
Local Search for Maximum Vertex Weight
Clique on Large Sparse Graphs with Efficient

Data Structures

Yi Fan1(B), Chengqian Li2, Zongjie Ma1, Lian Wen1, Abdul Sattar1,
and Kaile Su1

1 Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane, Australia

{yi.fan4,zongjie.ma}@griffithuni.edu.au,
{l.wen,a.sattar,k.su}@griffith.edu.au

2 Department of Computer Science, Sun Yat-sen University, Guangzhou, China

Abstract. The Maximum Vertex Weight Clique (MVWC) problem is
a generalization of the Maximum Clique problem, which exists in many
real-world applications. However, it is NP-hard and also very difficult to
approximate. In this paper we developed a local search MVWC solver
to deal with large sparse instances. We first introduce random walk into
the multi-neighborhood greedy search, and then implement the algo-
rithm with efficient data structures. Experimental results showed that
our solver significantly outperformed state-of-the-art local search MVWC
solvers. It attained all the best-known solutions, and found new best-
known solutions on some instances.
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1 Introduction

The Maximum Clique (MC) problem is a well-known NP-hard problem [17].
Given a simple undirected graph G = (V,E), a clique C is a subset of V s.t.
each vertex pair in C is mutually adjacent. The Maximum Clique problem is
to find a clique of the maximum size. An important generalization of the MC
problem is the Maximum Vertex Weight Clique (MVWC) problem in which each
vertex is associated with a positive integer weight, and the goal is to find a clique
with the greatest total vertex weight. This generalization is important in many
real-world applications like [1,3,4,8,9,18,19,23]. In this paper we are concerned
in finding a clique whose total vertex weight is as great as possible.

Both MC and MVWC are NP-hard, and the state-of-the-art approximation
algorithm can only achieve an approximation ratio of O(n(log log n)2/(log n)3)
[15]. Thus various heuristic methods have been developed to find a “good” clique
within reasonable time. Up to now, there are two types of algorithms for the
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MVWC problems: complete algorithms and incomplete ones. Complete algo-
rithms for MVWC include [2,14,21,30]. On the other hand, incomplete algo-
rithms for MVWC include [7,10,22,27,28].

The aim of this work is to develop a local search MVWC solver named
LMY-GRS1 to deal with large crafted graphs. Firstly we incorporate random
walk into the multi-neighborhood greedy search in [28]. Then we propose novel
data structures to achieve greater efficiency.

We used the large crafted benchmark in [27]2 to test our solver. And we make
two state-of-the-art solvers, MN/TS [28] and LSCC [27], as the competitors3.
Experimental results show that LMY-GRS attained all the best-known solutions
in this large crafted benchmark. Moreover, for a large proportion of the graphs
LMY-GRS achieves better average quality. Among them there are four graphs
where LMY-GRS reports new best-known solutions.

2 Preliminaries

2.1 Basic Notations

Given a graph G = (V,E) where V = {v1, . . . , vn}, an edge is a 2-element subset
of V . Given an edge e = {u, v}, we say that u and v are adjacent to each other.
Also we say that u and v are neighbors, and we use N(v) = {u|{u, v} ∈ E} to
denote the set of v’s neighbors. The degree of a vertex v, denoted by d(v), is
defined as |N(v)|. We use dmax(G) to denote the maximum degree of graph G,
suppressing G if understood from the context. A clique C of G is a subset of
V where vertices are pair-wise adjacent. An empty set is said to be an empty
clique. A set that contains a single vertex is called a single-vertex clique.

Given a weighting function w : V → Z+, the weight of a clique C, denoted
by w(C), is defined to be

∑
v∈C w(v). We use age(v) to denote the number of

steps since last time v changed its state (inside or outside the candidate clique).

2.2 The Large Crafted Benchmark

MC and MVWC solvers are often tested on the DIMACS [16] and BOSHLIB
[29] benchmarks. Recently large real-world benchmarks have become very pop-
ular. Many of these graphs have millions of vertices and dozens of millions of
edges. They were used in testing Graph Coloring and Minimum Vertex Cover
algorithms [11,24,26], as well as the MC [25] and MVWC [27] algorithms.

In this paper we focus on the large benchmark. They were originally
unweighted, and to obtain the corresponding MVWC instances, we use the same
method as in [22,27,28]. For the i-th vertex vi, w(vi) = (i mod 200) + 1.

