last PC support. Thus, p-maxRPC3 checks if the last p-maxRPC support (last known support) of (x_j, v_j) on c_{ij} still belongs to the domain of x_i . If not, it looks (Algorithm 2) for the next AC support (x_i, v_i) on c_{ij} , and checks if (v_i, v_j) is PC (line 13) only when $\Delta(x_i, v_i) < p$

Algorithm 3. checkPCwitLoss (x_i, v_i, x_i)

```
1 begin
         foreach x_k \in \Gamma(x_i) \cap \Gamma(x_i) do
 2
              witness \leftarrow false;
 3
              if v_k \leftarrow LastPC_{x_i,v_i,x_k} \in D(x_k) then
 4
                   if \Delta(x_k, v_k) \geq p then
 5
                       witness \leftarrow true;
 6
 7
                   else
                        if LastAC_{x_i,v_i,x_i} \in D(x_i) & LastAC_{x_i,v_i,x_i} = LastAC_{x_k,v_k,x_i}
 8
                        OR LastAC_{x_i,v_i,x_i} \in D(x_i) & ( LastAC_{x_j,v_j,x_i}, v_k) \in c_{ik}
 9
                        OR LastAC_{x_k,v_k,x_i} \in D(x_i) \& (LastAC_{x_k,v_k,x_i},v_i) \in c_{ij}
10
                       then witness \leftarrow true:
11
                       else
12
                            if searchACsup(x_i, v_i, x_i) & searchACsup(x_k, v_k, x_i) then
13
14
                                 v_i \in D(x_i), v_i \geq max(LastAC_{x_i,v_i,x_i},LastAC_{x_k,v_k,x_i})
                                 do
                                      if (v_i, v_i) \in c_{ii} \& (v_k, v_i) \in c_{ki} then
15
                                           witness \leftarrow true;
16
                                           break;
17
              if \negwitness & \negcheckPCsupLoss(v_j, x_k) then return false;
18
19
         return true:
```

(line 10). If no p-maxRPC support exists, p-maxRPC3 removes the value and adds the variable x_j to Q. If the value (x_j, v_j) has not been removed in the previous phase, p-maxRPC3 checks (Algorithm 3) whether there is still a witness for each pair (v_j, v_k) such that (x_k, v_k) is the p-maxRPC support for v_j on c_{jk} and $\Delta(x_k, v_k) < p$. If not, it looks for the next p-maxRPC support for v_j on c_{jk} . If such a support does not exist, it removes v_j from $D(x_j)$ and adds the variable x_j to Q.

p-maxRPC3 uses the data structure LastPC to store the last p-maxRPC support (i.e., the latest AC support for the p-stable values and the latest PC support for the others). Algorithms 1 and 2 update the data structure LastPC of maxRPC3 to be LastAC for all the values that are p-stable for AC (line 11 of Algorithm 1 and line 11 of Algorithm 2) and avoid seeking witnesses for those values. Algorithm 3 avoids checking the loss of witnesses for the p-stable values by setting the flag witness to true (line 6). Correctness of p-maxRPC3 directly comes from maxRPC3: The removed values are necessarily p-maxRPC-inconsistent and all the values that are p-maxRPC-inconsistent are removed.

3.2 Experimental Validation of p-maxRPC

To validate the approach of parameterized local consistency, we conducted a first basic experiment. The purpose of this experiment is to see if there exist instances on which a given level of p-maxRPC, with a value p that is uniform (i.e., identical for the entire constraint network) and static (i.e., constant through the entire search process), is more efficient than AC or maxRPC, or both.

We have implemented the algorithms that achieve p-maxRPC as described in the previous section in our own binary constraint solver, in addition to maxRPC (maxRPC3 version [BPSW11]) and AC (AC2001 version [BRYZ05]). All the algorithms are implemented in our JAVA CSP solver. We tested these algorithms on several classes of CSP instances from the International Constraint Solver Competition 09¹. We have only selected instances involving binary constraints. To isolate the effect of propagation, we used the lexicographic ordering for variables and values. We set the CPU timeout to one hour. Our experiments were conducted on a 12-core Genuine Intel machine with 16 Gb of RAM running at 2.92 GHz.

On each instance of our experiment, we ran AC, max-RPC, and p-maxRPC for all values of p in $\{0.1, 0.2, \ldots, 0.9\}$. Performance has been measured in terms of CPU time in seconds, the number of visited nodes (NODE) and the number of constraint checks (CCK). Results are presented as "CPU time (p)", where p is the parameter for which p-maxRPC gives the best result.

Table 1 reports the performance of AC, maxRPC, and p-maxRPC for the value of p producing the best CPU time, on instances from Radio Link Frequency Assignment Problems (RLFAPs), geom problems, and queens knights problems. The CPU time of the best algorithm is bold-faced. On RLFAP and geom, we observe the existence of a parameter p for which p-maxRPC is faster than both AC and maxRPC for most instances of these two classes of problems. On the queens-knight problem, however, AC is always the best algorithm. In Figs. 2 and 3, we try to understand more closely what makes p-maxRPC better or worse than AC and maxRPC. Figures 2 and 3 plot the performance (CPU, NODE and CCK) of p-maxRPC for all values of p from 0 to 1 by steps of 0.1 against performance of AC and maxRPC. Figure 2 shows an instance where p-maxRPC solves the problem faster than AC and maxRPC for values of p in the range [0.3..0.8]. We observe that p-maxRPC is faster than AC and maxRPC when it reduces the size of the search space as much as maxRPC (same number of nodes visited) with a number of CCK closer to the number of CCK produced by AC. Figure 3 shows an instance where the CPU time for p-maxRPC is never better than both AC and maxRPC, whatever the value of p. We see that p-maxRPC is two to three times faster than maxRPC. But p-maxRPC fails to improve AC because the number of constraint checks performed by p-maxRPC is much higher than the number of constraint checks performed by AC, whereas the number of nodes visited by p-maxRPC is not significantly reduced compared to the number of nodes visited by AC. From these observations, it thus seems that p-maxRPC

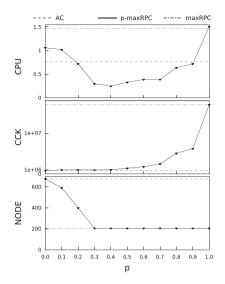
¹ http://cpai.ucc.ie/09/.

