Modeling in MiningZinc

Anton Dries', Tias Guns!, Siegfried Nijssen'?, Behrouz Babaki',
Thanh Le Van', Benjamin Negrevergne', Sergey Paramonov!,

and Luc De Raedt!®)

! DTAI, KU Leuven, Leuven, Belgium
luc.deraedt@cs.kuleuven.be
2 LIACS, Universiteit Leiden, Leiden, The Netherlands

Abstract. MiningZinc offers a framework for modeling and solving
constraint-based mining problems. The language used is MiniZinc, a
high-level declarative language for modeling combinatorial (optimisa-
tion) problems. This language is augmented with a library of functions
and predicates that help modeling data mining problems and facilities
for interfacing with databases. We show how MiningZinc can be used
to model constraint-based itemset mining problems, for which it was
originally designed, as well as sequence mining, Bayesian pattern min-
ing, linear regression, clustering data factorization and ranked tiling.
The underlying framework can use any existing MiniZinc solver. We also
showcase how the framework and modeling capabilities can be integrated
into an imperative language, for example as part of a greedy algorithm.

1 Introduction

The traditional approach to data mining is to develop specialized algorithms
for specific tasks. This has led to specialized algorithms for many tasks, among
which classification, clustering and association rule discovery [19,30,35]. In many
cases these algorithms support certain kinds of constraints as well; in particular
constraint-based clustering and constraint-based pattern mining are established
research areas [2,5,6]. Even though successful for specific applications, the down-
side of specialized algorithms is that it is hard to adapt them to novel tasks.

In recent years, researchers have explored the idea of using generic solvers to
tackle data mining problems such as itemset mining [16, 22], sequence mining [7, 31]
and clustering [11,13]. These approaches start from the insight that many data
mining problems can be formalized as either a constraint satisfaction problem, or
a constrained optimization problem. The advantage is that, just as in constraint
programming, new tasks can be addressed by changing the constraint specification.

Siegfried Nijssen can currently be reached at the Institute of Information and
Communication Technologies, Electronics and Applied Mathematics, UC Louvain,
Belgium.
Tias Guns can currently be reached at the Vrije Universiteit Brussel.

© Springer International Publishing AG 2016

C. Bessiere et al. (Eds.): Data Mining and Constraint Programming, LNAT 10101, pp. 257-281, 2016.
DOI: 10.1007/978-3-319-50137-6_10

258 A. Dries et al.

Although these techniques allow flexibility in modeling new tasks, they are
often tied to one particular solver. To address this shortcoming we introduced
MiningZinc [15], a solver-independent language and framework for modeling
constraint-based data mining tasks. That work focussed on constraint-based
itemset mining problems and the solving capabilities of the framework. In this
work, we focus on the modeling aspects of the MiningZinc language and we show
for a wide range of data mining tasks how they can be modeled in MiningZinc,
namely sequence mining, Bayesian pattern mining, linear regression, clustering
data factorization and ranked tiling. We end with a discussion of related work
and conclusion.

2 Language

Ideally, a language for mining allows one to express the problems in a natural way,
while at the same time being generic enough to express additional constraints
or different optimization criteria. We choose to build on the MiniZinc constraint
programming language for this purpose [32]. It is a subset of Zinc [25] restricted
to the built-in types bool, int, set and float, and user-defined predicates and
functions [34].

MiningZinc uses the MiniZinc language, that is, all models written for Min-
ingZinc are compatible with the standard MiniZinc compiler and toolchain. How-
ever, MiningZinc offers additional functionality aimed towards modeling data
mining problems:

— a library of predicates and functions that are commonly used in data mining
— extensions for reading data from different sources (e.g. a database)
— integration with Python for easy implementation of greedy algorithms

2.1 MiniZinc

MiniZinc is a language designed for specifying constraint problems. Listing 1
shows an example of a MiniZinc model for the well-known “Send+More=Money”
problem. In this problem the goal is to assign distinct digits to the letters such
that the formula holds.

This model starts with declaring the decision variables with their domains
(Lines 1 and 2). The problem specification states that the variables S and M
should not be zero which we encode in their domains. Next, we specify the con-
straints on these decision variables. On Line 4 we specify that all variables should
take a different value. For this we use the all_different global constraint which is
defined in MiniZinc’s standard library. In order to use this constraint we include
that library (Line 3). On Line 5 we specify that the numbers formed by the
digits “SEND” and “MORE” should sum up to the number formed by the digits
“MONEY?”. For the translation between the list of digits and the number they
represent, we define a helper function on Line 6; it first creates a local parame-
ter max_i that represents the largest index, and then sums over each variable

Modeling in MiningZinc 259

Listing 1. An example MiniZinc model

1 |var 1..9: S; var 0..9: E; var 0..9: N; var 0..9: D;
2 |var 1..9: M; var 0..9: O; var 0..9: R; var 0..9: Y;

3 |include ”globals .mzn”;
4 | constraint all_different ([S,E,N,D,M,0,R,Y]);

5 | constraint number ([S,E,N,D]) 4 number ([M,0,R,E]) =
number ([M,0O,N,E,Y]);

6 | function var int: number(array[int] of var int: digits) =
let { int: max_.i = max(index_set(digits)) } in
sum(i in index_set(digits))

(pow (10, max_i—i) * digits[i]);

7 | solve satisfy;

8 |output [show ([S,E,N,D]), ”"+”, show([M,O,R,E]),
7=", show ([M,0,N,E,Y])];

¥
I\f::z(Z{:c [FlatZinc} I Solver }—»[Output]

Fig. 1. Overview of the MiniZinc toolchain

multiplied by 1,10,100,... depending on its position in the array (for exam-
ple, number([S,E,N,D]) = 1000«S+100«xE+10«N+1«D). Line 7 states that this
is a constraint satisfaction problem. MiniZinc also supports optimization prob-
lems in which case this statement would be replaced by solve minimize <variable
expression>, or likewise with maximize. Finally, Line 8 defines the output of the
model.

Apart from the functionality demonstrated in the example, MiniZinc mod-
els can be parameterized, for example, to include external data. The values of
these parameters can be loaded from an external file, or passed in through the
command line.

MiniZinc is solver-independent, that is, MiniZinc models can be translated
to the lower level language FlatZinc which is understood by a wide range of
solvers. The MiniZinc toolchain does however support solver-specific optimiza-
tions through the use of solver-specific versions of the standard library and anno-
tations. A schematic overview of the MiniZinc toolchain is shown in Fig. 1.

In the following we describe how we extended MiniZinc.

260 A. Dries et al.

2.2 Library

MiniZinc offers the ability to add additional libraries of commonly used pred-
icates and functions. As part of MiningZinc, we created a minimal library for
help with specifying mining and learning problems. It has two purposes: (1) to
simplify modeling for the user and (2) to simplify the model analysis by the
MiningZinc solver.

