
Learning Constraint Satisfaction Problems:
An ILP Perspective

Luc De Raedt1, Anton Dries1(B), Tias Guns1, and Christian Bessiere2

1 DTAI, KU Leuven, Leuven, Belgium
anton.dries@cs.kuleuven.be

2 CNRS, University of Montpellier, Montpellier, France

Abstract. We investigate the problem of learning constraint satisfac-
tion problems from an inductive logic programming perspective. Con-
straint satisfaction problems are the underlying basis for constraint pro-
gramming and there is a long standing interest in techniques for learning
these. Constraint satisfaction problems are often described using a rela-
tional logic, so inductive logic programming is a natural candidate for
learning such problems. So far, there is however only little work on the
intersection between learning constraint satisfaction problems and induc-
tive logic programming. In this article, we point out several similarities
and differences between the two classes of techniques that may inspire
further cross-fertilization between these two fields.

1 Introduction

Constraint programming (CP) is an active research area in the field of artifi-
cial intelligence. It is concerned with solving combinatorial problems that are
formalised as constraint satisfaction problems (CSPs). CP has been used in
numerous applications in domains such as time-tabling, scheduling, packing,
bioinformatics, etc.

On the other hand, inductive logic programming (ILP) is a research area that
has studied the learning of logic programs and relational descriptions for more
than twenty years now. ILP has also been applied in a wide variety of contexts,
including bio- and chemo-informatics, natural language processing, engineer-
ing, etc.

CP has – like ILP – its origins in the field of logic programming and uses
a declarative representation. However, while learning traditional logic programs
is popular (thanks to ILP), the learning of constraint programs and CSPs has
received much less attention, even though several techniques for learning CSPs
have been contributed in the past ten years, cf. [1,5,7,10,19,20]. The motivation
for learning is that formulating the CSP for a particular application is a non-
trivial task.

Most of the techniques to learn logic programs and to learn constraint sat-
isfaction problems have been developed independently of one another (but see
[19]). This is surprising as both problems are – as we will show – essentially

c© Springer International Publishing AG 2016
C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAI 10101, pp. 96–112, 2016.
DOI: 10.1007/978-3-319-50137-6 5

Learning Constraint Satisfaction Problems: An ILP Perspective 97

logical and relational learning problems. This paper contributes to bridging
the gap between CP and ILP by surveying the CP-learning techniques from
the perspective of ILP. This will allow us to point out differences and similari-
ties between the two approaches and to also indicate opportunities for further
research.

This paper is organized as follows. In Sect. 2, we introduce the relevant con-
text on the modelling of constraint satisfaction problems (CSPs). In Sect. 3, we
introduce the task of learning CSPs, and we relate this task to ILP in Sect. 4.
In Sect. 5, we give an overview of existing systems for solving this task, and
we describe them in terms of ILP concepts. Section 6 provides a summary and
discussion of the different systems and Sect. 7 concludes this paper.

2 Constraint Satisfaction Problems

Constraint programming (CP) is concerned with solving constraint satisfaction
problems (CSPs). A CSP is a constraint network p = (V,D, C), defined by

– a finite set of variables V = {v1, . . . , vn};
– a domain D, which maps every variable v ∈ V to a set of possible values D(v);

and
– a finite set of constraints C = {c1, . . . , cn}, where each constraint ci ∈ C

is essentially a relation ci ⊆ D(vi1) × · · · × D(vimi
), that can be specified

extensionally or intensionally.

The key question of constraint satisfaction problems is to find an assignment
of values to the variables so that all constraints in the constraint network are
satisfied. The constraints hence form one big conjunction. Let us now illustrate
CSPs using three well-known examples: n-queens, sudoku and graph coloring.

In n-queens, the goal is to put n queens on an n-by-n board, so that no queen
attacks another one (queens can attack if they are in the same row, column or
diagonal, as per the chess rules), cf. Figs. 1 and 2. The valid solutions of the
n-queens problem are completely determined by the value of n.

Fig. 1. A 4× 4 chessboard

X

X

X

X

Fig. 2. ...and a 4-queens solution.

In Sudoku, one is given a 9× 9 grid. The goal of a Sudoku is to enter in each
cell a number between 1 and 9, such that no number occurs twice in the same
row, column or block. In a Sudoku puzzle, a number of values are already given
while guaranteeing that there is a unique solution to the puzzle, cf. Figs. 3 and
4. In a CSP these initial values can be encoded as additional constraints.

98 L. De Raedt et al.

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Fig. 3. An unsolved 3× 3 Sudoku...

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

Fig. 4. ...and its solution.

In graph coloring, one is given a graph and a set of colors. The goal is to
assign a color to each node in the graph such that adjacent nodes have a different
color. In a CSP the graph structure can be encoded by using auxiliary variables
and constraints on them. An example is shown in Figs. 5 and 6.

a

b

c

d

e

Fig. 5. An uncolored graph

a

b

c

d

e

Fig. 6. .. and a valid 3-coloring. (Color
figure online)

CSPs can be expressed in terms of local constraints. These constraints express
simple relationships between a bounded number of individual variables, for exam-
ple, v1 = v2, v3 �= v4, v5 = v6 + v7 + v8.

