
Adapting Consistency in Constraint Solving

Amine Balafrej1(B), Christian Bessiere2, Anastasia Paparrizou2,
and Gilles Trombettoni2

1 TASC (INRIA/CNRS), Mines Nantes, Nantes, France
amine.balafrej@mines-nantes.fr

2 CNRS, University of Montpellier, Montpellier, France
bessiere@lirmm.fr

Abstract. State-of-the-art constraint solvers uniformly maintain the
same level of local consistency (usually arc consistency) on all the
instances. We propose two approaches to adjust the level of consis-
tency depending on the instance and on which part of the instance we
propagate. The first approach, parameterized local consistency, uses as
parameter the stability of values, which is a feature computed by arc
consistency algorithms during their execution. Parameterized local con-
sistencies choose to enforce arc consistency or a higher level of local
consistency to a value depending on whether the stability of the value
is above or below a given threshold. In the adaptive version, the para-
meter is dynamically adapted during search, and so is the level of local
consistency. In the second approach, we focus on partition-one-AC, a
singleton-based consistency. We propose adaptive variants of partition-
one-AC that do not necessarily run until having proved the fixpoint. The
pruning can be weaker than the full version, but the computational effort
can be significantly reduced. Our experiments show that adaptive para-
meterized maxRPC and adaptive partition-one-AC can obtain significant
speed-ups over arc consistency and over the full versions of maxRPC and
partition-one-AC.

1 Introduction

Enforcing local consistency by applying constraint propagation during search is
one of the strengths of constraint programming (CP). It allows the constraint
solver to remove locally inconsistent values. This leads to a reduction of the
search space. Arc consistency is the oldest and most well-known way of propagat-
ing constraints [Bes06]. It has the nice feature that it does not modify the struc-
ture of the constraint network. It just prunes infeasible values. Arc consistency is
the standard level of consistency maintained in constraint solvers. Several other
local consistencies pruning only values and stronger than arc consistency have
been proposed, such as max restricted path consistency or singleton arc con-
sistency [DB97]. These local consistencies are seldom used in practice because
of the high computational cost of maintaining them during search.However, on

The results contained in this chapter have been presented in [BBCB13] and
[BBBT14]. This work has been funded by the EU project ICON (FP7-284715).

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 226–253, 2016.
DOI: 10.1007/978-3-319-50137-6 9

Adapting Consistency in Constraint Solving 227

some instances of problems, maintaining arc consistency is not a good choice
because of the high number of ineffective revisions of constraints that penalize
the CPU time. For instance, Stergiou observed that when solving the scen11, an
instance from the radio link frequency assignment problem (RLFAP) class, with
an algorithm maintaining arc consistency, only 27 out of the 4103 constraints of
the problem were identified as causing a domain wipe-out and 1921 constraints
did not prune any value [Ste09].

Choosing the right level of local consistency for solving a problem requires
finding a good trade-off between the ability of this local consistency to remove
inconsistent values, and the cost of the algorithm that enforces it. The works of
[Ste08] and [PS12] suggest to take advantage of the power of strong propagation
algorithms to reduce the search space while avoiding the high cost of maintaining
them in the whole network. These methods result in a heuristic approach based
on the monitoring of propagation events to dynamically adapt the level of local
consistency (arc consistency or max restricted path consistency) to individual
constraints. This prunes more values than arc consistency and less than max
restricted path consistency. The level of propagation obtained is not character-
ized by a local consistency property. Depending on the order of propagation,
we can converge on different closures. In other work, a high level of consistency
is applied in a non exhaustive way, because it is very expensive when applied
exhaustively everywhere in the network during the whole search. In [SS09], a
preprocessing phase learns which level of consistency to apply on which parts
of the instance. When dealing with global constraints, some authors propose
to weaken arc consistency instead of strengthening it. In [KVH06], Katriel et
al. proposed a randomized filtering scheme for AllDifferent and Global Cardi-
nality Constraint. In [Sel03], Sellmann introduced the concept of approximated
consistency for optimization constraints and provided filtering algorithms for
Knapsack Constraints based on bounds with guaranteed accuracy.

In this chapter, we propose two approaches for adapting automatically the
level of consistency during search. Our first approach is based on the notion of
stability of values. This is an original notion independent of the characteristics of
the instance to be solved, but based on the state of the arc consistency algorithm
during its propagation. Based on this notion, we propose parameterized consis-
tencies, an original approach to adjust the level of consistency inside a given
instance. The intuition is that if a value is hard to prove arc consistent (i.e., the
value is not stable for arc consistency), this value will perhaps be pruned by a
stronger local consistency. The parameter p specifies the threshold of stability
of a value v below which we will enforce a stronger consistency to v. A para-
meterized consistency p-LC is thus an intermediate level of consistency between
arc consistency and another consistency LC, stronger than arc consistency. The
strength of p-LC depends on the parameter p. This approach allows us to find a
trade-off between the pruning power of local consistency and the computational
cost of the algorithm that achieves it. We apply p-LC to the case where LC is
max restricted path consistency. We describe the algorithm p-maxRPC3 (based
on maxRPC3 [BPSW11]) that achieves p-max restricted path consistency. Then,
we propose ap-LC, an adaptive variant of p-LC that uses the number of failures

228 A. Balafrej et al.

in which variables or constraints are involved to assess the difficulty of the dif-
ferent parts of the problem during search. ap-LC dynamically and locally adapts
the level p of local consistency to apply depending on this difficulty.

Our second approach is inspired by singleton-based consistencies. They have
been shown extremely efficient to solve some classes of hard problems [BCDL11].
Singleton-based consistencies apply the singleton test principle, which consists
of assigning a value to a variable and trying to refute it by enforcing a given level
of consistency. If a contradiction occurs during this singleton test, the value is
removed from its domain. The first example of such a local consistency is Sin-
gleton Arc Consistency (SAC), introduced in [DB97]. In SAC, the singleton test
enforces arc consistency. By definition, SAC can only prune values in the variable
domain on which it currently performs singleton tests. In [BA01], Partition-One-
AC (which we call POAC) has been proposed. POAC is an extension of SAC
that can prune values everywhere in the network as soon as a variable has been
completely singleton tested. As a consequence, the fixpoint in terms of filtering
is often quickly reached in practice. This observation has already been made
on numerical constraint problems. In [TC07,NT13], a consistency called Con-
structive Interval Disjunction (CID), close to POAC in its principle, gave good
results by simply calling the main procedure once on each variable or by adapt-
ing during search the number of times it is called. Based on these observations,
we propose an adaptive version of POAC, called APOAC, where the number of
times variables are processed for singleton tests on their values is dynamically
and automatically adapted during search. A sequence of singleton tests on all
values of one variable is called a varPOAC call. The number k of times varPOAC
is called will depend on how effective POAC is or not in pruning values. This
number k of varPOAC calls will be learned during a sequence of nodes of the
search tree (learning nodes) by measuring stagnation in the amount of pruned
values. This amount k of varPOAC calls will be applied at each node during
a sequence of nodes (called exploitation nodes) before we enter a new learning
phase to adapt k again. Observe that if the number of varPOAC calls learned is 0,
then adaptive POAC will mimic AC.

The aim of both of the proposed adaptive approaches (i.e., ap-LC and
APOAC) is to adapt the level of consistency automatically and dynamically
during search. ap-LC uses failure information to learn what are the most diffi-
cult parts of the problem and it increases locally and dynamically the parameter
p on those difficult parts. APOAC measures a stagnation in number of inconsis-
tent values removed for k calls of varPOAC. APOAC then uses this information
to stop enforcing POAC. APOAC avoids the cost of the last calls to varPOAC
that delete very few values or no value at all. We thus see that both ap-LC and
APOAC learn some information during search to adapt the level of consistency.
This allows them to benefit from the pruning power of a high level of consistency
while avoiding the prohibitive time cost of fully maintaining this high level.

The rest of the paper is organized as follows. Section 2 contains the necessary
formal background. Section 3 describes the parameterized consistency approach
and gives an algorithm for parameterized maxRPC. In Sect. 4, the adaptive

Adapting Consistency in Constraint Solving 229

variant of parameterized consistency is defined. Sections 5 and 6 are devoted
to our study of singleton-based consistencies. In Sect. 5, we propose an efficient
POAC algorithm that will be used as a basis for the adaptive versions of POAC.
Section 6 presents different ways to learn the number of variables on which to
perform singleton tests. All these sections contain experimental results that val-
idate the different contributions. Section 7 concludes this work.