There are four categories of functions:

— generic helper functions
— itemset mining functions
— norms and distance functions
extra solver annotations

There are two generic helper functions that we feel are missing in MiniZinc,
namely a direct bool2float conversion function var float: b2f(var bool: B) and an
explicit weighted sum:
function var int: weighted_sum(array[int] of var int W, array[int] of var int X).

Itemset mining is the best studied problem category in MiningZinc, and the
key abstraction is the cover function: cover(ltems, TDB)). Other helper functions
are coverlnv(Trans, TDB)) and frequent_items(TDB, MinFreq).

Many data mining and machine learning problems involve computing dis-
tances. For this reason, we added to the library functions that compute the [y,
l and I, norms, the Manhattan, Euclidean and Chebyshev distance as well as
the sum of squared errors and mean squared error:

Listing 2. "norms”

1 | function var float: norml(array[int] of var float: W) =
2 sum(j in index_set (W))(abs(W[j]));
3 | function var float: norm2sq(array[int]| of var float: W) =
4 sum(j in index_set (W))(W[j]*W[j]);
5 | function var float: norm2(array[int] of var float: W) =
[sqrt (norm2sq (W));
7 | function var float: normlInf(array[int] of var float: W) =
8 max(j in index_set (W))(W[j]);

Listing 3. ”distances”
1 | function var float: manhDist(array[int] of var float: A,
2 array [int] of var float: B) =
3 norml ([A[d] — B[d] | d in index_set(A)]);
4 | function var float: euclDist (array[int] of var float: A,
5 array [int] of var float: B) =
6 norm2 ([A[d] — B[d] | d in index_.set(A)]);
7 | function var float: chebDist(array[int] of var float: A,
8 array [int] of var float: B) =
9 normInf ([A[d] — B[d] | d in index_set(A)]);
10 | function var float: sumSqErr(array[int] of var float: A,
11 array [int] of var float: B) =
12 norm2sq ([A[d] — B[d] | d in index_set(A)]);
13 | function var float: meanSqErr(array[int] of var float: A,
14 array [int] of var float: B) =
15 sumSqErr (A,B)/length (A);

Modeling in MiningZinc 261

Finally, the library also declares a few annotations that provide additional
information to the solver such as load_data and vartype, which are discussed in
the next section.

The MiningZinc library can be used by adding the following statement.

1 |include” miningzinc.mzn";

The library is written in MiniZinc and is fully compatible with the standard
MiniZinc toolchain.

2.3 Facilities for Loading Data

The MiningZinc library also declares a few annotations that allow us to extend
the functionality of MiniZinc with respect to loading data from external sources.
This consists of two components: (1) accessing data from an external data source
and (2) translating it to a data structure supported by MiniZinc.

When using standard MiniZinc, if one wants to use external data, the work-
flow would be as follows:

. Determine the relevant information from the database

. Use SQL to extract this information

. Translate the data to numeric identifiers using a script

. Write out the data into MiniZinc format (dzn) using a script

. Execute MiniZinc

. Translate the results’ identifiers back to the original data using a script
7 Analyze the results and, if necessary, repeat the process

SO W N

Using the data loading facilities available in MiningZinc, the workflow
becomes:

1. Determine the relevant information from the database

2. Update the MiningZinc model with data sources pointing to the relevant
information

3. Execute MiningZinc

4. Analyze the results and, if necessary, repeat the process

Reading Data. MiningZinc facilitates loading data from external sources through
the load_data(specification) annotation. The specification is a string describing
the data source. By default, MiningZinc supports the following specifications:

sqlite;<filename>;<SQL query> Retrieve data from an SQLite database
based on an SQL query.

arff;<filename> Retrieve data from a file in Weka’s ARFF format [18].

csvi<filename>;<field separator> Retrieve data from a CSV file.

The use of these annotations is illustrated in Listing4.

262 A. Dries et al.

Listing 4. Examples of external data loading

1 |array [int] of set of int: TDB
load_data (” sqlite;data/uci.db;SELECT % FROM zoo0;”);

2 |array [int] of set of int: TDB
load_data (” arff;data/zoo.arff;”);

3 |string: datasource;
4 |array [int] of set of int: TDB :: load_-data(datasource);

The translation process is determined based on the structure of the input
data and the target type in MiniZinc. For example, given an input table with
two columns and the output type array[int] of set of int, the first column is
interpreted as the index of the array and the second column as an element of
the set. This is illustrated in Fig. 2.

person keyP

person| eats john 1
john | apple mary 2
john | pear / tom 3 \
mary | apple fruit keyF TDB = [{1,2},{1,3,4},{3}];
mary |banana — /
mary |mango \ apple 1
tom |banana bpear g
anana

mango 4

Fig. 2. Default translation to an array[int] of set of int from a table with two columns.

Automatic Translations. The previous example shows that during the loading of
the data, we need to translate some of the data to an integer range. MiningZinc
performs these translations automatically. The user can guide this translation
process by adding type annotations to variable definitions. This can be done
using the vartype annotation as illustrated in Listing 5. The additional informa-
tion allows MiningZinc to translate the solutions back to the original values.

Listing 5. Examples of type annotations

1 |array [int] of set of int: TDB
load_data (” sqlite ;data/uci.db;SELECT % FROM zoo;”)

vartype (” Animals” ,” Features”)
2 | var set of Items: Items :: vartype(” Features”);
3 |var set of int: Trans :: vartype(” Animals”) = cover (Items ,TDB);

4 | constraint card(cover(Items, TDB)) >= MinFreq;

5 | solve satisfy;

6 | output [show(Items), show(Trans)];

Modeling in MiningZinc 263

2.4 Python Integration

MiniZinc is a language that is specifically designed for expressing constrained
optimization problems. It is therefore not very suitable to write complete sys-
tems, but should be seen as a domain specific language instead. To facilitate the
use of MiningZinc we provide an interface with Python through the mngzn mod-
ule. This interface allows the user to parse a MiningZinc model from a Python
string, provide parameters using Python’s dictionaries and query its results as a
Python data structure. The main interface is demonstrated in Listing6.

Listing 6. ”Python interface”

1 | import mngzn

2 | modelstr = 777

int: sum; int: max;

var 0..mazxz: a; var 0..max: b;
constraint a+b == sum;

solve satisfy;

output [show(a), show(b)];

RER)

params = {’sum’: 3, ’'max’: 2}
model = mngzn. parseModel (modelstr, params)
solutions = model.solve ()

for sol in solutions:
print model. format_solution (sol)

N OOt W

First, we load the MiningZinc package (Line 1) and we define a model as
a string of MiniZinc code (Line 2). The model takes two parameters sum and
max and finds all pairs of integers up to max that sum to sum. On Line 3 we
set the values of these parameters in a Python dictionary. Next, we parse the
model string together with the parameters to obtain a solvable model (Line 4).
On Line 5 we solve the model and obtain the solutions. This returns a sequence
of Python dictionaries containing the output variables of the model, in this case
[{'a": 1, 'b": 2}, {'a’: 2, 'b’: 1}]. Finally, we format and print out each solution
(Line 7).