1 https://github.com/Fan-Yi/Local-Search-for-Maximum-Vertex-Weight-Clique-on-
Large-Sparse-Graphs-with-Efficient-Data-Structures.

2 http://www.graphrepository.com/networks.php.
3 In [27], both solvers are incorporated with a heuristic named BMS to solve large

instances. For simplicity, we write them as MN/TS and LSCC for short.

https://github.com/Fan-Yi/Local-Search-for-Maximum-Vertex-Weight-Clique-on-Large-Sparse-Graphs-with-Efficient-Data-Structures
https://github.com/Fan-Yi/Local-Search-for-Maximum-Vertex-Weight-Clique-on-Large-Sparse-Graphs-with-Efficient-Data-Structures
http://www.graphrepository.com/networks.php
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2.3 Multi-neighborhood Greedy Search

Usually the local search moves from one clique to another until the cutoff arrives,
then it returns the best clique that has been found. There are three operators:
add, swap and drop, which guide the local search. To ensure that these operators
preserve the clique property, two sets are defined as below.

1. AddS = {v|v �∈ C, v ∈ N(u) for all u ∈ C}.
2. SwapS = {(u, v)|u ∈ C, v �∈ C, {u, v} �∈ E, v ∈ N(w) for all w ∈ C\{u}}.

So the add operator can only take an element from AddS as its operand.
Similarly the swap (resp. drop) operator can only take an element from SwapS
(resp. C).

Proposition 1. If (u1, v) ∈ SwapS and (u2, v) ∈ SwapS, then u1 = u2
4.

That is, if a vertex v can go into C through a swap operation, then the vertex
to be removed is unique. Then we have

Lemma 1. For any P ⊆ SwapS, |P | = |{v|(u, v) ∈ P}|.
So P can be projected to V by considering the second element in the swap-pairs.

We use Δadd, Δswap and Δdrop to denote the increase of w(C) for the oper-
ations add, swap and drop respectively. Obviously, we have (1) for a vertex
v ∈ AddS, Δadd(v) = w(v); (2) for a vertex u ∈ C, Δdrop(u) = −w(u); (3) for a
vertex pair (u, v) ∈ SwapS, Δswap(u, v) = w(v) − w(u). Basically both MN/TS
and LSCC obtain the best local move like Algorithm 1.

Algorithm 1. bestLocalMove
1 v ← a vertex in AddS with the biggest Δadd;
2 (u, u′) ← a pair in the SwapS with the biggest Δswap;
3 x ← a vertex in C with the biggest Δdrop;
4 if AddS �= ∅ then
5 C ← (Δadd > Δswap)?(C ∪ {v}) : (C\{u}) ∪ {u′};

6 else
7 C ← (Δdrop > Δswap)?(C\{x}) : (C\{u}) ∪ {u′};

[27] stated that SwapS is usually very large when we solve large sparse
graphs. Yet we will show that this statement seems not to be the case.

2.4 The Strong Configuration Checking Strategy

[27] proposed a strategy named strong configuration checking (SCC): (1) in
the beginning of the search, confChange(v) is set to 1 for each vertex v; (2)
when v is added, confChange(n) is set to 1 for all n ∈ N(v); (3) when v is
dropped, confChange(v) is set to 0; (4) When u ∈ C and v �∈ C are swapped,
confChange(u) is set to 0.
4 For any vertices u and v, we use u = v to denote that u and v are the same vertex.
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2.5 Best from Multiple Selections (BMS)

BMS is equivalent to deterministic tournament selection in genetic algorithms
[20]. Given a set S and a positive integer k, it works as follows: randomly select
k elements from S with replacements and then return the best one.

3 Local Move Yielded by Greedy and Random Selections

Based on Lemma 1, we have a theorem below which shows the bound of |SwapS|.

Theorem 1

1. If C = {w} for some w, then |SwapS| = |V | − |N(w)| − 1;
2. If |C| > 1, then |SwapS| ≤ 2dmax.

Proof. The first item is trivial, so we only prove the second one. Since |C| > 1,
there must exist two different vertices u and w in C. Now we partition SwapS
to be: P1 = {(x, y) ∈ SwapS|x = u} and P2 = {(x, y) ∈ SwapS|x �= u}.