2 Background

A constraint network is defined as a set of n variables X = {x1, . . . , xn}, a
set of ordered domains D = {D(x1), . . . , D(xn)}, and a set of e constraints
C = {c1, . . . , ce}. Each constraint ck is defined by a pair (var(ck), sol(ck)), where
var(ck) is an ordered subset of X, and sol(ck) is a set of combinations of values
(tuples) satisfying ck. In the following, we restrict ourselves to binary constraints,
because the local consistency (maxRPC) we use here to instantiate our approach
is defined on the binary case only. However, the notions we introduce can be
extended to non-binary constraints, by using maxRPWC for instance [BSW08].
A binary constraint c between xi and xj will be denoted by cij , and Γ(xi) will
denote the set of variables xj involved in a constraint with xi.

A value vj ∈ D(xj) is called an arc consistent support (AC support) for
vi ∈ D(xi) on cij if (vi, vj) ∈ sol(cij). A value vi ∈ D(xi) is arc consistent (AC)
if and only if for all xj ∈ Γ(xi) vi has an AC support vj ∈ D(xj) on cij . A
domain D(xi) is arc consistent if it is non empty and all values in D(xi) are arc
consistent. A network is arc consistent if all domains in D are arc consistent. If
enforcing arc consistency on a network N leads to a domain wipe out, we say
that N is arc inconsistent.

A tuple (vi, vj) ∈ D(xi)×D(xj) is path consistent (PC) if and only if for any
third variable xk there exists a value vk ∈ D(xk) such that vk is an AC support
for both vi and vj . In such a case, vk is called witness for the path consistency
of (vi, vj).

A value vj ∈ D(xj) is a max restricted path consistent (maxRPC) support for
vi ∈ D(xi) on cij if and only if it is an AC support and the tuple (vi, vj) is path
consistent. A value vi ∈ D(xi) is max restricted path consistent on a constraint
cij if and only if there exist vj ∈ D(xj) maxRPC support for vi on cij . A value
vi ∈ D(xi) is max restricted path consistent ifand only if for all xj ∈ Γ(xi) vi has
a maxRPC support vj ∈ D(xj) on cij . A variable xi is maxRPC if its domain
D(xi) is non empty and all values in D(xi) are maxRPC. A network is maxRPC
if all domains in D are maxRPC.

A value vi ∈ D(xi) is singleton arc consistent (SAC) if and only if the network
N |xi=vi

where D(xi) is reduced to the singleton {vi} is not arc inconsistent.
A variable xi is SAC if D(xi) �= ∅ and all values in D(xi) are SAC. A network
is SAC if all its variables are SAC.

A variable xi is partition-one-AC (POAC) if and only if D(xi) �= ∅, all values
in D(xi) are SAC, and ∀j ∈ 1 . . . n, j �= i,∀vj ∈ D(xj), ∃vi ∈ D(xi) such that
vj ∈ AC(N |xi=vi

). A constraint network N = (X,D,C) is POAC if and only if

230 A. Balafrej et al.

all its variables are POAC. Observe that POAC, as opposed to SAC, is able to
prune values from all variable domains when being enforced on a given variable.

Following [DB97], we say that a local consistency LC1 is stronger than a
local consistency LC2 (LC2 � LC1) if LC2 holds on any constraint network on
which LC1 holds. It has been shown in [BA01] that POAC is strictly stronger
than SAC. Hence, SAC holds on any constraint network on which POAC holds
and there exist constraint networks on which SAC holds but not POAC.

The problem of deciding whether a constraint network has solutions is called
the constraint satisfaction problem (CSP), and it is NP-complete. Solving a CSP
is mainly done by backtrack search that maintains some level of consistency
between each branching step.

3 Parameterized Consistency

In this section, we present an original approach to parameterize a level of consis-
tency LC stronger than arc consistency so that it degenerates to arc consistency
when the parameter equals 0, to LC when the parameters equals 1, and to levels
in between when the parameter is between 0 and 1. The idea behind this is to be
able to adjust the level of consistency to the instance to be solved, hoping that
such an adapted level of consistency will prune significantly more values than
arc consistency while being less time consuming than LC.

Parameterized consistency is based on the concept of stability of values. We
first need to define the ‘distance to end’ of a value in a domain. This captures
how far a value is from the last in its domain. In the following, rank(v, S) is the
position of value v in the ordered set of values S.

Definition 1 (Distance to end of a value). The distance to end of a value
vi ∈ D(xi) is the ratio

Δ(xi, vi) = (|Do(xi)| − rank(vi,Do(xi)))/|Do(xi)|,
where Do(xi) is the initial domain of xi.

We see that the first value in Do(xi) has distance (|Do(xi)|−1)/|Do(xi)| and
the last one has distance 0. Thus, ∀vi ∈ D(xi), 0 ≤ Δ(xi, vi) < 1.

We can now give the definition of what we call the parameterized stability
of a value for arc consistency. The idea is to define stability for values based
on the distance to the end of their AC supports. For instance, consider the
constraint x1 ≤ x2 with the domains D(x1) = D(x2) = {1, 2, 3, 4} (see Fig. 1).
Δ(x2, 1) = (4 − 1)/4 = 0.75, Δ(x2, 2) = 0.5, Δ(x2, 3) = 0.25 and Δ(x2, 4) = 0.
If p = 0.2, the value (x1, 4) is not p-stable for AC, because the first and only
AC support of (x1, 4) in the ordering used to look for supports, that is (x2, 4),
has a distance to end smaller than the threshold p. Proving that the pair (4, 4)
is inconsistent (by a stronger consistency) could lead to the pruning of (x1, 4).
In other words, applying a stronger consistency on (x1, 4) has a higher chance
to lead to its removal than applying it to for instance (x1, 1), which had no
difficulty to find its first AC support (distance to end of (x2, 1) is 0.75).

Adapting Consistency in Constraint Solving 231

Fig. 1. Stability of supports on the example of the constraint x1 ≤ x2 with the domains
D(x1) = D(x2) = {1, 2, 3, 4}. (x1, 4) is not p-stable for AC.

At this point, we want to emphasize that the ordering of values used to
look for supports in the domains is not related to the order in which values
are selected by the branching heuristic used by the backtrack search procedure.
That is, we can use a given order of values for looking for supports and another
one for exploring the search tree.

Definition 2 (p-stability for AC). A value vi ∈ D(xi) is p-stable for AC on
cij iff vi has an AC support vj ∈ D(xj) on cij such that Δ(xj , vj) ≥ p. A value
vi ∈ D(xi) is p-stable for AC iff ∀xj ∈ Γ(xi), vi is p-stable for AC on cij.

We are now ready to give the first definition of parameterized local consis-
tency. This first definition can be applied to any local consistency LC for which
the consistency of a value on a constraint is well defined. This is the case for
instance for all triangle-based consistencies [DB01,Bes06].

Definition 3 (Constraint-based p-LC). Let LC be a local consistency
stronger than AC for which the LC consistency of a value on a constraint is
defined. A value vi ∈ D(xi) is constraint-based p-LC on cij iff it is p-stable for
AC on cij, or it is LC on cij. A value vi ∈ D(xi) is constraint-based p-LC iff
∀cij, vi is constraint-based p-LC on cij. A constraint network is constraint-based
p-LC iff all values in all domains in D are constraint-based p-LC.

Theorem 1. Let LC be a local consistency stronger than AC for which the LC
consistency of a value on a constraint is defined. Let p1 and p2 be two parameters
in [0..1]. If p1 < p2, then AC � constraint-based p1-LC � constraint-based p2-
LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 < p2 ≤
1, and suppose that there exists a p2-LC constraint network N that contains
a p2-LC value (xi, vi) that is p1-LC inconsistent. Let cij be the constraint on
which (xi, vi) is p1-LC inconsistent. Then, �vj ∈ D(xj) that is an AC support
for (xi, vi) on cij such that Δ(xj , vj) ≥ p1. Thus, vi is not p2-stable for AC on
cij . In addition, vi is not LC on cij . Therefore, vi is not p2-LC, and N is not
p2-LC. �

232 A. Balafrej et al.

Definition 3 can be modified to a more coarse-grained version that is not
dependent on the consistency of values on a constraint. This will have the advan-
tage to apply to any type of strong local consistency, even those, like singleton arc
consistency, for which the consistency of a value on a constraint is not defined.

Definition 4 (Value-based p-LC). Let LC be a local consistency stronger
than AC. A value vi ∈ D(xi) is value-based p-LC if and only if it is p-stable
for AC or it is LC. A constraint network is value-based p-LC if and only if all
values in all domains in D are value-based p-LC.

Theorem 2. Let LC be a local consistency stronger than AC. Let p1 and p2 be
two parameters in [0..1]. If p1 < p2 then AC � value-based p1-LC � value-based
p2-LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 <
p2 ≤ 1, and suppose that there exists a p2-LC constraint network N that contains
a p2-LC value (xi, vi) that is p1-LC-inconsistent. vi is p1-LC-inconsistent means
that:

1. vi is not p1-stable for AC: ∃cij on which vi is not p1-stable for AC. Then
�vj ∈ D(xj) that is an AC support for (xi, vi) on cij such that Δ(xj , vj) ≥ p1.
Therefore, vi is not p2-stable for AC on cij , then vi is not p2-stable for AC.

