
Algorithm Selection for Combinatorial Search
Problems: A Survey

Lars Kotthoff(B)

University of British Columbia, Vancouver, Canada
larsko@cs.ubc.ca

Abstract. The Algorithm Selection Problem is concerned with selecting
the best algorithm to solve a given problem on a case-by-case basis. It has
become especially relevant in the last decade, as researchers are increas-
ingly investigating how to identify the most suitable existing algorithm
for solving a problem instead of developing new algorithms. This survey
presents an overview of this work focusing on the contributions made
in the area of combinatorial search problems, where Algorithm Selec-
tion techniques have achieved significant performance improvements. We
unify and organise the vast literature according to criteria that determine
Algorithm Selection systems in practice. The comprehensive classifica-
tion of approaches identifies and analyses the different directions from
which Algorithm Selection has been approached. This chapter contrasts
and compares different methods for solving the problem as well as ways
of using these solutions.

1 Introduction

For many years, Artificial Intelligence research has been focusing on inventing
new algorithms and approaches for solving similar kinds of problems. In some
scenarios, a new algorithm is clearly superior to previous approaches. In the
majority of cases however, a new approach will improve over the current state
of the art only for some problems. This may be because it employs a heuristic
that fails for problems of a certain type or because it makes other assumptions
about the problem or environment that are not satisfied in some cases. Selecting
the most suitable algorithm for a particular problem aims at mitigating these
problems and has the potential to significantly increase performance in practice.
This is known as the Algorithm Selection Problem.

The Algorithm Selection Problem has, in many forms and with different
names, cropped up in many areas of Artificial Intelligence in the last few decades.
Today there exists a large amount of literature on it. Most publications are
concerned with new ways of tackling this problem and solving it efficiently in
practice. Especially for combinatorial search problems, the application of Algo-
rithm Selection techniques has resulted in significant performance improvements
that leverage the diversity of systems and techniques developed in recent years.
This chapter surveys the available literature and describes how research has
progressed.
c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 149–190, 2016.
DOI: 10.1007/978-3-319-50137-6 7



150 L. Kotthoff

x ∈ P
Problem space

A ∈ A
Algorithm space

p ∈ Rn

Performance
measure space

p = Algorithm
performance

S(x)

Selection
mapping

p(A,x)

Performance
mapping

Norm
mapping

Fig. 1. Basic model for the Algorithm Selection Problem as published in [120].

Researchers have long ago recognised that a single algorithm will not give
the best performance across all problems one may want to solve and that select-
ing the most appropriate method is likely to improve the overall performance.
Empirical evaluations have provided compelling evidence for this, e.g. [1,154].

The original description of the Algorithm Selection Problem was published
in [120]. The basic model described in the paper is very simple – given a space
of problems and a space of algorithms, map each problem-algorithm pair to its
performance. This mapping can then be used to select the best algorithm for
a given problem. The original figure that illustrates the model is reproduced in
Fig. 1. As Rice states,

“The objective is to determine S(x) [the mapping of problems to algo-
rithms] so as to have high algorithm performance.”

He identifies the following four criteria for the selection process.

1. Best selection for all mappings S(x) and problems x. For every problem, an
algorithm is chosen to give maximum performance.

2. Best selection for a subclass of problems. A single algorithm is chosen to
apply to each of a subclass of problems such that the performance degradation
compared to choosing from all algorithms is minimised.

3. Best selection from a subclass of mappings. Choose the selection mapping
from a subset of all mappings from problems to algorithms such that the
performance degradation is minimised.

4. Best selection from a subclass of mappings and problems. Choose a single
algorithm from a subset of all algorithms to apply to each of a subclass of
problems such that the performance degradation is minimised.

The first case is clearly the most desirable one. In practice however, the other
cases are more common – we might not have enough data about individual
problems or algorithms to select the best mapping for everything.

[120] lists five main steps for solving the problem.

Formulation. Determination of the subclasses of problems and mappings to be
used.



Algorithm Selection for Combinatorial Search Problems: A Survey 151

Existence. Does a best selection mapping exist?
Uniqueness. Is there a unique best selection mapping?
Characterization. What properties characterize the best selection mapping

and serve to identify it?
Computation. What methods can be used to actually obtain the best selection

mapping?

This framework is taken from the theory of approximation of functions. The
questions for existence and uniqueness of a best selection mapping are usually
irrelevant in practice. As long as a good performance mapping is found and
improves upon the current state of the art, the question of whether there is
a different mapping with the same performance or an even better mapping is
secondary. While it is easy to determine the theoretically best selection mapping
on a set of given problems, casting this mapping into a generalisable form that
will give good performance on new problems or even into a form that can be used
in practice is hard. Indeed, [62] shows that the Algorithm Selection Problem in
general is undecidable. It may be better to choose a mapping that generalises
well rather than the one with the best performance. Other considerations can be
involved as well. [28,63] compare different Algorithm selection models and select
not the one with the best performance, but one with good performance that is
also easy to understand, for example. [146] select their method of choice for the
same reason. Similarly, [159] choose a model that is cheap to compute instead
of the one with the best performance. They note that,

“All of these techniques are computationally more expensive than ridge
regression, and in our previous experiments we found that they did not
improve predictive performance enough to justify this additional cost.”

Rice continues by giving practical examples of where his model applies. He
refines the original model to include features of problems that can be used to
identify the selection mapping. The original figure depicting the refined model
is given in Fig. 2. This model, or a variant of it, is what is used in most practical
approaches. Including problem features is the crucial difference that often makes
an approach feasible.

For each problem in a given set, the features are extracted. The aim is to
use these features to produce the mapping that selects the algorithm with the
best performance for each problem. The actual performance mapping for each
problem-algorithm pair is usually of less interest as long as the individual best
algorithm can be identified.

Rice poses additional questions about the determination of features.

– What are the best features for predicting the performance of a specific algo-
rithm?

– What are the best features for predicting the performance of a specific class
of algorithms?

– What are the best features for predicting the performance of a subclass of
selection mappings?



152 L. Kotthoff

x ∈ P
Problem space

f(x) ∈ F = Rm

Feature space
A ∈ A

Algorithm space

p ∈ Rn

Performance
measure space

p = Algorithm
performance

Feature
extraction

S(f(x))

Selection
mapping

p(A,x)

Performance
mapping

Fig. 2. Refined model for the Algorithm Selection Problem with problem features [120].

He also states that,

“The determination of the best (or even good) features is one of the most
important, yet nebulous, aspects of the algorithm selection problem.”

He refers to the difficulty of knowing the problem space. Many problem spaces are
not well known and often a sample of problems is drawn from them to evaluate
empirically the performance of the given set of algorithms. If the sample is not
representative, or the features do not facilitate a good separation of the problem
classes in the feature space, there is little hope of finding the best or even a good
selection mapping.

[145] note that,

“While it seems that restricting a heuristic to a special case would likely
improve its performance, we feel that the ability to partition the prob-
lem space of some NP-hard problems by efficient selectors is mildly
surprising.”

This sentiment was shared by many researchers and part of the great prominence
of Algorithm Selection systems especially for combinatorial search problems can
probably be attributed to the surprise that it actually works.

Most approaches employ Machine Learning to learn the performance map-
ping from problems to algorithms using features extracted from the problems.
This often involves a training phase, where the candidate algorithms are run on
a sample of the problem space to experimentally evaluate their performance.
This training data is used to create a performance model that can be used to
predict the performance on new, unseen problems. The term model is used only
in the loosest sense here; it can be as simple as a representation of the training
data without any further analysis.



Algorithm Selection for Combinatorial Search Problems: A Survey 153

1.1 Practical Motivation

[1] notes that in Machine Learning, researchers often perform experiments on
a limited number of data sets to demonstrate the performance improvements
achieved and implicitly assume that these improvements generalise to other data.
He proposes a framework for better experimental evaluation of such claims and
deriving rules that determine the properties a data set must have in order for
an algorithm to have superior performance. His objective is

“. . . to derive rules of the form ‘this algorithm outperforms these other
algorithms on these dependent measures for databases with these charac-
teristics’. Such rules summarize when [. . . ] rather than why the observed
performance difference occurred.”

[143] make similar observations and show that there is no algorithm that is
universally the best when solving constraint problems. They also demonstrate
that the best algorithm-heuristic combination is not what one might expect
for some of the surveyed problems. This provides an important motivation for
research into performing Algorithm Selection automatically. They close by noting
that,

“. . . research should focus on how to retrieve the most efficient [algorithm-
heuristic] combinations for a problem.”

The focus of Algorithm Selection is on identifying algorithms with good per-
formance, not on providing explanations for why this is the case. Most publica-
tions do not consider the question of “Why?” at all. Rice’s framework does not
address this question either. The simple reason for this is that explaining the
Why? is difficult and for most practical applications not particularly relevant
as long as improvements can be achieved. Research into what makes a problem
hard, how this affects the behaviour of specific algorithms and how to exploit
this knowledge is a fruitful area, but outside the scope of this chapter. However,
we present a brief exposition of one of the most important concepts to illustrate
its relevance.

The notion of a phase transition [26] refers to a sudden change in the hardness
of a problem as the value of a single parameter of the problem is changed.
Detecting such transitions is an obvious way to facilitate Algorithm Selection.
[65] note that,

“In particular, the location of the phase transition point might provide
a systematic basis for selecting the type of algorithm to use on a given
problem.”

While some approaches make use of this knowledge to generate challenging train-
ing problems for their systems, it is hardly used at all to facilitate Algorithm
Selection. [109] use a set of features that can be used to characterise a phase
transition and note that,

“It turns out that [. . . ] this group of features alone suffices to construct
reasonably good models.”



154 L. Kotthoff

It remains unclear how relevant phase transitions are to Algorithm Selection in
practice. On one hand, their theoretical properties seem to make them highly
suitable, but on the other hand almost nobody has explored their use in actual
Algorithm Selection systems.

No Free Lunch Theorems. The question arises of whether, in general, the
performance of a system can be improved by always picking the best algorithm.
The “No Free Lunch” (NFL) theorems [154] state that no algorithm can be the
best across all possible problems and that on average, all algorithms perform the
same. This seems to provide a strong motivation for Algorithm Selection – if,
on average, different algorithms are the best for different parts of the problem
space, selecting them based on the problem to solve has the potential to improve
performance.

The theorems would apply to Algorithm Selection systems themselves as well
though (in particular the version for supervised learning are relevant, see [153]).
This means that although performance improvements can be achieved by select-
ing the right algorithms on one part of the problem space, wrong decisions will
be made on other parts, leading to a loss of performance. On average over all
problems, the performance achieved by an Algorithm Selection meta-algorithm
will be the same as that of all other algorithms.

The NFL theorems are the source of some controversy however. Among the
researchers to doubt their applicability is the first proponent of the Algorithm
Selection Problem [121]. Several other publications show that the assumptions
underlying the NFL may not be satisfied [31,119]. In particular, the distribution
of the best algorithms from the portfolio to problems is not random – it is
certainly true that certain algorithms are the best on a much larger number of
problems than others.

A detailed assessment of the applicability of the NFL theorems to the Algo-
rithm Selection Problem is outside the scope of this chapter. However, a review
of the literature suggests that, if the theorems are applicable, the ramifications
in practice may not be significant. Most of the many publications surveyed here
do achieve performance improvements across a range of different problems using
Algorithm Selection techniques. As a research area, it is very active and thriving
despite the potentially negative implications of the NFL.

1.2 Scope and Related Work

Algorithm Selection is a very general concept that applies not only in almost
all areas of Computer Science, but also other disciplines. However, it is espe-
cially relevant in many areas of Artificial Intelligence. This is a large field itself
though and surveying all Artificial Intelligence publications that are relevant to
Algorithm Selection in a single chapter is infeasible.

In this chapter, we focus on Algorithm Selection for combinatorial search
problems. This is a large and important subfield of Artificial Intelligence where
Algorithm Selection techniques have become particularly prominent in recent



Algorithm Selection for Combinatorial Search Problems: A Survey 155

years because of the impressive performance improvements that have been
achieved by some approaches. Combinatorial search problems include for exam-
ple satisfiability (SAT), constraint problems, planning, quantified Boolean for-
mulae (QBF), scheduling and combinatorial optimisation.

A combinatorial search problem is one where an initial state is to be trans-
formed into a goal state by application of a series of operators, such as assignment
of values to variables. The space of possible states is typically exponential in the
size of the input and finding a solution is NP-hard. A common way of solv-
ing such problems is to use heuristics. A heuristic is a strategy that determines
which operators to apply when. Heuristics are not necessarily complete or deter-
ministic, i.e. they are not guaranteed to find a solution if it exists or to always
make the same decision under the same circumstances. The nature of heuristics
makes them particularly amenable to Algorithm Selection – choosing a heuristic
manually is difficult even for experts, but choosing the correct one can improve
performance significantly.