Table 1. Performance (CPU time, nodes and constraint checks) of AC, p-maxRPC, and maxRPC on various instances.

		AC	p-maxRPC	p	maxRPC
scen1-f8	CPU	>3600	1.39	(0.2)	6.10
	#nodes	-	927		917
	#ccks	_	1,397,440		26,932,990
scen2-f24	CPU	>3600	0.13	(0.3)	0.65
	#nodes	-	201		201
	#ccks	-	296,974		3,462,070
scen3-f10	CPU	>3600	0.89	(0.5)	2.80
	#nodes	_	469		408
	#ccks	-	874,930		13,311,797
geo50-20-d4-75-26	CPU	111.48	17.80	(1.0)	15.07
	#nodes	477,696	3,768		3,768
	#ccks	96,192,822	40,784,017		40,784,017
geo50-20-d4-75-43	CPU	1,671.35	1,264.36	(0.5)	1,530.02
	#nodes	4,118,134	555,259		279,130
	#ccks	1,160,664,461	1,801,402,535		3,898,964,831
geo50-20-d4-75-46	CPU	1,732.22	371.30	(0.6)	517.35
	#nodes	3,682,394	125,151		64,138
	#ccks	1,516,856,615	584,743,023		1,287,674,430
geo50-20-d4-75-84	CPU	404.63	0.44	(0.6)	0.56
	#nodes	2,581,794	513		333
	#ccks	293,092,144	800,657		1,606,047
queensKnights10-5-add	CPU	27.14	30.79	(0.2)	98.44
	#nodes	82,208	81,033		78,498
	#ccks	131,098,933	148,919,686		954,982,880
queensKnights10-5-mul	CPU	43.89	83.27	(0.1)	300.74
	#nodes	74,968	74,414		70,474
	#ccks	104,376,698	140,309,576		1,128,564,278

outperforms AC and maxRPC when it finds a compromise between the number of nodes visited (the power of maxRPC) and the number of CCK needed to maintain (the light cost of AC).

In Figs. 2 and 3 we can see that the CPU time for 1-maxRPC (respectively 0-maxRPC) is greater than the CPU time for maxRPC (respectively AC), although the two consistencies are equivalent. The reason is that p-maxRPC performs tests on the distances. For p=0, we also explain this difference by the fact that p-maxRPC maintains data structures that AC does not use.



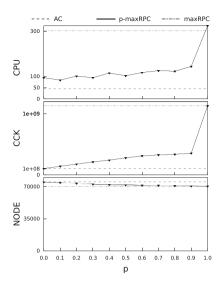


Fig. 2. Instance where p-maxRPC outperforms both AC and maxRPC.

Fig. 3. Instance where AC outperforms p-maxRPC.

4 Adaptative Parameterized Consistency: ap-maxRPC

In the previous section, we have defined p-maxRPC, a version of parameterized consistency where the strong local consistency is maxRPC. We have performed some initial experiments where p has the same value during the whole search and everywhere in the constraint network. However, the algorithm we proposed to enforce p-maxRPC does not specify how p is chosen. In this section, we propose two possible ways to dynamically and locally adapt the parameter p in order to solve the problem faster than both AC and maxRPC. Instead of using a single value for p during the whole search and for the whole constraint network, we propose to use several local parameters and to adapt the level of local consistency by dynamically adjusting the value of the different local parameters during search. The idea is to concentrate the effort of propagation by increasing the level of consistency in the most difficult parts of the given instance. We can determine these difficult parts using heuristics based on conflicts in the same vein as the weight of a constraint or the weighted degree of a variable in [BHLS04].

4.1 Constraint-Based ap-maxRPC: apc-maxRPC

The first technique we propose, called constraint-based ap-maxRPC, assigns a parameter $p(c_k)$ to each constraint c_k in C. We define this parameter to be correlated to the *weight* of the constraint. The idea is to apply a higher level of consistency in parts of the problem where the constraints are the most active.

Definition 6 (The weight of a constraint [BHLS04]). The weight $w(c_k)$ of a constraint $c_k \in C$ is an integer that is incremented every time a domain wipe-out occurs while performing propagation on this constraint.

We define the adaptive parameter $p(c_k)$ local to constraint c_k in such a way that it is greater when the weight $w(c_k)$ is higher w.r.t. other constraints.

$$\forall c_k \in C, p(c_k) = \frac{w(c_k) - min_{c \in C}(w(c))}{max_{c \in C}(w(c)) - min_{c \in C}(w(c))}$$
(1)

Equation 1 is normalized so that we are guaranteed that $0 \le p(c_k) \le 1$ for all $c_k \in C$ and that there exists c_{k_1} with $p(c_{k_1}) = 0$ (the constraint with lowest weight) and c_{k_2} with $p(c_{k_2}) = 1$ (the constraint with highest weight).

We are now ready to define adaptive parameterized consistency based on constraints.

Definition 7 (constraint-based ap-maxRPC). A value $v_i \in D(x_i)$ is constraint-based ap-maxRPC (or apc-maxRPC) on a constraint c_{ij} if and only if it is constraint-based $p(c_{ij})$ -maxRPC. A value $v_i \in D(x_i)$ is apc-maxRPC iff $\forall c_{ij}, v_i$ is apc-maxRPC on c_{ij} . A constraint network is apc-maxRPC iff all values in all domains in D are apc-maxRPC.

