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Abstract. We propose a novel adaptive reinforcement learning (RL)
procedure for multi-agent non-cooperative repeated games. Most exist-
ing regret-based algorithms only use positive regrets in updating their
learning rules. In this paper, we adopt both positive and negative regrets
in reinforcement learning to improve its convergence behaviour. We prove
theoretically that the empirical distribution of the joint play converges
to the set of correlated equilibrium. Simulation results demonstrate that
our proposed procedure outperforms the standard regret-based RL app-
roach and a well-known state-of-the-art RL scheme in the literature in
terms of both computational requirements and system fairness. Further
experiments demonstrate that the performance of our solution is robust
to variations in the total number of agents in the system; and that it can
achieve markedly better fairness performance when compared to other
relevant methods, especially in a large-scale multiagent system.

Keywords: Multiagent systems · Reinforcement Learning · Game
theory · Correlated equilibrium · No regret

1 Introduction

Reinforcement learning (RL) is a popular adaptive procedure used in distributed
system and has been widely studied in artificial intelligence (AI) research areas
(for a survey on recent developed RL algorithms refer to [1]). A RL procedure [2–
6] does not require the agents to know anything about the entire environment,
except their local information. Each agent learns about the environment by
observing its own payoffs. Overtime, using only this information, it can rationally
choose the best course of actions to maximise its objective utility (payoff). Under
mild conditions of finite payoffs and of stationary environment, an RL procedure
is guaranteed to converge to a set of stable equilibria.

Despite this very attractive property, RL procedure applying in multiagent
settings suffers from two well-known problems of slow convergence and of conver-
gence to sub-optimal equilibrium points, especially in a distributed system with
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a very large number of agents [2]. Another challenge of RL-based algorithms is
the inefficient of exploration. Since agents running RL procedure do not have
a global knowledge of the whole system, they often require a high exploration
times in order to converge to a stable equilibrium. In many application, these
behaviours can result in undesirable outcomes [4,7].

This paper develops a new RL procedure that follows the regret-based princi-
ples [3,8] to overcome the disadvantage of slow speed and inefficient convergence
of standard RL solutions. The notion of regret has been explored both in game
theory and computer science [3,8–10]. Regret measures reflect how much worse
in payoffs that an agent would experience if choosing other options instead of
its current selection. In our problem formulation, we consider a multiagent non-
cooperative repeated game with restricted information for the agents. Each agent
only observe its own payoffs and know neither its payoff function nor the infor-
mation on the other agents in the game. The goal of every agent is to guarantee
no-regret in the long-term (average) payoffs.

Unlike most the existing regret-based algorithms that use only positive parts
of regret measures to update the play probability and completely ignore negative
regrets, we propose to use both positive and negative regrets to accelerate the
convergence of the RL procedure. Our new approach is motivated by the obser-
vation that incorporation of negative regrets can help the agent to “explore” the
environment more extensively as positive regrets decrease than the standard RL
algorithm. The fact is that considering negative regrets can help agents make
more “good” decisions by reducing unnecessary explorations on the actions that
result in poor performances. Thus, more effective exploration has crucial impact
on the convergence speed as well as the performance of the learning outcome.

However, since there is a negative impact on average performance by includ-
ing more actions with negative regrets, our approach weights the impact of neg-
ative regrets on the probability distribution of actions in a manner that ensures
(i) that actions with large (magnitude) negative regrets contribute less to the
probability of choosing those actions than those with small (magnitude) negative
regrets and (ii) that the contribution of negative regrets decreases to zero over
time.

The main contribution of this paper are as follows:

1. A Novel Adaptive Multiagent Reinforcement Learning Procedure: We propose
a novel fully distributed RL procedure that uses both positive and negative
regret measures to improve convergence speed and fairness of the well-know
regret-based RL procedure. We show that our solution is suitable for large-
scale distributed multiagent systems.

2. Our proof methodology: We prove the convergence of our proposed procedure
using differential inclusion (DI) technique. DI is a powerful theoretical frame-
work that derived from the expected motion of a stochastic process. This
paper demonstrates that the use of DI technique is particularly suitable to
study the convergence behaviours of the regret based schemes and adaptive
procedures in game theory, and provide a much more concise and extensible
proof as compared to the classical approaches.
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2 Background

This section reviews the background and notation used in this paper.

