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Abstract. For three decades there has been a significant global effort to
improve El Niño-Southern Oscillation (ENSO) forecasts with the focus on using
fully physical ocean-atmospheric coupled general circulation models (GCMs).
Despite increasing sophistication of these models and the computational power
of the computers that drive them, their predictive skill remains comparable with
relatively simple statistical models. In this study, an artificial neural network
(ANN) is used to forecast four indices that describe ENSO, namely Niño 1 + 2,
3, 3.4 and 4. The skill of the forecast for Niño 3.4 is compared with forecasts
from GCMs and found to be more accurate particularly for forecasts with
longer-lead times, and with no evidence of a Spring Predictability Barrier. The
forecast values for Niño 1 + 2, 3, 3.4 and 4 were subsequently used as input to
an ANN to forecast rainfall for Nebo, a locality in the Bowen Basin, a major
coal-mining region of Queensland.

Keywords: ENSO � Niño � Sea surface temperature � Artificial neural
network � General circulation model � Rainfall � Spring predictability barrier

1 Introduction

Australian rainfall is extremely variable with episodes of drought that often end with
extreme flooding. During the austral summer of 2010–2011 flooding impacted
Queensland with the capital city Brisbane inundated and 85% of Queensland coalmines
either closed entirely or operating with restricted production [1, 2]. By May 2011,
Queensland’s coal mining sector had recovered to only 75% of its pre-flood output,
with a loss of A$5.7 billion, equivalent to 2.2% of Queensland’s gross state product for
the financial year ending June 2011. A report prepared for Australia’s National Climate
Change Adaptation Research Facility following that extreme event, concluded that
available seasonal rainfall forecasts from the Australian Bureau of Meteorology
(BOM) are not useful, lacking localised information, and other micro-details, to enable
focused pro-active planning and risk management [1].

Intra-seasonal, inter-annual and decadal variability in Queensland rainfall has been
linked to complex physical phenomena remote to the Australian land mass [3]. These
phenomena, manifesting as recurrent patterns in sea surface temperature (SST) and air
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pressure, are described numerically by climate indices. The dominant phenomenon is
El Niño-Southern Oscillation (ENSO), which can be described quantitatively by
measuring the departure from the long-term average of sea surface temperature over
specified Niño region of the Pacific Ocean. The terms La Niña and El Niño originally
comes from the Spanish and represents opposites, with El Niño events mostly asso-
ciated with below average rainfall in eastern Australia and warmer waters in the eastern
Pacific. The extreme rainfall in the austral summer of 2010–11 was linked to an
extraordinarily strong La Niña event [4].

There are five designated Niño regions spanning the tropical Pacific Ocean from
which anomalies in SST are calculated. For widespread global climate variability, Niño
3.4 is commonly preferred, because the sea surface temperature variability in this
region is thought to have the strongest effect on shifting rainfall in the western Pacific,
which in turn modifies the location of the heating that drives other major global
atmospheric circulation patterns. Relationships between weather patterns, particularly
rainfall, and ENSO phenomena have been explored in many part of the world including
Australia [5–7], north America [8, 9], the north Atlantic European region [10], China
[11] and India and West Africa [12].

Over the last three decades, a whole suite of different models with varying degrees
of complexity have been developed for ENSO prediction. They are generally cate-
gorised as (i) purely statistical models that depend on finding patterns in historical data,
(ii) physical models that rely on simulating ocean-atmospheric interactions, and
(iii) hybrids of the statistical and simulation models [13–15]. Most of the research effort
has been into the fully physical coupled ocean-atmospheric models that run on
supercomputers, however, their skill at forecasting remains comparable to simple
statistical models [15–17].

Data on ENSO is available back to the mid-1800s, with the predictability of El Niño
and La Niño varying across decades. For example, the predictability of these events, as
measured by anomalous correlations and root mean square error (RMSE), is considered
low for the period 1936–1955, while highest scores are achieved for the periods 1876–
1895 and 1976–1995 [18]. Predictability also varies on a seasonal basis, with the austral
autumn/boreal spring considered a period when there is a relatively small signal-to-noise
ratio and is now known as the spring predictability barrier (SPB) [17–19]. The SPB has
been extensively studied in the context of general circulation models (GCMs) [20–22].