However, the number of such constraints in a CSP can become very large.
CSPs are therefore often expressed in terms of global constraints. What we call
a global constraint is in fact a class of constraints involving any (unbounded)
number of variables. The semantics of the global constraint is given by a Boolean
function of unbounded arity; thus an instance of the global constraint can be
posted on any number of variables and may represent a whole set of local con-
straints. Global constraints have two main advantages: they simplify the model
by reducing the number of constraints, and solvers can more easily exploit
the relationships between the constraints in the set. The standard example of
a global constraint is the alldifferent constraint. For example, the constraint
alldifferent([v1, v2, v3]) is equivalent to the set v1 �= v2, v1 �= v3, v2 �= v3. Addi-
tionally, higher level languages for expressing CSPs (such as MiniZinc [23] and
B-prolog [28]) offer constructs for compactly expressing loops (e.g., foreach).

Learning Constraint Satisfaction Problems: An ILP Perspective 99

Listing 1.1 shows an example of an n-queens constraint specification in B-
prolog. It uses a list of variables Q, with N such variables (line 2), each with
a domain of values from 1 to N (line 3). In this representation, the assignment
Q[i] = j means that the queen on row i is at column j (using the knowledge
that there can be only one queen per row). Lines 5–9 represent the constraints.
Line 5 uses the global alldifferent constraint and states that no two queens can
be on the same column. Line 6 uses a foreach construct to state that queens can
not be on a \-diagonal (example: Q[2] = 2 and Q[3] = 3) while line 8 states the
same for a /-diagonal (example: Q[3] = 3 and Q[4] = 2).

Listing 1.1. “n-queens on rows in B-prolog”

1 queens rows (N, Q) :−
2 length (Q, N) ,
3 Q :: 1 . .N,

5 a l l d i f f e r e n t (Q) ,
6 foreach (R1 in 1 . .N, R2 in (R1+1) . .N, (
7 Q[R1] − Q[R2] #\= R1 − R2)) ,
8 foreach (R1 in 1 . .N, R2 in (R1+1) . .N, (
9 Q[R1] − Q[R2] #\= R2 − R1)) ,

This model contains both a choice on how to represent the queens, as well as
how to formulate the constraints. Other representations for the queens are also
possible, such as one Boolean variable per board position or one integer variable
per column. Other ways to formulate the constraints are also possible, such as
with a decomposition of the alldifferent constraints.

In this paper, we will review different techniques that have been investigated
for learning constraints, as well as their relationship to ILP.

3 The Learning Task

In its basic form, the learning task consists in learning the constraints of a CSP
from example assignments. Given is

– a finite set of variables V = {v1, . . . , vn};
– a domain D that maps every variable v ∈ V to a set of possible values D(v);
– a set of positive and negative examples that take the form of assignments

θ = {v1 = a1, . . . , vn = an} to the variables V that satisfy or violate the CSP;
– a language of possible constraints LC , such that each c ∈ LC is of the form

r(t1, . . . , tm) with r/m a relation of arity m defined in the background, where
the terms ti correspond to a constant, a variable in V or a list of variables
that are a subset of V.1

1 Observe that we choose here to represent global constraints as unary predicates,
taking a list of variables as its arguments. An alternative would be to introduce
one version of the global predicate for any possible arity, e.g. alldifferent(X,Y),
alldifferent(X,Y, Z),

100 L. De Raedt et al.

The goal then is to find a hypothesis h ⊆ LC that is satisfied by all positive
examples and no negative examples.

For the n-queens problem in Listing 1.1, the set of variables would have car-
dinality n, and the domain for each would be the set {1, . . . , n} (note how the
variable representation is part of the learning problem). For 4-queens, a positive
example would be {Q1 = 3, Q2 = 1, Q3 = 4, Q4 = 2} and a negative exam-
ple would be {Q1 = 3, Q2 = 3, Q3 = 4, Q4 = 2}; example constraints could be
binary predicates for equality and inequality; ternary predicates for addition and
multiplication and a unary predicate for the alldifferent constraint, among
others.

Observations. Several observations can be made about this problem statement:

– CSPs are conjunctive descriptions and CP is heavily focussed on dealing
with conjunctions as these impose strong constraints that – unlike disjunc-
tive descriptions – propagate well in the search;

– The above definition assumes that all variables are explicit, and no new (aux-
iliary) variables are introduced to formulate certain constraints;

– Unlike in traditional machine learning and ILP, one typically assumes a noise-
free setting;

– The number of constraints in CSPs can be quite large, especially when consid-
ering ground representations in which foreach loops are unrolled; it is typically
much larger than the typical clauses learned in ILP; for instance, the Sudoku
problem involves 927 = 36 × 27 constraints.