There exists a large body of work that is relevant to Algorithm Selection in
the Machine Learning literature. [133] presents a survey of many approaches.
Repeating this here is unnecessary and outside the scope of this chapter, which
focuses on the application of such techniques. The most relevant area of research
is that into ensembles, where several models are created instead of one. Such
ensembles are either implicitly assumed or explicitly engineered so that they
complement each other. Errors made by one model are corrected by another.
Ensembles can be engineered by techniques such as bagging [18] and boost-
ing [128]. [9,111] present studies that compare bagging and boosting empirically.
[30] provides explanations for why ensembles can perform better than individual
algorithms.

There is increasing interest in the integration of Algorithm Selection tech-
niques with programming language paradigms, e.g. [4,68]. While these issues are
sufficiently relevant to be mentioned here, exploring them in detail is outside the
scope of the chapter. Similarly, technical issues arising from the computation,
storage and application of performance models, the integration of Algorithm
Selection techniques into complex systems, the execution of choices and the col-
lection of experimental data to facilitate Algorithm Selection are not surveyed
here.

1.3 Terminology

Algorithm Selection is a widely applicable concept and as such has cropped up
frequently in various lines of research. Often, different terminologies are used.

[15] use the term algorithm chaining to mean switching from one algorithm
to another while the problem is being solved. [100] call Algorithm Selection
selection by performance prediction. [145] use the term hybrid algorithm for the
combination of a set of algorithms and an Algorithm Selection model (which
they term selector).

In Machine Learning, Algorithm Selection is usually referred to as meta-
learning. This is because Algorithm Selection models for Machine Learning learn



156 L. Kotthoff

when to use which method of Machine Learning. The earliest approaches also
spoke of hybrid approaches, e.g. [144]. [1] proposes rules for selecting a Machine
Learning algorithm that take the characteristics of a data set into account. He
uses the term meta-learning. [20] introduces the notion of selective superiority.
This concept refers to a particular algorithm being best on some, but not all
tasks.

In addition to the many terms used for the process of Algorithm Selec-
tion, researchers have also used different terminology for the models of what
Rice calls performance measure space. [2] call them runtime performance pre-
dictors. [75,95,96,156] coined the term Empirical Hardness model. This stresses
the reliance on empirical data to create these models and introduces the notion
of hardness of a problem. The concept of hardness takes into account all per-
formance considerations and does not restrict itself to, for example, runtime
performance. In practice however, the described empirical hardness models only
take runtime performance into account. In all cases, the predicted measures are
used to select an algorithm.

Throughout this chapter, the term algorithm is used to refer to what is
selected for solving a problem instance. This is for consistency and to make the
connection to Rice’s framework. An algorithm may be a system, a programme,
a heuristic, a classifier or a configuration. This is not made explicit unless it is
relevant in the particular context.

1.4 Organisation

An organisation of the Algorithm Selection literature is challenging, as there are
many different criteria that can be used to classify it. Each publication can be
evaluated from different points of view. The organisation of this chapter follows
the main criteria below.

What to select algorithms from
Section 2 describes how sets of algorithms, or portfolios, can be constructed.
A portfolio can be static, where the designer decides which algorithms to
include, or dynamic, where the composition or individual algorithms vary or
change for different problems.

What to select and when
Section 3 describes how algorithms from portfolios are selected to solve prob-
lems. Apart from the obvious approach of picking a single algorithm, time
slots can be allocated to all or part of the algorithms or the execution mon-
itored and earlier decisions revised. We also distinguish between selecting
before the solving of the actual problem starts and while the problem is
being solved.

How to select
Section 4 surveys techniques used for making the choices described in Sect. 3.
It details how performance models can be built and what kinds of predictions
they inform. Example predictions are the best algorithm in the portfolio and
the runtime performance of each portfolio algorithm.



Algorithm Selection for Combinatorial Search Problems: A Survey 157

How to facilitate the selection
Section 5 gives an overview of the types of analysis different approaches per-
form and what kind of information is gathered to facilitate Algorithm Selec-
tion. This includes the past performance of algorithms and structural features
of the problems to be solved.

The order of the material follows a top-down approach. Starting with the
high-level idea of Algorithm Selection, as proposed by [120] and described in this
introduction, more technical details are gradually explored. Earlier concepts pro-
vide motivation and context for later technical details. For example, the choice
of whether to select a single algorithm or monitor its execution (Sect. 3) deter-
mines the types of predictions required and techniques suitable for making them
(Sect. 4) as well as the properties that need to be measured (Sect. 5).

The individual sections are largely self-contained. If the reader is more inter-
ested in a bottom-up approach that starts with technical details on what can
be observed and measured to facilitate Algorithm Selection, Sects. 2 through 5
may be read in reverse order.

Section 6 again illustrates the importance of the field by surveying the many
different application domains of Algorithm Selection techniques with a focus on
combinatorial search problems. We close by summarising in Sect. 7.

2 Algorithm Portfolios

For diverse sets of problems, it is unlikely that a single algorithm will be the
most suitable one in all cases. A way of mitigating this restriction is to use a
portfolio of algorithms. This idea is closely related to the notion of Algorithm
Selection itself – instead of making an up-front decision on what algorithm to
use, it is decided on a case-by-case basis for each problem individually. In the
framework presented by [120], portfolios correspond to the algorithm space A.

Portfolios are a well-established technique in Economics. Portfolios of assets,
securities or similar products are used to reduce the risk compared to hold-
ing only a single product. The idea is simple – if the value of a single security
decreases, the total loss is less severe. The problem of allocating funds to the
different parts of the portfolio is similar to allocating resources to algorithms
in order to solve a computational problem. There are some important differ-
ences though. Most significantly, the past performance of an algorithm can be
a good indicator of future performance. There are fewer factors that affect the
outcome and in most cases, they can be measured directly. In Machine Learning,
ensembles [30] are instances of algorithm portfolios. In fact, the only difference
between algorithm portfolios and Machine Learning ensembles is the way in
which its constituents are used.

The idea of algorithm portfolios was first presented by [73]. They describe
a formal framework for the construction and application of algorithm portfolios
and evaluate their approach on graph colouring problems. Within the Artificial
Intelligence community, algorithm portfolios were popularised by [57,58] and a



158 L. Kotthoff

subsequent extended investigation [59]. The technique itself however had been
described under different names by other authors at about the same time in
different contexts.

[143] experimentally show for a selection of constraint satisfaction algorithms
and heuristics that none is the best on all evaluated problems. They do not men-
tion portfolios, but propose that future research should focus on identifying when
particular algorithms and heuristics deliver the best performance. This implicitly
assumes a portfolio to choose algorithms from. [2] perform a similar investiga-
tion and come to similar conclusions. They talk about selecting an appropriate
algorithm from an algorithm family.

Beyond the simple idea of using a set of algorithms instead of a single one,
there is a lot of scope for different approaches. One of the first problems faced
by researchers is how to construct the portfolio. There are two main types.
Static portfolios are constructed offline before any problems are solved. While
solving a problem, the composition of the portfolio and the algorithms within it
do not change. Dynamic portfolios change in composition, configuration of the
constituent algorithms or both during solving.

2.1 Static Portfolios

Static portfolios are the most common type. The number of algorithms or sys-
tems in the portfolio is fixed, as well as their parameters. In Rice’s notation,
the algorithm space A is constant, finite and known. This approach is used for
example in SATzilla [109,158,159], AQME [117,118], CPhydra [110], ArgoS-
mArT [108], BUS [72] and Proteus [74].

The vast majority of approaches composes static portfolios from different
algorithms or different algorithm configurations. [73] however use a portfolio that
contains the same randomised algorithm twice. They run the portfolio in parallel
and as such essentially use the technique to parallelise an existing sequential
algorithm.

Some approaches use a large number of algorithms in the portfolio, such as
ArgoSmArT, whose portfolio size is 60. SATzilla uses 19 algorithms, although
the authors use portfolios containing only subsets of those for specific applica-
tions. BUS uses six algorithms and CPhydra five. [54] select from a portfolio of
only two algorithms. AQME has different versions with different portfolio sizes,
one with 16 algorithms, one with five and three algorithms of different types
and one with two algorithms [118]. The authors compare the different portfolios
and conclude that the one with eight algorithms offers the best performance, as
it has more variety than the portfolio with two algorithms and it is easier to
make a choice for eight than for 16 algorithms. There are also approaches that
use portfolios of variable size that is determined by training data [81,157]. [74]
combine algorithms and problem encodings in a portfolio – problem instances
can be translated into alternative representations, for which other algorithms
are available.

As the algorithms in the portfolio do not change, their selection is crucial for
its success. Ideally, the algorithms will complement each other such that good



Algorithm Selection for Combinatorial Search Problems: A Survey 159

performance can be achieved on a wide range of different problems. [66] report
that portfolios composed of a random selection from a large pool of diverse algo-
rithms outperform portfolios composed of the algorithms with the best overall
performance. They develop a framework with a mathematical model that theo-
retically justifies this observation. [126] use a portfolio of heuristics for solving
quantified Boolean formulae problems that have specifically been crafted to be
orthogonal to each other. [157] automatically engineer a portfolio with algo-
rithms of complementary strengths. In [162], the authors analyse the contribu-
tions of the portfolio constituents to the overall performance and conclude that
not algorithms with the best overall performance, but with techniques that set
them apart from the rest contribute most. [81] use a static portfolio of variable
size that adapts itself to the training data. They cluster the training problems
and choose the best algorithm for each cluster. They do not emphasise diver-
sity, but suitability for distinct parts of the problem space. [157] also construct
a portfolio with algorithms that perform well on different parts of the problem
space, but do not use clustering.

In financial theory, constructing portfolios can be seen as a quadratic opti-
misation problem. The aim is to balance expected performance and risk (the
expected variation of performance) such that performance is maximised and
risk minimised. [37] solve this problem for algorithm portfolios using genetic
algorithms.

Most approaches make the composition of the portfolio less explicit. Many
systems use portfolios of solvers that have performed well in solver competi-
tions with the implicit assumption that they have complementing strengths and
weaknesses and the resulting portfolio will be able to achieve good performance.

2.2 Dynamic Portfolios

Rather than relying on a priori properties of the algorithms in the portfolio,
dynamic portfolios adapt the composition of the portfolio or the algorithms
depending on the problem to be solved. The algorithm space A changes with
each problem and is a subspace of the potentially infinite super algorithm space
A′. This space contains all possible (hypothetical) algorithms that could be used
to solve problems from the problem space. In static portfolios, the algorithms in
the portfolio are selected from A′ once either manually by the designer of the
portfolio or automatically based on empirical results from training data.

One approach is to build a portfolio by combining algorithmic building
blocks. An example of this is the Adaptive Constraint Engine (ACE) [35,36].
The building blocks are so-called advisors, which characterise variables of the
constraint problem and give recommendations as to which one to process next.
ACE combines these advisors into more complex ones. [33,34] use a similar idea
to construct search strategies for solving constraint problems. [42,43] proposes
CLASS, which combines heuristic building blocks to form composite heuristics
for solving SAT problems. In these approaches, there is no strong notion of a
portfolio – the algorithm or strategy used to solve a problem is assembled from
lower level components.



160 L. Kotthoff

Closely related is the concept of specialising generic building blocks for the
problem to solve. This approach is taken in the SAGE system (Strategy Acquisi-
tion Governed by Experimentation) [92,93]. It starts with a set of general opera-
tors that can be applied to a search state. These operators are refined by making
the preconditions more specific based on their utility for finding a solution. The
Multi-tac (Multi-tactic Analytic Compiler) system [103–105] specialises a set
of generic heuristics for the constraint problem to solve.

There can be complex restrictions on how the building blocks are combined.
RT-Syn [131] for example uses a preprocessing step to determine the possible
combinations of algorithms and data structures to solve a software specification
problem and then selects the most appropriate combination using simulated
annealing. [8] model the construction of a constraint solver from components as
a constraint problem whose solutions denote valid combinations of components.

Another approach is to modify the parameters of parameterised algorithms
in the portfolio. This is usually referred to as automatic tuning and not only
applicable in the context of algorithm portfolios, but also for single algorithms.
The HAP system [146] automatically tunes the parameters of a planning system
depending on the problem to solve. [70] dynamically modify algorithm parame-
ters during search based on statistics collected during the solving process.

Automatic Tuning. The area of automatic parameter tuning has attracted a
lot of attention in recent years. This is because algorithms have an increasing
number of parameters that are difficult to tune even for experts and because of
research into dynamic algorithm portfolios that benefits from automatic tuning.
A survey of the literature on automatic tuning is outside the scope of this chapter,
but some of the approaches that are particularly relevant to this survey are
described below.

