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Abstract. We recommend a guiding heuristic to locate a sufficiently-sized
multilayer perceptron (MLP) for larger datasets. Expected to minimise the
search scope, it is based on experimental research into the comparative per-
formance of 14 existing approaches with global minimum ranges on 31 larger
datasets. The most consistent performer was Baum’s [1] equation that sets the
number of hidden neurons equal to the square root of the number of training
instances.
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1 Introduction

Trained under supervision, a 3-layer multilayer perceptron (MLP) will find ‘hidden’
relationships within a set of data by approximating continuous functions [2]. The
trained network may then be used for prediction tasks on previously unseen data from
the same domain, with the final configuration unique to each specific dataset. The size
of the hidden middle layer, Nh, has a strong bearing on the prediction accuracy of the
final model [3], yet the predominant technique to locating Nh is resizing through
trial-and-error. Exhaustive search through a range of Nh becomes problematic with
larger datasets, increasing demands on processor capacity and extending the time
required for training. The usefulness of the heuristic proposed in this paper is in
minimising the scope of the search to reach a suitably optimal network size. We note
that a reasonable network architecture may not be limited to a single ‘correct’ con-
figuration [4] so long as the underlying function can be learnt while retaining enough
smallness to generalise [5].

A set of proposed mathematical relationships between Nh and the numbers of input
neurons, Ni, output neurons, No, both fixed, and instances of the dataset used for
training, Ntr, is summarised in Table 1. We used Ntr for our calculations rather than
NTOT, total number of instances, as it directly relates to the training process.
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1.1 Research Question

Which of the existing approaches can assist the search for a suitable number of neurons
in the single hidden layer of a MLP for larger datasets?

2 Experiment

Our simple experiment investigates the performance of each approach when compared
with global minimum benchmarks [19]. Thirty-one datasets with many attribute-target
pairs or high dimensionality were sourced [20–22] (see Table 2).

A lower and upper limit to Nh was established for the training of each dataset based
on calculations from the approaches in Table 1. We set lower bound at the calculation
closest to 0, while upper bound was based on a sense of being able to train to that Nh,
with flexibility to extend with working processor capacity. Where an approach takes
the form of a lower or upper bound, the calculated Nhat the bound was used.

Weights were initialised randomly to represent prior knowledge [23]. Training, test
and validation sets (70-15-15% of NTOT) were also randomly generated for the best
opportunity to locate the global minimum [24]. Each-sized network was trained 10
times with cross-validation, accounting for random influences [25]. We performed our
experiment using MATLAB Neural Network Toolbox version 6 add-on’s pat-
ternnet function with the scaled conjugate backpropagation algorithm [26, 27].

Table 1. Fourteen ways to determine Nh. Approach number was attributed randomly.

Source Equation Approach
number

Source Equation Approach
number

[6, 7] Nh � 2Ni þ 1 (1) [1, 8] Nh ¼ Ntr

Ni (8)

[9] in [10] Nh � Ntr

Ni þ 1ð Þ (2) [1, 8] Nh ¼ Ntr

Ni þNoð Þ (9)

[1] Nh ¼ ffiffiffiffiffiffiffi

Ntr
p

(3) [11] Nh ¼ 2Ni (10)

[12] Nh ¼ log Ntrð Þ (4) [13] Nh [No (11)

[14] Nh ¼
ffiffiffiffiffiffiffiffiffiffiffi

NiNo
p

(5) [15, 16] Nh �Ni � 1 (12)

[17] Nh ¼ ð2Ni þ 3Þ
ðNi�2Þ

(6) [1, 16] Nh ¼ Ni

Ntr
(13)

[18]
Nh ¼ C Ntr

Ni logNtr

� �1=2 (7) [15] Nh � Ni

3
(14)
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3 Results

The global minimum was located for each dataset at the Nh with the smallest averaged
performance error from the mean of squared errors comparing the actual output against
the desired output [25]. Approaches (3) and (1) calculated the global minimum in one
case each, WallFollRobot2 and AdultIncome respectively.

Not all approaches gave us a sensible calculation for Nh for every dataset. We
obtained a result for all of the 31 datasets with approaches (4), (5) and (7) only. Table 3
demonstrates a combination of this raw count [A] and the count of datasets where

Table 3. An excerpt of the simple ranking of approaches according to relative usefulness,
ordered from ‘most’ useful and truncated for brevity. [B] was scaled in the final column to
indicate its relationship to the research question, with no impact on the final rank.