In Sect. 3.7 (Listing 17) we show an example of how this interface can be used
to implement a greedy algorithm.

3 Modeling Data Mining Problems

We show how to model a variety of data mining problems, including constraint-
based itemset mining, sequence mining, clustering, linear regression, ranked
tiling and more.

In each case, the problem is modelled as a standard constraint satisfaction
or optimisation problem, and it is modelled using the primitives available in
MiniZinc, as well some common functions and predicates that we have added to
the MiningZinc library.

264 A. Dries et al.

3.1 TItemset Mining

The MiningZinc work originates from our work on using constraint programming
(solvers) for constraint-based itemset mining [16].

Problem Statement. Ttemset mining was introduced by Agrawal et al. [1] and can
be defined as follows. The input consists of a set of transactions, each of which
contains a set of items. Transactions are identified by identifiers S = {1,...,n};
the set of all items is Z = {1,...,m}. An itemset database D maps transaction
identifiers to sets of items: D(t) C Z. The frequent itemset mining problem is
then defined mathematically as follows.

Definition 1 (Frequent Itemset Mining). Given an itemset database D and
a threshold o, the frequent itemset mining problem consists of finding all itemsets
I C T such that |¢pp(I)| > «, where ¢pp(I) = {t|I C D(t)}.

The set ¢p(I) is called the cover of the itemset, and the threshold « the
minimum frequency threshold. An itemset I which has |¢p(I)| > « is called a
frequent itemset.

Listing 7. "Frequent Itemset mining”

1 |% Data
2 |int: NrI; int: NrT; int: Freq; array[1..NrT] of
3 |set of 1..Nrl: TDB;

4 |% Pattern
5 | var set of 1..Nrl: Items;

6 |% Min. frequency constraint
7 | constraint card (cover (Items ,TDB)) >= Freq;

8 |solve satisfy;

Listing 8. ”Cover function for itemsets”

function var set of int: cover(var set of int: Items,
array [int] of set of int: D) =
let {
var set of index_set(D): CoverSet;
constraint forall (t in index_set (D))
(t in CoverSet <—> Items subset D[t]);

} in CoverSet;

N O U R WN

MiningZinc Model. Listing 7 shows the frequent itemset mining problem in Min-
ingZinc. Lines 2 and 3 are parameters and data, which a user can provide separate
from the actual model or through load_data statements. The model represents
the items and transaction identifiers in Z and S by natural numbers (from 1 to
Nrl and 1 to NrT respectively) and the dataset D by the array TDB, mapping
each transaction identifier to the corresponding set of items. The set of items we
are looking for is represented on line 5 as a set variable with elements between

Modeling in MiningZinc 265

value 1 and Nrl. The minimum frequency constraint is posted on line 7; it natu-
rally corresponds to the formal notation |¢p(I)| > «. The cover relation used on
line 7 and shown in Listing8 is part of the MiningZinc library and implements
op(I) = {t|I C D(¢)}; note that this constraint is not a hard-coded constraint in
the solver, such as in other systems, but is implemented in the MiningZinc lan-
guage itself, and can hence be changed if this is desired. Finally, line 8 states that
it is a satisfaction problem. Enumerating all solutions that satisfy the constraints
corresponds to enumerating all frequent itemsets.

This example demonstrates the appeal of using a modeling language like
MiniZinc for pattern mining: The formulation is high-level, declarative and close
to the mathematical notation of the problem. Furthermore, the use of user-
defined functions allows us to abstract away concepts that are common when
expressing constraint-based mining problems.

Constraint-Based Mining. In constraint-based mining the idea is to incorpo-
rate additional user-constraints into the mining process. Such constraints can be
motivated by an overwhelming number of (redundant) results otherwise found,
or by application-specific constraints such as searching for patterns with high
profit margins in sales data.

Listing9 shows an example constraint-based mining setting. Compared to
Listing 7, two constraints have been added: a closure constraint on line 6, which
avoids non-closed patterns in the output, and a minimum cost constraint 10,
requiring that the sum of the costs of the individual items is above a threshold.
Other constraints could be added and combined in a similar way. See [16] for the
range of constraints that has been studied in a constraint programming setting.

Listing 9. ”Constraint-based itemset mining”

1 |int: NrI; int: NrT; int: Freq; array[1l..NrT] of
set of 1..Nrl: TDB;

3 | var set of 1..Nrl: Items;
4 | constraint card(cover (Items ,TDB)) >= Freq;
5 | % Closure

6 | constraint Items = cover_inv (cover (Items ,TDB) ,TDB);

8 |% Minimum cost
9 |array[1..NrI] of int: item_c; int: Cost;
10 | constraint sum(i in Items) (item_c[i]) >= Cost;

11 | solve satisfy :: enumerate;

3.2 Sequence Mining

Sequence mining [1] can be seen as a variation of the itemset mining problem
discussed above. Whereas in itemset mining each transaction is a set of items,
in sequence mining both transactions and patterns are ordered, (i.e. they are

266 A. Dries et al.

sequences instead of sets) and symbols can be repeated. For example, (b, a, c,b)
and (a, ¢, ¢, b, b) are two sequences, and the sequence (a, b) is one possible pattern
included in both.

Problem Statement. Two key concepts in any pattern mining setting are the
structure of the pattern, and the cover relation that defines when a pattern
covers a transaction.

In sequence mining, a transaction is covered by a pattern if there exists an
embedding of the sequence pattern in the transaction; where an embedding is a
mapping of every symbol in the pattern to the same symbol in the transaction
such that the order is respected.

Definition 2 (Embedding in a sequence). Let S = (s1,...,8,) and S’ =

(sh,...,80) be two sequences of size m and n respectively with m < n. The tuple

r n

of integers e = (e1,...,em) is an embedding of S in S’ (denoted S T, S') if
and only if:

SCeS —er<...<epandViel,...,m:s;=s,, (1)

For example, let S = (a,b) be a pattern, then (2,4) is an embedding of S in
(b,a,c,b) and (1,4),(1,5) are both embeddings of S in (a, c,c, b, b).