Automatic tuning and portfolio selection can be treated separately, as done
in the Hydra portfolio builder [157]. Hydra uses ParamILS [78,79] to automati-
cally tune algorithms in a SATzilla [159] portfolio. Autofolio [98] uses ParamILS
and SMAC [76] to train a claspfolio [67] portfolio. ISAC [81] uses GGA [5] to
automatically tune algorithms for clusters of problem instances.

[105] first enumerates all possible rule applications up to a certain time or size
bound. Then, the most promising configuration is selected using beam search, a
form of parallel hill climbing, that empirically evaluates the performance of each
candidate. [8] use hill climbing to similarly identify the most efficient configura-
tion for a constraint solver on a set of problems. [42,141] use genetic algorithms
to evolve promising configurations.

The systems described in the previous paragraph are only of limited suitabil-
ity for dynamic algorithm portfolios. They either take a long time to find good
configurations or are restricted in the number or type of parameters. Interactions
between parameters are only taken into account in a limited way. More recent
approaches have focused on overcoming these limitations.

The ParamILS system [78,79] uses techniques based on local search to
identify parameter configurations with good performance. The authors address



Algorithm Selection for Combinatorial Search Problems: A Survey 161

over-confidence (overestimating the performance of a parameter configuration
on a test set) and over-tuning (determining a parameter configuration that is
too specific). SMAC [76] builds a model of the performance response surface
in parameter space to predict where the most promising configurations are. [5]
use genetic algorithms to discover favourable parameter configurations for the
algorithms being tuned. The authors use a racing approach to avoid having to
run all generated configurations to completion. They also note that one of the
advantages of the genetic algorithm approach is that it is inherently parallel.

Both of these approaches are capable of tuning algorithms with a large num-
ber of parameters and possible values as well as taking interactions between
parameters into account. They are used in practice in the Algorithm Selection
systems Hydra and ISAC, respectively. In both cases, they are only used to
construct static portfolios however. More recent approaches focus on exploiting
parallelism, e.g. [77,97].

Dynamic portfolios are in general a more fruitful area for Algorithm Selec-
tion research because of the large space of possible decisions. Static portfolios
are usually relatively small and the decision space is amenable for human explo-
ration. This is not a feasible approach for dynamic portfolios though. [105] notes
that

“Multi-tac turned out to have an unexpected advantage in this arena,
due to the complexity of the task. Unlike our human subjects, Multi-tac
experimented with a wide variety of combinations of heuristics. Our human
subjects rarely had the inclination or patience to try many alternatives,
and on at least one occasion incorrectly evaluated alternatives that they
did try.”

3 Problem Solving with Portfolios

Once an algorithm portfolio has been constructed, the way in which it is to be
used has to be decided. There are different considerations to take into account.
The two main issues are as follows.

What to select
Given the full set of algorithms in the portfolio, a subset has to be chosen
for solving the problem. This subset can consist of only a single algorithm
that is used to solve the problem to completion, the entire portfolio with
the individual algorithms interleaved or running in parallel or anything in
between.

When to select
The selection of the subset of algorithms can be made only once before solving
starts or continuously during search. If the latter is the case, selections can
be made at well-defined points during search, for example at each node of a
search tree, or when the system judges it to be necessary to make a decision.

Rice’s model assumes that only a single algorithm A ∈ A is selected. It
implicitly assumes that this selection occurs only once and before solving the
actual problem.



162 L. Kotthoff

3.1 What to Select

A common and the simplest approach is to select a single algorithm from the
portfolio and use it to solve the problem completely. This single algorithm
has been determined to be the best for the problem at hand. For example
SATzilla [109,158,159], ArgoSmArT [108], SALSA [29] and Eureka [28] do
this. The disadvantage of this approach is that there is no way of mitigating a
wrong selection. If an algorithm is chosen that exhibits bad performance on the
problem, the system is “stuck” with it and no adjustments are made, even if all
other portfolio algorithms would perform much better.

An alternative approach is to compute schedules for running (a subset of)
the algorithms in the portfolio. In some approaches, the terms portfolio and
schedule are used synonymously – all algorithms in the portfolio are selected
and run according to a schedule that allocates time slices to each of them. The
task of Algorithm Selection becomes determining the schedule rather than to
select algorithms.

[122] rank the portfolio algorithms in order of expected performance and
allocate time according to this ranking. [72] propose a round-robin schedule that
contains all algorithms in the portfolio. The order of the algorithms is deter-
mined by the expected run time and probability of success. The first algorithm
is allocated a time slice that corresponds to the expected time required to solve
the problem. If it is unable to solve the problem during that time, it and the
remaining algorithms are allocated additional time slices until the problem is
solved or a time limit is reached.

[118] determine a schedule according to three strategies. The first strategy is
to run all portfolio algorithms for a short time and if the problem has not been
solved after this, run the predicted best algorithm exclusively for the remain-
ing time. The second strategy runs all algorithms for the same amount of time,
regardless of what the predicted best algorithm is. The third variation allocates
exponentially increasing time slices to each algorithm such that the total time is
again distributed equally among them. In addition to the three different schedul-
ing strategies, the authors evaluate four different ways of ordering the portfolio
algorithms within a schedule that range from ranking based on past performance
to random. They conclude that ordering the algorithms based on their past per-
formance and allocating the same amount of time to all algorithms gives the
best overall performance.

[110] optimise the computed schedule with respect to the probability that
the problem will be solved. They use the past performance data of the portfolio
algorithms for this. However, they note that their approach of using a simple
complete search procedure to find this optimal schedule relies on small portfolio
sizes and that “for a large number of solvers, a more sophisticated approach
would be necessary”. Later approaches, e.g. the Sunny approach [3], improve
on this.

[80] formulate the problem of computing a schedule that solves most prob-
lems in a training set in the lowest amount of time as a resource constrained set
covering integer programme. They pursue similar aims as [110] but note that



Algorithm Selection for Combinatorial Search Problems: A Survey 163

their approach is more efficient and able to scale to larger schedules. However,
their evaluation concludes that the approach with the best overall performance
is to run the predicted best algorithm for 90 % of the total available time and dis-
tribute the remaining 10 % across the other algorithms in the portfolio according
to a static schedule.

[113] presents a framework for calculating optimal schedules. The approach
is limited by a number of assumptions about the algorithms and the execution
environment, but is applicable to a wide range of research in the literature.
[16,114] compute an optimal static schedule for allocating fixed time slices to
each algorithm. [127] propose an algorithm to efficiently compute an optimal
schedule for portfolios of fixed size and show that the problem of generating
or even approximating an optimal schedule is computationally intractable. [123]
explore different strategies for allocating time slices to algorithms. In a serial
execution strategy, each algorithm is run once for an amount of time determined
by the average time to find a solution on previous problems or the time that was
predicted for finding a solution on the current problem. A round-robin strategy
allocates increasing time slices to each algorithm. The length of a time slice
is based on the proportion of successfully solved training problems within this
time. [56] compute round-robin schedules following a similar approach. Not all
of their computed schedules contain all portfolio algorithms. [138] compute a
schedule with the aim of improving the average-case performance. In later work,
they compute theoretical guarantees for the performance of their schedule [140].

[155] approach scheduling the chosen algorithms in a different way and
assume a fixed limit on the amount of resources an algorithm can consume while
solving a problem. All algorithms are run sequentially for this fixed amount of
time. Similar to [56], they simulate the performance of different allocations and
select the best one based on the results of these simulations. [41] estimates the
performance of candidate allocations through bootstrap sampling. [57,59] also
evaluate the performance of different candidate portfolios, but take into account
how many algorithms can be run in parallel. They demonstrate that the opti-
mal schedule (in this case the number of algorithms that are being run) changes
as the number of available processors increases. [47] investigate how to allocate
resources to algorithms in the presence of multiple CPUs that allow to run more
than one algorithm in parallel. [165] craft portfolios with the specific aim of
running the algorithms in parallel.

[69] consider computing optimal schedules without selection. They note
that their approach can be used in a variety of settings, in particular paral-
lel portfolios.

Related research is concerned with the scheduling of restarts of stochastic
algorithms – it also investigates the best way of allocating resources. The chapter
that introduced algorithm portfolios [73] uses a portfolio of identical stochastic
algorithms that are run with different random seeds. There is a large amount of
research on how to determine restart schedules for randomised algorithms and
a survey of this is outside the scope of this chapter. A few approaches that are
particularly relevant to Algorithm Selection and portfolios are mentioned below.



164 L. Kotthoff

[70] determine the amount of time to allocate to a stochastic algorithm before
restarting it. They use dynamic policies that take performance predictions into
account, showing that it can outperform an optimal fixed policy.

[27] investigate a restart model that allocates resources to an algorithm pro-
portional to the number of times it has been successful in the past. In particular,
they note that the allocated resources should grow doubly exponentially in the
number of successes. Allocation of fewer resources results in over-exploration
(too many different things are tried and not enough resources given to each) and
allocation of more resources in over-exploitation (something is tried for to too
long before moving on to something different).

[139] compute restart schedules that take the runtime distribution of the
portfolio algorithms into account. They present an approach that does so stat-
ically based on the observed performance on a set of training problems as well
as an approach that learns the runtime distributions as new problems are solved
without a separate training set.

3.2 When to Select

In addition to whether they choose a single algorithm or compute a schedule,
existing approaches can also be distinguished by whether they operate before the
problem is being solved (offline) or while the problem is being solved (online).
The advantage of the latter is that more fine-grained decisions can be made and
the effect of a bad choice of algorithm is potentially less severe. The price for
this added flexibility is a higher overhead however, as algorithms are selected
more frequently.

Examples of approaches that only make offline decisions include [105,110,
131,159]. In addition to having no way of mitigating wrong choices, often these
will not even be detected. These approaches do not monitor the execution of the
chosen algorithms to confirm that they conform with the expectations that led
to them being chosen. Purely offline approaches are inherently vulnerable to bad
choices. Their advantage however is that they only need to select an algorithm
once and incur no overhead while the problem is being solved.

Moving towards online systems, the next step is to monitor the execution
of an algorithm or a schedule to be able to intervene if expectations are not
met. [39,40] investigates setting a time bound for the algorithm that has been
selected based on the predicted performance. If the time bound is exceeded, the
solution attempt is abandoned. More sophisticated systems furthermore adjust
their selection if such a bound is exceeded. [15] try to detect behaviour during
search that indicates that the algorithm is performing badly, for example visiting
nodes in a subtree of the search that clearly do not lead to a solution. If such
behaviour is detected, they propose switching the currently running algorithm
according to a fixed replacement list.

[125] explore the same basic idea. They switch between two algorithms for
solving constraint problems that achieve different levels of consistency. The level
of consistency refers to the amount of search space that is ruled out by infer-
ence before actually searching it. Their approach achieves the same level of



Algorithm Selection for Combinatorial Search Problems: A Survey 165

search space reduction as the more expensive algorithm at a significantly lower
cost. This is possible because doing more inference does not necessarily result
in a reduction of the search space in all cases. The authors exploit this fact by
detecting such cases and doing the cheaper inference. [112,136] also investigate
switching propagation methods during solving. [163,164] do not monitor the exe-
cution of the selected algorithm, but instead the values of the features used to
select it. They re-evaluate the selection function when its inputs change.

Further examples of approaches that monitor the execution of the selected
algorithm are [49,118], but also [70] where the offline selection of an algorithm is
combined with the online selection of a restart strategy. An interesting feature of
[118] is that the authors adapt the model used for the offline algorithm selection
if the actual run time is much higher than the predicted runtime. In this way,
they are not only able to mitigate bad choices during execution, but also prevent
them from happening again.

The approaches that make decisions during search, for example at every
node of the search tree, are necessarily online systems. [6] select the best search
strategy at checkpoints in the search tree. Similarly, [20] recursively partitions
the classification problem to be solved and selects an algorithm for each partition.
In this approach, a lower-level decision can lead to changing the decision at the
level above. This is usually not possible for combinatorial search problems, as
decisions at a higher level cannot be changed easily.

Closely related is the work by [90,91], which partitions the search space into
recursive subtrees and selects the best algorithm from the portfolio for every
subtree. They specifically consider recursive algorithms. At each recursive call,
the Algorithm Selection procedure is invoked. This is a more natural extension
of offline systems than monitoring the execution of the selected algorithms, as
the same mechanisms can be used. [126] also select algorithms for recursively
solving sub-problems.

The PRODIGY system [22] selects the next operator to apply in order to
reach the goal state of a planning problem at each node in the search tree.
Similarly, [92] learn weights for operators that can be applied at each search
state and select from among them accordingly.