– Redundancy amongst constraints is a key problem. For instance, the con-
straints x = y and y = z imply x = z. Together with the high number
of variables that is available, this causes severe problems for traversing the
search space as there are many syntactic variants. These are hypotheses that
are formulated differently and hence syntactically different (like x = y ∧ y = z
and x = y∧y = z∧x = z) but semantically equivalent. Clever ways for dealing
with this are necessary.

– Standard ILP systems often start from a large set of positive and negative
examples. The number of solutions to a CSP problem is often small and it can
already be hard to generate a single positive one. Therefore, several researchers
are learning CSPs from queries [7,8] and from small sets of examples [5,19];
these queries, as we shall discuss, do not always ask for the classification of a
complete example (consisting of a value assignment to all variables in V).

4 Relation to Inductive Logic Programming

Inductive Logic Programming (ILP) is a machine learning methodology that uses
first-order logic to represent the data as well as the learned hypotheses. This use
of first-order logic sets it apart from other machine learning techniques. It is
often used in a concept learning setting, where the goal is to find a hypothesis
that covers all of the positive examples and none of the negative ones. See [13]
for a gentle introduction to ILP.

Learning Constraint Satisfaction Problems: An ILP Perspective 101

In the ILP literature, there is a well-known distinction between learning from
entailment and learning from interpretations [12], which is also quite relevant in
the present context. When learning from entailment, each example is presented
as a ground fact and additional knowledge about the examples and the domain
is provided as background knowledge. The goal is to find (a set of) clauses that,
combined with the background knowledge, logically entail the positive examples,
and do not entail the negative examples.

Several state of the art CSP learning approaches (such as Conacq [10] and
QuAcq [7]) map directly to this setting. However, in contrast to traditional ILP,
they focus on learning a single clause.

The CSP p = (V,D, C) can be represented by a single conjunctive clause of
the following form:

p(v1, . . . , vn) :- d(v1), . . . , d(vn),
c1(vc11 , vc12 , . . . , vc1r

),
. . . ,

cm(vcm1 , vcm2 , . . . , vcms
).

where V = {v1, . . . , vn}, d(vx) represents the domain of vx and there are m
constraints ci, each involving a subset of the variables in V. In this setting,
learning a CSP corresponds to learning a single clause for which in addition
vars(head) = vars(body) as no existential variables are allowed in the body of
the clause. The definition of the ci is then part of the background knowledge;
cf. below. The goal is then to learn the definition of p(v1, . . . , vn) given this
background knowledge and positive and negative examples. Observe that this
formulation of the constraint learning problem is closely related to the learnabil-
ity results for single rules by [18] or conjunctive concepts in structural domains
by [17], two settings that have been well-studied within the context of ILP.

Example. For the n-queens problem with n = 4, we could have the positive exam-
ple queens4(2, 3, 1, 4) and the negative example queens4(2, 1, 3, 4). The back-
ground knowledge consists of the declaration of the domains, equality operators
and simple mathematical functions.

The goal is to find a set of clauses of the form

queens4(q1, q2, q3, q4) :- body(q1, q2, q3, q4)

such that the body of at least one of the clause is satisfied for the substitution
{q1/2, q2/3, q3/1, q4/4} and the body of none of the clauses is satisfied for the
substitution {q1/2, q2/1, q3/3, q4/4}.

The n-queens problem for n = 4 can be formulated as

queens4(q1, q2, q3, q4) :- q1 ∈ [1, 4], q2 ∈ [1, 4], q3 ∈ [1, 4], q4 ∈ [1, 4],
q1 �= q2, q1 �= q3, q1 �= q4, q2 �= q3, q2 �= q4, q3 �= q4,

|q1 − q2| �= 1, |q1 − q3| �= 2, |q1 − q4| �= 3,

|q2 − q3| �= 1, |q2 − q4| �= 2, |q3 − q4| �= 1.

102 L. De Raedt et al.

The second line could be replaced with alldifferent(q1, q2, q3, q4) if that constraint
is available.

Alternatively, the learning of CSPs can also be viewed as a learning from
interpretations task as originally tackled in the Clausal Discovery system
Claudien [14]. In this approach an example is a set of ground facts (typically a
Herbrand interpretation). This set is a complete description of the knowledge
about the example, that is, facts that are not in the example are considered to
be false. In this setting, there is no explicit target predicate such as queens.

Furthermore, a hypothesis H is said to cover an example e if the example e
is a model of H. Hypotheses are represented in clausal logic, that is, Claudien
learns a conjunctive set of clauses of the form h1 ∨· · ·∨hm ← b1 ∧· · ·∧bn, where
the hi and bj are first-order terms. All variables in such a clause are universally
quantified.

