Local Search for Maximum Vertex Weight Clique on Large Sparse Graphs with Efficient Data Structures

Yi $\mathrm{Fan}^{1(\boxtimes)},$ Chengqian Li², Zongjie Ma¹, Lian Wen¹, Abdul Sattar¹, and Kaile Su¹

¹ Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia {yi.fan4,zongjie.ma}@griffithuni.edu.au, {l.wen,a.sattar,k.su}@griffith.edu.au
² Department of Computer Science, Sun Yat-sen University, Guangzhou, China

Abstract. The Maximum Vertex Weight Clique (MVWC) problem is a generalization of the Maximum Clique problem, which exists in many real-world applications. However, it is NP-hard and also very difficult to approximate. In this paper we developed a local search MVWC solver to deal with large sparse instances. We first introduce random walk into the multi-neighborhood greedy search, and then implement the algorithm with efficient data structures. Experimental results showed that our solver significantly outperformed state-of-the-art local search MVWC solvers. It attained all the best-known solutions, and found new bestknown solutions on some instances.

Keywords: Local search \cdot Maximum vertex weight clique \cdot Large sparse graphs \cdot Data structures

1 Introduction

The Maximum Clique (MC) problem is a well-known NP-hard problem [17]. Given a simple undirected graph G = (V, E), a *clique* C is a subset of V s.t. each vertex pair in C is mutually adjacent. The Maximum Clique problem is to find a clique of the maximum size. An important generalization of the MC problem is the Maximum Vertex Weight Clique (MVWC) problem in which each vertex is associated with a positive integer weight, and the goal is to find a clique with the greatest total vertex weight. This generalization is important in many real-world applications like [1,3,4,8,9,18,19,23]. In this paper we are concerned in finding a clique whose total vertex weight is as great as possible.

Both MC and MVWC are NP-hard, and the state-of-the-art approximation algorithm can only achieve an approximation ratio of $O(n(\log \log n)^2/(\log n)^3)$ [15]. Thus various heuristic methods have been developed to find a "good" clique within reasonable time. Up to now, there are two types of algorithms for the

© Springer International Publishing AG 2016

B.H. Kang and Q. Bai (Eds.): AI 2016, LNAI 9992, pp. 255–267, 2016.

DOI: 10.1007/978-3-319-50127-7_21

MVWC problems: complete algorithms and incomplete ones. Complete algorithms for MVWC include [2, 14, 21, 30]. On the other hand, incomplete algorithms for MVWC include [7, 10, 22, 27, 28].

The aim of this work is to develop a local search MVWC solver named LMY-GRS¹ to deal with large crafted graphs. Firstly we incorporate random walk into the multi-neighborhood greedy search in [28]. Then we propose novel data structures to achieve greater efficiency.

We used the large crafted benchmark in [27]² to test our solver. And we make two state-of-the-art solvers, MN/TS [28] and LSCC [27], as the competitors³. Experimental results show that LMY-GRS *attained all the best-known solutions* in this large crafted benchmark. Moreover, for a large proportion of the graphs LMY-GRS achieves better average quality. Among them there are four graphs where LMY-GRS reports new best-known solutions.

2 Preliminaries

2.1 Basic Notations

Given a graph G = (V, E) where $V = \{v_1, \ldots, v_n\}$, an edge is a 2-element subset of V. Given an edge $e = \{u, v\}$, we say that u and v are adjacent to each other. Also we say that u and v are neighbors, and we use $N(v) = \{u | \{u, v\} \in E\}$ to denote the set of v's neighbors. The degree of a vertex v, denoted by d(v), is defined as |N(v)|. We use $d_{max}(G)$ to denote the maximum degree of graph G, suppressing G if understood from the context. A clique C of G is a subset of V where vertices are pair-wise adjacent. An empty set is said to be an empty clique. A set that contains a single vertex is called a single-vertex clique.

Given a weighting function $w : V \to Z^+$, the weight of a clique C, denoted by w(C), is defined to be $\sum_{v \in C} w(v)$. We use age(v) to denote the number of steps since last time v changed its state (inside or outside the candidate clique).

2.2 The Large Crafted Benchmark

MC and MVWC solvers are often tested on the DIMACS [16] and BOSHLIB [29] benchmarks. Recently large real-world benchmarks have become very popular. Many of these graphs have millions of vertices and dozens of millions of edges. They were used in testing Graph Coloring and Minimum Vertex Cover algorithms [11,24,26], as well as the MC [25] and MVWC [27] algorithms.

In this paper we focus on the large benchmark. They were originally unweighted, and to obtain the corresponding MVWC instances, we use the same method as in [22, 27, 28]. For the *i*-th vertex $v_i, w(v_i) = (i \mod 200) + 1$.

¹ https://github.com/Fan-Yi/Local-Search-for-Maximum-Vertex-Weight-Clique-on-Large-Sparse-Graphs-with-Efficient-Data-Structures.

² http://www.graphrepository.com/networks.php.