Yan and Yu [23] found that although taking the mean of an ensemble of 10 GCMs
models reduced the SPB, it still remained a feature. Duan and Wei [24] explain that the
SPB model errors may come from many different sources, such as model parameter
errors, the uncertainties of some physical processes, errors in external forces, and the
uncertainties of the computation scheme, without concluding with a definitive deter-
mination of which type of model error plays the dominant role in producing prediction
uncertainties.

This paper details an investigation into the use of artificial neural network
(ANN) software to forecast Niño values for the period 1987 to 2013, and then the
incorporation of these values into an ANN model to forecast monthly rainfall for Nebo,
a locality in the Bowen Basin that was severely impacted by the strong La Niña event
during the Austral summer of 2010–11. This represents an extension of previous
investigations into the application of ANNs for monthly rainfall forecasting in
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Queensland [25–28], in particular through the incorporation of both lagged and forecast
values for the full complement of Niño regions. The forecast Niño 3.4 values are
benchmarked against output from other statistical models and also general circulation
models.

2 Materials and Method

ANNs are massive, parallel-distributed, information-processing systems with charac-
teristics resembling the biological neural networks of the human brain. The mathe-
matical fundamentals of neural networks and specific applications in hydrology,
including rainfall, have been reviewed in the two-part series ASCE Task Committee on
Application of Artificial Neural Networks in Hydrology [29]. The ANN models used in
this study for forecasting Niño values, and also rainfall, were developed using
NeuroSolutions 6 for Excel software (NeuroDimensions, Florida, USA). This software
provides great versatility in the architecture of neural networks that can be deployed.
For the purposes of this study, a limited number were tested in a preliminary inves-
tigations, without extensively attempting to optimise the ANN configuration.

For forecasts of the Niño indices, principal component analysis (PCA) was first
deployed using an unsupervised neural network, followed by a supervised neural
network comprising a multi-layer perceptron, with one hidden layer. The PCA com-
ponent of the network consisted of a Sanger synapse which linearly projected the input
onto a smaller dimensional space, while preserving maximum intensity of the original
signal. This reduced dimension means fewer weights for the supervised network to
follow, improving generalisation. Optimisation occurred over 6000 epochs, equally
split between the unsupervised and supervised components.

For forecasts of rainfall, some preliminary exploratory testing was undertaken using
neural networks with multilayer perceptron architectures with up to three hidden
lawyers. However, it was found that superior results were obtained, with Jordan and
Elman networks, as shown by lower RMSE in the training and test data sets. Jordan
and Elman networks extend the MLP incorporating context units, processing elements
that remember past activity. Context units enable the network to extract and utilise
temporal information contained in the data. In the Elman network, the activity of the
first hidden processing element is copied to the context unit, whereas for the Jordan
network the output of the network is copied.

For forecasts of Nebo monthly rainfall reported in this study, a Jordan neural
network was selected. For each input data set, the artificial neural network was opti-
mised over 3000 epochs using a genetic optimisation algorithm for 10 or 20 genera-
tions. For both Niño forecasts and rainfall forecasts, for every run the total data was
divided into training (70%), evaluation (20%) and test sets (10%). The test set was not
used in network training, but was important in the choice of the final model. Pearson
correlation coefficients (r), Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) were used to compare the skill of the rainfall forecast from the best model for
each ANN run against observed values for the test period.

The site of Nebo was chosen because of its proximity to a coal mine in the Bowen
Basin and because it is a site with over 120 years of historical rainfall data available

90 J. Abbot and J. Marohasy



from the BOM (station 033054). Surface air temperature data for Nebo is not available,
and so maxima and minima data from the Te Kowai Experimental Station in Mackay
(station 033047), approximately 100 kms to the northeast of Nebo, were used with data
available from 1908.

The first part of the study focused on forecasting ENSO by forecasting SST anomalies
from four regions designated Niño 1 + 2 (0–10 S, 80–90 W), Niño 3 (5 S–5 N; 150 W–

90 W), Niño 3.4 (5 S–5 N; 170 W–120 W) and Niño 4 (5 S–5 N: 160 E–150 W).
The other climate indices used for the rainfall forecasts were the Southern Oscil-

lation Index (SOI), which is another measure of ENSO calculated using the pressure
difference between Tahiti and Darwin [3]; the Inter-decadal Pacific Oscillation (IPO),
which is thought to modulate the influence of ENSO on rainfall along the Australian
east coast [30, 31]; and also the Dipole Mode Index (DMI), which is a coupled ocean
and atmospheric phenomenon in the equatorial Indian Ocean [32].