2.1 Game Model

We consider a game with A players denoted by the set {1, . . . , A} for some (finite)
integer A ≥ 2. Each player a has its set of actions (moves) Sa = {1, . . . , m},
where m is the number of action of player a. The set of all possible moves is the
Cartesian product S = ΠA

a=1Sa. We view the game from the point of view of
player one. Let I = S1 denote the set moves of player one and L = S \ S1 the
set of moves of all other players. Denote by X, the set of all probability mass
functions (pmf) on I and Y the set of pmf on L. Let Z denote the set of pmf on
S, then X ×Y is a subset of Z comprised of all pmf of the form z = (x, y) where
x ∈ X and y ∈ Y , i.e. all pmf where the probability of the action of player one
and the actions of all other players taken together, are statistically independent.

Let U : S → R denote the payoff achieved by player one when the overall
action taken by all players is s ∈ S. We represent a strategy in the form s = (i, �)
where i is the action of player one and � is the action of all other players. We will
consider the general formulation of game where users apply mixed strategies over
the possible selection set S. Under randomised actions with overall probability
(pmf) z ∈ Z, the payoff obtained by player one is defined by extending the
domain of definition of U to Z according to

U(z) =
∑

k∈S z(k)U(k). (1)

Notice that U is a linear function. The multiagent game model then can be
denoted by G = (A, (Sa)a∈A, (Ua)a∈A).

2.2 Equilibrium States

In this paper, we are interested in a popular notion of rationality that gener-
alises the Nash equilibrium called correlated equilibrium. It is an optimality con-
cept introduced by Aumann [11]. It models possible correlation or co-ordination
between players compared to the usual strategic equilibrium of Nash, where all
players act independently. Correlated equilibrium is relevant to the probabilistic
game, namely where strategies are determined probabilistically. Denote by ψ, a
probability distribution defined in S, the ψ is said to be a correlated equilibrium
for the game G if for every player a ∈ A, and for every pair of action j, k ∈ Sa,
it holds that ∑

s∈S:i=j
ψ(s)(U(k, �) − U(s)) ≤ 0. (2)

A correlated equilibrium results if each player does not benefit from choosing
any other action, provided that all other players do likewise. When each player
chooses their action independently of the other players, a correlated equilibrium
is also a Nash equilibrium. We denote the set of correlated equilibria by CE.
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2.3 Regret-Based Reinforcement Learning

A fully distributed procedure that can be used to reach the CE solution is the
regret-based RL procedure [3]. The key idea of this method is to adjust the
player’s play probability proportional to the “regrets” for not having played
other actions. Specifically, for any two actions j �= k ∈ I at any time n, the
regret of player one for not playing k is

[Bn]j,k =
1
n

∑

t≤n:it=j

U(k, �t) − 1
n

∑

t≤n:it=j

U(j, �t). (3)

This is the change in time average payoff that player one would have achieved if
it substituted a given action j each time it was played in the past, with another
action k. Since player one only knows his set of actions and his own payoffs, he
cannot compute the first term. Thus, the regret in (3) needs to be replaced by
an estimate that can be computed on the basic of the available information, as

[Bn]j,k =
1
n

∑

t≤n:it=k

pt(j)
pt(k)

U(st) − 1
n

∑

t≤n:it=j

U(st),

where, pt denotes the play probabilities at time t, i.e., pt(k) is the probability of
choosing k at time t and U(st) = U(it, �t) denotes the payoff at time t.

If in = j is the action chosen by player one at time n, then the probability
distribution that he chooses an action at time n + 1 is defined recursively as [3]

pn+1(k) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − δ

nγ

)
min

{
[Bn]+j,k

μ
,

1
m

}
+

δ

nγ

1
m

, k �= j,

1 −
∑

k′ �=j
pn+1(k′), k = j,

(4)

with the initial play probabilities at t = 1 uniformly distributed over the set of
possible actions; μ > 2mG is a constant, m is the cardinality of the set I and
G is an upper bound on |U(s)| for all s ∈ S; 0 < δ < 1 and 0 < γ < 1/4.
We use the notation [Bn]+j,k := max([Bn]j,k, 0). By using [Bn]+j,k in (4), the RL
algorithm in [8] completely ignores negative regrets [Bn]j,k < 0.