³ In [27], both solvers are incorporated with a heuristic named BMS to solve large instances. For simplicity, we write them as MN/TS and LSCC for short.

2.3 Multi-neighborhood Greedy Search

Usually the local search moves from one clique to another until the cutoff arrives, then it returns the best clique that has been found. There are three operators: add, swap and drop, which guide the local search. To ensure that these operators preserve the clique property, two sets are defined as below.

- 1. $AddS = \{v | v \notin C, v \in N(u) \text{ for all } u \in C\}.$
- 2. $SwapS = \{(u, v) | u \in C, v \notin C, \{u, v\} \notin E, v \in N(w) \text{ for all } w \in C \setminus \{u\}\}.$

So the add operator can only take an element from AddS as its operand. Similarly the swap (resp. drop) operator can only take an element from SwapS (resp. C).

Proposition 1. If $(u_1, v) \in SwapS$ and $(u_2, v) \in SwapS$, then $u_1 = u_2^4$.

That is, if a vertex v can go into C through a swap operation, then the vertex to be removed is unique. Then we have

Lemma 1. For any $P \subseteq SwapS$, $|P| = |\{v|(u, v) \in P\}|$.

So P can be projected to V by considering the second element in the swap-pairs.

We use Δ_{add} , Δ_{swap} and Δ_{drop} to denote the increase of w(C) for the operations add, swap and drop respectively. Obviously, we have (1) for a vertex $v \in AddS$, $\Delta_{add}(v) = w(v)$; (2) for a vertex $u \in C$, $\Delta_{drop}(u) = -w(u)$; (3) for a vertex pair $(u, v) \in SwapS$, $\Delta_{swap}(u, v) = w(v) - w(u)$. Basically both MN/TS and LSCC obtain the best local move like Algorithm 1.

Algorithm 1. bestLocalMove

 $v \leftarrow$ a vertex in AddS with the biggest Δ_{add} ; $(u, u') \leftarrow$ a pair in the SwapS with the biggest Δ_{swap} ; $x \leftarrow$ a vertex in C with the biggest Δ_{drop} ; 4 if $AddS \neq \emptyset$ then $\[C \leftarrow (\Delta_{add} > \Delta_{swap})?(C \cup \{v\}) : (C \setminus \{u\}) \cup \{u'\};$ 6 else $\[C \leftarrow (\Delta_{drop} > \Delta_{swap})?(C \setminus \{x\}) : (C \setminus \{u\}) \cup \{u'\};$

[27] stated that SwapS is usually very large when we solve large sparse graphs. Yet we will show that this statement seems not to be the case.

2.4 The Strong Configuration Checking Strategy

[27] proposed a strategy named strong configuration checking (SCC): (1) in the beginning of the search, confChange(v) is set to 1 for each vertex v; (2) when v is added, confChange(n) is set to 1 for all $n \in N(v)$; (3) when v is dropped, confChange(v) is set to 0; (4) When $u \in C$ and $v \notin C$ are swapped, confChange(u) is set to 0.

⁴ For any vertices u and v, we use u = v to denote that u and v are the same vertex.

2.5 Best from Multiple Selections (BMS)

BMS is equivalent to deterministic tournament selection in genetic algorithms [20]. Given a set S and a positive integer k, it works as follows: randomly select k elements from S with replacements and then return the best one.

3 Local Move Yielded by Greedy and Random Selections

Based on Lemma 1, we have a theorem below which shows the bound of |SwapS|.

Theorem 1

1. If $C = \{w\}$ for some w, then |SwapS| = |V| - |N(w)| - 1; 2. If |C| > 1, then $|SwapS| \le 2d_{\max}$.

Proof. The first item is trivial, so we only prove the second one. Since |C| > 1, there must exist two different vertices u and w in C. Now we partition SwapS to be: $P_1 = \{(x, y) \in SwapS | x = u\}$ and $P_2 = \{(x, y) \in SwapS | x \neq u\}$.

For any pair $(x, y) \in P_1$, since x = u, y must be a neighbor of w. Therefore, $\{y|(x, y) \in P_1\} \subseteq N(w)$. So $|\{y|(x, y) \in P_1\}| \leq |N(w)|$. By the Lemma 1, we have $|P_1| = |\{y|(x, y) \in P_1\}| \leq d(w)$, and thus $|P_1| \leq d_{max}$.

For any pair $(x, y) \in P_2$, since $x \neq u, y$ must be a neighbor of u. Therefore, $\{y|(x, y) \in P_2\} \subseteq N(u)$. So $|\{y|(x, y) \in P_2\}| \leq |N(u)|$. By the Lemma 1, we have $|P_2| = |\{y|(x, y) \in P_2\}| \leq d(u)$, and thus $|P_2| \leq d_{max}$. Therefore, $|SwapS| = |P_1| + |P_2| \leq 2d_{max}$.