Values for the Niño indices, SOI and DMI were sourced from the Royal Nether-
lands Meteorological Institute Climate Explorer, which is a web application that is part
of the World Meteorological Organisation and European Climate Assessment and
Dataset project. Values for the IPO were provided by Chris Folland from the United
Kingdom’s Met Office Hadley Centre.

In order to forecast the lead Niño values, fours unary data sets corresponding to
Niño 4, Niño 3.4, Niño 3 and Niño 1 + 2 were initially constructed, each comprising
the current monthly value, plus twelve lagged values for the previous twelve months.
Niño data for the period January 1871 to 1987 was used as the training period, and then
forecasts produced for the period August 1987 to August 2013.

The four Nino unary sets were used as input to forecast each of the four Niño SST
values in turn, commencing with forecasts for lead month 0. An iterative process was
then applied, so that forecast values were added to each unary set to provide the input
data for a forecast corresponding to the following month. In this way, a one-month
forecast for each of the four Niño-values was produced one-month to twelve months in
advance.

A new unary dataset designated as “Ninos” was constructed comprising both lead
and lagged values for each Niño index. Seven monthly values of each Niño index
contributed to Ninos, comprising lag 3, lag 2, lag 1, current, lead 0, lead 1 and lead 2.
Thus Ninos comprised 28 columns of data. The full complement of available lagged
Ninos was not tested because input of very large datasets tends to degrade performance
of ANN models.

In order to forecast rainfall for Nebo, the desired output, the observed rainfall, was
assigned as the monthly rainfall with a lead-time of three months ahead of the current
month (lead month 2). The test period, which is also the forecast period, was initially
set for 137 months from August 2000 to December 2011 that included the excep-
tionally wet astral summer of 2010–2011. Five unary input data sets were constructed
corresponding to monthly values of the DMI, SOI, IPO, maximum atmospheric tem-
perature (MaxT), and minimum atmospheric temperature (MinT). Each unary data set
comprised the current monthly value, plus twelve lagged values for the previous twelve
months. The unary set Ninos has already been described.

Unary, binary and ternary combinations of these unary sets were used as inputs to
forecast rainfall. A total of 15 combinations were tested.
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3 Results and Discussion

3.1 Forecasting ENSO with an ANN

The skill of a model, whether a GCM or ANN, at predicting climate indices or rainfall,
as a variable for a single locality or region can be measured by the RMSE. This is the
difference between the observed and forecast values [33, 34]. The lower the RMSE the
smaller the difference, and therefore the more accurate the forecast. There is an
extensive literature evaluating RMSE relative to other statistical techniques [35, 36].
Acknowledging that this statistical measure gives higher proportionate weight to large
errors, we consider it suitable for our type of data given the highly variable nature of
Queensland rainfall and ENSO events and the importance of being able to accurately
forecast extreme events.

Barnston et al. [17] used the RMSE between the forecast and observed succession
of running three-month mean SST anomalies for Niño 3.4, as a measure of the skill of
eight statistical and 12 dynamic general circulation models to forecast ENSO. In each
case the forecast period commenced immediately after the latest available observed
data value. The area between the lines designated upper and lower limit define the
boundaries of the individual output from these 20 models, as illustrated in Fig. 1. We
have benchmarked output from our ANN against the envelope of values shown in
Fig. 1. The ANN Niño 3.4 forecast was for the shorter interval of one month making it
a more ambitious forecast. Nevertheless the ANN consistently produced a more skilful
forecast than all of the models reviewed by Barnston et al. [17] except for our forecast

Fig. 1. A comparison of the RMSE for the ANN model versus the 20 models reviewed by
Barnston et al. 2012 for Niño 3.4 forecasts
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with a lead of 2 months, which was equivalent to the best forecasts of the models
reviewed by Barnston et al. [17], Fig. 1.