It is proven in [3] that if all players chooses their actions according to (4),
the empirical distribution of all strategies played until time n, which is given by

zn(s) =
1
n

∑n

t=1
1{st=s},

converges almost surely as t → ∞ to the CE set of the game G. Note that this
does not imply convergence to a specific point on CE set, but that the solution
approaches the CE set.

The main drawback of this standard regret-based reinforcement learning pro-
cedure is that although guaranteeing convergence to the set of CE, it often
requires long convergence time and sometime converges to an undesirable equi-
librium (i.e. poor fairness). These issues motivate the reinforcement learning
with non-positive regret in the next section.
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3 Algorithm

In this section, we describe our proposed multiagent reinforcement procedure.

3.1 Reinforcement Learning with Non-positive Regret

The RL procedure in Sect. 2.3 does not use any negative regrets in determin-
ing the probability of plays. However, as discussed in Sect. 1, negative regrets
contain information that could improve the performance of the learning pro-
cedure. We propose to complement the regret-based RL in [3] by taking into
account additional negative regrets in updating the learning rule. To determine
the probability distribution of its action at the next stage n+1, agent uses both
its positive and negative parts of the time average regrets as follow

pn+1(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δn
1
m

, if k �= j and [Bn]j,k = 0

(1 − δn)
[Bn]+j,k∑
k [Bn]+j,k

+ δn
1
m

, if k �= j and [Bn]j,k > 0

(1 − δn)
1

nα

(
[Bn]−j,k

)−1

∑
k

(
[Bn]−j,k

)−1 + δn
1
m

, if k �= j and [Bn]j,k < 0

1 − ∑
k′ �=j pn+1(k′), if k = j

(5)
where δn = δ/nγ for 0 < δ � 1 and 0 < γ < 1/2; and 0 < α ≤ 1. We use the
notation [Bn]−j,k := min([Bn]j,k, 0).

Our main insight here is that the negative regrets should be included in the
update procedure to ensure that when n is small the algorithm keep exploring
different solutions, including the solution that yields negative regret, to speed
up the convergence. However, as the algorithm progresses, the negative regrets
reduce to zero and the positive regrets become the dominant factors in deter-
mining the playing probabilities. We prove that our new RL algorithm converges
almost surely to the CE set and show in simulations that this learning strategy
provides very fast convergence toward equilibrium states.

3.2 Discussion

We discuss in detail here the major differences between our solution and the
standard regret-based RL approach [3]. The main novelty in our approach is in
the formula to update the play probability.

(a) Firstly, we do not use a constant proportional factor μ as in (4), but normalise
the vector of regret to get a probability vector. The reason for doing this
is to avoid being dependent on the appropriate choice of some arbitrarily
large enough parameter μ. As discussed in [3], a higher value of μ results
in a smaller probability of switching and thus leads to a slower speed of
convergence.
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(b) Secondly, in our solution, not only positive regrets but also negative values
are contributing to the update procedure of the player. In particular, the
play probability is proportional to the positive regret and is proportional
to the inverse of the negative regret. This choice of play probability allows
the action that yields larger positive regret to get a higher probability to be
selected in the next state, while the action that yields larger negative regrets
to receive a lower probability to be used in the future.

(c) Thirdly, in the standard approach, it is difficult to determine an appropriate
0 < δ < 1 in (4). A large δ will lead the convergence to a large distance
from the CE set hence lead to lower total utility. However, small δ means
to discourage the exploration processes, and agents tend to perform the
same action and thus will cause slow convergence. In our proposed approach,
the choice of δ is much simpler: we only need to set 0 < δ � 1. A much
smaller value of δ not only improves the convergence rate but also reduces
the instability properties caused by inaccurate estimates of regrets in the
standard RL solution. The key point here is that δ can be taken smaller to
still obtain a similar amount of “exploration” due to the inclusion of the
negative regret terms.

(d) Lastly, the negative regrets vanish in the play probability as the time step
goes to infinity due to the inclusion of 1/nα in the play probability for
negative regrets in (5). This means that the agent no longer considers the
selection that yields negative regret after sufficiently exploring all the poten-
tial options. Using negative regrets after the exploration phase would reduce
the achievable payoffs.