4.2 Variable-Based ap-maxRPC: apx-maxRPC

The technique proposed in Sect. 4.1 can only be used on consistencies where the consistency of a value on a constraint is defined. We present a second technique which can be used on constraint-based or variable-based local consistencies indifferently. We instantiate our definitions to maxRPC but the extension to other consistencies is direct. We call this new technique variable-based *ap*-maxRPC. We need to define the weighted degree of a variable as the aggregation of the weights of all constraints involving it.

Definition 8 (The weighted degree of a variable [BHLS04]). The weighted degree $wdeg(x_i)$ of a variable x_i is the sum of the weights of the constraints involving x_i and one other uninstantiated variable.

We associate each variable with an adaptive local parameter based on its weighted degree.

$$\forall x_i \in X, p(x_i) = \frac{wdeg(x_i) - min_{x \in X}(wdeg(x))}{max_{x \in X}(wdeg(x)) - min_{x \in X}(wdeg(x))}$$
(2)

As in Eq. 1, we see that the local parameter is normalized so that we are guaranteed that $0 \le p(x_i) \le 1$ for all $x_i \in X$ and that there exists x_{k_1} with $p(x_{k_1}) = 0$ (the variable with lowest weighted degree) and x_{k_2} with $p(x_{k_2}) = 1$ (the variable with highest weighted degree).

Definition 9 (variable-based ap-maxRPC). A value $v_i \in D(x_i)$ is variable-based ap-maxRPC (or apx-maxRPC) if and only if it is value-based $p(x_i)$ -maxRPC. A constraint network is apx-maxRPC iff all values in all domains in D are apx-maxRPC.

4.3 Experimental Evaluation of ap-maxRPC

In Sect. 3.2 we have shown that maintaining a static form of p-maxRPC during the entire search can lead to a promising trade-off between computational effort and pruning when all algorithms follow the same static variable ordering. In this section, we want to put our contributions in the real context of a solver using the best known variable ordering heuristic, dom/wdeg, though it is known that this heuristic is so good that it substantially reduces the differences in performance that other features of the solver could provide. We have compared the two variants of adaptive parameterized consistency, namely apc-maxRPC and apx-maxRPC, to AC and maxRPC. We ran the four algorithms on instances of radio link frequency assignment problems, geom problems, and queens knights problems.

Table 2 reports some representative results. A first observation is that, thanks to the dom/wdeq heuristic, we were able to solve more instances before the cutoff of one hour, especially the scen11 variants of RLFAP. A second observation is that apc-maxRPC and apx-maxRPC are both faster than at least one of the two extreme consistencies (AC and maxRPC) on all instances except scen7w1-f4 and geo50-20-d4-75-30. Third, when apx-maxRPC and/or apc-maxRPC are faster than both AC and maxRPC (scen1-f9, scen2-f25, scen11-f9, scen11f10 and scen11-f11), we observe that the gap in performance in terms of nodes and CCKs between AC and maxRPC is significant. Except for scen7-w1-f4, the number of nodes visited by AC is three to five times greater than the number of nodes visited by maxRPC and the number of constraint checks performed by maxRPC is twelve to sixteen times greater than the number of constraint checks performed by AC. For the geom instances the CPU time of the ap-maxRPC algorithms is between AC and maxRPC, and it is never lower than the CPU time of AC. This probably means that when solving these instances with the dom/wdeg heuristic, there is no need for sophisticated local consistencies. In general we see that the ap-maxRPC algorithms fail to improve both the two extreme consistencies simultaneously for the instances where the performance gap between AC and maxRPC is low.

If we compare apx-maxRPC to apc-maxRPC, we observe that although apx-maxRPC is coarser in its design than apc-maxRPC, apx-maxRPC is often faster than apc-maxRPC. We can explain this by the fact that the constraints initially all have the same weight equal to 1. Hence, all local parameters $ap(c_k)$ initially have the same value 0, so that apc-maxRPC starts resolution by applying AC everywhere. It will start enforcing some amount of maxRPC only after the first wipe-out occurred. On the contrary, in apx-maxRPC, when constraints all have the same weight, the local parameter $p(x_i)$ is correlated to the degree of the variable x_i . As a result, apx-maxRPC benefits from the filtering power of maxRPC even before the first wipe-out.

In Table 2, we reported only the results on a few representative instances. Table 3 summarizes the entire set of experiments. It shows the average CPU time for each algorithm on all instances of the different classes of problems tested. We considered only the instances solved before the cutoff of one hour by at least one

Table 2. Performance (CPU time, nodes and constraint checks) of AC, variable-based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on various instances.

		AC	apx-maxRPC	apc-maxRPC	maxRPC
scen1-f9	CPU	90.34	31.17	33.40	41.56
	#nodes	2,291	1,080	1,241	726
	#ccks	3,740,502	3,567,369	2,340,417	50,045,838
scen2-f25	CPU	70.57	46.40	27.22	81.40
	#nodes	12,591	4,688	3,928	3,002
	#ccks	15,116,992	38,239,829	8,796,638	194,909,585
scen6-w2	CPU	7.30	1.25	2.63	0.01
	#nodes	2,045	249	610	0
	#ccks	2,401,057	1,708,812	1,914,113	85,769
scen7-w1-f4	CPU	0.28	0.17	0.54	0.30
	#nodes	567	430	523	424
	#ccks	608,040	623,258	584,308	1,345,473
scen11-f9	CPU	2,718.65	1,110.80	1,552.20	2,005.61
	#nodes	103,506	40,413	61,292	32,882
	#ccks	227,751,301	399,396,873	123,984,968	3,637,652,122
scen11-f10	CPU	225.29	83.89	134.46	112.18
	#nodes	9,511	3,510	4,642	2,298
	#ccks	12,972,427	17,778,458	6,717,485	156,005,235
scen11-f11	CPU	156.76	39.39	93.69	76.95
	#nodes	7,050	2,154	3,431	1,337
	#ccks	7,840,552	10,006,821	5,143,592	91,518,348
scen11-f12	CPU	139.91	69.50	88.76	61.92
	#nodes	7,050	2,597	3,424	1,337
	#ccks	7,827,974	11,327,536	5,144,835	91,288,023
geo50-20d4-75-19	CPU	242.13	553.53	657.72	982.34
	#nodes	195,058	114,065	160,826	71,896
	#ccks	224,671,319	594,514,132	507,131,322	2,669,750,690
geo50-20d4-75-30	CPU	0.84	1.01	1.07	1.02
	#nodes	359	115	278	98
	#ccks	261,029	432,705	313,168	1,880,927
geo50-20d4-75-84	CPU	0.02	0.09	0.05	0.29
	#nodes	59	54	59	52
	#ccks	33,876	80,626	32,878	697,706
queensK20-5-mul	CPU	787.35	2,345.43	709.45	>3600
	#nodes	55,596	40,606	41,743	_
	#ccks	347,596,389	6,875,941,876	379,826,516	_
queensK15-5-add	CPU	24.69	17.01	14.98	35.05
	#nodes	24,639	12,905	12,677	11,595
	#ccks	90,439,795	91,562,150	58,225,434	394,073,525