Most approaches rely on an offline element that makes a decision before
search starts. In the case of recursive calls, this is no different from making a
decision during search however. [44,46,49] on the other hand learn the Algorithm
Selection model only dynamically while the problem is being solved. Initially, all
algorithms in the portfolio are allocated the same (small) time slice. As search
progresses, the allocation strategy is updated, giving more resources to algo-
rithms that have exhibited better performance. The expected fastest algorithm
receives half of the total time, the next best algorithm half of the remaining
time and so on. [7] also rely exclusively on a selection model trained online in a
similar fashion. They evaluate different strategies of allocating resources to algo-
rithms according to their progress during search. All of these strategies converge
to allocating all resources to the algorithm with the best observed performance.



166 L. Kotthoff

4 Portfolio Selectors

Research on how to select from a portfolio in an Algorithm Selection system has
generated the largest number of different approaches within the framework of
Algorithm Selection. In Rice’s framework, it roughly corresponds to the perfor-
mance mapping p(A, x), although only few approaches use this exact formula-
tion. Rice assumes that the performance of a particular algorithm on a particular
problem is of interest. While this is true in general, many approaches only take
this into account implicitly. Selecting the single best algorithm for a problem
for example has no explicit mapping into Rice’s performance measure space Rn

at all. The selection mapping S(f(x)) is also related to the problem of how to
select.

There are many different ways a mechanism to select from a portfolio can
be implemented. Apart from accuracy, one of the main requirements for such
a selector is that it is relatively cheap to run – if selecting an algorithm for
solving a problem is more expensive than solving the problem, there is no point
in doing so. [145] explicitly define the selector as “an efficient (polynomial time)
procedure”.

There are several challenges associated with making selectors efficient. Algo-
rithm Selection systems that analyse the problem to be solved, such as SATzilla,
need to take steps to ensure that the analysis does not become too expensive.
Two such measures are the running of a pre-solver and the prediction of the
time required to analyse a problem [159]. The idea behind the pre-solver is to
choose an algorithm with reasonable general performance from the portfolio and
use it to start solving the problem before starting to analyse it. If the problem
happens to be very easy, it will be solved even before the results of the analysis
are available. After a fixed time, the pre-solver is terminated and the results of
the Algorithm Selection system are used. [118] use a similar approach and run
all algorithms for a short time in one of their strategies. Only if the problem
has not been solved after that, they move on to the algorithm that was actually
selected.

Predicting the time required to analyse a problem is a closely related idea.
If the predicted required analysis time is too high, a default algorithm with
reasonable performance is chosen and run on the problem. This technique is
particularly important in cases where the problem is hard to analyse, but easy
to solve. As some systems use information that comes from exploring part of the
search space (cf. Sect. 5), this is a very relevant concern in practice. On some
problems, even probing just a tiny part of the search space may take a very long
time.

[54,55] report that using the misclassification penalty as a weight for the
individual problems during training improves the quality of the predictions. The
misclassification penalty quantifies the “badness” of a wrong prediction; in this
case as the additional time required to solve a problem. If an algorithm was
chosen that is only slightly worse than the best one, it has less impact than
choosing an algorithm that is orders of magnitude worse. Using the penalty



Algorithm Selection for Combinatorial Search Problems: A Survey 167

during training is a way of guiding the learned model towards the problems
where the potential performance improvement is large.

There are many different approaches to how portfolio selectors operate. The
selector is not necessarily an explicit part of the system. [105] compiles the Algo-
rithm Selection system into a Lisp programme for solving the original constraint
problem. The selection rules are part of the programme logic. [43,50] evolve
selectors and combinators of heuristic building blocks using genetic algorithms.
The selector is implicit in the evolved programme.

4.1 Performance Models

The way the selector operates is closely linked to the way the performance model
of the algorithms in the portfolio is built. In early approaches, the performance
model was usually not learned but given in the form of human expert knowledge.
[15,125] use hand-crafted rules to determine whether to switch the algorithm
during solving. [2] also have hand-crafted rules, but estimate the runtime per-
formance of an algorithm. More recent approaches sometimes use only human
knowledge as well. [150] select a local search heuristic for solving SAT problems
by a hand-crafted rule that considers the distribution of clause weights. [142]
model the performance space manually using statistical methods and use this
hand-crafted model to select a heuristic for solving constraint problems. [146]
learn rules automatically, but then filter them manually.

A more common approach today is to automatically learn performance mod-
els using Machine Learning on training data. The portfolio algorithms are run on
a set of representative problems and based on these experimental results, perfor-
mance models are built. This approach is used by [61,81,110,117,159], to name
but a few examples. A drawback of this approach is that the training time is
usually large. [45] investigate ways of mitigating this problem by using censored
sampling, which introduces an upper bound on the runtime of each experiment
in the training phase. [85] also investigate censored sampling where not all algo-
rithms are run on all problems in the training phase. Their results show that
censored sampling may not have a significant effect on the performance of the
learned model.

Models can also be built without a separate training phase, but while the
problem is solved. This approach is used by [7,46] for example. While this sig-
nificantly reduces the time to build a system, it can mean that the result is
less effective and efficient. At the beginning, when no performance models have
been built, the decisions of the selector might be poor. Furthermore, creating
and updating performance models while the problem is being solved incurs an
overhead.

The choice of Machine Learning technique is affected by the way the portfolio
selector operates. Some techniques are more amenable to offline approaches (e.g.
linear regression models used by [159]), while others lend themselves to online
methods (e.g. reinforcement learning used by [7]).

Performance models can be categorised by the type of entity whose per-
formance is modelled – the entire portfolio or individual algorithms within it.



168 L. Kotthoff

There are publications that use both of those categories however, e.g. [134]. In
some cases, no performance models as such are used at all. [8,25,105] run the
candidates on a set of test problems and select the one with the best perfor-
mance that way for example. [56,57,155] simulate the performance of different
selections on training data.

Per-Portfolio Models. One automated approach is to learn a performance
model of the entire portfolio based on training data. Usually, the prediction of
such a model is the best algorithm from the portfolio for a particular problem.
There is only a weak notion of an individual algorithm’s performance. In Rice’s
notation for the performance mapping P (A, x), A is the (subset of the) portfolio
instead of an individual algorithm, i.e. A ⊆ A instead of Rice’s A ∈ A.

This is used for example by [28,61,108,110,117]. Again there are different
ways of doing this. Lazy approaches do not learn an explicit model, but use the
set of training examples as a case base. For new problems, the closest problem
or the set of n closest problems in the case base is determined and decisions
made accordingly. [51,101,108,110,117,151] use nearest-neighbour classifiers to
achieve this. Apart from the conceptual simplicity, such an approach is attractive
because it does not try to abstract from the examples in the training data. The
problems that Algorithm Selection techniques are applied to are usually complex
and factors that affect the performance are hard to understand. This makes it
hard to assess whether a learned abstract model is appropriate and what its
requirements and limitations are.

Explicitly-learned models try to identify the concepts that affect performance
for a given problem. This acquired knowledge can be made explicit to improve
the understanding of the researchers of the problem domain. There are sev-
eral Machine Learning techniques that facilitate this, as the learned models are
represented in a form that is easy to understand by humans. [20,22,60,146]
learn classification rules that guide the selector. [146] note that the decision
to use a classification rule leaner was not so much guided by the performance
of the approach, but the easy interpretability of the result. [36,92,107] learn
weights for decision rules to guide the selector towards the best algorithms.
[12,28,54,61,63,122] go one step further and learn decision trees. [63] again note
that the reason for choosing decision trees was not primarily the performance,
but the understandability of the result. [116] show the set of learned rules in the
paper to illustrate its compactness. Similarly, [54] show their final decision tree
in the paper.

Some approaches learn probabilistic models that take uncertainty and vari-
ability into account. [60] use a probabilistic model to learn control rules. The
probabilities for candidate rules being beneficial are evaluated and updated on a
training set until a threshold is reached. This methodology is used to avoid hav-
ing to evaluate candidate rules on larger training sets, which would show their
utility more clearly but be more expensive. [29] learn multivariate Bayesian deci-
sion rules. [23] learn a Bayesian classifier to predict the best algorithm after a
certain amount of time. [137] learn Bayesian models that incorporate collabora-
tive filtering. [32] learn decision rules using näıve Bayes classifiers. [90,113] learn



Algorithm Selection for Combinatorial Search Problems: A Survey 169

performance models based on Markov Decision Processes. [85] use statistical
relational learning to predict the ranking of the algorithms in the portfolio on
a particular problem. None of these approaches make explicit use of the uncer-
tainty attached to a decision though.

Other approaches include support vector machines [6,71], reinforcement
learning [7], neural networks [44], decision tree ensembles [71], ensembles of gen-
eral classification algorithms [87], boosting [12], hybrid approaches that com-
bine regression and classification [83], multinomial logistic regression [126], self-
organising maps [134] and clustering [81,102,136]. [127,138] compute schedules
for running the algorithms in the portfolio based on a statistical model of the
problem instance distribution and performance data for the algorithms. This is
not an exhaustive list, but focuses on the most prominent approaches and pub-
lications. Within a single family of approaches, such as decision trees, there are
further distinctions that are outside the scope of this chapter, such as the type
of decision tree inducer.

[6] discuss a technical issue related to the construction of per-portfolio perfor-
mance models. A particular algorithm often exhibits much better performance
in general than other algorithms on a particular instance distribution. Therefore,
the training data used to learn the performance model will be skewed towards
that algorithm. This can be a problem for Machine Learning, as always predict-
ing this best algorithm might have a very high accuracy already, making it very
hard to improve on. The authors mention two means of mitigating this problem.
The training set can be under-sampled, where examples where the best overall
algorithm performs best are deliberately omitted. Alternatively, the set can be
over-sampled by artificially increasing the number of examples where another
algorithm is better.

Per-Algorithm Models. A different approach is to learn performance models
for the individual algorithms in the portfolio. The predicted performance of
an algorithm on a problem can be compared to the predicted performance of
the other portfolio algorithms and the selector can proceed based on this. The
advantage of this approach is that it is easier to add and remove algorithms from
the portfolio – instead of having to retrain the model for the entire portfolio,
it suffices to train a model for the new algorithm or remove one of the trained
models. Most approaches only rely on the order of predictions being correct. It
does not matter if the prediction of the performance itself is wildly inaccurate
as long as it is correct relative to the other predictions.

This is the approach that is implicitly assumed in Rice’s framework. The
prediction is the performance mapping P (A, x) for an algorithm A ∈ A on a
problem x ∈ P. Models for each algorithm in the portfolio are used for example
by [2,46,72,100,159].

A common way of doing this is to use regression to directly predict the perfor-
mance of each algorithm. This is used by [64,72,95,123,159]. The performance
of the algorithms in the portfolio is evaluated on a set of training problems, and
a relationship between the characteristics of a problem and the performance of



170 L. Kotthoff

an algorithm derived. This relationship usually has the form of a simple formula
that is cheap to compute at runtime.

[130] on the other hand learn latent class models of unobserved variables to
capture relationships between solvers, problems and run durations. Based on
the predictions, the expected utility is computed and used to select an algo-
rithm. [129] surveys sampling methods to estimate the cost of solving constraint
problems. [148] models the behaviour of local search algorithms with Markov
chains.

Another approach is to build statistical models of an algorithm’s performance
based on past observations. [149] use Bayesian belief propagation to predict the
runtime of a particular algorithm on a particular problem. Bayesian inference is
used to determine the class of a problem and the closest case in the knowledge
base. A performance profile is extracted from that and used to estimate the
runtime. The authors also propose an alternative approach that uses neural nets.
[39,40] computes the expected gain for time bounds based on past success times.
The computed values are used to choose the algorithm and the time bound for
running it. [17] compare algorithm rankings based on different past performance
statistics. Similarly, [94] maintain a ranking based on past performance. [27]
propose a bandit problem model that governs the allocation of resources to
each algorithm in the portfolio. [147] also use a bandit model, but furthermore
evaluate a Q-learning approach, where in addition to bandit model rewards, the
states of the system are taken into account. [56,57,155] use the past performance
of algorithms to simulate the performance of different algorithm schedules and
use statistical tests to select one of the schedules.

Hierarchical Models. There are some approaches that combine several models
into a hierarchical performance model. There are two basic types of hierarchical
models. One type predicts additional properties of the problem that cannot be
measured directly or are not available without solving the problem. The other
type makes intermediate predictions that do not inform Algorithm Selection
directly, but rather the final predictions.

[156] use sparse multinomial logistic regression to predict whether a SAT
problem instance is satisfiable and, based on that prediction, use a logistic regres-
sion model to predict the runtime of each algorithm in the portfolio. [64] also
predict the satisfiability of a SAT instance and then choose an algorithm from
a portfolio. Both report that being able to distinguish between satisfiable and
unsatisfiable problems enables performance improvements. The satisfiability of
a problem is a property that needs to be predicted in order to be useful for Algo-
rithm Selection. If the property is computed (i.e. the problem is solved), there is
no need to perform Algorithm Selection any more.