The specific years over which an ENSO forecast is made are considered important
when measuring skill with the period 2002–10 and early to middle 1990s considered
the more challenging years of the last thirty [18]. Using the ANN, we forecast for the
26 years from 1987 to 2013, which incorporates the more difficult periods.

Our ANN model is most skilful at forecasting Niño 4, and least skilful at fore-
casting Niño 1 + 2, as shown in Fig. 2. The RMSE for our ANN model increases as the
lead time is increased from 0 to seven months, after which it is surprising constant as
shown in Fig. 2, more so than for many other models [17, 19, 37].

3.2 The Spring Predictability Barrier

Studies using some GCMs and hybrid models show low skill at forecasting ENSO
events during the boreal spring with high RMSE for the months of March to June, this
is referred to as the Spring Predictability Barrier (SPB). It is an often-discussed
characteristic of ENSO forecasts [38–40]. The SPB phenomenon is illustrated in Fig. 3
using results from the ensemble of forecasts reviewed in Zheng and Zhu [19]. The SPB
corresponds to the months of March to May when the RMSE is in the vicinity of 1.0,
compared to much lower values during other times of the year, for example July to
September when the RMSE falls to values of about 0.3.

Output from our ANN model shows no such drop in skill for the March to May
period, that is the SPB is not present, Figs. 3 and 4. The values in Fig. 4 were normalised
by dividing the RMSE values by the corresponding absolute error for the corresponding

Fig. 2. RMSE as a function of lead-time for all seasons combined for 12 months. All Niño
values generated from the ANN model.
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month. This produced some evidence for a barrier, but associated with the summer
months around June, July and August rather than the spring March, April May.

The SPB is discussed most often in the literature with reference to values of Niño
3.4. The skill of the forecasts for Niño 4 from our ANN is highest (lowest RMSE) from
April through to June, while the skill of the forecast for Niño 3 is highest (lowest
RMSE) in February, as shown in Fig. 5.

In a review of ENSO predictability, Barnston et al. [17] have presented a set of
contour plots of RMSE for Niño 3.4 showing variation with lead time and target season
for 12 GCMs and 8 statistical models. Inspection of these figures suggests that forecast
skill for each model does indeed vary with the time of year. However, the concept of a

Fig. 3. RMSE of ensemble forecasts for Niño 3.4 based on Zheng and Zhu 2010 versus RMSE
of ANN forecast, both with 9-month lead-time.

Fig. 4. Normalised RMSE of ANN forecast with 9-month lead-time
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forecast barrier associated universally with the spring (March to May) is not as ubiq-
uitous as suggested. Focussing on forecasts with 6 to 9 months lead-time, some models
including the Scripps Hybrid Coupled Model do indeed exhibit higher RMSE in the
boreal spring period. However, other GCMs including the University of Maryland
Intermediate Coupled Model and the Australian POAMA GCM exhibit lower RMSE
during the first part of the year compared to the latter part. Generally, the statistical
models show a large variation in temporal designation of periods representing lower
predictive skill for Niño 3.4 within the year. For example, the NOAA CPC-CA sta-
tistical model clearly shows higher predictive skill during the first half of the year.

Although the SPB has been extensively researched for many years, particularly in
the context of GCMs, a satisfactory explanation remains unresolved [24]. Investiga-
tions have suggested that the SPB is probably a result of errors in the models them-
selves, with both initialisation errors and parameter errors being implicated [41]. Others
have attempted to rationalise the SPB in terms of physical phenomena [20]. Results
from the present study, together with an objective assessment of the results from a
diversity of GCMs and statistical models would tend to suggest that different models
have different profiles of skill over the annual cycle, and the emphasis on the SPB is a
consequence of the prominence given to output from certain types of GCMs, rather
than a real physical phenomenon.

3.3 Forecasting Rainfall for Nebo, Queensland

The unary dataset designated Ninos was used alone and in binary and ternary com-
binations to forecast rainfall for Nebo with a lead-time of three months ahead of the
current month. Consistent with our previous studies using ANN to forecast rainfall in
Queensland [25], combinations incorporating local maximum and minimum temper-
ature gave superior rainfall forecasts, with the highest r value and lowest RMSE, as
illustrated in Table 1.