Given an alphabet ¥ of symbols, a sequential database D is a set of trans-
actions where each transaction is a sequences defined over symbols in . As in
itemset mining, let D be a mapping from transaction identifiers to transactions.
The frequent sequence mining problem is then defined as follows:

Definition 3 (Frequent Sequence Mining). Given a sequential database D
with alphabet ¥ and a threshold o, the frequent sequence mining problem consists
of finding all sequences S over alphabet ¥ such that [p(S)| > a, where Yp(S) =
{t|3e s.t. SC. D(t)}.

The set ¢p(S) is the cover of the sequence, similar to the cover of an itemset.

MiningZinc Model. Modeling this in MiningZinc is somewhat more complex
than itemset mining, as for itemsets we could reuse the set variable type, while
sequences and the embedding relation need to be encoded. Each symbol is given
an identifier (offset 1), and a transaction is represented as an array of symbol
identifiers. The data is hence represented by a two dimensional array, and all
sequences are padded with the identifier 0 such that they have the same length
(MiniZinc does not support an array of arrays of different length). This data is
given in lines (2)—(7) in Listing 10.

The pattern itself is also an array of integers, representing symbol identifiers.
The 0 identifier can be used as padding at the end of the pattern, so that patterns
of any size can be represented. Line (9) represents the array of integer variables
while line (11)—(13) enforce the padding meaning of the 0 identifier.

To encode the cover relation we can not quantify over all possible embed-
dings e explicitly, as there can be an exponential number of them. Instead, we

Modeling in MiningZinc 267

add one array of variables for every transaction that will represent the embed-
ding of the pattern in that transaction, if one exists (line 15). Furthermore, we
add one Boolean variable for every transaction, which will indicate whether the
embedding is valid, e.g. whether the transaction is covered (line 17). Using these
variables, we can encode the cover relation (line 19), explained below, as well
as that the number of covered transactions must be larger than the minimum
frequency threshold (line 21).

Listing 10. ”Frequent sequence mining”

1 | % Data

2 |int: NrS; % number of distinct symbols (symbol identifiers)
3 |int: NrPos; % number of positions = marimum transaction Ssize
4 |[int: NrT;

5 |int: Freq;

6 |% dataset: 2D array of symbols

7 |array [1..NrT,1..NrPos] of 1..NrS: data;

8 |% Pattern (0 means ’end of sequence’)

9 |array[1..NrPos] of var 0..NrS: Seq;

10 |% enforce meaning of 0’

11 | constraint Seq[1l] != 0;
12 | constraint forall(j in 1..NrPos—1) (
13 (Seq[j] == 0) —> (Seq[j+1] = 0));

14 |% Helper wvariables for embeddings (0 means ’'no match’)
15 [array [1..NrT, 1..NrPos] of var 0..NrPos: Emb;

16 | % Helper wvariables for Boolean representation of cover set
17 |[array [1..NrT] of var bool: Cov;
18 | % Constrain cover relation

19 | constraint sequence_cover (Seq, Emb, Cov);

20 |% Min. frequency constraint
21 | constraint sum(i in 1..NrT) (bool2int(Cov[i])) >= Freq;

22 | solve satisfy;

The actual formulation of the cover relation is shown in Listing 11; it could
be made available as a function returning a set variable too. The formulation
consists of three parts. In the first part (line 6) we constrain that for each trans-
action, the jth embedding variable must point to a position in the transaction
that matches the symbol of the jth symbol in the pattern. Note that if no match
is possible then the embedding variable will only have symbol 0 in its domain.
The second part (line 9) requires that embedding variables must be increasing
(except when 0). Finally, on line 12 we state that a transaction is covered if
for every non-0 valued position in the pattern there is a matching embedding
variable.

268 A. Dries et al.

Listing 11. ”Cover relation for sequences”

1 | predicate sequence_cover (array[int] of var int: Seq,

2 array [int ,int]| of var int: Emb,
3 array[int] of var bool: Cov) =
4 % Individual positions should match (else: 0)

5 forall(i in 1..NrT, j,x in 1..NrPos) (

6 (Bmb[i,j] == x) —> (Sea[j] == data[i,x])) /\

7 % Positions increase (except when 0)

8 forall(i in 1..NrT, j in 1..NrPos—1, x in 1..NrPos) (
9 (Bmb[i,j+1] = x) —> (Bmb|i,j] < %)) /\

10 % Covered if all its positions match

11 forall(i in 1..NrT) (

12 Cov[i] <—> forall(j in 1..NrT) ((Seql[j] != 0) —>
13 (Emb[i,j] '= 0)));

As in sequence mining, extra constraints can be added to extract fewer, but
more relevant or interesting patterns. An overview of sequence mining constraints
that have been studied in a sequence mining setting is available in [31].

3.3 Constraint-Based Pattern Mining in Bayesian Networks

Just as one can mine patterns in data, it is also possible to mine patterns in
Bayesian Networks (BNs). These patterns can help in understanding the knowl-
edge that resides in the network. Extracting such knowledge can be useful when
trying to better understand a network, for example when presented with a new
network, in case of large and complex networks or when it is updated frequently.

Problem Statement. A Bayesian Network G defines a probability distribution
over a set of random variables X'. Each variable has a set of values it can take,
called its domain. We define a Bayesian network pattern as an assignment to a
subset of the variables:

Definition 4 (BN pattern). A pattern A over a Bayesian network G is a
partial assignment, that is, an assignment to a subset of the variables in G:
A={(X1 =z1),...,(X;n = xm)}, where each X; is a different variables and x;
18 a possible value in its domain.

A BN pattern can be seen as an itemset, where each item is an assignment
of a variable to a value. One can compute the (relative) frequency of an itemset
in a database; related, for a BN pattern one can compute the probability of the
pattern in the Bayesian network. The probability of a pattern A, denoted by
Pg(A), is P((X1 = x1),...,(X;n = xm)), that is, the probability of the partial
assignment marginalized over the unassigned variables.

Given this problem setting, one can define a range of constraint-based pattern
mining tasks over Bayesian Networks, similar to constraint-based mining tasks
over itemsets or sequences. In line with frequent itemset mining, the following
defines the probable BN pattern mining problem:

Modeling in MiningZinc 269

Definition 5 (Probable BN pattern Mining). Given a Bayesian network
G over variables X and a threshold «, the probable BN pattern mining problem
consists of finding all BN patterns A over X such that Pg(A) > «.

MiningZinc Model. We encode a BN pattern with an array of integer CP vari-
ables, as many as there are random variables in the BN. Each CP variable has
m-+1 possible values, where m is the number of values in the domain of the
corresponding random variable: value 0 represents that the variable is not part
of the partial assignment, e.g. it should be marginalized over when computing
the probability. The other values each correspond to a value the domain of the
random variable.