[55] use classifiers to first decide on the level of consistency a constraint prop-
agator should achieve and then on the actual implementation of the propagator
that achieves the selected level of consistency. A different publication that uses
the same data set does not make this distinction however [87], suggesting that
the performance benefits are not significant in practice.



Algorithm Selection for Combinatorial Search Problems: A Survey 171

[74] proposes a hierarchical model that has more than two levels – at the top,
the decision is made whether to solve a given constraint problem as a constraint
problem or convert it to SAT. At the second level, if the decision to convert to
SAT has been made, the encoding for the transformation is chosen. At the third
level, the constraint or SAT solver is chosen.

Such hierarchical models are only applicable in a limited number of scenar-
ios, which explains the comparatively small amount of research into them. For
many application domains, only a single property needs to be predicted and can
be predicted without intermediate steps with sufficient accuracy. [83] proposes a
hierarchical approach that is domain-independent. He uses the performance pre-
dictions of regression models as input to a classifier that decides which algorithm
to choose and demonstrates performance improvements compared to selecting an
algorithm directly based on the predicted performance. The idea is very similar
to that of stacking in Machine Learning [152].

Selection of Model Learner. Apart from the different types of performance
models, there are different Machine Learning algorithms that can be used to learn
a particular kind of model. While most of the approaches mentioned here rely
on a single way of doing this, some of the research compares different methods.

[159] mention that, in addition to the chosen ridge regression for predicting
the runtime, they explored using lasso regression, support vector machines and
Gaussian processes. They chose ridge regression not because it provided the most
accurate predictions, but the best trade-off between accuracy and cost to make
the prediction. [149] propose an approach that uses neural networks in addition
to the Bayesian belief propagation approach they describe initially. [28] compare
different decision tree learners, a Bayesian classifier, a nearest neighbour app-
roach and a neural network. They chose the C4.5 decision tree inducer because
even though it may be outperformed by a neural network, the learned trees
are easily understandable by humans and may provide insight into the problem
domain. [95] compare several versions of linear and non-linear regression. [75]
report having explored support vector machine regression, multivariate adaptive
regression splines (MARS) and lasso regression before deciding to use the linear
regression approach of [95]. They also report experimental results with sequen-
tial Bayesian linear regression and Gaussian Process regression. [62,63] explore
using decision trees, näıve Bayes rules, Bayesian networks and meta-learning
techniques. They also chose the C4.5 decision tree inducer because it is one of
the top performers and creates models that are easy to understand and quick to
execute. [52] compare nearest neighbour classifiers, decision trees and statistical
models. They show that a nearest neighbour classifier outperforms all the other
approaches on their data sets.

[71] use decision tree ensembles and support vector machines. [12] investigate
alternating decision trees and various forms of boosting, while [117] use decision
trees, decision rules, logistic regression and nearest neighbour approaches. They
do not explicitly choose one of these methods in the paper, but their Algorithm
Selection system AQME uses a nearest neighbour classifier by default. [123] use



172 L. Kotthoff

32 different Machine Learning algorithms to predict the runtime of algorithms
and probability of success. They attempt to provide explanations for the perfor-
mance of the methods they have chosen in [124]. [130] compare the performance
of different latent class models. [55] evaluate the performance of 19 different
Machine Learning classifiers on an Algorithm Selection problem in constraint
programming. The investigation is extended to include more Machine Learning
algorithms as well as different performance models and more problem domains in
[85]. They identify several Machine Learning algorithms that show particularly
good performance across different problem domains, namely linear regression
and alternating decision trees. They do not consider issues such as how easy the
models are to understand or how efficient they are to compute.

Only [52,55,63,71,85,117,130] quantify the differences in performance of the
methods they used. The other comparisons give only qualitative evidence. Not
all comparisons choose one of the approaches over the other or provide sufficient
detail to enable the reader to do so. In cases where a particular technique is
chosen, performance is often not the only selection criterion. In particular, the
ability to understand a learned model plays a significant role.

4.2 Types of Predictions

The way of creating the performance model of a portfolio or its algorithms is
not the only choice researchers face. In addition, there are different predictions
the performance model can make to inform the decision of the selector of a
subset of the portfolio algorithms. The type of decision is closely related to the
learned performance model however. The prediction can be a single categorical
value – the algorithm to choose. This type of prediction is usually the output of
per-portfolio models and used for example in [28,54,61,108,117]. The advantage
of this simple prediction is that it determines the choice of algorithm without
the need to compare different predictions or derive further quantities. One of its
biggest disadvantages however is that there is no flexibility in the way the system
runs or even the ability to monitor the execution for unexpected behaviour.

A different approach is to predict the runtime of the individual algorithms in
the portfolio. This requires per-algorithm models. For example [70,113,130] do
this. [159] do not predict the runtime itself, but the logarithm of the runtime.
They note that,

“In our experience, we have found this log transformation of runtime to
be very important due to the large variation in runtimes for hard combi-
natorial problems.”

[85] also compare predicting the runtime itself and the log thereof, but find no
significant difference between the two. [83] however also reports better results
with the logarithm.

[2] estimate the runtime by proxy by predicting the number of constraint
checks. [100] estimate the runtime by predicting the number of search nodes to
explore and the time per node. [90] talk of the cost of selecting a particular



Algorithm Selection for Combinatorial Search Problems: A Survey 173

algorithm, which is equal to the time it takes to solve the problem. [107] uses
the utility of a choice to make his decision. The utility is an abstract measure of
the “goodness” of an algorithm that is adapted dynamically. [142] use the value
of information of selecting an algorithm, defined as the amount of time saved by
making this choice. [160] predict the penalized average runtime score, a measure
that combines runtime with possible timeouts. This approach aims to provide
more realistic performance predictions when runtimes are capped.

More complex predictions can be made, too. In most cases, these are made
by combining simple predictions such as the runtime performance. [17,94,135]
produce rankings of the portfolio algorithms. [85] use statistical relational learn-
ing to directly predict the ranking instead of deriving it from other predictions.
[46,49,72,110,122] predict resource allocations for the algorithms in the port-
folios. [14,52,99] consider selecting the most appropriate formulation of a con-
straint problem. [8,19,131,151] select algorithms and data structures to be used
in a software system.

Some types of predictions require online approaches that make decisions dur-
ing search. [7,15,23,125] predict when to switch the algorithm used to solve a
problem. [70] predict whether to restart an algorithm. [90,91] predict the cost
to solve a sub-problem. However, most online approaches make predictions that
can also be used in offline settings, such as the best algorithm to proceed with.

The primary selection criteria and prediction for [135] and [94] is the quality
of the solution an algorithm produces rather than the time it takes the algorithm
to find that solution. In addition to the primary selection criteria, a number
of approaches predict secondary criteria. [40,72,123] predict the probability of
success for each algorithm. [149] predict the quality of a solution.

In Rice’s model, the prediction of an Algorithm Selection system is the per-
formance p ∈ Rn of an algorithm. This abstract notion does not rely on time
and is applicable to many approaches. It does not fit techniques that predict
the portfolio algorithm to choose or more complex measures such as a schedule
however. As Rice developed his approach long before the advent of algorithm
portfolios, it should not be surprising that the notion of the performance of
individual algorithms as opposed to sets of algorithms dominates. The model is
sufficiently general to be able to accommodate algorithm portfolios with only
minor modifications to the overall framework however.

5 Features

The different types of performance models described in the previous sections
usually use features to inform their predictions. Features are an integral part
of systems that do Machine Learning. They characterise the inputs, such as
the problem to be solved or the algorithm employed to solve it, and facilitate
learning the relationship between the inputs and the outputs, such as the time
it will take the algorithm to solve the problem. In Rice’s model, features f(x)
for a particular problem x are extracted from the feature space F .

The selection of the most suitable features is an important part of the design
of Algorithm Selection systems. There are different types of features researchers



174 L. Kotthoff

can use and different ways of computing these. They can be categorised according
to two main criteria.

First, they can be categorised according to how much background knowledge
a researcher needs to have to be able to use them. Features that require no or very
little knowledge of the application domain are usually very general and can be
applied to new Algorithm Selection problems with little or no modification. Fea-
tures that are specific to a domain on the other hand may require the researcher
building the Algorithm Selection system to have a thorough understanding of
the domain. These features usually cannot be applied to other domains, as they
may be non-existent or uninformative in different contexts.

The second way of distinguishing different classes of features is according to
when and how they are computed. Features can be computed statically, i.e. before
the search process starts, or dynamically, i.e. during search. These two categories
roughly align with the offline and online approaches to portfolio problem solving
described in Sect. 3.

[132] present a survey that focuses on what features can be used for Algorithm
Selection. This chapter categorises the features used in the literature.

5.1 Low and High-Knowledge Features

In some cases, researchers use a large number of features that are specific to
the particular problem domain they are interested in, but there are also publi-
cations that only use a single, general feature – the performance of a particular
algorithm on past problems. [27,49,113,130,138], to name but a few examples,
use this approach to build statistical performance models of the algorithms in
their portfolios. The underlying assumption is that all problems are similar with
respect to the relative performance of the algorithms in the portfolio – the algo-
rithm that has done best in the past has the highest chance of performing best
in the future.

Approaches that build runtime distribution models for the portfolio algo-
rithms usually do not select a single algorithm for solving a problem, but rather
use the distributions to compute resource allocations for the individual portfo-
lio algorithms. The time allocated to each algorithm is proportional to its past
performance.

Other sources of features that are not specific to a particular problem domain
are more fine-grained measures of past performance or measures that characterise
the behaviour of an algorithm during search. [93] for example determines whether
a search step performed by a particular algorithm is good, i.e. leading towards a
solution, or bad, i.e. straying from the path to a solution if the solution is known
or revisiting an earlier search state if the solution is not known. [57,59] use the
runtime distributions of algorithms over the size of a problem, as measured by
the number of backtracks. [40] uses the past success times of an algorithm as
candidate time bounds on new problems. [17] do not consider the runtime, but
the error rate of algorithms. [56] use both computation time and solution quality.

[11,23,24] evaluate the performance also during search. They explicitly focus
on features that do not require a lot of domain knowledge. [11] note that,



Algorithm Selection for Combinatorial Search Problems: A Survey 175

“While existing algorithm selection techniques have shown impressive
results, their knowledge-intensive nature means that domain and algorithm
expertise is necessary to develop the models. The overall requirement for
expertise has not been reduced: it has been shifted from algorithm selection
to predictive model building.”

They do, like several other approaches, assume anytime algorithms – after search
has started, the algorithm is able to return the best solution found so far at any
time. The features are based on how search progresses and how the quality of
solutions is improved by algorithms. While this does not require any knowledge
about the application domain, it is not applicable in cases when only a single
solution is sought.

Most approaches learn models for the performance on particular problems
and do not use past performance as a feature, but to inform the prediction to
be made. Considering problem features facilitates a much more nuanced app-
roach than a broad-brush general performance model. This is the classic super-
vised Machine Learning approach – given the correct prediction derived from
the behaviour on a set of training problems, learn a model that enables to make
this prediction.

The features that are considered to learn the model are specific to the prob-
lem domain or even a subset of the problem domain to varying extents. For
combinatorial search problems, the most commonly used basic features include,

– the number of variables,
– properties of the variable domains, i.e. the list of possible assignments,
– the number of clauses in SAT, the number of constraints in constraint prob-

lems, the number of goals in planning,
– the number of clauses/constraints/goals of a particular type (for example the

number of alldifferent constraints, [55]),
– ratios of several of the above features and summary statistics.

Such features are used for example in [72,110,117,149,159].
Other sources of features include the generator that produced the problem to

be solved [70], the runtime environment [7], structures derived from the problem
such as the primal graph of a constraint problem [51,54,61], specific parts of
the problem model such as variables [35], the algorithms in the portfolio them-
selves [71] or the domain of the problem to be solved [22,56] rely on the problem
domain as the only problem-specific feature and select based on past performance
data for the particular domain. [10] consider not only the values of properties
of a problem, but the changes of those values while the problem is being solved.
[131] consider features of abstract representations of the algorithms. [163,164]
use features that represent technical details of the behaviour of an algorithm
on a problem, such as the type of computations done in a loop. [74] consider
features not only of the instance being solved, but also of alternative encodings
of the same instance.

Most approaches use features that are applicable to all problems of the appli-
cation domain they are considering. However, [70] use features that are not only



176 L. Kotthoff

specific to their application domain, but also to the specific family of problems
they are tackling, such as the variance of properties of variables in different
columns of Latin squares. They note that,

“. . . the inclusion of such domain-specific features was important in learn-
ing strongly predictive models.”

5.2 Static and Dynamic Features

In most cases, the approaches that use a large number of domain-specific fea-
tures compute them offline, i.e. before the solution process starts (cf. Sect. 3.2).
Examples of publications that only use such static features are [61,95,117].