For any pair (x, y) ∈ P1, since x = u, y must be a neighbor of w. Therefore,
{y|(x, y) ∈ P1} ⊆ N(w). So |{y|(x, y) ∈ P1}| ≤ |N(w)|. By the Lemma 1, we
have |P1| = |{y|(x, y) ∈ P1}| ≤ d(w), and thus |P1| ≤ dmax.

For any pair (x, y) ∈ P2, since x �= u, y must be a neighbor of u. Therefore,
{y|(x, y) ∈ P2} ⊆ N(u). So |{y|(x, y) ∈ P2}| ≤ |N(u)|. By the Lemma 1, we have
|P2| = |{y|(x, y) ∈ P2}| ≤ d(u), and thus |P2| ≤ dmax.

Therefore, |SwapS| = |P1| + |P2| ≤ 2dmax.

Since most large real-world graphs are sparse [5,12,13], we have dmax � |V |.
Moreover, observing all the graph instances in the experiments, we find that
dmax < 3, 000. So for most of the time, SwapS is a small set.

SwapS becomes huge only when C contains a single vertex, namely u. In
this situation, any vertex outside C but not adjacent to u, namely v, can go into
C through a swap operation, and Δswap(u, v) = w(v) − w(u). Thus picking the
best pair is somewhat equivalent to picking a vertex outside with the greatest
weight. If we do so, we will obtain a single-vertex clique that contains a vertex
with the greatest or near-greatest weight.

Usually there is only a tiny proportion of vertices whose weight is the greatest
or close to the greatest. So when |C| = 1, if we pick the best swap-pair, we will
obtain a clique from a tiny proportion of the single-vertex ones. Therefore, when
|C| = 1 happens many times, the local search may revisit some areas.

We realize that when |C| = 1, [27] uses BMS, SCC and age to help diversify
the local search. Yet it is unclear whether greedy search here is necessary, and
we believe that random walk is feasible. In our solver, we will abandon BMS and
use random walk instead, and the experimental performances are satisfactory.
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4 The LMY-GRS Algorithm

LMY-GRS works with three operators add, swap and drop. With the current
clique denoted by C, two sets Sadd and Sswap are defined as below which are
slightly different from AddS and SwapS.

Sadd =
{

{v|v �∈ C, v ∈ N(u) for all u ∈ C} if |C| > 0;
∅ if |C| = 0.

Sswap =

{ {(u, v)|u ∈ C, v �∈ C, {u, v} �∈ E, v ∈ N(w) for all w ∈ C\{u}} if |C| > 1;
∅ if |C| ≤ 1.

Obviously we have

Proposition 2. |Sadd| ≤ dmax, and |Sswap| ≤ 2dmax.

In our algorithm, the vertices of the operations are explicit from the context
and thus omitted.

Basically LMY-GRS firstly initializes a clique via RandInitClique(G), and
then uses local search to find better cliques. The initialization procedure is just
the same as that in MN/TS and LSCC, which is shown in Algorithm3.

Algorithm 2. LMY-GRS
input : A graph G = (V, E, w) and the cutoff
output: A clique that was found with the greatest weight

1 step ← 0; initialize the confChange array; C ← RandInitClique(G);
2 while elapsed time < cutoff do
3 if C = ∅ then add a random vertex into C ;
4 v ← a vertex in Sadd s.t. confChange(v) = 1 with the biggest Δadd,

breaking ties in favor of the oldest one; otherwise v ← NULL;
5 (u, u′) ← a pair in Sswap s.t. confChange(u′) = 1 with the biggest Δswap,

breaking ties in favor of the oldest u′; otherwise (u, u′) ← (NULL, NULL);
6 if v �= NULL then
7 if (u, u′) = (NULL, NULL) or Δadd > Δswap then C ← C ∪ {v} ;
8 else C ← C\{u} ∪ {u′} ;

9 else
10 x ← a vertex in C with the biggest Δdrop, breaking ties in favor of the

oldest one;
11 if (u, u′) = (NULL, NULL) or Δdrop > Δswap then C ← C\{x} ;
12 else C ← C\{u} ∪ {u′} ;

13 step ← step + 1; if w(C) > w(C∗) then C∗ ← C;
14 if step mod L = 0 then
15 drop all vertices in C; C ← RandInitClique(G);

16 update confChange array according to SCC rules;

17 return C∗;
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Algorithm 3. RandInitClique(G)
1 C ← ∅;
2 add a random vertex in C;
3 while Sadd �= ∅ do add a random vertex from Sadd to C; step ← step + 1 ;
4 if w(C) > w(C∗) then C∗ ← C;
5 return C;

Like MN/TS and LSCC, we also exploit the multi-restart strategy. More
specifically, every L steps we restart the local search. The difference from previ-
ous restarting methods is that we simply drop all vertices from C and regenerate
a random maximal clique.