The main issue is then to encode the probability computation. As this com-
putation will be performed many times during search, we choose to first compile
the BN into an arithmetic circuit. Computing the probability over the circuit is
polynomial in its size (which may be worst-case exponential to the size of the
origin network) [8]. Nevertheless, using ACs is generally recognized as one of the
most effective techniques for exact computation of probabilities, especially when
doing so repeatedly.

Py
0.5
0.5

N

X1 X [Pop | [Xi X3 Pyp
1 1 1 2 2 0.8
2 1 0 2 1|02
1 2 0 1 2|02
1 1 1 1 1] 08

Fig. 3. Left: The Bayesian network and CPTs for a distribution with 3 variables. The
domain for all variables is {1, 2}. Right: The compiled arithmetic circuit for this BN.
A);j leaf of in the AC corresponds to assignment X; = j in the BN.

Figure 3 shows an example AC. It consists of product nodes, sum nodes, con-
stants and indicator variables . The Boolean indicator variables); ; indicate
whether (X; = j). An assignment sets the corresponding indicator variable to 1
and the other indicator variables of the random variable to 0. To marginalize a
random variable away, all indicator variables of that variable must be set to 1.
The value obtained in the root node after evaluating the arithmetic circuit cor-
responds to the probability of the pattern given the assignment to the indicator
variable nodes.

To encode this in CP, we will create a float variable for every node in the
AC. Listing 12 shows how to encode an AC in CP. We assume given the set of

270 A. Dries et al.

product and sum node identifiers (root node has identifier 1), an array of sets
representing the 'children’ relation, an array with the constants, and a 2D array
that maps the indicator variables to nodes of the tree. The last two constraints
in the listing provide a mapping from the @) variables to indicator variables, such
that they must all be set to 1 (=marginalize) or exclusively have one indicator
set to 1 (=assignment).

Listing 12. Probable BN pattern mining

1 |int: num_vars;
2 |array[variables] of int: num_values;
3 | float: min_prob;

4 |array[1l..num_vars] of int: Q;
5 |var 0.0..1.0: P;

6 | constraint P > min_prob;

7 | constraint forall(i in 1..num_vars) (
8 0 <=Q[i] /\ Q[i] <= num_values[i]+1);

9 |% encode AC

10 |int: num_ACnodes;

11 |array[1l..num_ACnodes] of var 0.0..1.0: F;
12 | constraint P = F[1]; % root node

13 | % sum and product nodes

14 | array [1..num_-ACnodes] of set of int: children;
15 | set of int: sum_nodes;

16 | constraint forall(i in sum_nodes) (

17 F[i] = sum(j in children[i]) (F[j]));

18 | set of int: prod_nodes;

19 | constraint forall(i in prod-nodes) (

20 F[i] = product(j in children[i]) (F[j]));

21 |% constant nodes, —1 means non—constant

22 |array [1..num_ACnodes] of int: constants;

23 | constraint forall(i in 1..num_ACnodes where constants[i]l=—1) (
24 F[i] = constants[i]);

25 |% Q to indicator modes (which must take either 0 or 1)
26 |array[1l..num-_vars,int] of int: mapQ;
27 | constraint forall(i in 1..num_vars) (

28 Q[i]=0 —> forall(j in 1..num_vals[i]) (F[mapQ[i,j]] = 1));
29 | constraint forall(i in 1..num_vars, k in 1..num_vals[i]) (

30 | Qlil=k —> (FlmapQ[i k]] — 1) /\

31 forall(j in 1..num_vals[i] where j!=k)

32 (F[mapQ[i,j]] = 0));

33 | solve satisfy;

Many constraints from the itemset mining literature have a counterpart over
BN patterns and can be formulated as well, such as size constraints, closed /max-
imal/free constraints and constraints to discriminate results from two networks
from each other, or to discriminate a probability in a network to relative fre-
quency in a dataset. This is currently work in progress.

Modeling in MiningZinc 271

3.4 Linear Regression

A common problem studied in data mining is regression, where the goal is to
estimate the value of a variable based on the values of dependent variables.

Problem Statement. In simple regression, the goal is to predict the value of a
target attribute given the value of an M-dimensional vector of input variables
x = (T1,., Tpr)-

We are given a set of N observations X and their corresponding target values
y. The goal is to find a function §(z) that approximates the target values y for
the given observations. In linear regression [3] we assume 3(z) to be a linear
function. Mathematically, such a function can be formulated as

Q(l‘) =w1T1 + ... F WMTM + W41

where w = (wq, ..., wpr+1) is a vector of weights that minimizes a given error
function. This error function is typically defined as the sum of squared errors

sumSqBrr (i, y) = | Xw — y|3,

where X is an N x (M + 1) matrix where each row corresponds to a given obser-
vation (extended with the constant 1), and y is a vector of length N containing
the corresponding target values. The vector Xw contains the result of comput-
ing g for each observation. The goal is then to find the vector of weights w that
minimizes this error, that is,

arg min || Xw — y||3.
w

MiningZinc Model. We can formulate this problem as an optimization problem
as shown in Listing 13. The model starts with defining the input data (Lines 2
and 3) and its dimensions (Lines 5-6). The input data can be specified in an
external file. Line 9 specifies the weight vector that needs to be found. Based
on this weight vector and the input variable x, we specify the estimate (§(z))
of the linear model in Line 11. Finally, on Line 13 we specify the optimization
criterion, i.e. to minimize the sum of squared errors. The function sumSqErr is
defined in the MiningZinc library (Listing3).

Listing 13. Model for min-squared-error linear regression

% Observations

array [int, int] of float: X;

array [int] of float: y;

% Data dimensions

set of int: Points = indexset_-lof2 (X);

set of int: Dimensions = indexset_20f2(X);
int: NumWeights = max(Dimensions)+1;

% Weights to find

array [1.. NumWeights] of var float: w;

© 00U A WN -

10 | % Estimate for each data point
11 |array[Points] of var float: yh =

272 A. Dries et al.

[sum(j in Dimensions) (w[j]*X[i,]j]) + w[NumWeights]
| i in Points |[;
12 | % Optimization criterium
13 | solve minimize sumSqErr(y, yh);

By replacing the error function we can easily model other linear regression
tasks, for example linear regression with elastic net regularization [38] where the
optimization criterium is defined as

(1-p)

. 1 -
arg min — | Xw — y||3 + ap|w|: +

2
w
samples 2 H ”2

with « and p parameters that determine the trade-off between L1 and L2 regular-
ization. Listing 14 shows the implementation of this scoring function in MiniZinc.

Listing 14. Elastic net error function for linear regression

1 | function var float: elastic_net (
array [int] of float: Y,
array [int] of var float: E,
array [int] of var float: W,
float: Alpha, float: Rho) =
(0.5 / int2float (length(Y))) =
norm2 ([Est[i] — Y[i] | i in indexset(Y)])
+ (AlphaxRho) * norm2(W)
+ (0.5% Alpha*(1.0—-Rho)) % norml(W);

3.5 Clustering

The task of clustering is discussed in the next chapter. We would like to point
out however that the clustering problems explained there can be modeled in
MiningZinc too.