2. vi is LC inconsistent.

(1) and (2) imply that vi is not p2-LC and N is not p2-LC. �

For both types of definitions of p-LC, we have the following property on the
extreme cases (p = 0, p = 1).

Corollary 1. Let LC1 and LC2 be two local consistencies stronger than AC.
We have: value-based 0-LC2 = AC and value-based 1-LC2 = LC. If the LC1

consistency of a value on a constraint is defined, we also have: constraint-based
0-LC1 = AC and constraint-based 1-LC1 = LC.

3.1 Parameterized MaxRPC: p-maxRPC

To illustrate the benefit of our approach, we apply parameterized consistency to
maxRPC to obtain the p-maxRPC level of consistency that achieves a consis-
tency level between AC and maxRPC.

Definition 5 (p-maxRPC). A value is p-maxRPC if and only if it is cons-
traint-based p-maxRPC. A network is p-maxRPC if and only if it is constraint-
based p-maxRPC.

From Theorem 1 and Corollary 1 we derive the following corollary.

Corollary 2. For any two parameters p1, p2, 0 ≤ p1 < p2 ≤ 1, AC � p1-
maxRPC � p2-maxRPC � maxRPC. 0-maxRPC = AC and 1-maxRPC =
maxRPC.

Adapting Consistency in Constraint Solving 233

Algorithm 1. Initialization(X,D,C,Q)
1 begin
2 foreach xi ∈ X do
3 foreach vi ∈ D(xi) do
4 foreach xj ∈ Γ(xi) do
5 p-support ← false;
6 foreach vj ∈ D(xj) do
7 if (vi, vj) ∈ cij then
8 LastACxi,vi,xj← vj ;
9 if Δ(xj , vj) ≥ p then

10 p-support ← true;
11 LastPCxi,vi,xj← vj ;
12 break;

13 if searchPCwit(vi, vj) then
14 p-support ← true;
15 LastPCxi,vi,xj← vj ;
16 break;

17 if ¬p-support then
18 remove vi from D(xi);
19 Q ← Q ∪ {xi};
20 break;

21 if D(xi) = ∅ then return false;

22 return true;

We propose an algorithm for p-maxRPC, based on maxRPC3, the best exist-
ing maxRPC algorithm. We do not describe maxRPC3 in full detail, as it can be
found in [BPSW11]. We only describe procedures where changes to maxRPC3
are necessary to design p-maxRPC3, a coarse grained algorithm that performs
p-maxRPC. We use light grey to emphasize the modified parts of the original
maxRPC3 algorithm.

maxRPC3 uses a propagation list Q where it inserts the variables whose
domains have changed. It also uses two other data structures: LastAC and
LastPC. For each value (xi, vi), LastACxi,vi,xj

stores the smallest AC support
for (xi, vi) on cij and LastPCxi,vi,xj

stores the smallest PC support for (xi, vi)
on cij (i.e., the smallest AC support (xj , vj) for (xi, vi) on cij such that (vi, vj)
is PC). This algorithm comprises two phases: initialization and propagation.

In the initialization phase (Algorithm1) maxRPC3 checks if each value
(xi, vi) has a maxRPC-support (xj , vj) on each constraint cij . If not, it removes
vi from D(xi) and inserts xi in Q. To check if a value (xi, vi) has a maxRPC-
support on a constraint cij , maxRPC3 looks first for an AC-support (xj , vj) for
(xi, vi) on cij , then it checks if (vi, vj) is PC. In this last step, changes were

234 A. Balafrej et al.

Algorithm 2. checkPCsupLoss(vj , xi)

1 begin
2 if LastACxj ,vj ,xi∈ D(xi) then
3 bi ← max(LastPCxj ,vj ,xi+1,LastACxj ,vj ,xi);
4 else
5 bi ← max(LastPCxj ,vj ,xi+1,LastACxj ,vj ,xi+1);

6 foreach vi ∈ D(xi), vi ≥ bi do
7 if (vj , vi) ∈ cji then
8 if LastACxj ,vj ,xi /∈ D(xi) & LastACxj ,vj ,xi>LastPCxj ,vj ,xi then
9 LastACxj ,vj ,xi← vi;

10 if Δ(xi, vi) ≥ p then
11 LastPCxj ,vj ,xi← vi;
12 return true;

13 if searchPCwit(vj , vi) then
14 LastPCxj ,vj ,xi← vi;
15 return true;

16 return false;

necessary to obtain p-maxRPC3 (lines 9–12). We check if (vi, vj) is PC (line 13)
only if Δ(xj , vj) is smaller than the parameter p (line 9).

The propagation phase of maxRPC3 involves propagating the effect of dele-
tions. While Q is non empty, maxRPC3 extracts a variable xi from Q and checks
for each value (xj , vj) of each neighboring variable xj ∈ Γ(xi) if it is not maxRPC
because of deletions of values in D(xi). A value (xj , vj) becomes maxRPC
inconsistent in two cases: if its unique PC-support (xi, vi) on cij has been
deleted, or if we deleted the unique witness (xi, vi) for a pair (vj , vk) such that
(xk, vk) is the unique PC-support for (xj , vj) on cjk. So, to propagate deletions,
maxRPC3 checks if the last maxRPC support (last known support) of (xj , vj)
on cij still belongs to the domain of xi, otherwise it looks for the next support
(Algorithm 2). If such a support does not exist, it removes the value vj and adds
the variable xj to Q. Then if (xj , vj) has not been removed in the previous step,
maxRPC3 checks (Algorithm 3) whether there is still a witness for each pair
(vj , vk) such that (xk, vk) is the PC support for (xj , vj) on cjk. If not, it looks
for the next maxRPC support for (xj , vj) on cjk. If such a support does not
exist, it removes vj from D(xj) and adds the variable xj to Q.

In the propagation phase, we also modified maxRPC3 to check if the values
are still p-maxRPC instead of checking if they are maxRPC. In p-maxRPC3, the
last p-maxRPC support for (xj , vj) on cij is the last AC support if (xj , vj) is p-
stable for AC on cij . If not, it is the last PC support. Thus, p-maxRPC3 checks if
the last p-maxRPC support (last known support) of (xj , vj) on cij still belongs
to the domain of xi. If not, it looks (Algorithm2) for the next AC support
(xi, vi) on cij , and checks if (vi, vj) is PC (line 13) only when Δ(xi, vi) < p

Adapting Consistency in Constraint Solving 235

Algorithm 3. checkPCwitLoss(xj , vj , xi)

1 begin
2 foreach xk ∈ Γ(xj) ∩ Γ(xi) do
3 witness ← false;
4 if vk ←LastPCxj ,vj ,xk∈ D(xk) then
5 if Δ(xk, vk) ≥ p then
6 witness ← true;

7 else
8 if LastACxj ,vj ,xi∈ D(xi) & LastACxj ,vj ,xi=LastACxk,vk,xi

9 OR LastACxj ,vj ,xi∈ D(xi) & (LastACxj ,vj ,xi , vk) ∈ cik
10 OR LastACxk,vk,xi∈ D(xi) & (LastACxk,vk,xi , vj) ∈ cij
11 then witness ← true ;
12 else
13 if searchACsup(xj , vj , xi) & searchACsup(xk, vk, xi) then
14 foreach

vi ∈ D(xi), vi ≥ max(LastACxj ,vj ,xi ,LastACxk,vk,xi)
do

15 if (vj , vi) ∈ cji & (vk, vi) ∈ cki then
16 witness ← true;
17 break;

18 if ¬witness & ¬checkPCsupLoss(vj , xk) then return false ;

19 return true;

(line 10). If no p-maxRPC support exists, p-maxRPC3 removes the value and
adds the variable xj to Q. If the value (xj , vj) has not been removed in the
previous phase, p-maxRPC3 checks (Algorithm 3) whether there is still a witness
for each pair (vj , vk) such that (xk, vk) is the p-maxRPC support for vj on cjk
and Δ(xk, vk) < p. If not, it looks for the next p-maxRPC support for vj on cjk.
If such a support does not exist, it removes vj from D(xj) and adds the variable
xj to Q.

p-maxRPC3 uses the data structure LastPC to store the last p-maxRPC
support (i.e., the latest AC support for the p-stable values and the latest
PC support for the others). Algorithms 1 and 2 update the data structure
LastPC of maxRPC3 to be LastAC for all the values that are p-stable for AC
(line 11 of Algorithm 1 and line 11 of Algorithm2) and avoid seeking witnesses
for those values. Algorithm3 avoids checking the loss of witnesses for the p-stable
values by setting the flag witness to true (line 6). Correctness of p-maxRPC3
directly comes from maxRPC3: The removed values are necessarily p-maxRPC-
inconsistent and all the values that are p-maxRPC-inconsistent are removed.