3.3 Convergence Analysis

Theorem 1. If an agent (i.e. player one) uses the proposed procedure, its time
average conditional regret is guaranteed to approach the set of non-positive regrets
in the payoff space almost surely, provided that other agents do likewise.

We now provide a brief overview of the proof. We use the differential inclusion
(DI) framework in [12] to prove our Theorem. DI is a generalisation of ordinary
differential equation that is particularly suitable to study the asymptotic tra-
jectory of the iterative process in game-theoretic learning, especially when the
information available to a player is “restricted”. Standard approach in game the-
ory such as Blackwell’s approachability theorem used in [3,8], however, cannot
be trivially extended to prove the convergence of the proposed algorithm and will
require a significant number of additional steps to handle the modifications of
the play probabilities pn. The use of DI technique yields a considerably simpler
and shorter proof as compared to the classical approach in [3].

Proof. Let C : Z → Rm×m be defined by

[C(z)]j,k =
∑

�∈L z(j, �) (U(k, �) − U(j, �)) ,
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which is the expected regret for player one when substituting action k for action j
under the joint distribution z of actions. Suppose we consider player one playing
some action i with probability one, then

[C(zi)]j,k =
∑

�∈L 1{i=j} y� (U(k, �) − U(j, �))

= 1{i=j} (U(k, y) − U(j, y)) .

Since player one cannot compute the first term as it only has access to the
payoffs corresponding to actions it actually took, following [3], define an estimate
of this term by

Ũ(k, y) 1{i=j} =
p(j)
p(k)

U(k, y) 1{i=k}.

which is computed from the regrets associated with the alternative action k
weighted proportional to the relative probabilities of player one choosing action
j versus k when those actions were actually taken. The associated pseudo regret
matrix at stage n is now

C̃n(j, k) =
pn(j)
pn(k)

U(k, yn) 1{in=k} − U(j, yn) 1{in=j}.

Thus, we have

E
{

C̃n(j, k)|hn−1

}
= pn(k)

pn(j)
pn(k)

U(k, yn) − pn(j) U(j, yn)

= pn(j) (U(k, yn) − U(j, yn))
= E {Cn(j, k)|hn−1} ,

where hn−1 is the action history of the game until stage n − 1.
It can be seen that Cn(j, k) and C̃n(j, k) are each bounded by 2mG/δn. The

limit sets of the pair processes Cn and C̃n also coincide since they both have
the same conditional expected values (see [3] for more details and discussions).
Then Theorem 7.3 of [12] can be applied and thus the two processes exhibit the
same asymptotic behaviour.

The average regret at stage n is thus a matrix Bn defined by

Bn(j, k) =
1
n

n∑

t=1

[
pt(j)
pt(k)

U(k, yt) 1{it=k} − U(j, yt) 1{it=j}

]
.

Hence, the discrete dynamics

B̄n+1 − B̄n =
1

n + 1
(
Bn+1 − B̄n

)

is a discrete stochastic approximation of the DI

ẇ ∈ N(w) − w (with w = Bn). (6)
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Now for j �= k, define the matrix sequence

[Mn]j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if [Bn]j,k = 0
[Bn]+j,k∑
k [Bn]+j,k

, if [Bn]j,k > 0

1
nα

(
[Bn]−j,k

)−1

∑
k

(
[Bn]−j,k

)−1 , if [Bn]j,k < 0

(7)

We set [Mn]j,j = 1 − ∑
k �=j [Mn]j,k, which takes value in [0, 1] by virtue of (7).

Thus Mn is a transition probability matrix on S. So there is a probability vector
μn such that MT

n μn = μn.
The “non-positive regret set” D1 ⊂ Rm×m for player one is defined by

D1 =
{
g ∈ Cm×m : g(j, k) ≤ 0,∀(j, k)

}
.

Evidently, D1 is a closed, convex subspace of Rm×m. Define the Lyapunov func-
tion P (w) = 1

2‖w‖2, with ∇P (w) = w. Then P satisfies the following properties
and thus is a potential function for D1:

• P is continuously differentiable;
• P (w) = 0 ⇔ w ∈ D1;
• 〈∇P (w), w〉 > 0 for all w /∈ D1.