Problem Statement. Let us consider the minimum sum of squared error clustering
problem (which k-means provides an approximation of), where the goal is to
group all examples into k non-overlapping groups [21]. The objective to minimize
is the ’error’ of each cluster, that is, the distance of each point in the cluster to
the mean (centroid) of that cluster.

The centroid of a cluster can be computed by computing the mean of the
data points that belong to it:

zc = mean(C') = X:Z’éd) (2)

The error is then measured as the sum of squared errors of the clusters:

S 3 Pp.ze) (3)

CceC peC

Modeling in MiningZinc 273

MiningZinc Model. The model below shows a MiningZinc specification of this
problem. As variables, it uses an array of integers, one integer variable for
every example. This variable will indicate which cluster the example belongs
too. The optimisation criterion is specified over all clusters and examples; the
b2f(Belongs[j])==i) part converts the Boolean valuation of whether point j
belongs to cluster 7 into a float variable, such that this indicator variable can be
multiplied by the sum of squared errors of point j to cluster .

The functions b2f() (bool 2 float) and sumSqErr() (sum of squared errors) are
part of the MiningZinc library, see Sect.2.2. The definition of mean() is shown
below and follows the mathematical definition above.

% Data

int: NrDim; % number of dimensions
int: NrE; % number of examples

int: K; % number of clusters

array [1..NrE,1..NrDim] of float: Data;

G W N

[}

% Clustering (each point belongs to one cluster)
7 |array [1..NrE] of var 1..K: Belongs;

8 |solve minimize sum(i in 1..K, j in 1..NrE) (

9 b2f(Belongs[j] == 1i)=*
10 sumSqErr (Data[j], mean(Data, Belongs, i))
11)3

12 | function array[int] of var float: mean(

13 array [int ,int] of var float: Data,
14 array [int] of var int: Belongs,

15 int: c¢) =

16 let {

17 set of int: Exs = index_-set_-lof2(Data),

18 set of int: Dims = index_set_20f2 (Data),

19 array [Dims] of var float: Mean,

20 constraint forall(d in Dims) (

21 Mean [d] =

22 sum(i in Exs)(b2f(Belongs[i] == c¢) x Data[i,d]) /
23 sum(i in Exs)(b2f(Belongs[i] == c¢))

24

25 } in Mean;

More clustering problems and how to model them for use with constraint
solvers can be found in the next chapter.

3.6 Relational Data Factorization

Motivated by an analogy with Boolean matrix factorization [29] (cf. Fig.4),
[9] introduces the problem of factorizing a relation in a database. In matrix
factorization, one is given a matrix and has to factorize it as a product of other
matrices.

Problem Statement. In relational data factorization (RDF), the task is to fac-
torize a given relation as a conjunctive query over other relations, i.e., as a
combination of natural join operations. The problem is then to compute the

274 A. Dries et al.

A B C
110 10 110
111|=111 011
101 01

Fig. 4. Boolean matrix factorization.

extensions of these relations starting from the input relation and a conjunctive
query. Thus relational data factorization is a form of both inverse querying and
abduction, as one has to compute the relations in the query from the result of
the query. The result of relational data factorization is not necessarily unique,
constraints on the desired factorization can be imposed and a scoring function
is used to determine the quality of a factorization. Relational data factorization
is thus a constraint satisfaction and optimization problem.

More specifically, relational data factorization is a generalization of abductive
reasoning [10]:

1. instead of working with a single observation f, we now assume a set of facts
D for a unique target predicate db is given;

2. instead of assuming any definition for the target predicate, we assume a single
definite rule defines db in terms of a set of abducibles A, the conjunctive query;

3. instead of assuming that a minimal set of facts be abduced, we score the
different solutions based on the observed error.

Formally we can specify the relational factorization problem as follows:
Given:

— a dataset D (of ground facts for a target predicate db);

a factorization shape Q: db(T) « q1(T1), ..., qx(T)), where some of the ¢; are
abducibles;

— a set of rules and constraints P;

— a scoring function opt.

Find: the set of ground facts F, the extensions of relation @, that scores best
w.r.t. opt(D, approx(P,Q, F)) and for which Q U P U F is consistent.

MiningZinc Model. Listing 15 shows the model for a relational factorization
problem with a ternary conjunctive query, using the sum of absolute errors as
scoring function and without additional constraints.

Listing 15. Relational decomposition

% Input data

array [int, int, int] of int: paper;

% index set of authors

set of int: Authors = index_set_lof3 (paper);

% index set of universities

set of int: Universities = index_set_20f3 (paper);
% inder set of venues

set of int: Venues = index_set_30f3 (paper);

WO U WN -

Modeling in MiningZinc 275

9 |% Search for

10 |array[Authors, Universities] of var bool: worksAt;
11 | array [Authors, Venues| of var bool: publishesAt;
12 | array [Universities , Venues] of var bool: knownAt;

13 | solve minimize
sum(a in Authors, u in Universities, v in Venues) (
abs(paper[a,u,v] — bool2int(
worksAt[a,u] /\ publishesAt[a,v] /\ knownAt[u,v])));

14 | output [show(worksAt), show(publishesAt), show(knownAt)];

3.7 Ranked Tiling

Ranked tiling was introduced in [23] to find interesting areas in ranked data. In
this data, each transaction defines a complete ranking of the columns. Ranked
data occurs naturally in applications like sports or other competitions. It is
also a useful abstraction when dealing with numeric data in which the rows are
incomparable.

Problem Statement. Ranked tiling discovers regions that have high average rank
scores in rank matrices. These regions are called ranked tiles. Formally, a rank
tile is defined by the following optimization problem:

Problem 1 (Maximal ranked tile mining). Given a rank matric M €
o™ " o € {l,...n} and a threshold 0, find the ranked tile B = (R*,C*), with
R*C{l...m} and C* C{1...n}, such that:

B=(R",C") = arguax Z (M, —6). (4)

"" reR,ceC
where 0 is an absolute-valued threshold.

Ezample 1. Figure depicts a rank matrix containing five rows and ten columns.
When 6 = 5, the maximal ranked tile is defined by R = {1,2,3,5} and C =
{1,2,3}. The score obtained by this tile is 37, and no more columns or rows can
be added without decreasing the score.

The maximal ranked tiling problem aims to find a single tile, but we are also
interested in finding a set of such tiles. This maximizes the amount of information
we can get from the data. In other words, we would like to discover a ranked
tiling.