Table 3. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each class of problems tested, when the local parameters are updated at each node

class (#instances)		AC	apx-maxRPC	apc-maxRPC	\max RPC
geom (10)	#solved	10	10	10	10
	average CPU	69.28	180.57	191.03	279.30
scen (10)	#solved	10	10	10	10
	average CPU	18.95	9.63	8.30	13.94
scen11 (10)	#solved	4	4	4	4
	average CPU	810.15	325.90	467.28	564.17
queensK (11)	#solved	6	6	6	5
	average CPU	135.95	395.41	121.75	>610.51

Table 4. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each class of problems tested, when the local parameters are updated every 10 nodes

class (#instances)		AC	apx-maxRPC	apc-maxRPC	\max RPC
geom (10)	#solved	10	10	10	10
	average CPU	69.28	147.20	189.42	279.30
scen (10)	#solved	10	10	10	10
	average CPU	18.95	7.40	8.86	13.94
scen11 (10)	#solved	4	4	4	4
	average CPU	810.15	311.74	417.97	564.17
queensK (11)	#solved	6	6	6	5
	average CPU	135.95	269.51	117.18	>610.52

of the four algorithms. To compute the average CPU time of an algorithm on a class of instances, we add the CPU time needed to solve each instance solved before the cutoff of one hour, and for the instances not solved before the cutoff, we add one hour. We observe that the adaptive approach is, on average, faster than the two extreme consistencies AC and maxRPC, except on the geom class.

In apx-maxRPC and apc-maxRPC, we update the local parameters $p(x_i)$ or $p(c_k)$ at each node in the search tree. We could wonder if such a frequent update does not produce too much overhead. To answer this question we performed a simple experiment in which we update the local parameters every 10 nodes only. We re-ran the whole set of experiments with this new setting. Table 4 reports the average CPU time for these results. We observe that when the local parameters are updated every 10 nodes, the gain for the adaptive approach is, on average, greater than when the local parameters are updated at each node. This gives room for improvement, by trying to adapt the frequency of update of these parameters.

5 Partition-One-Arc-Consistency

In this section, we describe our second approach, which is inspired from singleton-based consistencies. Singleton Arc Consistency (SAC) [DB97] makes a singleton test by enforcing arc consistency and can only prune values in the variable domain on which it currently performs singleton tests. Partition-One-AC (POAC) [BA01] is an extension of SAC, which, as observed in [BD08], combines singleton tests and *constructive disjunction* [VSD98]. POAC can prune values everywhere in the network as soon as a variable has been completely singleton tested.

We propose an adaptive version of POAC, where the number of times variables are processed for singleton tests on their values is dynamically and automatically adapted during search. Before moving to adaptive partition-one-AC, we first propose an efficient algorithm enforcing POAC and we compare its behaviour to SAC.

5.1 The Algorithm

The efficiency of our POAC algorithm, POAC1, is based on the use of counters associated with each value (x_j, v_j) in the constraint network. These counters are used to count how many times a value v_j from a variable x_j is pruned during the sequence of POAC tests on all the values of another variable x_i (the varPOAC call to x_i). If v_j is pruned $|D(x_i)|$ times, this means that it is not POAC and can be removed from $D(x_i)$.

POAC1 (Algorithm 4) starts by enforcing arc consistency on the network (line 2). Then it puts all variables in the ordered cyclic list S using any total ordering on X (line 3). varPOAC iterates on all variables from S (line 7) to make them POAC until the fixpoint is reached (line 12) or a domain wipe-out occurs (line 8). The counter FPP (FixPoint Proof) counts how many calls to varPOAC have been processed in a row without any change in any domain (line 9).

Algorithm 4. POAC1(X, D, C)

```
1 begin
        if \neg \texttt{EnforceAC}(X, D, C) then return false;
 2
        S \leftarrow CyclicList(Ordering(X));
 3
        \text{FPP} \leftarrow 0;
 4
        x_i \leftarrow first(S);
 5
        while FPP < |X| do
 6
            if \neg varPOAC(x_i, X, D, C, CHANGE) then
 7
 8
               return false;
            if CHANGE then FPP \leftarrow 1;
 9
            else FPP++:
10
            x_i \leftarrow NextElement(x_i, S);
11
12
        return true;
```