Also with this representation, it is possible to represent a CSP p = (V,D, C).
The form that this could take is to add a predicate vi/1 to represent each variable
in V and then employ for each variable vi ∈ V the following clauses:

vi(X) ∧ vi(Y) → X = Y

vi(ei,1) ∨ · · · ∨ v(ei,in)

with D(vi) = {ei,1, . . . , ei,in} the domain of the variable vi. These clauses guar-
antee that any model will have to take exactly one value e for each variable
v ∈ V. Furthermore, for each constraint cj we add the clause:

v1(X1) ∧ v2(X2) ∧ · · · ∧ vn(Xn) → cj(X1,X2, . . . , Xn)

where Xi are the different variables involved in the constraint cj . This constraint
guarantees that any model of the theory will satisfy all the constraints in the
CSP. Notice again that we assumed here that the number of variables is given and
fixed. If so, the learning setting is essentially propositional and closely related to
that of Valiant’s seminal PAC-learning setting [27]. However, it is often possible
to generalize the setting towards any number of variables as in the first order
extension to j, k-clausal theories [15] of Valiant’s setting. It is this setting that
formed the basis for learning from interpretations in ILP. We achieve this trans-
formation by replacing each predicate vi(X) by a predicate v(i,X), that is, by
making the variable index a variable itself. We illustrate this on the n-queens
example.

Example. We can represent a solution to the 4-queens problem as the following
interpretation:

{size(4), q(1, 2), q(2, 4), q(3, 1), q(4, 3)}
where q(R,C) indicates that there is a queen at position (R,C) on the board.
The set of clauses that fully determines the n-queens problem for examples
represented in this language is

Learning Constraint Satisfaction Problems: An ILP Perspective 103

q(R1, C1) ∧ q(R2, C2) ∧ R1 �= R2 → C1 �= C2

q(R1, C1) ∧ q(R1, C1) ∧ R1 �= R2 → |R1 − R2| �= |Q1 − Q2|
q(R1, C1) ∧ q(R2, C2) ∧ C1 �= C2 → R1 �= R2

size(N) ∧ q(R,C) → between(C, 1, N)
size(N) ∧ q(R,C) → between(R, 1, N)

size(N) ∧ between(R, 1, N) → existsrow(R)

where existsrow is defined in the background knowledge as

q(R,C) → existsrow(R).

Similar clauses could be added for existscol but they are redundant. In the
common CSP formulation of this problem (see Listing 1.1) the last 4 constraints
are implicitly encoded in the representation of the variables as a list of row
positions of the queens. Note that this definition can be learned from examples
of different sizes.

One interesting consequence of these different representations is the following.
The single clause representation is essentially a propositional one, while the
representation as a conjunctive set of clauses (CNF) also allows for relational
descriptions. The propositional techniques will learn constraints for one specific
CSP instance (e.g., n-queens for one specific n or graph coloring for one specific
graph), while relational approaches have the potential of learning the general
CSP (e.g., n-queens for all n at the same time or graph coloring for arbitrary
graphs). Indeed, given that in the single clause representation the arity of the
target predicate is fixed and vars(head) = vars(body), it is not possible to learn
one clause that will work for any number of queens.

As an example, let us examine the graph coloring problem. Using a proposi-
tional representation (either the single clause or the propositional CNF one), one
will essentially learn the constraints governing a particular graph. This is easy
to see when considering the single clause representation. What will be learned
will be a set of inequalities. Each such inequality corresponds to one edge in the
graph. This is unusual from an ILP perspective, as there it would typically be
assumed that the edges are given. If the edges are given, it is possible to learn
the overall concept of graph-coloring using a clause such as

edge(X,Y), color(X,CX), color(Y,CY) → CX �= CY

5 CSP Learning Systems

In the literature there are several examples of learning systems that focus on the
problem of learning CSPs. To describe these learning systems, we shall proceed
along a number of dimensions, which are often used to characterize ILP systems.
It will be convenient to realize this by answering the following questions:

1. What is the representation language for the examples (or instances in the
data)?

104 L. De Raedt et al.

2. What is the hypotheses space or language ?
3. What type of background knowledge is used ?
4. What search strategy is used ?
5. How are the resulting hypotheses scored or ranked ?

In the remainder of this section we briefly discuss five different constraint
learning systems by answering these questions.

5.1 Learning a CNF

Clausal Discovery (Claudien) [14]. Claudien was developed as a general
purpose learning system, not focussed in particular on learning CSPs.

1. Examples are represented as Herbrand interpretations. These interpretations
can contain additional information about the problem instance, for example
the graph structure in the case of graph coloring. Claudien is capable of
learning from only positive examples, or both positive and negative examples.

2. Hypotheses are represented as a conjunctive set of clauses.
3. Background knowledge contains global knowledge, for example, definitions of

global constraints that are available. This knowledge is typically represented
as clauses or predicate definitions.

4. Search in Claudien is performed on a lattice based on θ-subsumption. It is
guided by a refinement operator which can be specified in the DLAB bias
specification language, which specifies which literals can be added to a clause
during the search.