In LMY-GRS, C may sometimes become empty. In this situation, we add a
random vertex in C and proceed to search for a better clique.

5 Data Structures

5.1 Connect Clique Degrees and Clique Neighbors

Definition 1. Given a clique C and a vertex v �∈ C, we define the connect clique
degree of v to be κ(v, C) = |{u ∈ C|u and v are neighbors.}|.

So the connect clique degree of v is the number of vertices in C that are adjacent
to v. Then we can maintain κ(v, C) when a vertex is added into or dropped from
C, based on the following proposition.

Proposition 3

1. κ(v, C\{v}) = |C| − 1 for any v ∈ C;
2. κ(v, C\{w}) = κ(v, C) − 1 for all v ∈ (N(w)\C);
3. κ(v, C ∪ {w}) = κ(v, C) + 1 for all v ∈ (N(w)\C).

In [6], there is a notion named the number of missing connections. In fact
the number of v’s missing connections is |C| − κ(v, C).

Definition 2. Given a clique C, we define the clique neighbor set to be

N (C) =
{

{v �∈ C|v ∈ N(u) for some u ∈ C} if |C| > 0;
∅ if |C| = 0.

So clique neighbors are those vertices outside C which are adjacent to at least
one vertex inside C.

When a vertex namely u is added into or dropped from C, N (C) is updated
based on the proposition below.
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Proposition 4

1. For any vertex u, u �∈ N (C ∪ {u});
2. for any u ∈ C, |C| > 1 iff u ∈ N (C\{u});
3. for any v �∈ C, κ(v, C) > 0 iff v ∈ N (C).

Lastly, we use the following proposition to maintain Sadd and Sswap.

Proposition 5

1. For any v, v ∈ Sadd iff v ∈ {w ∈ N (C)|κ(w,C) = |C|};
2. there exists u ∈ C s.t. (u, v) ∈ Sswap, iff v ∈ {w ∈ N (C)|κ(w,C) = |C| − 1}.

This tells us that we can maintain Sadd and Sswap simply by traversing N (C),
so we do not have to traverse V . Previous local search solvers for MC or MVWC
exclusively traverse all the vertices in V to maintain Sadd and Sswap, so our
implementation can sometimes be much more efficient. Notice that |N (C)| � |V |
usually holds in huge sparse graphs.

5.2 A Hash Table for Determining Neighbor Relations

In graph algorithms there is a common procedure: Given a graph G and two
vertices u and v, determining whether u and v are neighbors. In MN/TS, LSCC
and LMY-GRS, this procedure is called very frequently, so we have to imple-
ment it efficiently. However, it is unsuitable to store the large sparse graphs by
adjacency matrices. Therefore, we propose the following data structure which is
both memory and time efficient.

We employ a one-to-one function f : (Z+, Z+) → Z+ and use a hash table to
implement the procedure above. Given a graph G = (V,E), for any {vi, vj} ∈ E
where i < j, we store f(i, j) in a hash table Th. Then each time when we need
to determine whether vk and vl (k < l) are neighbors, we simply check whether
f(k, l) is in Th. If so they are neighbors; otherwise, they are not.

In LMY-GRS, we adopt Cantor’s pairing function as the function f above,
i.e., f(x, y) = (x + y)(x + y + 1) ÷ 2 + y. Then we can determine whether two
vertices are neighbors in O(1) complexity on average.

With the data structures above, our solver is able to perform steps faster
than LSCC by orders of magnitude on huge sparse graphs.

6 Experimental Evaluation

In this section, we carry out extensive experiments to evaluate LMY-GRS on
large crafted graphs, compared against the state-of-the-art local search MVWC
algorithms MN/TS and LSCC.
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6.1 Experiment Setup

All the solvers were compiled by g++ 4.6.3 with the ‘-O3’ option. For the search
depth L, MN/TS, LSCC and LMY-GRS set L = 4, 000. Both MN/TS and LSCC
employ the BMS heuristic, and the parameter k was set to 100, as in [27]. MN/TS
employs a tabu heuristic and the tabu tenure TL was set to 7 as in [28]. The
experiments were conducted on a cluster equipped with Intel(R) Xeon(R) CPUs
X5650 @2.67 GHz with 8 GB RAM, running Red Hat Santiago OS.