An implication of using static features is that the decisions of the Algorithm
Selection system are only informed by the performance of the algorithms on past
problems. Only dynamic features allow to take the performance on the current
problem into account. This has the advantage that remedial actions can be taken
if the problem is unlike anything seen previously or the predictions are wildly
inaccurate for another reason.

A more flexible approach than to rely purely on static features is to incor-
porate features that can be determined statically, but try to estimate the per-
formance on the current problem. Such features are computed by probing the
search space. This approach relies on the performance probes being sufficiently
representative of the entire problem and sufficiently equal across the different
evaluated algorithms. If an algorithm is evaluated on a part of the search space
that is much easier or harder than the rest, a misleading impression of its true
performance may result.

Examples of systems that combine static features of the problem to be solved
with features derived from probing the search space are [54,110,159]. There are
also approaches that use only probing features. We term this semi-static feature
computation because it happens before the actual solving of the problem starts,
but parts of the search space are explored during feature extraction. Examples
include [2,11,100].

The idea of probing the search space is related to landmarking [116], where
the performance of a set of initial algorithms (the landmarkers) is linked to the
performance of the set of algorithms to select from. The main consideration when
using this technique is to select landmarkers that are computationally cheap.
Therefore, they are usually versions of the portfolio algorithms that have either
been simplified or are run only on a subset of the data the selected algorithm
will run on.

While the work done during probing explores part of the search space and
could be used to speed search up subsequently by avoiding to revisit known
areas, almost no research has been done into this. [11] run all algorithms in
their (small) portfolio on a problem for a fixed time and select the one that
has made the best progress. The chosen algorithm resumes its earlier work, but
no attempt is made to avoid duplicating work done by the other algorithms.



Algorithm Selection for Combinatorial Search Problems: A Survey 177

To the best of our knowledge, there exist no systems that attempt to avoid
redoing work performed by a different algorithm during the probing stage.

For successful systems, the main source of performance improvements is the
selection of the right algorithm using the features computed through probing.
As the time to compute the features is usually small compared to the runtime
improvements achieved by Algorithm Selection, using the results of probing dur-
ing search to avoid duplicating work does not have the potential to achieve large
additional performance improvements.

The third way of computing features is to do so online, i.e. while search is
taking place. These dynamic features are computed by an execution monitor
that adapts or changes the algorithm during search based on its performance.
Approaches that rely purely on dynamic features are for example [15,107,136].

There are many different features that can be computed during search.
[105] determines how closely a generated heuristic approximates a generic target
heuristic by checking the heuristic choices at random points during search. He
selects the one with the closest match. Similarly, [107] learn how to select heuris-
tics during the search process based on their performance. [7] use an agent-based
model that rewards good actions and punishes bad actions based on computa-
tion time. [89] follow a very similar approach that also takes success or failure
into account.

[23,24] monitor the solution quality during search. They decide whether
to switch the current algorithm based on this by changing the allocation of
resources. [150] monitor a feature that is specific to their application domain,
the distribution of clause weights in SAT, during search and use it to decide
whether to switch a heuristic. [136] monitors propagation events in a constraint
solver to a similar aim. [25] evaluate the performance of candidate algorithms
in terms of number of calls to a specific high-level procedure. They note that in
contrast to using the runtime, their approach is machine-independent.

5.3 Feature Selection

The features used for learning the Algorithm Selection model are crucial to its
success. Uninformative features might prevent the model learner from recognis-
ing the real relation between problem and performance or the most important
feature might be missing. Many researchers have recognised this problem.

[72] manually select the most important features. They furthermore take the
unique approach of learning one model per feature for predicting the probability
of success and combine the predictions of the models. [95,159] perform automatic
feature selection by greedily adding features to an initially empty set. In addition
to the basic features, they also use the pairwise products of the features. [117]
also perform automatic greedy feature selection, but do not add the pairwise
products. [85] automatically select the most important subset of the original set
of features, but conclude that in practice the performance improvement com-
pared to using all features is not significant. [151] use genetic algorithms to
determine the importance of the individual features. [115] evaluate subsets of
the features they use and learn weights for each of them. [124] consider using a



178 L. Kotthoff

single feature and automatic selection of a subset of all features. [63,88] also use
techniques for automatically determining the most predictive subset of features.
[83] compares the performance of ten different sets of features.

It is not only important to use informative features, but also features that are
cheap to compute. If the cost of computing the features and making the decision
is too high, the performance improvement from selecting the best algorithm
might be eroded. [160] predict the feature computation time for a given problem
and fall back to a default selection if it is too high to avoid this problem. They also
limit the computation time for the most expensive features as well as the total
time allowed to compute features. [13] consider the computational complexity
of calculating problem features when selecting the features to use. They show
that while achieving comparable accuracy to the full set of features, the subset
of features selected by their method is significantly cheaper to compute. [54]
explicitly exclude features that are expensive to compute.

6 Application Domains

The approaches for solving the Algorithm Selection Problem that have been
surveyed here are usually not specific to a particular application domain, within
combinatorial search problems or otherwise. Nevertheless this survey would not
be complete without a brief exposition of the various contexts in which Algorithm
Selection techniques have been applied.

Over the years, Algorithm Selection systems have been used in many differ-
ent application domains. These range from Mathematics, e.g. differential equa-
tions [82,149], linear algebra [29] and linear systems [12,89], to the selection of
algorithms and data structures in software design [19,21,131,151]. A very com-
mon application domain are combinatorial search problems such as SAT [91,
130,159], constraints [36,105,110], Mixed Integer Programming [161], Quan-
tified Boolean Formulae [118,137], planning [22,38,72], scheduling [10,11,27],
combinatorial auctions [46,51,95], Answer Set Programming [53,67], the Trav-
elling Salesperson Problem [41,86], graph colouring [106] and general search
algorithms [28,93,100].

Other domains include Machine Learning [94,135], the most probable
explanation problem [63], parallel reduction algorithms [163,164] and simula-
tion [37,147]. It should be noted that a significant part of Machine Learning
research is concerned with developing Algorithm Selection techniques; the pub-
lications listed in this paragraph are the most relevant that use the specific
techniques and framework surveyed here.

Some publications consider more than one application domain. [137] choose
the best algorithm for Quantified Boolean Formulae and combinatorial auctions.
[2,88] look at SAT and constraints. [59] consider SAT and Mixed Integer Pro-
gramming. In addition to these two domains, [81] also investigate set covering
problems. [140] apply their approach to SAT, Integer Programming and plan-
ning. [48,83,85] compare the performance across Algorithm Selection problems
from constraints, Quantified Boolean Formulae and SAT.



Algorithm Selection for Combinatorial Search Problems: A Survey 179

In most cases, researchers take some steps to adapt their approaches to the
application domain. This is usually done by using domain-specific features, such
as the number of constraints and variables in constraint programming. In prin-
ciple, this is not a limitation of the proposed techniques as those features can be
exchanged for ones that are applicable in other application domains. While the
overall approach remains valid, the question of whether the performance would
be acceptable arises. [85] investigate how specific techniques perform across sev-
eral domains with the aim of selecting the one with the best overall performance.
There are approaches that have been tailored to a specific application domain to
such an extent that the technique cannot be used for other applications. This is
the case for example in the case of hierarchical models for SAT [64,156].

7 Summary

Over the years, there have been many approaches to solving the Algorithm Selec-
tion Problem. Especially in Artificial Intelligence and for combinatorial search
problems, researchers have recognised that using Algorithm Selection techniques
can provide significant performance improvements with relatively little effort.
Most of the time, the approaches involve some kind of Machine Learning that
attempts to learn the relation between problems and the performance of algo-
rithms automatically. This is not a surprise, as the relationship between an
algorithm and its performance is often complex and hard to describe formally.
In many cases, even the designer of an algorithm does not have a general model
of its performance.

Despite the theoretical difficulty of Algorithm Selection, dozens of systems
have demonstrated that it can be done in practice with great success. In some
sense, this mirrors achievements in other areas of Artificial Intelligence. Satis-
fiability is formally a problem that cannot be solved efficiently, yet researchers
have come up with ways of solving very large instances of satisfiability problems
with very few resources. Similarly, some Algorithm Selection systems have come
very close to always choosing the best algorithm.

This survey presented an overview of the Algorithm Selection research that
has been done to date with a focus on combinatorial search problems. A cate-
gorisation of the different approaches with respect to fundamental criteria that
determine Algorithm Selection systems in practice was introduced. This categori-
sation abstracts from many of the low level details and additional considerations
that are presented in most publications to give a clear view of the underlying
principles. We furthermore gave details of the many different ways that can be
used to tackle Algorithm Selection and the many techniques that have been used
to solve it in practice.

On a high level, the approaches surveyed here can be summarised as follows.

– Algorithms are chosen from portfolios, which can be statically constructed
or dynamically augmented with newly constructed algorithms as problems
are being solved. Portfolios can be engineered such that the algorithms in
it complement each other (i.e. are as diverse as possible), by automatically



180 L. Kotthoff

tuning algorithms on a set of training problems or by using a set of algorithms
from the literature or competitions. Dynamic portfolios can be composed of
algorithmic building blocks that are combined into complete algorithms by
the selection system. Compared to tuning the parameters of algorithms, the
added difficulty is that not all combinations of building blocks may be valid.

– A single algorithm can be selected from a portfolio to solve a problem to
completion or a set of larger size can be selected that is run in parallel or
according to a schedule. Another approach is to select a single algorithm to
start with and then decide if and when to switch to another algorithm. Some
approaches always select the entire portfolio and vary the resource allocation
to the algorithms.

– Algorithm Selection can happen offline, without any interaction with the Algo-
rithm Selection system after solving starts, or online. Some approaches mon-
itor the performance of the selected algorithm and take action if it does not
conform to the expectations or some other criteria. Others repeat the selection
process at specific points during the search (e.g. every node in the search tree),
skew a computed schedule towards the best performers or decide whether to
restart stochastic algorithms.

– Performance can be modelled and predicted either for a portfolio as a whole
(i.e. the prediction is the best algorithm) or for each algorithm independently
(i.e. the prediction is the performance). A few approaches use hierarchical
models that make a series of predictions to facilitate selection. Some publi-
cations make secondary predictions (e.g. the quality of a solution) that are
taken into account when selecting the most suitable algorithm, while others
make predictions that the desired output is derived from instead of predicting
it directly. The performance models are usually learned automatically using
Machine Learning, but a few approaches use hand-crafted models and rules.
Models can be learned from separate training data or incrementally while a
problem is being solved.

– Learning and using performance models is facilitated by features of the
algorithms, problems or runtime environment. Features can be domain-
independent or specific to a particular set of problems. Similarly, features
can be computed by inspecting the problem before solving or while it is being
solved. The use of feature selection techniques that automatically determine
the most important and relevant features is quite common.

Given the amount of relevant literature, it is infeasible to discuss every app-
roach in detail. The scope of this survey is necessarily limited to the detailed
description of high-level details and a summary overview of low-level traits. Work
in related areas that is not immediately relevant to Algorithm Selection for com-
binatorial search problems has been pointed to, but cannot be explored in more
detail.

The proliferation of different approaches, application domains and data sets
has stimulated the creation of a common data format and benchmark repository
for algorithm selection problems, http://aslib.net. It provides a starting point
for researchers wishing to compare their new approach to existing approaches.

http://aslib.net


Algorithm Selection for Combinatorial Search Problems: A Survey 181

A tabular summary of the literature organised according to the criteria intro-
duced here can be found at http://larskotthoff.github.io/assurvey/. This table
is updated continuously.

Acknowledgements. Ian Miguel and Ian Gent provided valuable feedback that
helped shape this chapter. We also thank the anonymous reviewers of a previous ver-
sion of this chapter whose detailed comments helped to greatly improve it. This work
was supported by an EPSRC doctoral prize and EU FP7 FET project ICON. A shorter
version of this chapter has appeared in AI Magazine [84].