Algorithm 5. $varPOAC(x_i, X, D, C, CHANGE)$

```
1 begin
        SIZE \leftarrow |D(x_i)|; CHANGE \leftarrow false;
 2
         foreach v_i \in D(x_i) do
 3
             if \neg \text{TestAC}(X, D, C \cup \{x_i = v_i\}) then
 4
                  remove v_i from D(x_i);
 5
                  if \neg \texttt{EnforceAC}(X, D, C, x_i) then return false;
 6
        if D(x_i) = \emptyset then return false:
 7
        if SIZE \neq |D(x_i)| then CHANGE \leftarrow true;
 8
        foreach x_i \in X \setminus \{x_i\} do
 9
             SIZE \leftarrow |D(x_i)|;
10
             foreach v_i \in D(x_i) do
11
                  if counter(x_i, v_i) = |D(x_i)| then remove v_i from D(x_i);
12
                 counter(x_i, v_i) \leftarrow 0;
13
             if D(x_i) = \emptyset then return false;
14
             if SIZE \neq |D(x_i)| then CHANGE \leftarrow true;
15
        return true
16
```

Algorithm 6. TestAC $(X, D, C \cup \{x_i = v_i\})$

```
1 begin
         Q \leftarrow \{(x_j, c_k) \mid c_k \in \Gamma(x_i), x_j \in var(c_k), x_j \neq x_i\};
 2
          L \leftarrow \emptyset;
 3
          while Q \neq \emptyset do
 4
               pick and delete (x_i, c_k) from Q;
 5
               SIZE \leftarrow |D(x_i)|;
 6
               foreach v_i \in D(x_i) do
 7
 8
                    if \neg \text{HasSupport}(x_j, v_j, c_k) then
 9
                         remove v_j from D(x_j);
10
                         L \leftarrow L \cup (x_j, v_j);
               if D(x_i) = \emptyset then
11
                    RestoreDomains(L, false);
12
                    return false;
13
               if |D(x_i)| < \text{SIZE then}
14
                    Q \leftarrow Q \cup \{(x_{i'}, c_{k'}) | c_{k'} \in \Gamma(x_i), x_{i'} \in var(c_{k'}), x_{i'} \neq x_i, c_{k'} \neq c_k\};
15
         RestoreDomains(L, true);
16
         return true;
17
```

The procedure varPOAC (Algorithm 5) is called to establish POAC w.r.t. a variable x_i . It works in two steps. The first step enforces arc consistency in each sub-network $N = (X, D, C \cup \{x_i = v_i\})$ (line 4) and removes v_i from $D(x_i)$ (line 5) if the sub-network is arc-inconsistent. Otherwise, the procedure TestAC (Algorithm 6) increments the counter associated with every arc inconsistent value

Algorithm 7. RestoreDomains(L, UPDATE)

```
1 begin
2 | if UPDATE then
3 | foreach (x_j, v_j) \in L do
4 | D(x_j) \leftarrow D(x_j) \cup \{v_j\};
5 | counter(x_j, v_j) \leftarrow counter(x_j, v_j) + 1;
6 | else
7 | foreach (x_j, v_j) \in L do
8 | D(x_j) \leftarrow D(x_j) \cup \{v_j\};
```

 $(x_j,v_j), j \neq i$ in the sub-network $N=(X,D,C\cup\{x_i=v_i\})$. (Lines 6 and 7 have been added for improving the performance in practice but are not necessary for reaching the required level of consistency.) In line 8 the Boolean CHANGE is set to true if $D(x_i)$ has changed. The second step deletes all the values $(x_j,v_j), j\neq i$ with a counter equal to $|D(x_i)|$ and sets back the counter of each value to 0 (lines 12–13). Whenever a domain change occurs in $D(x_j)$, if the domain is empty, varPOAC returns failure (line 14); otherwise it sets the Boolean CHANGE to true (line 15).

Enforcing arc consistency on the sub-networks $N = (X, D, C \cup \{x_i = v_i\})$ is done by calling the procedure TestAC (Algorithm 6). TestAC just checks whether arc consistency on the sub-network $N = (X, D, C \cup \{x_i = v_i\})$ leads to a domain wipe-out or not. It is an instrumented AC algorithm that increments a counter for all removed values and restores them all at the end. In addition to the standard propagation queue Q, TestAC uses a list L to store all the removed values. After the initialisation of Q and L (lines 2–3), TestAC revises each arc (x_j, c_k) in Q and adds each removed value (x_j, v_j) to L (lines 5–10). If a domain wipe-out occurs (line 11), TestAC restores all removed values (line 12) without incrementing the counters (call to RestoreDomains with UPDATE = false) and it returns failure (line 13). Otherwise, if values have been pruned from the revised variable (line 14) it puts in Q the neighbouring arcs to be revised. At the end, removed values are restored (line 16) and their counters are incremented (call to RestoreDomains with UPDATE = true) before returning success (line 17).

Proposition 1. POAC1 has a worst-case time complexity in $O(n^2d^2(T+n))$, where T is the time complexity of the arc-consistency algorithm used for singleton tests, n is the number of variables, and d is the number of values in the largest domain.

Proof. The cost of calling varPOAC on a single variable is O(dT + nd) because varPOAC runs AC on d values and updates nd counters. In the worst case, each of the nd value removals trigger n calls to varPOAC. Therefore POAC1 has a time complexity in $O(n^2d^2(T+n))$.

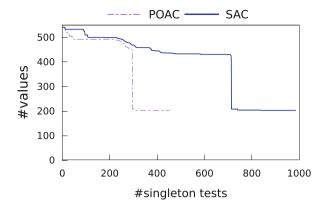


Fig. 4. The convergence speed of POAC and SAC.

5.2 Comparison of POAC and SAC Behaviors

Although POAC has a worst-case time complexity greater than SAC, we observed in practice that maintaining POAC during search is often faster than maintaining SAC. This behavior occurs even when POAC cannot remove more values than SAC, i.e. when the same number of nodes is visited with the same static variable ordering. This is due to what we call the *(filtering) convergence speed*: when both POAC and SAC reach the same fixpoint, POAC reaches the fixpoint with fewer singleton tests than SAC.

Figure 4 compares the convergence speed of POAC and SAC on an CSP instance where they have the same fixpoint. We observe that POAC is able to reduce the domains, to reach the fixpoint, and to prove the fixpoint, all in fewer singleton tests than SAC. This pattern has been observed on most of the instances and whatever ordering was used in the list S. The reason is that each time POAC applies varPOAC to a variable x_i , it is able to remove inconsistent values from $D(x_i)$ (like SAC), but also from any other variable domain (unlike SAC).