Each solver was executed on each instance with a time limit of 1,000 s, with
seeds from 1 to 100. For each algorithm on each instance, we report the max-
imum weight (“wmax”) and averaged weight (“wavg”) of the cliques found by
the algorithm. To make the comparisons clearer, we also report the difference
(“δmax”) between the maximum weight of the cliques found by LMY-GRS and
that found by LSCC. Similarly δavg represents the difference between the aver-
aged weights. A positive δavg (resp. δmax) indicates that LMY-GRS performed
better, while a negative value indicates that LMY-GRS performed worse.

6.2 Main Results

We show the main experimental results in Tables 1 and 2. For the sake of space,
we do not report the results on graphs with less than 1,000 vertices.

Quality Improvements. Table 1 shows the performances on the instances
where LSCC and LMY-GRS returned different wmax or wavg values.
From the results in Table 1, we observe that:

1. LMY-GRS attained best-known solutions on all the graphs;
2. In a large proportion of the graphs, LMY-GRS returned solutions which had

better average quality;
3. LMY-GRS found new best-known solutions in 4 graphs.

In fact these 4 graphs are the largest ones in the benchmark, and each of them
has at least 106 vertices. Since LMY-GRS and LSCC present different solu-
tion qualities over these instances, it is inconvenient to evaluate the individual
impacts of the heuristics and the data structures over these instances.

Time Improvements and Individual Impacts. Table 2 compares the per-
formances on those instances where LSCC and LMY-GRS returned both the
same wmax and wavg values. We also present the averaged number of steps to
locate a solution, and the number of steps executed in each millisecond.

Over these instances, we find that

1. The time columns show that LMY-GRS and LSCC performed closely well;
2. The step columns show that the heuristic in LMY-GRS is as good as the one

in LSCC, since they needed roughly the same number of steps;
3. The last two columns show that LMY-GRS sometimes performed steps faster

than LSCC, but sometimes slower.
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To show the power of our data structures, we present the averaged number
of steps per millisecond in some largest instances in Table 3. In this table we
found that LMY-GRS is able to perform steps faster than LSCC by orders of
magnitudes in some instances.

Based on the discussions above, we conclude that using random walk is
roughly as good as using BMS, and our data structures are very powerful on
huge sparse graphs.

Table 1. Results where LSCC and LMY-GRS returned different wmax or wavg values

Graph |V | |E| MN/TS LSCC LMY-GRS δmax(δavg)

wmax (wavg) wmax (wavg) wmax (wavg)

ca-coauthors-dblp 540486 15245729 37884 (27411.17) 37884 (34211.68) 37884 (37884.00) 0 (3672.32)

ca-dblp-2010 226413 716460 7575 (7256.55) 7575 (7470.61) 7575 (7575.00) 0 (104.39)

ca-dblp-2012 317080 1049866 14108 (11623.72) 14108 (13739.21) 14108 (14108.00) 0 (368.79)

ca-hollywood-2009 1069126 56306653 222720 (136456.22) 222720 (206446) 222720 (219297.42) 0 (12851.4)

ca-MathSciNet 332689 820644 2792 (2484.43) 2792 (2518.30) 2792 (2792.00) 0 (273.7)

inf-roadNet-CA 1957027 2760388 691 (598.72) 668 (622.60) 752 (752.00) 84 (129.4)

inf-roadNet-PA 1087562 1541514 637 (597.45) 599 (598.86) 669 (669.00) 70 (70.14)

sc-ldoor 952203 20770807 4074 (3874.34) 4081 (3966.68) 4081 (4081.00) 0 (114.32)

sc-msdoor 415863 9378650 4088 (3966.31) 4088 (4028.97) 4088 (4088.00) 0 (59.03)

sc-nasasrb 54870 1311227 4548 (4429.28) 4548 (4546.56) 4548 (4548.00) 0 (1.44)

sc-pkustk11 87804 2565054 5298 (4794.50) 5298 (5063.51) 5298 (5298.00) 0 (234.49)

sc-pkustk13 94893 3260967 6306 (5751.92) 6306 (5906.58) 6306 (6287.10) 0 (380.52)