Let ϕ : Rm×m → 2X given by

ϕ(w) =

{
(1 − δn) μ(w) +

δn

m
, w /∈ D1

X, w ∈ D1
(8)

where μ(w) denotes a probability vector computed from the matrix w = Bn

according to the process above. Define a correspondence N on Rm×m \ D1 by

N(w) = C(ϕ(w) × Y )

so that ϕ is N -adapted, which means N(w) contains all resulting average regrets.
According to Lyapunov theory, to prove the approachability of w to D1, we

need then to show that for any w ∈ Rm×m \ D1 and some positive constant β,

d

dt
P (w) = 〈∇P (w), ẇ〉 ∈ 〈∇P (w), N(w) − w〉 ≤ −βP (w),

meaning that we need the following result

〈∇P (w), θ − w〉 ≤ −βP (w)

for all θ ∈ N(w) and some constant β > 0 (see [12] for details).
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Suppose w /∈ D1, let θ = E
{

C̃(ϕ(w), y)|hn−1

}
, with y ∈ Y , which means

[θ]j,k = ϕj(w) (U(k, y) − U(j, y)) .

Then consider

〈∇P (w), θ〉 =
∑m

j,k
∇Pjk(w) ϕj(w) (U(k, y) − U(j, y))

=(1 − δn)
∑

j,k
∇Pjk(w) μj(w) (U(k, y) − U(j, y))

+
δn

m

∑
j,k

∇Pjk(w) (U(k, y) − U(j, y))

=(1 − δn)
∑

j
U(j, y)

(∑
k
μk(w) ∇Pkj(w) − μj(w)

∑
k
∇Pjk(w)

)

+
δn

m

∑
j,k

∇Pjk(w) (U(k, y) − U(j, y)) . (9)

In the second line we substituted for ϕj(w) from (8), and in the last line we
collected together all terms containing U(j, y).

Let μj(w) be such an invariant measure. Suppose that for every j = 1, . . . , m,
it holds that

μj(w)
∑

k
∇Pjk(w) =

∑
k
μk(w) ∇Pkj(w),

then the first term in the sum in (9) is equal to zero. Therefore, noting that the
payoff function |U(.)| is bounded by G, we obtain

〈∇P (w), θ〉 =
δn

m

∑
j,k

∇Pjk(w) (U(k, y) − U(j, y))

≤ ||∇P (w)|| 2Gδn

m
. (10)

Next, using P (w) = ‖w‖2/2 and ∇P (w) = w, it can be show that

〈∇P (w), w〉 = 〈w,w〉 = ||w||2 = 2P (w). (11)

Therefore, it follows, using (10) and (11), that given ε > 0, ||w|| ≥ ε, one can
choose δn > 0 small enough such that

〈∇P (w), θ − w〉 = 〈∇P (w), θ〉 − 〈∇P (w), w〉
≤ ||∇P (w)|| 2Gδn

m
− 2P (w) ≤ −P (w).

Consequently,

d

dt
P (w(t)) ≤ −P (w(t)) ,

so that

P (w(t)) ≤ P (w(0)) e−t.



38 D.D. Nguyen et al.

This implies that P (w(t)) goes to zero at exponential rate and the set D1 is
a global attractor for the DI (6). Hence, the time average regret Bn and its
corresponding regret Cn will then approach D1. This completes the proof.

Theorem 2. If all agents follow the proposed procedure, the empirical distribu-
tion of joint play of all agents zn(s) converges almost surely as t → ∞ to the set
of correlated equilibria in the action space, for finite payoffs.

Proof. The proof follows from how the “regret” measure is defined. Recall that

[C(zn)]j,k =
∑

�∈L zn(j, �n) (U(k, �n) − U(j, �n))

=
∑

sn∈S:in=j
zn(sn) (U(k, �n) − U(sn)) ,

where sn = (in, �n) is the joint play made at stage n. On any convergent subse-
quence lim

n→∞ zn → Π, we get

lim
n→∞[C(zn)]j,k =

∑
sn∈S:in=j

Π(sn) (U(k, �n) − U(sn)) ≤ 0.

Next, comparing with the definition of CE as in (2) completes the proof.