The fact that SAC cannot remove values in variables other than the one on which the singleton test is performed makes it a poor candidate for adapting the number of singleton tests. A SAC-inconsistent variable/value pair never singleton tested has no chance to be pruned by such a technique.

6 Adaptive POAC

This section presents an adaptive version of POAC that approximates POAC by monitoring the number of variables on which to perform singleton tests.

To achieve POAC, POAC1 calls the procedure varPOAC until it has proved that the fixpoint is reached. This means that, when the fixpoint is reached, POAC1 needs to call n (additional) times the procedure varPOAC without any pruning to prove that the fixpoint was reached. Furthermore, we experimentally

observed that in most cases there is a long sequence of calls to varPOAC that prune very few values, even before the fixpoint has been reached (see Fig. 4 as an example). The goal of Adaptive POAC (APOAC) is to stop iterating on varPOAC as soon as possible. We want to benefit from strong propagation of singleton tests while avoiding the cost of the last calls to varPOAC that delete very few values or no value at all.

6.1 Principle

The APOAC approach alternates between two phases during search: a short learning phase and a longer exploitation phase. One of the two phases is executed on a sequence of nodes before switching to the other phase for another sequence of nodes. The search starts with a learning phase. The total length of a pair of sequences learning + exploitation is fixed to the parameter LE.

Before providing a more detailed description, let us define the $(log_2 \text{ of the})$ volume of a constraint network N = (X, D, C), used to approximate the size of the search space:

$$V = log_2 \prod_{i=1}^{n} |D(x_i)|$$

We use the logarithm of the volume instead of the volume itself, because of the large integers the volume generates. We also could have used the perimeter (i.e., $\sum_i |D(x_i)|$) for approximating the search space size, as done in [NT13]. However, experiments have confirmed that the volume is a more precise and effective criterion for adaptive POAC.

The ith learning phase is applied to a sequence of $L=\frac{1}{10}\cdot LE$ consecutive nodes. During that phase, we learn a cutoff value k_i , which is the maximum number of calls to the procedure varPOAC that each node of the next (ith) exploitation phase will be allowed to perform. A good cutoff k_i is such that varPOAC removes many inconsistent values (that is, obtains a significant volume reduction in the network) while avoiding calls to varPOAC that delete very few values or no value at all. During the ith exploitation phase, applied to a sequence of $\frac{9}{10}\cdot LE$ consecutive nodes, the procedure varPOAC is called at each node until fixpoint is proved or the cutoff limit of k_i calls to varPOAC is reached.

The *i*th learning phase works as follows. Let k_{i-1} be the cutoff learned at the previous learning phase. We initialize maxK to $max(2 \cdot k_{i-1}, 2)$. At each node n_j in the new learning sequence $n_1, n_2, \ldots n_L$, APOAC is used with a cutoff maxK on the number of calls to the procedure varPOAC. APOAC stores the sequence of volumes (V_1, \ldots, V_{last}) , where V_p is the volume resulting from the pth call to varPOAC and last is the smallest among maxK and the number of calls needed to prove fixpoint. Once the fixpoint is proved or the maxKth call to varPOAC performed, APOAC computes $k_i(j)$, the number of varPOAC calls that are enough to sufficiently reduce the volume while avoiding the extra cost of the last calls that remove few or no value. (The criteria to decide what 'sufficiently' means are described in Sect. 6.2.) Then, to make the learning phase more adaptive, maxK is updated before starting node n_{j+1} . If $k_i(j)$ is close to

maxK, that is, greater than $\frac{3}{4} \cdot maxK$, we increase maxK by 20%. If $k_i(j)$ is less than $\frac{1}{2} \cdot maxK$, we reduce maxK by 20%. Otherwise, maxK is unchanged. Once the learning phase ends, APOAC computes the cutoff k_i that will be applied to the next exploitation phase. k_i is an aggregation of the $k_i(j)$ values, $j = 1, \ldots, L$, computed using one of the aggregation techniques presented in Sect. 6.3.

6.2 Computing $k_i(j)$

We implemented APOAC using two different techniques to compute $k_i(j)$ at a node n_i of the learning phase:

- LR (Last Reduction) $k_i(j)$ is the rank of the last call to varPOAC that reduced the volume of the constraint network.
- LD (Last Drop) $k_i(j)$ is the rank of the last call to varPOAC that has produced a significant drop of the volume. The significance of a drop is captured by a ratio $\beta \in [0, 1]$. More formally, $k_i(j) = max\{p \mid V_p \leq (1 \beta)V_{p-1}\}$.

6.3 Aggregation of the $k_i(j)$ Values

Once the *i*th learning phase is complete, APOAC aggregates the $k_i(j)$ values computed during that phase to generate k_i , the new cutoff value on the number of calls to the procedure varPOAC allowed at each node of the *i*th exploitation phase. We propose two techniques to aggregate the $k_i(j)$ values into k_i .

- Med k_i is the median of the $k_i(j), j \in 1..L$.
- q-PER This technique generalizes the previous one. Instead of taking the median, we use any percentile. That is, k_i is equal to the smallest value among $k_i(1), \ldots, k_i(L)$ such that q% of the values among $k_i(1), \ldots, k_i(L)$ are less than or equal to k_i .

Several variants of APOAC can be proposed, depending on how we compute the $k_i(j)$ values in the learning phase and how we aggregate the different $k_i(j)$ values. In the next section, we give an experimental comparison of the different variants we tested.