Problem 2 (Ranked tiling). Given a rank matriz M, a number k, a thresh-
old 0, and a penalty term P, the ranked tiling problem is to find a set of ranked
tiles B; = (R;,C;), i = 1...k, such that they together maximize the following
objective function:

arg max E;ec L, .>1)(Mre —0) = (tre — 1)P) (5)

276 A. Dries et al.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Fig. 5. Example rank matrix, with maximal ranked tile B = ({R1, R2, R3, R5}, {C1,
C2,C3}).

where t,. = |{i € {1,....k} | r € R;,c € C;}| indicates the number of tiles that
cover a cell, and 1, is an indicator function that returns 1 if the test ¢ is true,
and 0 otherwise. P indicates a penalty that is assigned when tiles overlap.

To solve Problem 1 efficiently, we introduce two Boolean decision vectors:
T=T,Ts,...,Ty), with T; € {0,1}, for rows and I = (I1, Is,...,I,,), with I; €
{0, 1}, for columns. An assignment to the Boolean vectors T' and I corresponds
to an indication of rows and columns belonging to a tile. Then, the maximal
ranked tile can be found by solving the following equivalent problem:

argmax S T (Y (M —0) <L) (6)

)

teR i€C
subject to
VtER:Ti=1» (My;—0)%I; >0 (7)
ieC
VieC:ili=1<Y (My;—0)+T; >0 (8)
teER

where redundant constraints (7), (8) are introduced to boost the search.

MiningZinc Model for Finding a Single Tile. This problem specification trans-
lates directly into the MiningZinc model shown in Listing 16 where Eqs. 7 and 8
correspond to lines 7 and 8, respectively, and the optimization criterion of Eq. 6
corresponds to line 9.

Modeling in MiningZinc 277

Listing 16. MiniZinc model for finding a single best tile

1 |[array[int, int] of int: TDB;

2 |int: th; % Theta

3 |set of int: Rows = index_set_lof2 (TDB);
4 |set of int: Cols = index_set_20f2 (TDB);
5 | array [Cols] of var bool: I;

6 |array [Rows] of var bool: T;

7 | constraint forall (r in Rows) (
T[r] = (sum(c in Cols)((TDB[r,c]—th)xbool2int(I[c])) >= 0)
)

8 | constraint forall (¢ in Cols) (
I[c] = (sum(r in Rows)((TDB[r,c]—th)*bool2int (T[r]))>=0)
)

9 | solve maximize
sum(r in Rows)(
bool2int (I[r])*sum(c in Cols)((TDB[r,c]—th)*xbool2int (T[c])
)
)i

10 |output [show(T), ”"\n”, show(I), "\n”];

To solve Problem 2, Le Van et al. [23] propose to approximate the optimal
solution by using a greedy approach, as is common for this type of pattern set
mining problem. The first tile is found by solving the optimization problem in
Listing 16. Next, we remove that tile by setting all cells in the matrix that are
covered to the lowest rank (or another value, depending on parameter P). Then,
we search in the resulting matrix for the second tile. This process is repeated
until the number of desired tiles is found. The sum of the scores of all discovered
tiles will correspond to the score of Eq. 5 for this solution. However, as the search
is greedy, the solution is not necessarily optimal.

Python Wrapper for Greedy tile Mining. The greedy approach cannot be mod-
elled directly in the MiningZinc language. However, the MiningZinc framework
allows direct access to the solving infrastructure from Python. The complete
algorithm is shown in Listing 17. The interaction with the MiningZinc module
(mngzn) occurs on line 7 where the model is initialized, and on line 9 where one
solution of the model is retrieved. In lines 13 through 19 the obtained tile is
removed from the original matrix (by setting its entries to 0). The process is
repeated until the tile no longer covers a new entry of the matrix.

Listing 17. Wrapper for finding all tiles (in Python)

1 |TDB = ... # Load matriz mznmodel = ... # See Listing
reflst:rankedtilingspsmzn params = {’TDB’: TDB, ’th ’: 5}
tiles = [] stop = False while not stop

model = mngzn. parseModel (mznmodel, params)

Solve the model to find one tile

solution = next(model.solve ())

tiles .append(solution)

stop = True

Update the ranking matriz => zero out values

W O U WN

278 A. Dries et al.

9 for i,r in enumerate(solution[’T’])

10 for j,c in enumerate(solution[’I’])

11 if r and c :

12 # Stop wunless the new tile covers a new item
13 if TDB[i][j] > 0 :

14 TDB[i][j] = 0

15 stop = False

16 | return tiles

4 Related Work

We have shown how MiningZinc can be used to model a wide variation of data
mining and machine learning tasks in a high-level and declarative way. Our mod-
eling language is based on MiniZinc [32] because it is a well-developed existing
language with wide support in the CP community, it supports user-defined con-
straint, and is solver-independent. Other modeling languages such as Essence
[12], Comet [37] and OPL [36] have no, or only limited, support for building
libraries of user-defined constraints, and/or are tied to a specific solver.

Integrating declarative modeling and data mining has been studied before
in the case of itemset mining [16,22], clustering [11,27] and sequence min-
ing [31]. However, these approaches were low-level and solver dependent. The
use of higher-level modeling languages and primitives has been studied before
[17,28], though again tied to one particular solving technology.

The idea of combining multiple types of data mining and machine learning
techniques also lies at the basis of machine learning packages such as WEKA [18]
and scikit-learn [33]. However, these packages do not offer a unified declarative
language and they do not support going beyond the capabilities of the algorithms
offered.

In data mining, our work is related to that on inductive databases [24]; these
are databases in which both data and patterns can be queried. Most inductive
query languages, e.g., [20,26], extend SQL with primitives for pattern mining.
They have only a restricted language for expressing mining problems, and are
usually tied to one mining algorithm. A more advanced development is that
of mining views [4], which provides lazy access to patterns through a virtual
table. Standard SQL can be used for querying, and the implementation will only
materialize those patterns in the table that are relevant for the query. This is
realized using a traditional mining algorithm. In MiningZinc we support the
integration of data from an external database through the use of SQL queries
directly.

5 Solving

This chapter does not expand on solving, but the MiningZinc framework [14]
supports three types of solving: (1) to use an existing MiniZinc solver; (2) to
detect that the specified tasks is a standard known task and to use a specialised
algorithm to solve it; and (3) a hybrid solving approach that uses both specialised

Modeling in MiningZinc 279

algorithms and generic constraint solvers, for example by solving a master prob-
lem and subproblem with different technology, or to incorporate specialised algo-
rithms inside global constraint propagators. The first approach is typically least
efficient but most flexible towards adding extra constraints. The second app-
roach is least flexible but typically most scalable. The third, hybrid, approach
offers a trade-off between generality and efficiency, but requires modifications to
the solving process, which is hence beyond what can be expressed in a modeling
language like Mini(ng)Zinc.