sc-pwtk 217891 5653221 4596 (4384.80) 4620 (4606.56) 4620 (4620.00) 0 (13.44)

sc-shipsec1 140385 1707759 3540 (3084.78) 3540 (3294.51) 3540 (3540.00) 0 (245.49)

sc-shipsec5 179104 2200076 4524 (4320.50) 4524 (4407.96) 4524 (4524.00) 0 (116.04)

socfb-A-anon 3097165 23667394 2872 (2150.87) 2872 (2172.79) 2872 (2872.00) 0 (699.21)

socfb-B-anon 2937612 20959854 2537 (1911.92) 2662 (2008.74) 2662 (2583.94) 0 (575.2)

socfb-OR 63392 816886 3523 (3520.88) 3523 (3516.27) 3523 (3523.00) 0 (6.73)

soc-brightkite 56739 212945 3672 (3652.86) 3672 (3654.87) 3672 (3661.98) 0 (7.11)

soc-delicious 536108 1365961 1547 (1532.90) 1547 (1535.79) 1547 (1546.93) 0 (11.14)

soc-digg 770799 5907132 5287 (4742.21) 5303 (4712.43) 5303 (4839.18) 0 (126.75)

soc-flickr 513969 3190452 7083 (7032.71) 7083 (7069.15) 7083 (7083.00) 0 (13.85)

soc-flixster 2523386 7918801 3805 (3389.09) 3805 (3403.42) 3805 (3805.00) 0 (401.58)

soc-FourSquare 639014 3214986 3064 (3057.10) 3064 (3035.96) 3064 (2980.31) 0 (-55.65)

soc-gowalla 196591 950327 2335 (2249.70) 2335 (2256.22) 2335 (2253.51) 0 (-2.71)

soc-lastfm 1191805 4519330 1773 (1770.28) 1773 (1771.50) 1773 (1773.00) 0 (1.5)

soc-livejournal 4033137 27933062 7238 (2312.07) 15855 (2661.46) 21368 (17783.19) 5513 (15121.7)

soc-pokec 1632803 22301964 3191 (2132.10) 3191 (2008.17) 3191 (3191.00) 0 (1182.83)

soc-youtube-snap 1134890 2987624 1787 (1787.00) 1787 (1775.29) 1787 (1787.00) 0 (11.71)

tech-as-skitter 1694616 11094209 5703 (4894.34) 5703 (5076.34) 5703 (5671.28) 0 (594.94)

web-it-2004 509338 7178413 45477 (40088.88) 45477 (45380.95) 45477 (45477.00) 0 (96.05)

web-sk-2005 121422 334419 11925 (10583.83) 11925 (11892.72) 11925 (11925.00) 0 (32.28)

web-wikipedia2009 1864433 4507315 3823 (1752.62) 3823 (2100.06) 3891 (3833.28) 68 (1733.22)
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Table 2. Performances on instances where they returned the same wmax and wavg