236 A. Balafrej et al.

3.2 Experimental Validation of p-maxRPC

To validate the approach of parameterized local consistency, we conducted a first
basic experiment. The purpose of this experiment is to see if there exist instances
on which a given level of p-maxRPC, with a value p that is uniform (i.e., identical
for the entire constraint network) and static (i.e., constant through the entire
search process), is more efficient than AC or maxRPC, or both.

We have implemented the algorithms that achieve p-maxRPC as described in
the previous section in our own binary constraint solver, in addition to maxRPC
(maxRPC3 version [BPSW11]) and AC (AC2001 version [BRYZ05]). All the
algorithms are implemented in our JAVA CSP solver. We tested these algo-
rithms on several classes of CSP instances from the International Constraint
Solver Competition 091. We have only selected instances involving binary con-
straints. To isolate the effect of propagation, we used the lexicographic ordering
for variables and values. We set the CPU timeout to one hour. Our experiments
were conducted on a 12-core Genuine Intel machine with 16 Gb of RAM running
at 2.92 GHz.

On each instance of our experiment, we ran AC, max-RPC, and p-maxRPC
for all values of p in {0.1, 0.2, . . . , 0.9}. Performance has been measured in terms
of CPU time in seconds, the number of visited nodes (NODE) and the number
of constraint checks (CCK). Results are presented as “CPU time (p)”, where p
is the parameter for which p-maxRPC gives the best result.

Table 1 reports the performance of AC, maxRPC, and p-maxRPC for the
value of p producing the best CPU time, on instances from Radio Link Frequency
Assignment Problems (RLFAPs), geom problems, and queens knights problems.
The CPU time of the best algorithm is bold-faced. On RLFAP and geom, we
observe the existence of a parameter p for which p-maxRPC is faster than both
AC and maxRPC for most instances of these two classes of problems. On the
queens-knight problem, however, AC is always the best algorithm. In Figs. 2
and 3, we try to understand more closely what makes p-maxRPC better or worse
than AC and maxRPC. Figures 2 and 3 plot the performance (CPU, NODE and
CCK) of p-maxRPC for all values of p from 0 to 1 by steps of 0.1 against
performance of AC and maxRPC. Figure 2 shows an instance where p-maxRPC
solves the problem faster than AC and maxRPC for values of p in the range
[0.3..0.8]. We observe that p-maxRPC is faster than AC and maxRPC when it
reduces the size of the search space as much as maxRPC (same number of nodes
visited) with a number of CCK closer to the number of CCK produced by AC.
Figure 3 shows an instance where the CPU time for p-maxRPC is never better
than both AC and maxRPC, whatever the value of p. We see that p-maxRPC
is two to three times faster than maxRPC. But p-maxRPC fails to improve AC
because the number of constraint checks performed by p-maxRPC is much higher
than the number of constraint checks performed by AC, whereas the number of
nodes visited by p-maxRPC is not significantly reduced compared to the number
of nodes visited by AC. From these observations, it thus seems that p-maxRPC

1 http://cpai.ucc.ie/09/.

http://cpai.ucc.ie/09/

Adapting Consistency in Constraint Solving 237

Table 1. Performance (CPU time, nodes and constraint checks) of AC, p-maxRPC,
and maxRPC on various instances.

AC p-maxRPC p maxRPC

scen1-f8 CPU >3600 1.39 (0.2) 6.10

#nodes – 927 917

#ccks – 1,397,440 26,932,990

scen2-f24 CPU >3600 0.13 (0.3) 0.65

#nodes – 201 201

#ccks – 296,974 3,462,070

scen3-f10 CPU >3600 0.89 (0.5) 2.80

#nodes – 469 408

#ccks – 874,930 13,311,797

geo50-20-d4-75-26 CPU 111.48 17.80 (1.0) 15.07

#nodes 477,696 3,768 3,768

#ccks 96,192,822 40,784,017 40,784,017

geo50-20-d4-75-43 CPU 1,671.35 1,264.36 (0.5) 1,530.02

#nodes 4,118,134 555,259 279,130

#ccks 1,160,664,461 1,801,402,535 3,898,964,831

geo50-20-d4-75-46 CPU 1,732.22 371.30 (0.6) 517.35

#nodes 3,682,394 125,151 64,138

#ccks 1,516,856,615 584,743,023 1,287,674,430

geo50-20-d4-75-84 CPU 404.63 0.44 (0.6) 0.56

#nodes 2,581,794 513 333

#ccks 293,092,144 800,657 1,606,047

queensKnights10-5-add CPU 27.14 30.79 (0.2) 98.44

#nodes 82,208 81,033 78,498

#ccks 131,098,933 148,919,686 954,982,880

queensKnights10-5-mul CPU 43.89 83.27 (0.1) 300.74

#nodes 74,968 74,414 70,474

#ccks 104,376,698 140,309,576 1,128,564,278

outperforms AC and maxRPC when it finds a compromise between the number
of nodes visited (the power of maxRPC) and the number of CCK needed to
maintain (the light cost of AC).

In Figs. 2 and 3 we can see that the CPU time for 1-maxRPC (respectively 0-
maxRPC) is greater than the CPU time for maxRPC (respectively AC), although
the two consistencies are equivalent. The reason is that p-maxRPC performs
tests on the distances. For p = 0, we also explain this difference by the fact that
p-maxRPC maintains data structures that AC does not use.

238 A. Balafrej et al.

Fig. 2. Instance where p-maxRPC out-
performs both AC and maxRPC.

Fig. 3. Instance where AC outperforms
p-maxRPC.

4 Adaptative Parameterized Consistency: ap-maxRPC

In the previous section, we have defined p-maxRPC, a version of parameterized
consistency where the strong local consistency is maxRPC. We have performed
some initial experiments where p has the same value during the whole search and
everywhere in the constraint network. However, the algorithm we proposed to
enforce p-maxRPC does not specify how p is chosen. In this section, we propose
two possible ways to dynamically and locally adapt the parameter p in order to
solve the problem faster than both AC and maxRPC. Instead of using a single
value for p during the whole search and for the whole constraint network, we pro-
pose to use several local parameters and to adapt the level of local consistency by
dynamically adjusting the value of the different local parameters during search.
The idea is to concentrate the effort of propagation by increasing the level of
consistency in the most difficult parts of the given instance. We can determine
these difficult parts using heuristics based on conflicts in the same vein as the
weight of a constraint or the weighted degree of a variable in [BHLS04].

4.1 Constraint-Based ap-maxRPC: apc-maxRPC

The first technique we propose, called constraint-based ap-maxRPC, assigns a
parameter p(ck) to each constraint ck in C. We define this parameter to be
correlated to the weight of the constraint. The idea is to apply a higher level of
consistency in parts of the problem where the constraints are the most active.

Definition 6 (The weight of a constraint [BHLS04]). The weight w(ck) of a
constraint ck ∈ C is an integer that is incremented every time a domain wipe-out
occurs while performing propagation on this constraint.

Adapting Consistency in Constraint Solving 239

We define the adaptive parameter p(ck) local to constraint ck in such a way
that it is greater when the weight w(ck) is higher w.r.t. other constraints.

∀ck ∈ C, p(ck) =
w(ck) − minc∈C(w(c))

maxc∈C(w(c)) − minc∈C(w(c))
(1)

Equation 1 is normalized so that we are guaranteed that 0 ≤ p(ck) ≤ 1 for
all ck ∈ C and that there exists ck1 with p(ck1) = 0 (the constraint with lowest
weight) and ck2 with p(ck2) = 1 (the constraint with highest weight).

We are now ready to define adaptive parameterized consistency based on
constraints.

Definition 7 (constraint-based ap-maxRPC). A value vi ∈ D(xi) is
constraint-based ap-maxRPC (or apc-maxRPC) on a constraint cij if and only
if it is constraint-based p(cij)-maxRPC. A value vi ∈ D(xi) is apc-maxRPC
iff ∀cij, vi is apc-maxRPC on cij. A constraint network is apc-maxRPC iff all
values in all domains in D are apc-maxRPC.

4.2 Variable-Based ap-maxRPC: apx-maxRPC

The technique proposed in Sect. 4.1 can only be used on consistencies where the
consistency of a value on a constraint is defined. We present a second technique
which can be used on constraint-based or variable-based local consistencies indif-
ferently. We instantiate our definitions to maxRPC but the extension to other
consistencies is direct. We call this new technique variable-based ap-maxRPC.
We need to define the weighted degree of a variable as the aggregation of the
weights of all constraints involving it.