6.4 Experimental Evaluation of (A)POAC

This section presents experiments that compare the performance of maintaining AC, POAC, or adaptive variants of POAC during search. For the adaptive variants we use two techniques to determine $k_i(j)$: the last reduction (LR) and the last drop (LD) with $\beta = 5\%$ (see Sect. 6.2). We also use two techniques to aggregate these $k_i(j)$ values: the median (Med) and the qth percentile (q-PER) with q = 70% (see Sect. 6.3). In experiments not presented in this paper we tested the performance of APOAC using the 10th to 90th percentiles. The 70th percentile showed the best behavior. We have performed experiments for the four variants obtained by combining two by two the parameters LR vs LD and Med vs 70-PER. For each variant we compared three initial values for the maxK used by

the first learning phase: $maxK \in \{2, n, \infty\}$, where n is the number of variable in the instance to be solved. These three versions are denoted by APOAC-2, APOAC-n and APOAC-fp respectively.

We compare these search algorithms on instances available from Lecoultre's webpage.² We selected four binary classes containing at least one difficult instance for MAC ($>10\,\mathrm{s}$): mug, K-insertions, myciel and Qwh-20. We also selected all the n-ary classes in extension: the traveling-salesman problem (TSP-20, TSP-25), the Renault Megane configuration problem (Renault) and the Cril instances (Cril). These eight problem classes contain instances with 11 to 1406 variables, domains of size 3 to 1600 and 20 to 9695 constraints.

For the search algorithm maintaining AC, the algorithm AC2001 (resp. GAC2001) [BRYZ05] is used for the binary (resp. non-binary) problems. The

Table 5. Total number of instances solved by AC, several variants of APOAC, and POAC.

$k_i(j)$	k_i		AC	APOAC-2	APOAC-n	APOAC-fp	POAC
LR	70-PER	#solved	115	116	119	118	115
	Med	#solved	115	114	118	118	115
LD	70-PER	#solved	115	117	121	120	115
	Med	#solved	115	116	119	119	115

Table 6. CPU time for AC, APOAC-2, APOAC-n, APOAC-fp and POAC on the eight problem classes.

class (#instances)	AC	APOAC-2	APOAC-n	APOAC-fp	POAC
Tsp-20 (15)	#solved	15	15	15	15	15
	sum CPU	1,596.38	3,215.07	4,830.10	7,768.33	18,878.81
Tsp-25 (15)	#solved	15	14	15	15	11
	sum CPU	20,260.08	>37,160.63	16,408.35	33,546.10	>100,947.01
renault (50)	#solved	50	50	50	50	50
	sum CPU	837.72	2,885.66	11,488.61	15,673.81	18,660.01
cril (8)	#solved	4	5	7	7	7
	sum CPU	>45,332.55	>42,436.17	747.05	876.57	1,882.88
mug (8)	#solved	5	6	6	6	6
	sum CPU	>29,931.45	12,267.39	12,491.38	12,475.66	2,758.10
K-insertions (10)	#solved	4	5	6	5	5
	sum CPU	>30,614.45	>29,229.71	27,775.40	>29,839.39	>20,790.69
myciel (15)	#solved	12	12	12	12	11
	sum CPU	1,737.12	2,490.15	2,688.80	2,695.32	>20,399.70
Qwh-20 (10)	#solved	10	10	10	10	10
	sum CPU	16,489.63	12,588.54	11,791.27	12,333.89	27,033.73
Sum of CPU times		>146,799	>142,273	88,221	>115,209	>211,351
Sum of average	CPU times per class	>18,484	>14,717	8,773	>9,467	>10,229

² www.cril.univ-artois.fr/~lecoutre/benchmarks.html.

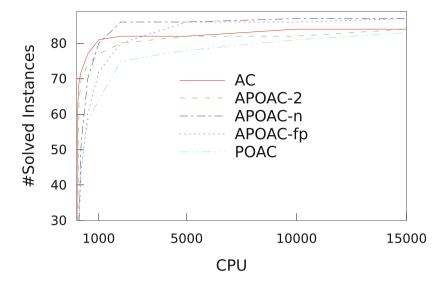


Fig. 5. Number of instances solved when the time allowed increases.

same AC algorithms are used as refutation procedure for POAC and APOAC algorithms. The dom/wdeg heuristic [BHLS04] is used both to order variables in the Ordering(X) function (see line 3 of Algorithm 4) and to order variables during search for all the search algorithms. The results presented involve all the instances solved before the cutoff of 15,000 s by at least one algorithm.

Table 5 compares all the competitors and shows the number of instances (#solved) solved before the cutoff. We observe that, on the set of instances tested, adaptive versions of POAC are better than AC and POAC. All of them, except APOAC-2+LR+Med, solve more instances than AC and POAC. All the versions using the last drop (LD) technique to determine the $k_i(j)$ values in the learning phase are better than those using last reduction (LR). We also see that the versions that use the 70th percentile (70-PER) to aggregate the $k_i(j)$ values are better than those using the median (Med). This suggests that the best combination is LD+70-PER. This is the only combination we will consider in the following.

Table 6 focuses on the performance of the three variants of APOAC (APOAC-2, APOAC-n and APOAC-fp), all with the combination (LD+70-PER). When a competitor cannot solve an instance before the cutoff, we count 15,000 s for that instance and we write '>' in front of the corresponding sum of CPU times. The last two rows of the table give the sum of CPU times and the sum of average CPU times per class. For each class taken separately, the three versions of APOAC are never worse than AC and POAC at the same time. APOAC-n solves all the instances solved by AC and POAC, and for four of the eight problem classes it outperforms both AC and POAC. However, there remain a few classes, such as Tsp-20 and renault, where even the first learning phase of APOAC is too costly

	AC	APOAC-n	POAC
#solved	84/87	87/87	83/87
sum CPU	>68,027	33,474	>140,369
gain w.r.t. AC	_	>51%	_
gain w.r.t. POAC	_	>76%	_

Table 7. Performance of APOAC-n compared to AC and POAC on n-ary problems.

to compete with AC despite our agile auto-adaptation policy that limits the number of calls to varPOAC during learning (see Sect. 6.1). Table 6 also shows that maintaining a high level of consistency, such as POAC, throughout the entire network generally produces a significant overhead.