References

1. Aha, D.W.: Generalizing from case studies: a case study. In: Proceedings of the
9th International Workshop on Machine Learning, pp. 1–10. Morgan Kaufmann
Publishers Inc, San Francisco (1992)

2. Allen, J.A., Minton, S.: Selecting the right heuristic algorithm: runtime perfor-
mance predictors. In: McCalla, G. (ed.) AI 1996. LNCS, vol. 1081, pp. 41–53.
Springer, Heidelberg (1996). doi:10.1007/3-540-61291-2 40

3. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach for
constraint solving. TPLP 14(4–5), 509–524 (2014)

4. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: PetaBricks: a language and compiler for algorithmic choice. SIGPLAN
Not. 44(6), 38–49 (2009)

5. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm
for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 14

6. Arbelaez, A., Hamadi, Y., Sebag, M.: Online heuristic selection in constraint
programming. In: Symposium on Combinatorial Search (2009)

7. Armstrong, W., Christen, P., McCreath, E., Rendell, A.P.: Dynamic algorithm
selection using reinforcement learning. In: International Workshop on Integrating
AI and Data Mining, pp. 18–25, December 2006

8. Balasubramaniam, D., Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Nightin-
gale, P.: An automated approach to generating efficient constraint solvers. In:
34th International Conference on Software Engineering, pp. 661–671, June 2012

9. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algo-
rithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

10. Beck, J.C., Fox, M.S.: Dynamic problem structure analysis as a basis for
constraint-directed scheduling heuristics. Artif. Intell. 117(1), 31–81 (2000)

11. Beck, J.C., Freuder, E.C.: Simple rules for low-knowledge algorithm selection.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 50–64.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0 4

12. Bhowmick, S., Eijkhout, V., Freund, Y., Fuentes, E., Keyes, D.: Application of
machine learning in selecting sparse linear solvers. Technical report, Columbia
University (2006)

13. Bhowmick, S., Toth, B., Raghavan, P.: Towards low-cost, high-accuracy classifiers
for linear solver selection. In: Allen, G., Nabrzyski, J., Seidel, E., Albada, G.D.,
Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 463–472.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01970-8 45

http://larskotthoff.github.io/assurvey/
http://dx.doi.org/10.1007/3-540-61291-2_40
http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-642-04244-7_14
http://dx.doi.org/10.1007/978-3-540-24664-0_4
http://dx.doi.org/10.1007/978-3-642-01970-8_45


182 L. Kotthoff

14. Borrett, J.E., Tsang, E.P.K.: A context for constraint satisfaction problem for-
mulation selection. Constraints 6(4), 299–327 (2001)

15. Borrett, J.E., Tsang, E.P.K., Walsh, N.R.: Adaptive constraint satisfaction: The
quickest first principle. In: ECAI, pp. 160–164 (1996)

16. Bougeret, M., Dutot, P., Goldman, A., Ngoko, Y., Trystram, D.: Combining multi-
ple heuristics on discrete resources. In: IEEE International Symposium on Parallel
and Distributed Processing, pp. 1–8. IEEE Computer Society, Washington, DC
(2009)

17. Brazdil, P.B., Soares, C.: A comparison of ranking methods for classification
algorithm selection. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000.
LNCS (LNAI), vol. 1810, pp. 63–75. Springer, Heidelberg (2000). doi:10.1007/
3-540-45164-1 8

18. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
19. Brewer, E.A.: High-level optimization via automated statistical modeling. In: Pro-

ceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming PPOPP 1995, pp. 80–91. ACM, New York (1995)

20. Brodley, C.E.: Addressing the selective superiority problem: automatic algo-
rithm/model class selection. In: ICML, pp. 17–24 (1993)

21. Cahill, E.: Knowledge-based algorithm construction for real-world engineering
PDEs. Math. Comput. Simul. 36(4–6), 389–400 (1994)

22. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso,
M.: PRODIGY: an integrated architecture for planning and learning. SIGART
Bull. 2, 51–55 (1991)

23. Carchrae, T., Beck, J.C.: Low-knowledge algorithm control. In: AAAI, pp. 49–54
(2004)

24. Carchrae, T., Beck, J.C.: Applying machine learning to Low-knowledge control
of optimization algorithms. Comput. Intell. 21(4), 372–387 (2005)

25. Caseau, Y., Laburthe, F., Silverstein, G.: A meta-heuristic factory for vehicle
routing problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 144–158.
Springer, Heidelberg (1999). doi:10.1007/978-3-540-48085-3 11

26. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: 12th International Joint Conference on Artificial Intelligence, pp. 331–337.
Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (1991)

27. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of explo-
ration applied to search heuristic selection. In: Proceedings of the 20th National
Conference on Artificial Intelligence, pp. 1355–1361. AAAI Press (2005)

28. Cook, D.J., Varnell, R.C.: Maximizing the benefits of parallel search using
machine learning. In: Proceedings of the 14th National Conference on Artificial
Intelligence, pp. 559–564. AAAI Press (1997)

29. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Wha-
ley, R.C., Yelick, K.: Self-adapting linear algebra algorithms and software. Proc.
IEEE 93(2), 293–312 (2005)

30. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.
1007/3-540-45014-9 1

31. Domingos, P.: How to get a free lunch: a simple cost model for machine learning
applications. In: AAAI98/ICML98 Workshop on the Methodology of Applying
Machine Learning, pp. 1–7. AAAI Press (1998)

32. Domshlak, C., Karpas, E., Markovitch, S.: To max or not to max: online learning
for speeding up optimal planning. In: AAAI (2010)

http://dx.doi.org/10.1007/3-540-45164-1_8
http://dx.doi.org/10.1007/3-540-45164-1_8
http://dx.doi.org/10.1007/978-3-540-48085-3_11
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1


Algorithm Selection for Combinatorial Search Problems: A Survey 183

33. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP
models. In: Proceedings of the 9th International Workshop on Constraint Mod-
elling and Reformulation, September 2010

34. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP
models. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 256–270. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23786-7 21

35. Epstein, S.L., Freuder, E.C.: Collaborative learning for constraint solving. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 46–60. Springer, Heidelberg (2001).
doi:10.1007/3-540-45578-7 4

36. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive
constraint engine. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–540.
Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3 35

37. Ewald, R., Schulz, R., Uhrmacher, A.M.: Selecting simulation algorithm portfo-
lios by genetic algorithms. In: IEEE Workshop on Principles of Advanced and
Distributed Simulation PADS 2010, IEEE Computer Society, Washington, DC
(2010)

38. Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., Leyton-Brown, K.:
Improved features for runtime prediction of domain-independent planners. In:
ICAPS (2014)

39. Fink, E.: Statistical selection among problem-solving methods. Technical report
CMU-CS-97-101. Carnegie Mellon University (1997)

40. Fink, E.: How to solve it automatically: selection among problem-solving meth-
ods. In: Proceedings of the 4th International Conference on Artificial Intelligence
Planning Systems, pp. 128–136. AAAI Press (1998)

41. Fukunaga, A.S.: Genetic algorithm portfolios. IEEE Congr. Evol. Comput. 2,
1304–1311 (2000)

42. Fukunaga, A.S.: Automated discovery of composite SAT variable-selection heuris-
tics. In: 18th National Conference on Artificial Intelligence, pp. 641–648. American
Association for Artificial Intelligence, Menlo Park (2002)

43. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evol. Comput. 16, 31–61 (2008)

44. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive
online time allocation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.)
ICANN 2005. LNCS, vol. 3697, pp. 7–12. Springer, Heidelberg (2005). doi:10.
1007/11550907 2

45. Gagliolo, M., Schmidhuber, J.: Impact of censored sampling on the performance of
restart strategies. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 167–181.
Springer, Heidelberg (2006). doi:10.1007/11889205 14

46. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann.
Math. Artif. Intell. 47(3–4), 295–328 (2006)

47. Gagliolo, M., Schmidhuber, J.: Towards distributed algorithm portfolios. In: Cor-
chado, J.M., Rodŕıguez, S., Llinas, J., Molina, J.M. (eds.) Advances in Soft Com-
puting. AINSC, vol. 50, pp. 634–643. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85863-8 75

48. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem
with unbounded losses. Ann. Math. Artif. Intell. 61(2), 49–86 (2011)

49. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time allocation to
search algorithms. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D.
(eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 134–143. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30115-8 15

http://dx.doi.org/10.1007/978-3-642-23786-7_21
http://dx.doi.org/10.1007/3-540-45578-7_4
http://dx.doi.org/10.1007/3-540-46135-3_35
http://dx.doi.org/10.1007/11550907_2
http://dx.doi.org/10.1007/11550907_2
http://dx.doi.org/10.1007/11889205_14
http://dx.doi.org/10.1007/978-3-540-85863-8_75
http://dx.doi.org/10.1007/978-3-540-85863-8_75
http://dx.doi.org/10.1007/978-3-540-30115-8_15


184 L. Kotthoff

50. Garrido, P., Riff, M.: DVRP: a hard dynamic combinatorial optimisation problem
tackled by an evolutionary hyper-heuristic. J. Heuristics 16, 795–834 (2010)

51. Gebruers, C., Guerri, A., Hnich, B., Milano, M.: Making choices using structure
at the instance level within a case based reasoning framework. In: CPAIOR, pp.
380–386 (2004)

52. Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using CBR to select solution
strategies in constraint programming. In: Proceedings of ICCBR 2005, pp. 222–
236 (2005)

53. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 352–357.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 40

54. Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie,
K.: Learning when to use lazy learning in constraint solving. In: 19th European
Conference on Artificial Intelligence, pp. 873–878, August 2010

55. Gent, I., Kotthoff, L., Miguel, I., Nightingale, P.: Machine learning for constraint
solver design - a case study for the alldifferent constraint. In: 3rd Workshop on
Techniques for implementing Constraint Programming Systems (TRICS), pp. 13–
25 (2010)

56. Gerevini, A.E., Saetti, A., Vallati, M.: An automatically configurable portfolio-
based planner with macro-actions: PbP. In: Proceedings of the 19th International
Conference on Automated Planning and Scheduling, pp. 350–353 (2009)

57. Gomes, C.P., Selman, B.: Algorithm portfolio design: theory vs. practice. In: UAI,
pp. 190–197 (1997)

58. Gomes, C.P., Selman, B.: Practical aspects of algorithm portfolio design. In: Pro-
ceedings of 3rd ILOG International Users Meeting (1997)

59. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62
(2001)

60. Gratch, J., DeJong, G.: COMPOSER: a probabilistic solution to the utility prob-
lem in speed-up learning. In: AAAI, pp. 235–240 (1992)

61. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio
selection. In: ECAI, pp. 475–479 (2004)

62. Guo, H.: Algorithm selection for sorting and probabilistic inference: a machine
learning-based approach. Ph.D. thesis, Kansas State University (2003)

63. Guo, H., Hsu, W.H.: A learning-based algorithm selection meta-reasoner for
the real-time MPE problem. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS
(LNAI), vol. 3339, pp. 307–318. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30549-1 28

64. Haim, S., Walsh, T.: Restart strategy selection using machine learning tech-
niques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 312–325. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 30

65. Hogg, T., Huberman, B.A., Williams, C.P.: Phase transitions and the search prob-
lem. Artif. Intell. 81(1–2), 1–15 (1996)

66. Hong, L., Page, S.E.: Groups of diverse problem solvers can outperform groups of
high-ability problem solvers. Proc. Natl. Acad. Sci. U.S.A. 101(46), 16385–16389
(2004)

67. Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. TPLP 14(4–5), 569–585 (2014)

68. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

http://dx.doi.org/10.1007/978-3-642-20895-9_40
http://dx.doi.org/10.1007/978-3-540-30549-1_28
http://dx.doi.org/10.1007/978-3-540-30549-1_28
http://dx.doi.org/10.1007/978-3-642-02777-2_30


Algorithm Selection for Combinatorial Search Problems: A Survey 185

69. Hoos, H.H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling
via answer set programming. Theory Pract. Logic Program. FirstView 15, 1–26
(2014)

70. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.:
A Bayesian approach to tackling hard computational problems. In: Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan
Kaufmann Publishers Inc., San Francisco (2001)

71. Hough, P.D., Williams, P.J.: Modern machine learning for automatic optimization
algorithm selection. In: Proceedings of the INFORMS Artificial Intelligence and
Data Mining Workshop, November 2006

72. Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., Mayrhauser, A.: Exploit-
ing competitive planner performance. In: Biundo, S., Fox, M. (eds.) ECP 1999.
LNCS (LNAI), vol. 1809, pp. 62–72. Springer, Heidelberg (2000). doi:10.1007/
10720246 5

73. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

74. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical port-
folio of solvers and transformations. In: CPAIOR, May 2014

75. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction
and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006).
doi:10.1007/11889205 17

76. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based opti-
mization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION
2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25566-3 40

77. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION. LNCS, vol. 7219, pp. 55–70. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34413-8 5

78. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

79. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based
on local search. In: Proceedings of the 22nd National Conference on Artificial
Intelligence, pp. 1152–1157. AAAI Press (2007)

80. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: 17th International Conference on Principles
and Practice of Constraint Programming, pp. 454–469 (2011)

81. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC instance-specific algo-
rithm configuration. In: 19th European Conference on Artificial Intelligence, pp.
751–756. IOS Press (2010)

82. Kamel, M.S., Enright, W.H., Ma, K.S.: ODEXPERT: an expert system to select
numerical solvers for initial value ODE systems. ACM Trans. Math. Softw. 19(1),
44–62 (1993)

83. Kotthoff, L.: Hybrid regression-classification models for algorithm selection. In:
20th European Conference on Artificial Intelligence, pp. 480–485, August 2012

84. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI
Mag. 35(3), 48–60 (2014)

85. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm
selection for search problems. AI Commun. 25(3), 257–270 (2012)

http://dx.doi.org/10.1007/10720246_5
http://dx.doi.org/10.1007/10720246_5
http://dx.doi.org/10.1007/11889205_17
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-34413-8_5


186 L. Kotthoff

86. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens,
C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19084-6 18

87. Kotthoff, L., Miguel, I., Nightingale, P.: Ensemble classification for constraint
solver configuration. In: 16th International Conference on Principles and Practices
of Constraint Programming, pp. 321–329, September 2010

88. Kroer, C., Malitsky, Y.: Feature filtering for Instance-Specific algorithm configura-
tion. In: Proceedings of the 23rd International Conference on Tools with Artificial
Intelligence (2011)

89. Kuefler, E., Chen, T.-Y.: On using reinforcement learning to solve sparse linear
systems. In: Bubak, M., Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2008. LNCS, vol. 5101, pp. 955–964. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69384-0 100

90. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learn-
ing. In: Proceedings of the 17th International Conference on Machine Learning,
pp. 511–518. Morgan Kaufmann Publishers Inc., San Francisco (2000)

91. Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL
procedure for satisfiability. In: LICS/SAT, pp. 344–359 (2001)

92. Langley, P.: Learning effective search heuristics. In: IJCAI, pp. 419–421 (1983)
93. Langley, P.: Learning search strategies through discrimination. Int. J. Man-Mach.