Definition 8 (The weighted degree of a variable [BHLS04]). The weighted
degree wdeg(xi) of a variable xi is the sum of the weights of the constraints
involving xi and one other uninstantiated variable.

We associate each variable with an adaptive local parameter based on its
weighted degree.

∀xi ∈ X, p(xi) =
wdeg(xi) − minx∈X(wdeg(x))

maxx∈X(wdeg(x)) − minx∈X(wdeg(x))
(2)

As in Eq. 1, we see that the local parameter is normalized so that we are
guaranteed that 0 ≤ p(xi) ≤ 1 for all xi ∈ X and that there exists xk1 with
p(xk1) = 0 (the variable with lowest weighted degree) and xk2 with p(xk2) = 1
(the variable with highest weighted degree).

Definition 9 (variable-based ap-maxRPC). A value vi ∈ D(xi) is variable-
based ap-maxRPC (or apx-maxRPC) if and only if it is value-based p(xi)-
maxRPC. A constraint network is apx-maxRPC iff all values in all domains
in D are apx-maxRPC.

240 A. Balafrej et al.

4.3 Experimental Evaluation of ap-maxRPC

In Sect. 3.2 we have shown that maintaining a static form of p-maxRPC during
the entire search can lead to a promising trade-off between computational effort
and pruning when all algorithms follow the same static variable ordering. In
this section, we want to put our contributions in the real context of a solver
using the best known variable ordering heuristic, dom/wdeg, though it is known
that this heuristic is so good that it substantially reduces the differences in
performance that other features of the solver could provide. We have compared
the two variants of adaptive parameterized consistency, namely apc-maxRPC
and apx-maxRPC, to AC and maxRPC. We ran the four algorithms on instances
of radio link frequency assignment problems, geom problems, and queens knights
problems.

Table 2 reports some representative results. A first observation is that, thanks
to the dom/wdeg heuristic, we were able to solve more instances before the cutoff
of one hour, especially the scen11 variants of RLFAP. A second observation is
that apc-maxRPC and apx-maxRPC are both faster than at least one of the
two extreme consistencies (AC and maxRPC) on all instances except scen7-
w1-f4 and geo50-20-d4-75-30. Third, when apx-maxRPC and/or apc-maxRPC
are faster than both AC and maxRPC (scen1-f9, scen2-f25, scen11-f9, scen11-
f10 and scen11-f11), we observe that the gap in performance in terms of nodes
and CCKs between AC and maxRPC is significant. Except for scen7-w1-f4, the
number of nodes visited by AC is three to five times greater than the number
of nodes visited by maxRPC and the number of constraint checks performed by
maxRPC is twelve to sixteen times greater than the number of constraint checks
performed by AC. For the geom instances the CPU time of the ap-maxRPC
algorithms is between AC and maxRPC, and it is never lower than the CPU
time of AC. This probably means that when solving these instances with the
dom/wdeg heuristic, there is no need for sophisticated local consistencies. In
general we see that the ap-maxRPC algorithms fail to improve both the two
extreme consistencies simultaneously for the instances where the performance
gap between AC and maxRPC is low.

If we compare apx-maxRPC to apc-maxRPC, we observe that although apx-
maxRPC is coarser in its design than apc-maxRPC, apx-maxRPC is often faster
than apc-maxRPC. We can explain this by the fact that the constraints initially
all have the same weight equal to 1. Hence, all local parameters ap(ck) initially
have the same value 0, so that apc-maxRPC starts resolution by applying AC
everywhere. It will start enforcing some amount of maxRPC only after the first
wipe-out occurred. On the contrary, in apx-maxRPC, when constraints all have
the same weight, the local parameter p(xi) is correlated to the degree of the vari-
able xi. As a result, apx-maxRPC benefits from the filtering power of maxRPC
even before the first wipe-out.

In Table 2, we reported only the results on a few representative instances.
Table 3 summarizes the entire set of experiments. It shows the average CPU time
for each algorithm on all instances of the different classes of problems tested. We
considered only the instances solved before the cutoff of one hour by at least one

Adapting Consistency in Constraint Solving 241

Table 2. Performance (CPU time, nodes and constraint checks) of AC, variable-
based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and
maxRPC on various instances.

AC apx-maxRPC apc-maxRPC maxRPC

scen1-f9 CPU 90.34 31.17 33.40 41.56

#nodes 2,291 1,080 1,241 726

#ccks 3,740,502 3,567,369 2,340,417 50,045,838

scen2-f25 CPU 70.57 46.40 27.22 81.40

#nodes 12,591 4,688 3,928 3,002

#ccks 15,116,992 38,239,829 8,796,638 194,909,585

scen6-w2 CPU 7.30 1.25 2.63 0.01

#nodes 2,045 249 610 0

#ccks 2,401,057 1,708,812 1,914,113 85,769

scen7-w1-f4 CPU 0.28 0.17 0.54 0.30

#nodes 567 430 523 424

#ccks 608,040 623,258 584,308 1,345,473

scen11-f9 CPU 2,718.65 1,110.80 1,552.20 2,005.61

#nodes 103,506 40,413 61,292 32,882

#ccks 227,751,301 399,396,873 123,984,968 3,637,652,122

scen11-f10 CPU 225.29 83.89 134.46 112.18

#nodes 9,511 3,510 4,642 2,298

#ccks 12,972,427 17,778,458 6,717,485 156,005,235

scen11-f11 CPU 156.76 39.39 93.69 76.95

#nodes 7,050 2,154 3,431 1,337

#ccks 7,840,552 10,006,821 5,143,592 91,518,348

scen11-f12 CPU 139.91 69.50 88.76 61.92

#nodes 7,050 2,597 3,424 1,337

#ccks 7,827,974 11,327,536 5,144,835 91,288,023

geo50-20d4-75-19 CPU 242.13 553.53 657.72 982.34

#nodes 195,058 114,065 160,826 71,896

#ccks 224,671,319 594,514,132 507,131,322 2,669,750,690

geo50-20d4-75-30 CPU 0.84 1.01 1.07 1.02

#nodes 359 115 278 98

#ccks 261,029 432,705 313,168 1,880,927

geo50-20d4-75-84 CPU 0.02 0.09 0.05 0.29

#nodes 59 54 59 52

#ccks 33,876 80,626 32,878 697,706

queensK20-5-mul CPU 787.35 2,345.43 709.45 >3600

#nodes 55,596 40,606 41,743 –

#ccks 347,596,389 6,875,941,876 379,826,516 –

queensK15-5-add CPU 24.69 17.01 14.98 35.05

#nodes 24,639 12,905 12,677 11,595

#ccks 90,439,795 91,562,150 58,225,434 394,073,525

242 A. Balafrej et al.

Table 3. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated at each node

class (#instances) AC apx-maxRPC apc-maxRPC maxRPC

geom (10) #solved 10 10 10 10

average CPU 69.28 180.57 191.03 279.30

scen (10) #solved 10 10 10 10

average CPU 18.95 9.63 8.30 13.94

scen11 (10) #solved 4 4 4 4

average CPU 810.15 325.90 467.28 564.17

queensK (11) #solved 6 6 6 5

average CPU 135.95 395.41 121.75 >610.51

Table 4. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated every 10 nodes

class (#instances) AC apx-maxRPC apc-maxRPC maxRPC

geom (10) #solved 10 10 10 10

average CPU 69.28 147.20 189.42 279.30

scen (10) #solved 10 10 10 10

average CPU 18.95 7.40 8.86 13.94

scen11 (10) #solved 4 4 4 4

average CPU 810.15 311.74 417.97 564.17

queensK (11) #solved 6 6 6 5

average CPU 135.95 269.51 117.18 >610.52

of the four algorithms. To compute the average CPU time of an algorithm on
a class of instances, we add the CPU time needed to solve each instance solved
before the cutoff of one hour, and for the instances not solved before the cutoff,
we add one hour. We observe that the adaptive approach is, on average, faster
than the two extreme consistencies AC and maxRPC, except on the geom class.

In apx-maxRPC and apc-maxRPC, we update the local parameters p(xi) or
p(ck) at each node in the search tree. We could wonder if such a frequent update
does not produce too much overhead. To answer this question we performed a
simple experiment in which we update the local parameters every 10 nodes only.
We re-ran the whole set of experiments with this new setting. Table 4 reports the
average CPU time for these results. We observe that when the local parameters
are updated every 10 nodes, the gain for the adaptive approach is, on average,
greater than when the local parameters are updated at each node. This gives
room for improvement, by trying to adapt the frequency of update of these
parameters.