Fig. 5. Plot of RMSE against month for forecasts of Niño 3.4, 3 and 4 generated by the ANN
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Table 1. Combinations of input variables used in the ANN model to forecast Nebo monthly
rainfall with a 3-month lead

Input data sets Inputs Correlation coefficient (r) RMSE (mm)

Unary Ninos 0.29 79.2
Binary Ninos + MaxT 0.50 71.7

Ninos + MinT 0.56 68.7
Ninos + SOI 0.29 79.4
Ninos + DMI 0.30 81.0
Ninos + IPO 0.49 72.2

Ternary Ninos+MinT+MaxT 0.64 64.0
Ninos + MaxT + SOI 0.50 71.7
Ninos + MinT + SOI 0.51 71.0
Ninos + MaxT + DMI 0.51 71.3
Ninos + MinT + DMI 0.51 71.6
Ninos + MaxT + IPO 0.53 70.3
Ninos + MinT + IPO 0.51 71.1
Ninos + SOI + IPO 0.48 74.8
Ninos + IPO + DMI 0.38 76.6
Ninos + DMI + SOI 0.17 81.6

Fig. 6. Comparing observed rainfall (mm) with forecast rainfall (mm) for Nebo from September
1996 to January 2012

96 J. Abbot and J. Marohasy



Figure 6 compares observed rainfall (mm) with forecast rainfall (mm) for Nebo
from September 1996 to January 2012. The forecast was output from an ANN model
after inputting current monthly values and 12 lagged values for minimum and maxi-
mum temperatures and the unary Nino combination of lagged and lead values.

A visual comparison of the observed versus forecast rainfall for the ternary com-
bination, including the lagged and lead values for the Ninos with the current and lagged
temperature inputs, indicates that the ANN consistently forecast too much rain for the
drier months, as shown in Fig. 6. The ANN was able to give some indication that the
astral summers of 1996–97, 2007–2008 and 2010–2011 were going to be wetter than
average, but it did not forecast the exceptionally wet August of 1998 or December 2003
or adequately give an indication of the magnitude of the very wet months of February
1997 or December 2010.

Sensitivity analysis of the output indicated that the most influential inputs deter-
mining rainfall are Niño 3 (Lag 1), Niño 3.4 (Lag 1) and Niño 4 (Lead1).

4 Conclusions

Extreme rainfall during the austral summer of 2010–11 is linked with an extraordinarily
strong La Niña [4]. This ENSO event was inadequately forecast by the BOM, and
resulted in significant flooding across eastern Australia including major disruptions to
coal mining operations in the Bowen Basin [1].

There has been a significant investment in GCMs over the last three decades and a
major global research effort focused on improved ENSO forecasts. Barnston et al. [17]
argue that GCMs can now outperform statistical models in their skill at forecasting
ENSO, while Halide and Ridd [16] suggest that despite their complexity and the
superior computational power of the super computers used to run them, GCMs are no
better at forecasting ENSO than very simple models. Barnston et al. [17] and Halide
and Ridd [16] both acknowledge problems associated with forecasting through the
boreal SPB, with Barnston et al. [17] suggesting this will eventually be overcome as
“science and engineering continues to advance” while Halid and Ridd [16] suggests the
solution lies in better understanding the physical phenomena that result in anomalous
warming and cooling of particular regions of the equatorial Pacific.

These, and other review papers [8, 19–21], fail to adequately consider the potential
advantage of using the most advanced statistical models currently available, which are
ANNs that have been developed largely independently of the mainstream climate
science community. ANNs require a different skill set for implementation than GCMs
but since at least 2006 has shown potential for forecasting ENSO with more skill than
GCMs and simple statistical models [42]. Consistent with Wu et al. [42] the results
from our study indicate that the lower RMSE for ANNs is at least in part a consequence
of ANNs being able to forecast through the SPB.

Translating the improved ENSO forecast into an improved rainfall forecast pro-
vides an additional level of complexity. In previous studies we have shown that ANNs
can produce a superior monthly rainfall forecast for localities in Queensland relative to
output from the official GCMs [25–28]. The Bureau was unable to provide forecasts to
enable benchmarking for the locality of Nebo in this study. We recognise that our best
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forecast measured in terms of lowest RMSE for the period from September 1996 to
January 2012 has limitations, but it does demonstrate an improved skill through the
inclusion of lead as well as lag values for Niño regions.
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