values

Graph Time #Step #Step/ms

LSCC LMY-GRS LSCC LMY-GRS LSCC LMY-GRS

bio-dmela 0.006 0.005 140.9 564.2 27.995 113.956

bio-yeast 0.002 0.000 390.9 489.16 94.419 745.513

ca-AstroPh 20.896 11.057 425754.9 425117 20.744 40.648

ca-citeseer 202.994 0.647 318659.9 147513 1.604 231.164

ca-CondMat 1.928 0.168 32474.4 36398 17.702 228.675

ca-CSphd 0.003 0.000 523.5 1085.49 57.501 1069.836

ca-Erdos992 0.003 0.000 172.6 183.19 1099 217.888

ca-GrQc 0.062 0.009 4882.4 4496.11 80.002 297.030

ca-HepPh 0.086 0.143 2683.7 5721.1 33.919 33.179

ia-email-EU 0.227 0.079 2129.3 1053.53 9.306 15.749

ia-email-univ 0.000 0.000 270.5 232.85 199.638 348.546

ia-enron-large 6.280 7.197 52895.0 44609.6 8.575 6.443

ia-fb-messages 0.000 0.000 21.8 23.88 130.787 111.793

ia-reality 0.048 0.012 1325.7 1550.71 26.814 117.159

ia-wiki-Talk 0.621 0.433 1855.3 2029.29 2.841 3.666

inf-power 0.027 0.051 932.4 1236.47 33.649 1412.931

rec-amazon 3.096 0.000 4858.8 66364.1 1.618 1642.741

socfb-Berkeley13 49.960 52.664 668700.0 551266 13.601 10.657

socfb-CMU 3.312 11.442 127743.3 145167 39.716 13.538

socfb-Duke14 6.649 19.876 11332.0 210134 28.680 11.280

socfb-Indiana 102.016 90.841 1073259.6 1007020 10.611 12.112

socfb-MIT 3.246 13.241 134955.9 172320 42.597 13.587

socfb-Penn94 104.695 135.512 782995.3 397520 7.638 8.163

socfb-Stanford3 15.511 36.116 371036.8 397520 24.467 11.514

socfb-Texas84 79.057 149.417 673376.8 868678 8.510 6.200

socfb-UCLA 34.333 45.327 511804.3 568163 15.415 13.202

socfb-UConn 18.490 19.268 323312.8 333033 17.653 17.254

socfb-UCSB37 21.804 30.156 426798.7 410292 20.024 14.249

socfb-UF 70.877 73.057 603137.5 513143 8.575 7.671

socfb-UIllinois 158.450 140.481 1539421.1 1633500 10.039 12.798

socfb-Wisconsin87 42.416 34.065 522928.6 479857 12.365 15.266

soc-BlogCatalog 17.210 122.788 45587.6 31182.9 2.778 0.267

soc-buzznet 92.703 79.329 211468.5 17649.3 2.340 0.233

soc-douban 1.770 0.061 2789.6 3718.46 1.801 78.276

soc-epinions 31.984 17.557 356916.5 488393 11.578 28.758

soc-LiveMocha 7.809 15.138 21018.2 31450.8 2.719 2.322

soc-slashdot 12.845 1.557 51360.6 10392.7 4.248 6.993

soc-twitter-follows 8.608 0.511 3994.0 6218.97 0.518 12.417

soc-youtube 23.655 33.585 11783.2 17391 0.507 0.487

tech-as-caida2007 0.094 0.055 951.9 593.18 11.078 3.257

tech-internet-as 0.525 0.803 3871.9 4119.28 7.870 3.503

tech-p2p-gnutella 0.968 0.012 3354.6 3241.77 3.582 317.924

tech-RL-caida 20.520 0.741 29238.2 23989.1 1.487 27.937

tech-routers-rf 0.113 0.116 14551.5 15513.4 127.910 145.814

tech-WHOIS 0.426 1.108 16010.9 21880.5 38.349 19.012

web-arabic-2005 30.543 0.408 57788.0 51285 1.897 86.461

web-Berkstan 0.077 0.001 1555.3 1502.56 22.143 1439.152

web-edu 2.885 0.012 191629.5 2741.87 67.589 211.956

web-google 0.117 0.006 25789.6 15207 220.953 1644.486

web-indochina-2004 0.041 0.011 874.2 1409.67 23.025 124.223

web-spam 9.608 26.431 417141.9 392304 44.426 14.681

web-uk-2005 33.803 0.696 84260.7 93855 2.567 133.358

web-webbase-2001 148.073 2.234 2393708.0 57063.4 16.748 27.596
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Table 3. The number of steps per millisecond on huge sparse instances

Graph LSCC LMY-GRS Graph LSCC LMY-GRS

ca-hollywood-2009 0.246 0.365 sc-ldoor 0.310 356.573

socfb-A-anon 0.070 5.261 soc-livejournal 0.057 25.203

socfb-B-anon 0.059 5.751 soc-pokec 0.125 20.734

inf-roadNet-CA 0.070 1175.015 tech-as-skitter 0.125 0.785

inf-roadNet-PA 0.126 1085.205 web-wikipedia2009 0.099 11.713

7 Conclusions and Future Work

In this paper, we developed a local search MVWC solver named LMY-GRS,
which significantly outperforms state-of-the-art solvers on large sparse graphs.
It attains best-known solutions on all the graphs in the experiments, and it finds
new best-known solutions on some of them.

Our contributions are of three folds. Firstly we rigorously showed that the
swap-set is usually small even when we are solving large sparse graphs. Secondly
we incorporated random walk into the multi-neighborhood greedy search and
showed that it is satisfactory. Thirdly we proposed efficient data structures that
work well with huge sparse graphs.

In the future we will improve SCC to further avoid cycles. Also we will
introduce more diversification strategies into LMY-GRS.
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