Adapting Consistency in Constraint Solving 243

5 Partition-One-Arc-Consistency

In this section, we describe our second approach, which is inspired from singleton-
based consistencies. Singleton Arc Consistency (SAC) [DB97] makes a single-
ton test by enforcing arc consistency and can only prune values in the vari-
able domain on which it currently performs singleton tests. Partition-One-AC
(POAC) [BA01] is an extension of SAC, which, as observed in [BD08], combines
singleton tests and constructive disjunction [VSD98]. POAC can prune values
everywhere in the network as soon as a variable has been completely singleton
tested.

We propose an adaptive version of POAC, where the number of times vari-
ables are processed for singleton tests on their values is dynamically and auto-
matically adapted during search. Before moving to adaptive partition-one-AC,
we first propose an efficient algorithm enforcing POAC and we compare its
behaviour to SAC.

5.1 The Algorithm

The efficiency of our POAC algorithm, POAC1, is based on the use of counters
associated with each value (xj , vj) in the constraint network. These counters are
used to count how many times a value vj from a variable xj is pruned during the
sequence of POAC tests on all the values of another variable xi (the varPOAC
call to xi). If vj is pruned |D(xi)| times, this means that it is not POAC and
can be removed from D(xj).

POAC1 (Algorithm 4) starts by enforcing arc consistency on the network
(line 2). Then it puts all variables in the ordered cyclic list S using any total
ordering on X (line 3). varPOAC iterates on all variables from S (line 7) to make
them POAC until the fixpoint is reached (line 12) or a domain wipe-out occurs
(line 8). The counter FPP (FixPoint Proof) counts how many calls to varPOAC
have been processed in a row without any change in any domain (line 9).

Algorithm 4. POAC1(X,D,C)
1 begin
2 if ¬EnforceAC(X,D,C) then return false ;
3 S ← CyclicList(Ordering(X));
4 FPP ← 0;
5 xi ← first(S);
6 while FPP < |X| do
7 if ¬varPOAC(xi, X,D,C,CHANGE) then
8 return false;

9 if CHANGE then FPP ← 1;
10 else FPP++;
11 xi ← NextElement(xi, S);

12 return true;

244 A. Balafrej et al.

Algorithm 5. varPOAC(xi,X,D,C, CHANGE)
1 begin
2 SIZE ← |D(xi)|; CHANGE ← false;
3 foreach vi ∈ D(xi) do
4 if ¬TestAC(X,D,C ∪ {xi = vi}) then
5 remove vi from D(xi);
6 if ¬EnforceAC(X,D,C, xi) then return false ;

7 if D(xi) = ∅ then return false;
8 if SIZE 	= |D(xi)| then CHANGE ← true;
9 foreach xj ∈ X\{xi} do

10 SIZE ← |D(xj)|;
11 foreach vj ∈ D(xj) do
12 if counter(xj , vj) = |D(xi)| then remove vj from D(xj) ;
13 counter(xj , vj) ← 0;

14 if D(xj) = ∅ then return false;
15 if SIZE 	= |D(xj)| then CHANGE ← true;

16 return true

Algorithm 6. TestAC(X,D,C ∪ {xi = vi})
1 begin
2 Q ← {(xj , ck) | ck ∈ Γ(xi), xj ∈ var(ck), xj 	= xi} ;
3 L ← ∅ ;
4 while Q 	= ∅ do
5 pick and delete (xj , ck) from Q ;
6 SIZE ← |D(xj)| ;
7 foreach vj ∈ D(xj) do
8 if ¬HasSupport(xj , vj , ck) then
9 remove vj from D(xj) ;

10 L ← L ∪ (xj , vj) ;

11 if D(xj) = ∅ then
12 RestoreDomains(L, false) ;
13 return false ;

14 if |D(xj)| < SIZE then
15 Q ← Q ∪ {(xj′ , ck′)|ck′ ∈ Γ(xj), xj′ ∈ var(ck′), xj′ 	= xj , ck′ 	= ck};

16 RestoreDomains(L, true) ;
17 return true ;

The procedure varPOAC (Algorithm 5) is called to establish POAC w.r.t. a
variable xi. It works in two steps. The first step enforces arc consistency in each
sub-network N = (X,D,C ∪ {xi = vi}) (line 4) and removes vi from D(xi)
(line 5) if the sub-network is arc-inconsistent. Otherwise, the procedure TestAC
(Algorithm 6) increments the counter associated with every arc inconsistent value

Adapting Consistency in Constraint Solving 245

Algorithm 7. RestoreDomains(L,UPDATE)
1 begin
2 if UPDATE then
3 foreach (xj , vj) ∈ L do
4 D(xj) ← D(xj) ∪ {vj} ;
5 counter(xj , vj) ← counter(xj , vj) + 1 ;

6 else
7 foreach (xj , vj) ∈ L do
8 D(xj) ← D(xj) ∪ {vj} ;

(xj , vj), j �= i in the sub-network N = (X,D,C ∪{xi = vi}). (Lines 6 and 7 have
been added for improving the performance in practice but are not necessary for
reaching the required level of consistency.) In line 8 the Boolean CHANGE is set
to true if D(xi) has changed. The second step deletes all the values (xj , vj), j �= i
with a counter equal to |D(xi)| and sets back the counter of each value to 0 (lines
12–13). Whenever a domain change occurs in D(xj), if the domain is empty,
varPOAC returns failure (line 14); otherwise it sets the Boolean CHANGE to
true (line 15).

Enforcing arc consistency on the sub-networks N = (X,D,C ∪ {xi = vi}) is
done by calling the procedure TestAC (Algorithm 6). TestAC just checks whether
arc consistency on the sub-network N = (X,D,C ∪{xi = vi}) leads to a domain
wipe-out or not. It is an instrumented AC algorithm that increments a counter for
all removed values and restores them all at the end. In addition to the standard
propagation queue Q, TestAC uses a list L to store all the removed values. After
the initialisation of Q and L (lines 2–3), TestAC revises each arc (xj , ck) in Q and
adds each removed value (xj , vj) to L (lines 5–10). If a domain wipe-out occurs
(line 11), TestAC restores all removed values (line 12) without incrementing the
counters (call to RestoreDomains with UPDATE = false) and it returns failure
(line 13). Otherwise, if values have been pruned from the revised variable (line 14)
it puts in Q the neighbouring arcs to be revised. At the end, removed values are
restored (line 16) and their counters are incremented (call to RestoreDomains
with UPDATE = true) before returning success (line 17).

Proposition 1. POAC1 has a worst-case time complexity in O(n2d2(T + n)),
where T is the time complexity of the arc-consistency algorithm used for singleton
tests, n is the number of variables, and d is the number of values in the largest
domain.

Proof. The cost of calling varPOAC on a single variable is O(dT + nd) because
varPOAC runs AC on d values and updates nd counters. In the worst case, each
of the nd value removals trigger n calls to varPOAC. Therefore POAC1 has a time
complexity in O(n2d2(T + n)). ��

246 A. Balafrej et al.

Fig. 4. The convergence speed of POAC and SAC.

5.2 Comparison of POAC and SAC Behaviors

Although POAC has a worst-case time complexity greater than SAC, we
observed in practice that maintaining POAC during search is often faster than
maintaining SAC. This behavior occurs even when POAC cannot remove more
values than SAC, i.e. when the same number of nodes is visited with the same
static variable ordering. This is due to what we call the (filtering) convergence
speed : when both POAC and SAC reach the same fixpoint, POAC reaches the
fixpoint with fewer singleton tests than SAC.

Figure 4 compares the convergence speed of POAC and SAC on an CSP
instance where they have the same fixpoint. We observe that POAC is able
to reduce the domains, to reach the fixpoint, and to prove the fixpoint, all in
fewer singleton tests than SAC. This pattern has been observed on most of the
instances and whatever ordering was used in the list S. The reason is that each
time POAC applies varPOAC to a variable xi, it is able to remove inconsistent
values from D(xi) (like SAC), but also from any other variable domain (unlike
SAC).

The fact that SAC cannot remove values in variables other than the one on
which the singleton test is performed makes it a poor candidate for adapting the
number of singleton tests. A SAC-inconsistent variable/value pair never singleton
tested has no chance to be pruned by such a technique.

6 Adaptive POAC

This section presents an adaptive version of POAC that approximates POAC by
monitoring the number of variables on which to perform singleton tests.

To achieve POAC, POAC1 calls the procedure varPOAC until it has proved
that the fixpoint is reached. This means that, when the fixpoint is reached,
POAC1 needs to call n (additional) times the procedure varPOAC without any
pruning to prove that the fixpoint was reached. Furthermore, we experimentally

Adapting Consistency in Constraint Solving 247

observed that in most cases there is a long sequence of calls to varPOAC that
prune very few values, even before the fixpoint has been reached (see Fig. 4 as an
example). The goal of Adaptive POAC (APOAC) is to stop iterating on varPOAC
as soon as possible. We want to benefit from strong propagation of singleton tests
while avoiding the cost of the last calls to varPOAC that delete very few values
or no value at all.