5. Claudien computes the most specific hypothesis, that is the one that covers
the fewest interpretations.2

Lallouet et al. [19]. The system proposed by Lallouet et al. essentially solves the
same learning task as Claudien. However, instead of learning a set of clauses in
universally quantified conjunctive normal form (UCNF) directly, they exploit the
duality between UCNF and clauses in existentially quantified disjunctive normal
form (EDNF) [11]. This duality can be expressed by the following property:

(∃l1,1 ∧ · · · ∧ l1,n1) ∨ · · · ∨ (∃lk,1 ∧ · · · ∧ lk,n1k)

is a solution to an EDNF concept learning task with positive examples P and
negative examples N if and only if

(∀¬l1,1 ∨ · · · ∨ ¬l1,n1) ∧ · · · ∧ (∀¬lk,1 ∨ · · · ∨ ¬lk,n1k)

is a solution to an UCNF concept learning task with N as positive examples and
P as negative examples. The clausal theory is thus obtained by learning a EDNF
on the examples where the class labels are flipped (so positive become negative
2 It is well-known in ILP [12] that when learning from interpretations, a hypothesis G

is more general than S if and only if S |= G, while when learning from entailment
if and only if G |= S.

Learning Constraint Satisfaction Problems: An ILP Perspective 105

and vice versa) and by then taking the negation of the obtained formula, which
is in UCNF. The main motivation for this approach is the availability of EDNF
learning algorithm implementations such as Aleph [26].

An important difference between Claudien and this approach is the use of
positive versus negative examples. Claudien learns primarily on positive exam-
ples with possible additional information from negative examples, while the app-
roach by Lallouet et al. primarily learns from negative examples due to the class
flipping step.

1. same as Claudien
2. same as Claudien
3. same as Claudien
4. The authors observe that neither top-down search as bottom-up search pro-

vided the necessary scalability. They propose a bi-directional search method
that combines top-down and bottom-up search similar to Mitchell’s Candi-
date Elimination [21].

5. Selection is part of the bidirectional search of the DNF learning algorithm.

ModelSeeker [5]. ModelSeeker searches for global constraints starting from an
unstructured list of variables. It does not perform search over individual variables
but it searches over blocks of variables instead. These blocks are generated by a
generator function that extracts certain structures from the example (e.g. rows
of a matrix). This approach consists of two steps:

1. Find a generator that can be applied on the given example. The generator
will enumerate blocks of variables (e.g. the rows of a matrix).

2. Find a global constraint, defined on all variables in a given block (e.g. row),
that holds for all blocks generated by that generator.

ModelSeeker defines a number of generator templates that can be instanti-
ated. For example, scheme(n,m1,m2, size1, size2) interprets a sample of length
n as a matrix of size m1 × m2, and extracts non-overlapping blocks of size
size1 × size2. Valid instances of this template can be found using Prolog as
follows

scheme(N, M1, M2, S1, S2) :-
factor(N, M1, M2), M1 =< M2,
factor(M, S1, _),
factor(M, S2, _).

where factor(N,M1,M2) computes a pair of integers M1 and M2 such that N =
M1 × M2. For a 9 × 9 Sudoku with 81 variables, possible generators include
schema(81, 1, 81, 1, 81) (a list), schema(81, 3, 27, 3, 3) (a 3-by-27 matrix where
blocks of 3-by-3 are extracted), and schema(81, 9, 9, 1, 9) (where the rows of a
9 × 9 matrix are extracted).

In the second phase, ModelSeeker searches for a constraint that is satisfied by
all blocks belonging to the specific generator instance selected in the first phase.

106 L. De Raedt et al.

In a Sudoku, for example, the constraint alldifferent(Vars) holds for all sets
of variables extracted by schema(81, 9, 9, 1, 9) (i.e. the rows of the matrix). The
constraints that are considered are a large subset of those available in the global
constraint catalog [3].

Table 1 shows the output of ModelSeeker for the Sudoku problem.

Table 1. Model found by ModelSeeker for the standard Sudoku problem.

Generator Constraint Comment

scheme(81,9,9,1,9) permutation*9 rows

scheme(81,9,9,9,1) permutation*9 columns

scheme(81,9,9,3,3) permutation*9 3-by-3 blocks

In an ILP formulation, we can write this as

scheme(81, 9, 9, 1, 9, Block) → permutation(Block)
scheme(81, 9, 9, 9, 1, Block) → permutation(Block)
scheme(81, 9, 9, 3, 3, Block) → permutation(Block)

Note that the generator is described using constants. This indicates that Mod-
elSeeker cannot generalize over problems of different sizes. The enumeration of
this kind of clauses requires a very specialized language bias. Thanks to its tai-
lored bias, ModelSeeker is capable of learning from a single example.

ModelSeeker can also introduce auxiliary variables as parameters of global
constraints. It then assumes that all constraints over a set of variable subsets
(e.g. rows of a matrix) share the same parameter. This is for example the case
when learning magic squares, where each row (and column) sums to the same
number.

1. Examples are unstructured lists of numbers. They are typically the output
that one would expect from a CP solver.

2. Hypotheses consist of a generator and a global constraint.
3. Two sets of background knowledge are provided: a set of predefined generator

templates and a set of global constraints. Some (handcrafted) meta informa-
tion is available about subsumption between constraints.

4. The search strategy is a clever generate and test strategy. It consists of finding
all combinations of generator and global constraint that are satisfied in the
example.