Table 7 and Fig. 5 sum up the performance results obtained on all the instances with n-ary constraints. The binary classes are not included in the table and figure, because they have not been exhaustively tested. Figure 5 gives the performance profile for each algorithm presented in Table 6: AC, APOAC-2, APOAC-n, APOAC-fp and POAC. Each point (t,i) on a curve indicates the number i of instances that an algorithm can solve in less than t seconds. The performance profile underlines that AC and APOAC are better than POAC: whatever the time given, they solve more instances than POAC. The comparison between AC and APOAC highlights two phases: A first phase (for easy instances), during which AC is better than APOAC, and a second phase, where APOAC becomes better than AC. Among the adaptive versions, APOAC-n is the variant with the shortest first phase (it adapts quite well to easy instances), and it remains the best even when time increases.

Finally, Table 7 compares the best APOAC version (APOAC-n) to AC and POAC on n-ary problems. The first row of the table gives the number of solved instances by each algorithm before the cutoff. We observe that APOAC-n solves more instances than AC and POAC. The second row of the table gives the sum of CPU time required to solve all the instances. Again, when an instance cannot be solved before the cutoff of 15,000 s, we count 15,000 s for that instance. We observe that APOAC-n significantly outperforms both AC and POAC. The last two rows of the table give the gain of APOAC-n w.r.t. AC and w.r.t. POAC. We see that APOAC-n has a positive total gain greater than 51% compared to AC and greater than 76% compared to POAC.

7 Conclusion

We have proposed two approaches to adjust the level of consistency automatically during search. For the parameterized local consistency approach, we introduced the notion of stability of values for arc consistency, a notion based on the depth of their supports in their respective domain. This approach us allows us to define levels of local consistency of increasing strength between arc consistency and a given strong local consistency. We have introduced two techniques which

allow us to make the parameter adaptable dynamically and locally during search. As a second approach, we proposed POAC1, an algorithm that enforces partition-one-AC efficiently in practice. We have also proposed an adaptive version of POAC that monitors the number of variables on which to perform singleton tests. Our experiments show that in both approaches, adapting the level of local consistency during search can outperform both MAC and maintaining a chosen local consistency stronger than AC.

Our approaches concentrate on adapting the level of consistency between the standard arc consistency and a chosen higher level. There are many constraints (especially global constraints) on which arc consistency is already a (too) high level of consistency and on which the standard consistency is bound consistency or some simple propagation rules. In these cases, an approach to that chosen in this paper could allow us to adapt automatically between arc consistency and the given lower level.

References

- [BA01] Bennaceur, H., Affane, M.-S.: Partition-k-AC: an efficient filtering technique combining domain partition and arc consistency. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 560–564. Springer, Heidelberg (2001). doi:10.1007/3-540-45578-7-39
- [BBBT14] Balafrej, A., Bessiere, C., Bouyakhf, E.H., Trombettoni, G.: Adaptive singleton-based consistencies. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2014), Quebec City, Canada, pp. 2601–2607 (2014)
- [BBCB13] Balafrej, A., Bessiere, C., Coletta, R., Bouyakhf, E.H.: Adaptive parameterized consistency. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 143–158. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0_14
- [BCDL11] Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms for singleton arc consistency. Constraints 16(1), 25–53 (2011)
 - [BD08] Bessiere, C., Debruyne, R.: Theoretical analysis of singleton arc consistency and its extensions. Artif. Intell. 172(1), 29–41 (2008)
 - [Bes06] Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. 3. Elsevier, Amsterdam (2006)
- [BHLS04] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp. 146–150. IOS Press (2004)
- [BPSW11] Balafoutis, T., Paparrizou, A., Stergiou, K., Walsh, T.: New algorithms for max restricted path consistency. Constraints 16(4), 372–406 (2011)
- [BRYZ05] Bessiere, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc consistency algorithm. Artif. Intell. 165(2), 165–185 (2005)
- [BSW08] Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary constraints. Artif. Intell. 172(6-7), 800-822 (2008)
 - [DB97] Debruyne, R., Bessiere, C.: Some practicable filtering techniques for the constraint satisfaction problem. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya, Japan, pp. 412–417 (1997)

- [DB01] Debruyne, R., Bessiere, C.: Domain filtering consistencies. J. Artif. Intell. Res. 14, 205–230 (2001)
- [KVH06] Katriel, I., Van Hentenryck, P.: Randomized filtering algorithms. Technical report CS-06-09, Brown University, June 2006
 - [NT13] Neveu, B., Trombettoni, G.: Adaptive constructive interval disjunction. In: Proceedings of the 25th IEEE International Conference on Tools for Artificial Intelligence (IEEE-ICTAI 2013), Washington D.C., USA, pp. 900–906 (2013)
 - [PS12] Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics for adaptive constraint propagation. In: Proceedings of the 24th IEEE International Conference on Tools for Artificial Intelligence (IEEE-ICTAI 2012), Athens, Greece, pp. 880–885 (2012)
 - [Sel03] Sellmann, M.: Approximated consistency for Knapsack constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_46
 - [SS09] Stamatatos, E., Stergiou, K.: Learning how to propagate using random probing. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 263–278. Springer, Heidelberg (2009). doi:10.1007/ 978-3-642-01929-6-20
 - [Ste08] Stergiou, K.: Heuristics for dynamically adapting propagation. In: Proceedings of the Eighteenth European Conference on Artificial Intelligence (ECAI 2008), Patras, Greece, pp. 485–489 (2008)
 - [Ste09] Stergiou, K.: Heuristics for dynamically adapting propagation in constraint satisfaction problems. AI Commun. 22, 125–141 (2009)
 - [TC07] Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_45
- [VSD98] Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and evaluation of the constraint language cc(FD). J. Log. Program. 37 (1-3), 139-164 (1998)