6.1 Principle

The APOAC approach alternates between two phases during search: a short
learning phase and a longer exploitation phase. One of the two phases is executed
on a sequence of nodes before switching to the other phase for another sequence
of nodes. The search starts with a learning phase. The total length of a pair of
sequences learning + exploitation is fixed to the parameter LE.

Before providing a more detailed description, let us define the (log2 of the)
volume of a constraint network N = (X,D,C), used to approximate the size of
the search space:

V = log2

n∏

i=1

|D(xi)|

We use the logarithm of the volume instead of the volume itself, because of
the large integers the volume generates. We also could have used the perimeter
(i.e.,

∑
i |D(xi)|) for approximating the search space size, as done in [NT13].

However, experiments have confirmed that the volume is a more precise and
effective criterion for adaptive POAC.

The ith learning phase is applied to a sequence of L = 1
10 · LE consecutive

nodes. During that phase, we learn a cutoff value ki, which is the maximum
number of calls to the procedure varPOAC that each node of the next (ith)
exploitation phase will be allowed to perform. A good cutoff ki is such that
varPOAC removes many inconsistent values (that is, obtains a significant volume
reduction in the network) while avoiding calls to varPOAC that delete very few
values or no value at all. During the ith exploitation phase, applied to a sequence
of 9

10 ·LE consecutive nodes, the procedure varPOAC is called at each node until
fixpoint is proved or the cutoff limit of ki calls to varPOAC is reached.

The ith learning phase works as follows. Let ki−1 be the cutoff learned at
the previous learning phase. We initialize maxK to max(2 · ki−1, 2). At each
node nj in the new learning sequence n1, n2, . . . nL, APOAC is used with a
cutoff maxK on the number of calls to the procedure varPOAC. APOAC stores
the sequence of volumes (V1, . . . , Vlast), where Vp is the volume resulting from
the pth call to varPOAC and last is the smallest among maxK and the number
of calls needed to prove fixpoint. Once the fixpoint is proved or the maxKth
call to varPOAC performed, APOAC computes ki(j), the number of varPOAC
calls that are enough to sufficiently reduce the volume while avoiding the extra
cost of the last calls that remove few or no value. (The criteria to decide what
’sufficiently’ means are described in Sect. 6.2.) Then, to make the learning phase
more adaptive, maxK is updated before starting node nj+1. If ki(j) is close to

248 A. Balafrej et al.

maxK, that is, greater than 3
4 ·maxK, we increase maxK by 20%. If ki(j) is less

than 1
2 ·maxK, we reduce maxK by 20%. Otherwise, maxK is unchanged. Once

the learning phase ends, APOAC computes the cutoff ki that will be applied to
the next exploitation phase. ki is an aggregation of the ki(j) values, j = 1, . . . , L,
computed using one of the aggregation techniques presented in Sect. 6.3.

6.2 Computing ki(j)

We implemented APOAC using two different techniques to compute ki(j) at a
node nj of the learning phase:

• LR (Last Reduction) ki(j) is the rank of the last call to varPOAC that reduced
the volume of the constraint network.

• LD (Last Drop) ki(j) is the rank of the last call to varPOAC that has produced
a significant drop of the volume. The significance of a drop is captured by a
ratio β ∈ [0, 1]. More formally, ki(j) = max{p | Vp ≤ (1 − β)Vp−1}.

6.3 Aggregation of the ki(j) Values

Once the ith learning phase is complete, APOAC aggregates the ki(j) values
computed during that phase to generate ki, the new cutoff value on the number
of calls to the procedure varPOAC allowed at each node of the ith exploitation
phase. We propose two techniques to aggregate the ki(j) values into ki.

• Med ki is the median of the ki(j), j ∈ 1..L.
• q-PER This technique generalizes the previous one. Instead of taking the

median, we use any percentile. That is, ki is equal to the smallest value among
ki(1), . . . , ki(L) such that q% of the values among ki(1), . . . , ki(L) are less than
or equal to ki.

Several variants of APOAC can be proposed, depending on how we compute
the ki(j) values in the learning phase and how we aggregate the different ki(j)
values. In the next section, we give an experimental comparison of the different
variants we tested.

6.4 Experimental Evaluation of (A)POAC

This section presents experiments that compare the performance of maintaining
AC, POAC, or adaptive variants of POAC during search. For the adaptive vari-
ants we use two techniques to determine ki(j): the last reduction (LR) and the
last drop (LD) with β = 5% (see Sect. 6.2). We also use two techniques to aggre-
gate these ki(j) values: the median (Med) and the qth percentile (q-PER) with
q = 70% (see Sect. 6.3). In experiments not presented in this paper we tested the
performance of APOAC using the 10th to 90th percentiles. The 70th percentile
showed the best behavior. We have performed experiments for the four variants
obtained by combining two by two the parameters LR vs LD and Med vs 70-
PER. For each variant we compared three initial values for the maxK used by

Adapting Consistency in Constraint Solving 249

the first learning phase: maxK ∈ {2, n,∞}, where n is the number of variable
in the instance to be solved. These three versions are denoted by APOAC-2,
APOAC-n and APOAC-fp respectively.

We compare these search algorithms on instances available from Lecoul-
tre’s webpage.2 We selected four binary classes containing at least one diffi-
cult instance for MAC (>10 s): mug, K-insertions, myciel and Qwh-20. We also
selected all the n-ary classes in extension: the traveling-salesman problem (TSP-
20, TSP-25), the Renault Megane configuration problem (Renault) and the Cril
instances (Cril). These eight problem classes contain instances with 11 to 1406
variables, domains of size 3 to 1600 and 20 to 9695 constraints.

For the search algorithm maintaining AC, the algorithm AC2001 (resp.
GAC2001) [BRYZ05] is used for the binary (resp. non-binary) problems. The

Table 5. Total number of instances solved by AC, several variants of APOAC, and
POAC.

ki(j) ki AC APOAC-2 APOAC-n APOAC-fp POAC

LR 70-PER #solved 115 116 119 118 115

Med #solved 115 114 118 118 115

LD 70-PER #solved 115 117 121 120 115

Med #solved 115 116 119 119 115

Table 6. CPU time for AC, APOAC-2, APOAC-n, APOAC-fp and POAC on the eight
problem classes.

class (#instances) AC APOAC-2 APOAC-n APOAC-fp POAC

Tsp-20 (15) #solved 15 15 15 15 15

sum CPU 1,596.38 3,215.07 4,830.10 7,768.33 18,878.81

Tsp-25 (15) #solved 15 14 15 15 11

sum CPU 20,260.08 >37,160.63 16,408.35 33,546.10 >100,947.01

renault (50) #solved 50 50 50 50 50

sum CPU 837.72 2,885.66 11,488.61 15,673.81 18,660.01

cril (8) #solved 4 5 7 7 7

sum CPU >45,332.55 >42,436.17 747.05 876.57 1,882.88

mug (8) #solved 5 6 6 6 6

sum CPU >29,931.45 12,267.39 12,491.38 12,475.66 2,758.10

K-insertions (10) #solved 4 5 6 5 5

sum CPU >30,614.45 >29,229.71 27,775.40 >29,839.39 >20,790.69

myciel (15) #solved 12 12 12 12 11

sum CPU 1,737.12 2,490.15 2,688.80 2,695.32 >20,399.70

Qwh-20 (10) #solved 10 10 10 10 10

sum CPU 16,489.63 12,588.54 11,791.27 12,333.89 27,033.73

Sum of CPU times >146,799 >142,273 88,221 >115,209 >211,351

Sum of average CPU times per class >18,484 >14,717 8,773 >9,467 >10,229

2 www.cril.univ-artois.fr/∼lecoutre/benchmarks.html.

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

250 A. Balafrej et al.

Fig. 5. Number of instances solved when the time allowed increases.

same AC algorithms are used as refutation procedure for POAC and APOAC
algorithms. The dom/wdeg heuristic [BHLS04] is used both to order variables
in the Ordering(X) function (see line 3 of Algorithm4) and to order variables
during search for all the search algorithms. The results presented involve all the
instances solved before the cutoff of 15,000 s by at least one algorithm.

Table 5 compares all the competitors and shows the number of instances
(#solved) solved before the cutoff. We observe that, on the set of instances
tested, adaptive versions of POAC are better than AC and POAC. All of them,
except APOAC-2+LR+Med, solve more instances than AC and POAC. All the
versions using the last drop (LD) technique to determine the ki(j) values in
the learning phase are better than those using last reduction (LR). We also see
that the versions that use the 70th percentile (70-PER) to aggregate the ki(j)
values are better than those using the median (Med). This suggests that the
best combination is LD+70-PER. This is the only combination we will consider
in the following.