5. ModelSeeker uses a combination of techniques for ranking and selecting
hypotheses. The Constraint Seeker returns a ranked list of constraints, where
the ranking is based on a number of properties as described in [4]. ModelSeeker
essentially selects the most specific hypothesis. However, ModelSeeker con-
siders the global constraints to be black-boxes on which no automated rea-
soning is possible. Generality tests are therefore purely based on available

Learning Constraint Satisfaction Problems: An ILP Perspective 107

hand-crafted meta-data. This meta-data can be used to express, among oth-
ers, implication (e.g. permutation implies alldifferent), contractibility and
expandability (e.g. alldifferent(a,b,c) implies alldifferent(a,b), etc.)

5.2 Learning a Single Clause

Conacq [6,8]. Conacq employs a version-space like approach (Mitchell’s FIND-S
algorithm [21]). The version space is the space of all possible constraint networks
that can be built on a given set of variables with constraints belonging to a given
language. Conacq iterates over the examples to reduce the version space.

1. All examples are complete assignments on a set V of variables taking values
in a domain D. Each example is labelled positive or negative depending on
whether it satisfies or not all the constraints of the problem. For instance for
4-queens: (Q1 = 3, Q2 = 1, Q3 = 4, Q4 = 2) is a positive example.

2. The hypotheses are subsets of a set B of the basis constraints, that is, all
constraints that possibly participate to the definition of the constraint net-
work. For instance, B could contain all binary constraints Qi � Qj where
� ∈ {=, �=, <,≤,≥, >, . . .}.

3. The background knowledge contains the definition of these constraints, and
can also include any interdependency between constraints that could hold
between subsets of constraints. For instance, X ≤ Y ∧ Y ≤ Z → X ≤
Z tells us that each time constraints Qi ≤ Qj and Qj ≤ Qk are learned,
we can derive Qi ≤ Qk. This is intended to recognize syntactic variants
and work more at a semantic level of generalization that is reminiscent of
Buntine’s generalized subsumption [9] and the notion of semantic closure
[16]. Working at the semantic level allows one to significantly decrease the
number of candidate hypotheses in the version space.

4. The version space is compactly represented by a SAT formula. Each model is
a hypothesis that accepts all positive examples and rejects all negative ones.
Strategies for updating/simplifying the SAT formula involve unit propagation
or backbone detection (i.e., detecting constraints that belong to all hypotheses
of the version space.

5. No ranking/evaluation function was proposed for selecting hypotheses. The
by default function is to take the most specific one.

The active version of Conacq (Conacq2) [8] asks membership queries until
the version space has converged on a single hypothesis.

1. as in Conacq
2. as in Conacq
3. as in Conacq
4. The strategy usually used for asking membership queries that will produce a

fast decrease in the size of the version space is an adaptation of the near-
miss strategy [25]. For instance, given a negative example e1 violating a
set κ of constraints, we try to ask the user to classify an example e2 that

108 L. De Raedt et al.

violates a single constraint of κ. If the example is classified positive, that
constraint is removed from the candidate constraints. If it is negative, it is
learned as belonging to the constraint network. This strategy is reminiscent
of Mitchell’s FIND-S algorithm [22]. Interdependencies between constraints
can make impossible the generation of near-miss queries, leading to slower
decrease in the size of the version space (Constraints networks have been
shown to be non learnable in a polynomial sequence of membership queries).

5. Conacq2 can be stopped at any time, but it has been presented to be run
until convergence. In such a case, it is not necessary to rank the hypotheses
as there is only remaining one in the version space.

QuAcq [7]. QuAcq is an extension of Conacq2 that is able to ask partial queries
to reduce the number of queries required for convergence.

Thanks to this feature, for each example classified as negative, QuAcq uses
a dichotomic search to elucidate one constraint of the constraint network with a
number of queries logarithmic in the size of the negative example. As a result,
QuAcq learns the constraint network in a polynomial number of queries (namely,
t · n, where t is the size of the network and n the number of its variables) and
proves convergence in a number of queries linear in the size of the basis B.

1. examples are partial or complete assignments on the set V of variables. Each
example is labelled positive or negative depending on whether it satisfies or
not all the constraints of the problem whose variables are involved in the
example. For instance for 4-queens: (Q1 = 3, Q2 = 2, Q3 = 4) is a negative
example because Q1 and Q2 are on the same diagonal;

2. as in Conacq;
3. QuAcq does not use any background knowledge other than the definition of

the operators;
4. for each example classified as positive, QuAcq rules out from the candidate

constraints all those that are violated by the example. For each example clas-
sified as negative, QuAcq uses a dichotomic search to elucidate one constraint
of the constraint network with a number of queries logarithmic in the size of
the negative example. This step requires the use of partial queries.

5. as Conacq2, QuAcq is supposed to be run until convergence.