Stud. 18, 513–541 (1983)
94. Leite, R., Brazdil, P., Vanschoren, J., Queiros, F.: Using active testing and meta-

level information for selection of classification algorithms. In: 3rd PlanLearn
Workshop, August 2010

95. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness
of optimization problems: the case of combinatorial auctions. In: Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002). doi:10.
1007/3-540-46135-3 37

96. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models:
methodology and a case study on combinatorial auctions. J. ACM 56, 1–52 (2009)

97. Lindauer, M., Hoos, H., Hutter, F.: From sequential algorithm selection to par-
allel portfolio selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.)
LION 2015. LNCS, vol. 8994, pp. 1–16. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19084-6 1

98. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: algorithm configu-
ration for algorithm selection. In: Twenty-Ninth AAAI Workshops on Artificial
Intelligence, January 2015

99. Little, J., Gebruers, C., Bridge, D., Freuder, E.: Capturing constraint program-
ming experience: a case-based approach. In: Modref (2002)

100. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance
prediction. In: Proceedings of the 15th National/10th Conference on Artificial
Intelligence/Innovative Applications of Artificial Intelligence, pp. 353–358. Amer-
ican Association for Artificial Intelligence, Menlo Park (1998)

101. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-model-based
algorithm portfolios for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT
2011. LNCS, vol. 6695, pp. 369–370. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21581-0 33

102. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: IJCAI, August 2013

http://dx.doi.org/10.1007/978-3-319-19084-6_18
http://dx.doi.org/10.1007/978-3-540-69384-0_100
http://dx.doi.org/10.1007/978-3-540-69384-0_100
http://dx.doi.org/10.1007/3-540-46135-3_37
http://dx.doi.org/10.1007/3-540-46135-3_37
http://dx.doi.org/10.1007/978-3-319-19084-6_1
http://dx.doi.org/10.1007/978-3-319-19084-6_1
http://dx.doi.org/10.1007/978-3-642-21581-0_33
http://dx.doi.org/10.1007/978-3-642-21581-0_33


Algorithm Selection for Combinatorial Search Problems: A Survey 187

103. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings
of the 13th International Joint Conference on Artifical Intelligence IJCAI 1993,
pp. 922–928. Morgan Kaufmann Publishers Inc., San Francisco (1993)

104. Minton, S.: Integrating heuristics for constraint satisfaction problems: a case
study. In: Proceedings of the 11th National Conference on Artificial Intelligence,
pp. 120–126. AAAI (1993)

105. Minton, S.: Automatically configuring constraint satisfaction programs: a case
study. Constraints 1, 7–43 (1996)

106. Musliu, N., Schwengerer, M.: Algorithm selection for the graph coloring problem.
In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 389–403.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4 42

107. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Nareyek, A. (ed.) Metaheuristics: Computer Decision-Making. Applied Opti-
mization, vol. 86, pp. 523–544. Kluwer Academic Publishers, New York (2001)

108. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT
solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 31

109. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 33

110. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of
the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

111. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif.
Intell. Res. 11, 169–198 (1999)

112. Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics for
adaptive constraint propagation. In: ICTAI (2012)

113. Petrik, M.: Statistically optimal combination of algorithms. In: Local Proceedings
of SOFSEM 2005 (2005)

114. Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Ann. Math.
Artif. Intell. 48(1–2), 85–106 (2006)

115. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in hyper-heuristic
for course timetabling problems. In: KES, pp. 336–340 (2002)

116. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-Learning by landmark-
ing various learning algorithms. In: 17th International Conference on Machine
Learning ICML 2000, pp. 743–750, Morgan Kaufmann Publishers Inc., San
Francisco (2000)

117. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74970-7 41

118. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified
boolean formulas. Constraints 14(1), 80–116 (2009)

119. Rao, R.B., Gordon, D., Spears, W.: For every generalization action, is there really
an equal and opposite reaction? Analysis of the conservation law for generalization
performance. In: Proceedings of the 12th International Conference on Machine
Learning, pp. 471–479. Morgan Kaufmann (1995)

120. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
121. Rice, J.R., Ramakrishnan, N.: How to get a free lunch (at no cost). Techical report

99–014, Purdue University, April 1999

http://dx.doi.org/10.1007/978-3-642-44973-4_42
http://dx.doi.org/10.1007/978-3-642-02777-2_31
http://dx.doi.org/10.1007/978-3-540-30201-8_33
http://dx.doi.org/10.1007/978-3-540-30201-8_33
http://dx.doi.org/10.1007/978-3-540-74970-7_41


188 L. Kotthoff

122. Roberts, M., Howe, A.E.: Directing a portfolio with learning. In: AAAI 2006
Workshop on Learning for Search (2006)

123. Roberts, M., Howe, A.E.: Learned models of performance for many planners. In:
ICAPS 2007 Workshop AI Planning and Learning (2007)

124. Roberts, M., Howe, A.E., Wilson, B., des Jardins, M.: What makes planners
predictable? In: ICAPS, pp. 288–295 (2008)

125. Sakkout, H., Wallace, M.G., Richards, E.B.: An instance of adaptive constraint
propagation. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178.
Springer, Heidelberg (1996). doi:10.1007/3-540-61551-2 73

126. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the
22nd National Conference on Artificial Intelligence, pp. 255–260. AAAI Press
(2007)

127. Sayag, T., Fine, S., Mansour, Y.: Combining multiple heuristics. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 242–253. Springer,
Heidelberg (2006). doi:10.1007/11672142 19

128. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

129. Sillito, J.: Improvements to and estimating the cost of solving constraint satisfac-
tion problems. Master’s thesis, University of Alberta (2000)

130. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio
methods. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence
(2010)

131. Smith, T.E., Setliff, D.E.: Knowledge-based constraint-driven software synthe-
sis. In: Knowledge-Based Software Engineering Conference, pp. 18–27, September
1992

132. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

133. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41, 6: 1–6: 25 (2008)

134. Smith-Miles, K.A.: Towards insightful algorithm selection for optimisation using
meta-learning concepts. In: IEEE International Joint Conference on Neural Net-
works, pp. 4118–4124, June 2008

135. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel
width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

136. Stergiou, K.: Heuristics for dynamically adapting propagation in constraint sat-
isfaction problems. AI Commun. 22(3), 125–141 (2009)

137. Stern, D.H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.:
Collaborative expert portfolio management. In: AAAI, pp. 179–184 (2010)

138. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online.
In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp.
1197–1203. AAAI Press (2007)

139. Streeter, M.J., Golovin, D., Smith, S.F.: Restart schedules for ensembles of prob-
lem instances. In: Proceedings of the 22nd National Conference on Artificial Intel-
ligence, pp. 1204–1210. AAAI Press (2007)

140. Streeter, M.J., Smith, S.F.: New techniques for algorithm portfolio design. In:
UAI, pp. 519–527 (2008)

141. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 635–642. Morgan Kaufmann
(1999)

http://dx.doi.org/10.1007/3-540-61551-2_73
http://dx.doi.org/10.1007/11672142_19


Algorithm Selection for Combinatorial Search Problems: A Survey 189

142. Tolpin, D., Shimony, S.E.: Rational deployment of CSP heuristics. In: IJCAI, pp.
680–686 (2011)

143. Tsang, E.P.K., Borrett, J.E., Kwan, A.C.M.: An attempt to map the performance
of a range of algorithm and heuristic combinations. In: Proceedings of AISB 1995,
pp. 203–216. IOS Press (1995)

144. Utgoff, P.E.: Perceptron trees: a case study in hybrid concept representations. In:
National Conference on Artificial Intelligence, pp. 601–606 (1988)

145. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid
approach. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms SODA 2006, pp. 1–10. ACM, New York (2006)

146. Vrakas, D., Tsoumakas, G., Bassiliades, N., Vlahavas, I.: Learning rules for adap-
tive planning. In: Proceedings of the 13th International Conference on Automated
Planning and Scheduling, pp. 82–91 (2003)

147. Wang, J., Tropper, C.: Optimizing time warp simulation with reinforcement learn-
ing techniques. In: Proceedings of the 39th Conference on Winter simulation WSC
2007, pp. 577–584. IEEE Press, Piscataway (2007)

148. Watson, J.: Empirical modeling and analysis of local search algorithms for the job-
shop scheduling problem. Ph.D. thesis, Colorado State University, Fort Collins,
CO, USA (2003)

149. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., Houstis, C.E.: PYTHIA: a
knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw.
22(4), 447–468 (1996)

150. Wei, W., Li, C.M., Zhang, H.: Switching among non-weighting, clause weight-
ing, and variable weighting in local search for SAT. In: Stuckey, P.J. (ed.) CP
2008. LNCS, vol. 5202, pp. 313–326. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 21

151. Wilson, D., Leake, D., Bramley, R.: Case-based recommender components for
scientific problem-solving environments. In: Proceedings of the 16th International
Association for Mathematics and Computers in Simulation World Congress (2000)

152. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)
153. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proceedings

of the 6th Online World Conference on Soft Computing in Industrial Applications,
pp. 25–42 (2001)

154. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

155. Wu, H., van Beek, P.: On portfolios for backtracking search in the presence of
deadlines. In: Proceedings of the 19th IEEE International Conference on Tools
with Artificial Intelligence, pp. 231–238. IEEE Computer Society, Washington,
DC (2007)

156. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In:
CP, pp. 696–711 (2007)

157. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algo-
rithms for portfolio-based selection. In: 24th Conference of the Association for
the Advancement of Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)

158. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and
analysis of an algorithm portfolio for SAT. In: CP, pp. 712–727 (2007)

159. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

160. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla2009: an automatic
algorithm portfolio for SAT. In: 2009 SAT Competition (2009)

http://dx.doi.org/10.1007/978-3-540-85958-1_21
http://dx.doi.org/10.1007/978-3-540-85958-1_21


190 L. Kotthoff

161. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: automated algo-
rithm configuration and selection for mixed integer programming. In: RCRA
Workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion at the International Joint Conference on Artificial Intel-
ligence (IJCAI) (2011)

162. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver con-
tributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani, R.
(eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31612-8 18

163. Yu, H., Rauchwerger, L.: An adaptive algorithm selection framework for reduction
parallelization. IEEE Trans. Parallel Distrib. Syst. 17(10), 1084–1096 (2006)

164. Yu, H., Zhang, D., Rauchwerger, L.: An adaptive algorithm selection framework.
In: Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, pp. 278–289. IEEE Computer Society, Washington,
DC (2004)

165. Yun, X., Epstein, S.L.: Learning algorithm portfolios for parallel execution. In:
Hamadi, Y., Schoenauer, M. (eds.) Proceedings of the 6th International Confer-
ence Learning and Intelligent Optimisation LION. LNCS, vol. 7219, pp. 323–338.
Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-642-31612-8_18

	Algorithm Selection for Combinatorial Search Problems: A Survey
	1 Introduction
	1.1 Practical Motivation
	1.2 Scope and Related Work
	1.3 Terminology
	1.4 Organisation

	2 Algorithm Portfolios
	2.1 Static Portfolios
	2.2 Dynamic Portfolios

	3 Problem Solving with Portfolios
	3.1 What to Select
	3.2 When to Select

	4 Portfolio Selectors
	4.1 Performance Models
	4.2 Types of Predictions

	5 Features
	5.1 Low and High-Knowledge Features
	5.2 Static and Dynamic Features
	5.3 Feature Selection

	6 Application Domains
	7 Summary
	References