Table 6 focuses on the performance of the three variants of APOAC (APOAC-
2, APOAC-n and APOAC-fp), all with the combination (LD+70-PER). When a
competitor cannot solve an instance before the cutoff, we count 15,000 s for that
instance and we write ‘>’ in front of the corresponding sum of CPU times. The
last two rows of the table give the sum of CPU times and the sum of average CPU
times per class. For each class taken separately, the three versions of APOAC
are never worse than AC and POAC at the same time. APOAC-n solves all the
instances solved by AC and POAC, and for four of the eight problem classes it
outperforms both AC and POAC. However, there remain a few classes, such as
Tsp-20 and renault, where even the first learning phase of APOAC is too costly

Adapting Consistency in Constraint Solving 251

Table 7. Performance of APOAC-n compared to AC and POAC on n-ary problems.

AC APOAC-n POAC

#solved 84/87 87/87 83/87

sum CPU >68,027 33,474 >140,369

gain w.r.t. AC – >51% –

gain w.r.t. POAC – >76% –

to compete with AC despite our agile auto-adaptation policy that limits the
number of calls to varPOAC during learning (see Sect. 6.1). Table 6 also shows
that maintaining a high level of consistency, such as POAC, throughout the
entire network generally produces a significant overhead.

Table 7 and Fig. 5 sum up the performance results obtained on all the
instances with n-ary constraints. The binary classes are not included in the
table and figure, because they have not been exhaustively tested. Figure 5 gives
the performance profile for each algorithm presented in Table 6: AC, APOAC-2,
APOAC-n, APOAC-fp and POAC. Each point (t, i) on a curve indicates the
number i of instances that an algorithm can solve in less than t seconds. The
performance profile underlines that AC and APOAC are better than POAC:
whatever the time given, they solve more instances than POAC. The compar-
ison between AC and APOAC highlights two phases: A first phase (for easy
instances), during which AC is better than APOAC, and a second phase, where
APOAC becomes better than AC. Among the adaptive versions, APOAC-n is
the variant with the shortest first phase (it adapts quite well to easy instances),
and it remains the best even when time increases.

Finally, Table 7 compares the best APOAC version (APOAC-n) to AC and
POAC on n-ary problems. The first row of the table gives the number of solved
instances by each algorithm before the cutoff. We observe that APOAC-n solves
more instances than AC and POAC. The second row of the table gives the sum
of CPU time required to solve all the instances. Again, when an instance cannot
be solved before the cutoff of 15,000 s, we count 15,000 s for that instance. We
observe that APOAC-n significantly outperforms both AC and POAC. The last
two rows of the table give the gain of APOAC-n w.r.t. AC and w.r.t. POAC. We
see that APOAC-n has a positive total gain greater than 51% compared to AC
and greater than 76% compared to POAC.

7 Conclusion

We have proposed two approaches to adjust the level of consistency automati-
cally during search. For the parameterized local consistency approach, we intro-
duced the notion of stability of values for arc consistency, a notion based on the
depth of their supports in their respective domain. This approach us allows us to
define levels of local consistency of increasing strength between arc consistency
and a given strong local consistency. We have introduced two techniques which

252 A. Balafrej et al.

allow us to make the parameter adaptable dynamically and locally during search.
As a second approach, we proposed POAC1, an algorithm that enforces partition-
one-AC efficiently in practice. We have also proposed an adaptive version of
POAC that monitors the number of variables on which to perform singleton
tests. Our experiments show that in both approaches, adapting the level of local
consistency during search can outperform both MAC and maintaining a chosen
local consistency stronger than AC.

Our approaches concentrate on adapting the level of consistency between the
standard arc consistency and a chosen higher level. There are many constraints
(especially global constraints) on which arc consistency is already a (too) high
level of consistency and on which the standard consistency is bound consistency
or some simple propagation rules. In these cases, an approach to that chosen in
this paper could allow us to adapt automatically between arc consistency and
the given lower level.

References

[BA01] Bennaceur, H., Affane, M.-S.: Partition-k-AC: an efficient filtering tech-
nique combining domain partition and arc consistency. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 560–564. Springer, Heidelberg (2001).
doi:10.1007/3-540-45578-7 39

[BBBT14] Balafrej, A., Bessiere, C., Bouyakhf, E.H., Trombettoni, G.: Adaptive
singleton-based consistencies. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence (AAAI 2014), Quebec City, Canada,
pp. 2601–2607 (2014)

[BBCB13] Balafrej, A., Bessiere, C., Coletta, R., Bouyakhf, E.H.: Adaptive parame-
terized consistency. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
143–158. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0 14

[BCDL11] Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms
for singleton arc consistency. Constraints 16(1), 25–53 (2011)

[BD08] Bessiere, C., Debruyne, R.: Theoretical analysis of singleton arc consis-
tency and its extensions. Artif. Intell. 172(1), 29–41 (2008)

[Bes06] Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming, chap. 3. Elsevier, Amster-
dam (2006)

[BHLS04] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic
search by weighting constraints. In: Proceedings of the 16th Eureopean
Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp.
146–150. IOS Press (2004)

[BPSW11] Balafoutis, T., Paparrizou, A., Stergiou, K., Walsh, T.: New algorithms
for max restricted path consistency. Constraints 16(4), 372–406 (2011)

[BRYZ05] Bessiere, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-
grained arc consistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

[BSW08] Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for
non-binary constraints. Artif. Intell. 172(6–7), 800–822 (2008)

[DB97] Debruyne, R., Bessiere, C.: Some practicable filtering techniques for the
constraint satisfaction problem. In: Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya,
Japan, pp. 412–417 (1997)

http://dx.doi.org/10.1007/3-540-45578-7_39
http://dx.doi.org/10.1007/978-3-642-40627-0_14

Adapting Consistency in Constraint Solving 253

[DB01] Debruyne, R., Bessiere, C.: Domain filtering consistencies. J. Artif. Intell.
Res. 14, 205–230 (2001)

[KVH06] Katriel, I., Van Hentenryck, P.: Randomized filtering algorithms. Techni-
cal report CS-06-09, Brown University, June 2006

[NT13] Neveu, B., Trombettoni, G.: Adaptive constructive interval disjunction.
In: Proceedings of the 25th IEEE International Conference on Tools for
Artificial Intelligence (IEEE-ICTAI 2013), Washington D.C., USA, pp.
900–906 (2013)

[PS12] Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics
for adaptive constraint propagation. In: Proceedings of the 24th IEEE
International Conference on Tools for Artificial Intelligence (IEEE-ICTAI
2012), Athens, Greece, pp. 880–885 (2012)

[Sel03] Sellmann, M.: Approximated consistency for Knapsack constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45193-8 46

[SS09] Stamatatos, E., Stergiou, K.: Learning how to propagate using ran-
dom probing. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009.
LNCS, vol. 5547, pp. 263–278. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01929-6 20

[Ste08] Stergiou, K.: Heuristics for dynamically adapting propagation. In: Pro-
ceedings of the Eighteenth European Conference on Artificial Intelligence
(ECAI 2008), Patras, Greece, pp. 485–489 (2008)

[Ste09] Stergiou, K.: Heuristics for dynamically adapting propagation in con-
straint satisfaction problems. AI Commun. 22, 125–141 (2009)

[TC07] Trombettoni, G., Chabert, G.: Constructive interval disjunction. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74970-7 45

[VSD98] Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation,
and evaluation of the constraint language cc(FD). J. Log. Program. 37
(1–3), 139–164 (1998)

http://dx.doi.org/10.1007/978-3-540-45193-8_46
http://dx.doi.org/10.1007/978-3-642-01929-6_20
http://dx.doi.org/10.1007/978-3-642-01929-6_20
http://dx.doi.org/10.1007/978-3-540-74970-7_45

	Adapting Consistency in Constraint Solving
	1 Introduction
	2 Background
	3 Parameterized Consistency
	3.1 Parameterized MaxRPC: p-maxRPC
	3.2 Experimental Validation of p-maxRPC

	4 Adaptative Parameterized Consistency: ap-maxRPC
	4.1 Constraint-Based ap-maxRPC: apc-maxRPC
	4.2 Variable-Based ap-maxRPC: apx-maxRPC
	4.3 Experimental Evaluation of ap-maxRPC

	5 Partition-One-Arc-Consistency
	5.1 The Algorithm
	5.2 Comparison of POAC and SAC Behaviors

	6 Adaptive POAC
	6.1 Principle
	6.2 Computing ki(j)
	6.3 Aggregation of the ki(j) Values
	6.4 Experimental Evaluation of (A)POAC

	7 Conclusion
	References