Example. Consider the 4-queens problem. Suppose the example e = (Q1 =
3, Q2 = 1, Q3 = 3, Q4 = 2) has been classified as negative by the user. This
means there is at least one constraint of the network to learn that rejects e
(actually there are several). To elucidate such a constraint, QuAcq splits e in
two parts of equal size (to guarantee logarithmic convergence) and asks the user
the query (Q1 = 3, Q2 = 1). As the two remaining queens in this example do not
attack each other, the user classifies this partial example as positive and QuAcq
removes from the set of candidate constraints all those that are violated by
(Q1 = 3, Q2 = 1) (e.g., Q1 = Q2). Then QuAcq extends the example to Q3. The
query (Q1 = 3, Q2 = 1, Q3 = 3) is negative. Hence, QuAcq knows that there is a
constraint between {Q1, Q2} and Q3. QuAcq generates the query (Q1 = 3, Q3 =

Learning Constraint Satisfaction Problems: An ILP Perspective 109

3), which is classified as negative. At this point QuAcq knows there is a constraint
on the scope (Q1, Q3), and it knows this constraint forbids the tuple (3, 3).
What remains to do is to generate queries on (Q1, Q3) that will allow QuAcq
to find which constraint leads to the rejection of (Q1 = 3, Q3 = 3). Suppose
that the remaining candidate constraints that could reject (Q1 = 3, Q3 = 3)
are {�=, <,>}. After having asked (Q1 = 3, Q3 = 2) and (Q1 = 2, Q3 = 3),
both classified positive, QuAcq rules out Q1 < Q3 and Q1 > Q3 as candidate
constraints, and Q1 �= Q3 is added to the learned network.

6 Discussion

We will now analyze these different systems based on a number of dimensions.
Table 2 gives an overview of this section.

Propositional vs. Relational. For the systems we discussed, Claudien and
Lallouet use first-order logic to learn constraint models, while Conacq and QuAcq
are based on propositional logic. Many constraint satisfaction problems have
some form of global structure that can be captured very well by first-order logic,
but would require many constraints in propositional logic.

ModelSeeker is a mix between the two. It allows one to capture global struc-
ture using global constraints, but it only learns a restricted form of clauses. Its
output can be considered to be a domain-specific language that can be mapped
to a clausal theory, but it lacks the expressivity of the latter.

Active vs. Passive Learning. Most of the systems are passive learning systems,
that is, they take examples and produce a model without user interaction. How-
ever, Conacq2 and QuAcq are based on posing queries to the user, which allows
them to quickly converge to the correct solution, even when no positive examples
have been seen. In a sense, it allows the system to learn the model and solve
it at the same time. From a machine learning point of view, the use of partial
queries is new and unexplored in the context of ILP, cf. [2].

Table 2. Categorization of systems. The question answered are (1) Does the system
learn a single clause or multiple ones? (2) Is the system propositional or relational? (3)
Does it use active learning? (4) What type of examples does it need (positive, negative,
partial)? (5) How does it handle redundancy (logic-based, lattice-based, ruleset-based)
(6) Can it learn from examples of difference sizes?

Claudien Lallouet ModelSeeker Conacq Conacq2 QuAcq

Clauses? multi multi multi single single single

Prop./Rel.? rel rel mixed prop prop prop

Active? pass pass pass pass active active

Examples? pos(+neg) neg(+pos) pos pos+neg pos+neg partial

Redundancy? logic logic ruleset lattice lattice lattice

Different sizes? yes yes no no no no

110 L. De Raedt et al.

Requirements on Examples. An important aspect of learning CSPs is the avail-
ability of examples. Some CSPs have many solutions, some have only one. The
systems discussed in this paper have different requirements for the examples.

Claudien and the approach of Lallouet et al. start from examples as sets of
ground facts. This allows them to learn from structured examples (for example,
containing a graph). Both approaches typically require a substantial number of
examples, depending on the complexity of the input language and the avail-
able background information in the form of language bias. The main difference
between both approaches is that Claudien learns a theory on positive exam-
ples, while Lallouet et al. starts from negative examples. Both approaches can
incorporate information from both positive and negative examples.

Conacq, QuAcq and ModelSeeker start from examples in the form of assign-
ments to the variables in the model. This means they fix the number of variables
at the start of the learning task.

ModelSeeker assumes that some structure can be imposed on the variables on
which global constraints can be found. It often can learn a good model from just
a single positive example. ModelSeeker can not incorporate information from a
negative example.

QuAcq can start from partial examples, which means that it can be used to
learn problems for which no solution has been found yet.

Redundancy. All systems support some form of redundancy elimination. In
Claudien, Lallouet et al., Conacq and QuAcq this is based on logical inference.
In ModelSeeker, this is based on metadata provided with the constraints.

7 Conclusion and Future Work

We see the learning of CSPs as a modern challenge in which many of the tech-
niques and insights from ILP can play an important role. The connection between
constraint programming and inductive logic programming has been made before
by Lallouet et al. [19] for learning CSPs and by Abdennadher and Rigotti [1]
for learning propagation rules for CSP solvers. In this survey, we have given an
overview of techniques for learning CSPs and relate them to concepts from the
ILP community, with the intention of inspiring further cross-fertilization between
these two fields.