4 Evaluation

In this section, we evaluate the performance of our proposed algorithm using
a well-known multiagent Prisoner’s Dilemma game (also known as the Tragedy
of the Commons) [13]. Let’s consider the game in which multiple agents (A ≥
200) compete for a limited common resource. Each agent has to make a binary
decision – “yes” or “no” that models the agent decision of using the common
resource or not, respectively. The agent that does not use the resource gets a
fixed payoff. All the agents using the resource get the same payoff. Consequently,
the more agents decided to use the resource, the smaller the obtainable payoff
per agent; and when the number of agents sharing the resource is higher than
a certain threshold, it is better for the others not to use the resource. A simple
utility function reflecting this game can be expressed as follows:

U =
{

1 if agent decision is “no”,
101 − η if agent decision is “yes”.

with η being the number of agents making the same “yes” decision.
To evaluate the performance of our solution, we analyse the two metrics:

• Convergence speed (iterations): number of iterations to convergence. A fast
convergence is preferable.

• System fairness index, which is derived as

J =
(
∑A

a=1 xa)2

A × ∑A
a=1 x2

a

, (12)
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where xa is the average payoff of user a and A is the number of agents. Notes
that J = 1 is the best fairness of the system, which guaranteeing the same
payoff among the agents.

It can be seen that this game has two pure Nash equilibrium points when
either 99 or 100 agents use the common resource. Any solutions that yield the
average number of resource agents between 99 and 100 will be in the set of
correlated equilibria. Among them, the equilibrium point when η = 100 provides
the best system fairness since all agents will receive the same payoff of 1.

We compare our proposed algorithm with three other algorithms:

• CODIPAS-RL in [4]: Agents learn both the expected payoff and the strategies
in order to make decisions. This is a popular state-of-the-art reinforcement
learning algorithm and has been shown to be superior to the conventional RL
scheme such as Q-learning.

• Regret-based RL in [3]: Agents update their play probability proportional
only to the estimates of “positive regret” for not having played other options.

• Our proposed algorithm: Agents update their learning rules by considering
both positive and negative regrets for not choosing other options.

• Exhaustive Search: A centralised controller with complete information of the
game considers all possible associations involving all agents and assigns agents
decisions in a way to maximise the system fairness. We use this algorithm as
a benchmark since it leads to the highest performance in fairness.

Figures 1 and 2 show, respectively, the evolution of average number of agents
using the resource (resource agents) and the system fairness index for the game
with 200 agents. With the same initial probabilities, we observed that our pro-
posed algorithm achieves the fastest convergence speed among all the reinforce-
ment learning algorithms. Our algorithm converges to equilibrium states in a
very small number of iterations (less than 150 iterations), where as it requires
a longer time to converge for both CODIPAS-RL (up to 400 iterations) and
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Fig. 3. Comparison of fairness between algorithms for the same number of iterations.

Regret-based RL (up to 900 iterations), especially the later. In fairness metric,
our algorithm also leads to the highest system fairness index under the same
number of iterations, as compared to the other RL schemes. The Regret-based
RL scheme performs poorest due to its slow convergence speed.

To further study the impact of the total number of agents in the game on
algorithms performance, we vary the agent number from 150 to 400 and mea-
sure the performances of all algorithms in fairness metric. The result is shown
in Fig. 3. As we can see, proposed algorithm is quite robust in achieving system
fairness to the change of the agent number. Increasing the total learning agents
slightly reduces the system fairness index in our solution, but considerably bring
down system fairness in other approaches, especially the Regret-based RL app-
roach and when the total number of agents is very large.

5 Conclusion

We studied the problem of multiagent repeated games. We develop a fully dis-
tributed reinforcement learning procedure that takes advantage of both positive
and negative regrets to speed up the learning process and improve the efficiency
of the well-known regret-based reinforcement learning. Simulation results show
that our solution is highly efficient with fast convergence speed and good fairness
performance; and is more robust to the total number of agents in the system
than other reinforcement learning algorithms. In our future research, we will
study the rate of convergence of our algorithm and compare its performances on
a broader set of benchmarks. As further work in this direction, a reinforcement
learning framework for finding the global optimal solution in distributed mul-
tiagent system is still an open problem. Investigating the impact of irrational
agents on the learning outcome is another challenging problem to consider.
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