6 Conclusion

In this chapter we showed how a wide range of data mining problems can be
modeled in MiningZinc. Only a minimal library of extra predicates and functions
was needed to express these problems, meaning that standard MiniZinc is often
sufficient to model such problem. Two additions are the ability to load data
from a database, and a library of distance functions, which are often used in
data mining.

The key feature of MiningZinc as a language for expressing data mining prob-
lems is the ability to add and modify constraints and objective functions. Hence
constraint-based mining problems are those where the language and framework
has most to offer, such as in constraint-based pattern mining and constrained
clustering. Another valuable use is for prototyping new data mining problems, as
was done for relational data factorization and ranked tiling. Many other problem
settings are yet unexplored.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207-216. ACM Press (1993)

2. Basu, S., Davidson, 1., Wagstaff, K.: Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. Chapman & Hall/CRC Data Mining and Knowl-
edge Discovery Series. CRC Press, Boca Raton (2008)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

4. Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado, A., Robardet, C.:
An inductive database system based on virtual mining views. Data Min. Knowl.
Discov. 24(1), 247-287 (2012)

5. Boulicaut, J.F., Dzeroski, S. (eds.): Proceedings of the Second International Work-
shop on Inductive Databases, 22 September, Cavtat-Dubrovnik, Croatia. Rudjer
Boskovic Institute, Zagreb (2003)

6. Boulicaut, J.-F., Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006). doi:10.
1007/11615576

7. Coquery, E., Jabbour, S., Sais, L., Salhi, Y., et al.: A SAT-based approach for
discovering frequent, closed and maximal patterns in a sequence. In: European
Conference on Artificial Intelligence (ECAI), vol. 242, pp. 258-263 (2012)

http://dx.doi.org/10.1007/11615576
http://dx.doi.org/10.1007/11615576

280

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Dries et al.

Darwiche, A.: A differential approach to inference in bayesian networks. J. ACM
50(3), 280-305 (2003). http://doi.acm.org/10.1145/765568.765570

De Raedt, L., Paramonov, S., van Leeuwen, M.: Relational decomposition using
answer set programming. In: Online Preprints 23rd International Conference
on Inductive Logic Programming, International Conference on Inductive Logic
Programming, Rio de Janeiro, 28-30 August 2013, August 2013. https://lirias.
kuleuven.be/handle/123456789/439287

Denecker, M., Kakas, A.: Abduction in logic programming. In: Kakas, A.C., Sadri,
F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI),
vol. 2407, pp. 402-436. Springer, Heidelberg (2002). doi:10.1007/3-540-45628-7_16
Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained
clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Zelezny, F. (eds.) ECML
PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419-434. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40994-3_27

Frisch, A., Harvey, W., Jefferson, C., Herndndez, B.M., Miguel, I.: Essence: a con-
straint language for specifying combinatorial problems. Constraints 13(3), 268-306
(2008)

Gilpin, S., Davidson, I.N.: Incorporating SAT solvers into hierarchical clustering
algorithms: an efficient and flexible approach. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, 21-24 August 2011, pp. 1136-1144 (2011)

Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: MiningZinc: a modeling
language for constraint-based mining. In: Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence, pp. 1365—-1372. AAAI Press,
August 2013

Guns, T., Dries, A., Tack, G., Nijssen, S., Raedt, L.D.: Miningzinc: a language
for constraint-based mining. In: International Joint Conference on Artificial Intel-
ligence (2013)

Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12-13), 1951-1983 (2011)

Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE
Trans. Knowl. Data Eng. 25(2), 402-418 (2013)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. 11(1), 10-18 (2009)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
Burlington (2000)

Imielinski, T., Virmani, A.: MSQL: a query language for database mining. Data
Min. Knowl. Disc. 3, 373-408 (1999)

Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264-323 (1999). http://doi.acm.org/10.1145/331499.331504
Jarvisalo, M.: Itemset mining as a challenge application for answer set enumeration.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
304-310. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9_35

Van, T., Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., Raedt, L.: Ranked
tiling. In: Calders, T., Esposito, F., Hiillermeier, E., Meo, R. (eds.) ECML PKDD
2014. LNCS (LNAI), vol. 8725, pp. 98-113. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44851-9_7. https://lirias.kuleuven.be/handle/123456789/457022
Mannila, H.: Inductive databases and condensed representations for data mining.
In: ILPS, pp. 21-30 (1997)

Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., De La Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229-267 (2008)

http://doi.acm.org/10.1145/765568.765570
https://lirias.kuleuven.be/handle/123456789/439287
https://lirias.kuleuven.be/handle/123456789/439287
http://dx.doi.org/10.1007/3-540-45628-7_16
http://dx.doi.org/10.1007/978-3-642-40994-3_27
http://doi.acm.org/10.1145/331499.331504
http://dx.doi.org/10.1007/978-3-642-20895-9_35
http://dx.doi.org/10.1007/978-3-662-44851-9_7
http://dx.doi.org/10.1007/978-3-662-44851-9_7
https://lirias.kuleuven.be/handle/123456789/457022

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Modeling in MiningZinc 281

Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: VLDB, pp. 122-133 (1996)

Meétivier, J.-P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: Con-
strained clustering using SAT. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.)
IDA 2012. LNCS, vol. 7619, pp. 207-218. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34156-4_20

Métivier, J.P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint
language for declarative pattern discovery. In: SAC 2012, pp. 119-125. ACM (2012).
http://doi.acm.org/10.1145/2245276.2245302

Miettinen, P., Mielikdinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348-1362 (2008)

Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill, New York (1997)
Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint
programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288-305.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-18008-3_20

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessie¢re, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529-543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7_38

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011)

Stuckey, P.J.,; Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268-283. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38171-3-18

Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Boston (2005)

Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge (1999)

Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2005)

Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Series B 67, 301-320 (2005)

http://dx.doi.org/10.1007/978-3-642-34156-4_20
http://dx.doi.org/10.1007/978-3-642-34156-4_20
http://doi.acm.org/10.1145/2245276.2245302
http://dx.doi.org/10.1007/978-3-319-18008-3_20
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-642-38171-3_18

	Modeling in MiningZinc
	1 Introduction
	2 Language
	2.1 MiniZinc
	2.2 Library
	2.3 Facilities for Loading Data
	2.4 Python Integration

	3 Modeling Data Mining Problems
	3.1 Itemset Mining
	3.2 Sequence Mining
	3.3 Constraint-Based Pattern Mining in Bayesian Networks
	3.4 Linear Regression
	3.5 Clustering
	3.6 Relational Data Factorization
	3.7 Ranked Tiling

	4 Related Work
	5 Solving
	6 Conclusion
	References