Each of the systems described in this paper contributes its own ideas. The
expert driven ModelSeeker [5] introduces the idea of generators and uses a very
well developed search strategy which makes it capable of learning relatively
complex CSPs from a small number of examples. However, techniques from ILP
can still contribute (1) by making it possible to structure the search space better
by using more-general-than relations between the available constraints and the
generators, (2) by allowing ModelSeeker to incorporate negative examples, and
(3) by making it able to learn from examples of different sizes [24].

The propositional systems Conacq [10] and QuAcq [7] are interesting because
they start from a sound theoretical basis and can therefore provide guarantees on

Learning Constraint Satisfaction Problems: An ILP Perspective 111

the complexity of the learning task. The QuAcq system is especially of interest
because it can learn from partial queries to the user. This allows it to learn a
CSP for which no solutions are known yet. This setting has never been studied
in an ILP setting.

In conclusion, we believe that ILP-based techniques can make a valuable con-
tribution for the task of learning CSPs, and that techniques studied for learning
CSPs can be used to improve the effectiveness of ILP systems.

Acknowledgements. This work was supported by the European Commission under
the project “Inductive Constraint Programming” (FP7- 284715).

References

1. Abdennadher, S., Rigotti, C.: Automatic generation of rule-based solvers for inten-
sionally defined constraints. IJAIT 11(2), 283–302 (2002)

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
3. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. http://

www.emn.fr/z-info/sdemasse/gccat/
4. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global con-

straints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7 4

5. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–
157. Springer, Heidelberg (2012)

6. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30201-8 12

7. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.-G., Walsh, T.: Constraint acquisition via partial queries. In IJCAI,
pp. 475–481. AAAI Press (2013)

8. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acqui-
sition. In: IJCAI, pp. 50–55 (2007)

9. Buntine, W.: Generalized subsumption and its applications to induction and redun-
dancy. Artif. Intell. 36(2), 149–176 (1988)

10. Coletta, R., Bessiére, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinque-
ton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45193-8 58

11. De Raedt, L.: Induction in logic. In: Proceedings of the 3rd International Workshop
on Multistrategy Learning, pp. 29–38 (1996)

12. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)
13. De Raedt, L.: Inductive logic programming. In: Sammut, C., Webb, G.I. (eds.)

Encyclopidea of Machine Learning. Springer, New York (2010)
14. De Raedt, L., Dehaspe, L.: Clausal discovery. ML 26(2–3), 99–146 (1997)
15. De Raedt, L., Džeroski, S.: First-order jk-clausal theories are PAC-learnable. Artif.

Intell. 70(1–2), 375–392 (1994)
16. De Raedt, L., Ramon, J.: Condensed representations for inductive logic program-

ming. KR 4, 438–446 (2004)

http://www.emn.fr/z-info/sdemasse/gccat/
http://www.emn.fr/z-info/sdemasse/gccat/
http://dx.doi.org/10.1007/978-3-642-23786-7_4
http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/978-3-540-30201-8_12
http://dx.doi.org/10.1007/978-3-540-45193-8_58
http://dx.doi.org/10.1007/978-3-540-45193-8_58

112 L. De Raedt et al.

17. Haussler, D.: Learning conjunctive concepts in structural domains. Machine Learn-
ing 4(1), 7–40 (1989)

18. Kietz, J.-U.: Some lower bounds for the computational complexity of inductive
logic programming. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 115–
123. Springer, Heidelberg (1993). doi:10.1007/3-540-56602-3 131

19. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: ICTAI, pp. 45–52 (2010)

20. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint mod-
els. In: Schulte, C. (ed.) Principles and Practice of Constraint Programming. LNCS,
vol. 8124, pp. 432–447. Springer, Berlin Heidelberg (2013)

21. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning.
In: IJCAI, pp. 305–310. Morgan Kaufmann Publishers Inc (1977)

22. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)
23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:

MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

24. Razakarison, N., Carlsson, M., Beldiceanu, N., Simonis, H.: GAC for a linear
inequality and an atleast constraint with an application to learning simple poly-
nomials. In: SOCS. AAAI Press (2013)

25. Smith, B.D., Rosenbloom, P.S.: Incremental non-backtracking focusing: a polyno-
mially bounded generalization algorithm for version spaces. In: AAAI, pp. 848–853.
Citeseer (1990)

26. Srinivasan, A.: The aleph manual (2001).http://www.cs.ox.ac.uk/activities/
machlearn/Aleph/aleph.html

27. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
28. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory Pract.

Log. Program. 12(1–2), 189–218 (2012)

http://dx.doi.org/10.1007/3-540-56602-3_131
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

	Learning Constraint Satisfaction Problems: An ILP Perspective
	1 Introduction
	2 Constraint Satisfaction Problems
	3 The Learning Task
	4 Relation to Inductive Logic Programming
	5 CSP Learning Systems
	5.1 Learning a CNF
	5.2 Learning a Single Clause

	6 Discussion
	7 Conclusion and Future Work
	References