Approach number Result count [A] Comparison of means [B] [A] + [B] [A] + 2[B]

(5) 31 26 57 83
(7) 31 25 56 81
(3) 29 23 52 75
(1) 28 23 51 74
(12) 28 22 50 72
(4) 31 18 49 67
(14) 22 18 40 58

Table 2. Characteristics of 31 datasets. Most are from http://archive.ics.uci.edu/ml/datasets
except (b) http://mldata.org and (c) http://osmot.cs.cornell.edu/kddcup. Larger sets were excluded
as too slow to train with available resources.

Working title Ni No NTOT Working title Ni No NTOT

(b) 2Norm 20 2 7400 PokerHand 10 10 25010
Abalone 8 29 4177 (c) ProteinHomology 74 1 145751
AdultIncome 14 2 48842 PubChem362 144 2 4279
Chess 6 18 28056 PubChem456 153 2 9982
Connect4 42 3 67557 PubChem687 153 2 33067
FirstOrderTheorem 51 6 6118 (c) QuantumPhysics 78 1 50000
Gisette 5 2 7000 Shuttle 9 7 58000
LandSat 36 6 6435 Skin 3 2 245057
LetterRecognition 16 26 20000 Spambase 57 1 4601
Madelon 50 2 2600 Thyroid 21 3 7200
MagicGamma 10 2 19020 WallFollowRobot2 2 4 5456
Musk2 16 2 6598 WallFollowRobot4 4 4 5456
Nomao 17 2 34465 WallFollowRobotFull 24 4 5456
Nursery 8 5 12960 Waveform 21 3 5000
OptDigits 64 10 5620 WineQuality 11 11 4898
PageBlocks 10 5 5473
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performance at the approach’s calculated Nh intersects with the global minimum (95%
CI) from a multiple comparison of means [B].

Figure 1 gives an overview of two further comparisons with the performance range
at the global minimum Nh. Single diamonds are derived from the count of individual
performance measures for an approach within the global minimum range over all
datasets. You can clearly see the success of approach (3) Nh ¼ ffiffiffiffiffiffiffi

Ntr
p

in this, with
occurrences 71.7% of times across all datasets.

The second set of comparisons is presented as bar graphs that have been separated
into Ni groupings to allow for disparity in attribute dimensionality across the datasets:
Ni � 10; 10\Ni � 50; 50\Ni � 100; and Ni [ 100: This ratio is the per cent of times
an average of the 10 performance measures at each pre-calculated Nh occurred within
the range of performances recorded at the global minimum Nh, grouped by Ni.
Approaches (5) and (14) were both highly successful in the 50\Ni � 100 group (4 out
of 5 cases), with (3) and (8)’s average occurring within the global minimum range for
5 out of the 7 cases in the Ni [ 100 group.

Also of note, (2), (3), (8) and (9)’s averages placed in the global minimum range for
the 50\Ni � 100 group in 3 of the 5 cases. The results for the two groups where
Ni � 50 (the remaining 19 datasets) were no better than 50%.

Fig. 1. Performance at calculated Nh compared with global minimum range over 31 datasets.
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4 Discussion and Conclusion

We empirically determined a single, optimal structure between lower and upper bounds
for Nh for each dataset, comparing the performance of each approach with the range at
this global minimum in several ways.

All approaches other than (3) recorded an individual measurement in all datasets’
global minimum ranges in 50% or fewer cases. Approach (3)’s consistency (over 71%)
is notable due to the variations between the 31 datasets.

With averaged performances, approaches (5) and (14)’s 80% success where
50\Ni � 100 is tempered by there being only 5 datasets in that group. In the initial
ranking according to relative usefulness, approach (5) was ranked first, with (14) lower
down. Both of these approaches consider a relationship with Ni. In the Ni [ 100 group,
approaches (8) and (3) succeeded in 5 out of the 7 datasets. Both consider a relationship
with Ntr. In the usefulness ranking, (8) was 11th and (3) third. The success rate in the
results grouped for all Ni � 50 was 50% or less.

On the basis of these findings, we recommend the following heuristic: in cases of
more than 50 attributes in a dataset, apply the highly successful approaches (5) and
(14) for 50\Ni � 100 and (8) and (3) for Ni [ 100: For other cases, use approach
(3) for an indication of reasonable network performance.
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