Since most large real-world graphs are sparse [5, 12, 13], we have $d_{max} \ll |V|$. Moreover, observing all the graph instances in the experiments, we find that $d_{max} < 3,000$. So for most of the time, SwapS is a small set.

SwapS becomes huge only when C contains a single vertex, namely u. In this situation, any vertex outside C but not adjacent to u, namely v, can go into C through a swap operation, and $\Delta_{swap}(u, v) = w(v) - w(u)$. Thus picking the best pair is somewhat equivalent to picking a vertex outside with the greatest weight. If we do so, we will obtain a single-vertex clique that contains a vertex with the greatest or near-greatest weight.

Usually there is only a tiny proportion of vertices whose weight is the greatest or close to the greatest. So when |C| = 1, if we pick the best swap-pair, we will obtain a clique from a tiny proportion of the single-vertex ones. Therefore, when |C| = 1 happens many times, the local search may revisit some areas.

We realize that when |C| = 1, [27] uses BMS, SCC and age to help diversify the local search. Yet it is unclear whether greedy search here is necessary, and we believe that random walk is feasible. In our solver, we will abandon BMS and use random walk instead, and the experimental performances are satisfactory.

4 The LMY-GRS Algorithm

LMY-GRS works with three operators add, swap and drop. With the current clique denoted by C, two sets S_{add} and S_{swap} are defined as below which are slightly different from AddS and SwapS.

$$S_{add} = \begin{cases} \{v | v \notin C, v \in N(u) \text{ for all } u \in C\} \text{ if } |C| > 0; \\ \emptyset & \text{ if } |C| = 0. \end{cases}$$

$$S_{swap} = \begin{cases} \{(u,v) | u \in C, v \notin C, \{u,v\} \notin E, v \in N(w) \text{ for all } w \in C \setminus \{u\} \} \text{ if } |C| > 1; \\ \emptyset & \text{ if } |C| \le 1. \end{cases}$$

Obviously we have

Proposition 2. $|S_{add}| \leq d_{\max}$, and $|S_{swap}| \leq 2d_{\max}$.

In our algorithm, the vertices of the operations are explicit from the context and thus omitted.

Basically LMY-GRS firstly initializes a clique via RandInitClique(G), and then uses local search to find better cliques. The initialization procedure is just the same as that in MN/TS and LSCC, which is shown in Algorithm 3.

Algorithm 2. LMY-GRS

input : A graph G = (V, E, w) and the *cutoff* output: A clique that was found with the greatest weight 1 step $\leftarrow 0$; initialize the confChange array; $C \leftarrow \texttt{RandInitClique}(G)$; **2** while elapsed time < cutoff do if $C = \emptyset$ then add a random vertex into C; 3 $v \leftarrow$ a vertex in S_{add} s.t. confChange(v) = 1 with the biggest Δ_{add} , 4 breaking ties in favor of the oldest one; otherwise $v \leftarrow \text{NULL}$; $(u, u') \leftarrow$ a pair in S_{swap} s.t. confChange(u') = 1 with the biggest Δ_{swap} , 5 breaking ties in favor of the oldest u'; otherwise $(u, u') \leftarrow (\text{NULL}, \text{NULL})$; if $v \neq NULL$ then 6 if (u, u') = (NULL, NULL) or $\Delta_{add} > \Delta_{swap}$ then $C \leftarrow C \cup \{v\}$; 7 else $C \leftarrow C \setminus \{u\} \cup \{u'\}$; 8 else 9 $x \leftarrow$ a vertex in C with the biggest Δ_{drop} , breaking ties in favor of the 10 oldest one; if (u, u') = (NULL, NULL) or $\Delta_{drop} > \Delta_{swap}$ then $C \leftarrow C \setminus \{x\}$; 11 else $C \leftarrow C \setminus \{u\} \cup \{u'\}$; 12 $step \leftarrow step + 1$; if $w(C) > w(C^*)$ then $C^* \leftarrow C$; 13 if step mod L = 0 then 14 $\mathbf{15}$ drop all vertices in $C; C \leftarrow \texttt{RandInitClique}(G);$ update *confChange* array according to SCC rules; 16 17 return C^* ;

Algorithm 3. RandInitClique(G)

 $\begin{array}{l} \mathbf{1} \ C \leftarrow \emptyset;\\ \mathbf{2} \ \text{add a random vertex in } C;\\ \mathbf{3} \ \mathbf{while} \ S_{add} \neq \emptyset \ \mathbf{do} \ \text{add a random vertex from } S_{add} \ \text{to } C; \ step \leftarrow step + 1 ;\\ \mathbf{4} \ \mathbf{if} \ w(C) > w(C^*) \ \mathbf{then} \ C^* \leftarrow C;\\ \mathbf{5} \ \mathbf{return} \ C; \end{array}$

Like MN/TS and LSCC, we also exploit the multi-restart strategy. More specifically, every L steps we restart the local search. The difference from previous restarting methods is that we simply drop all vertices from C and regenerate a random maximal clique.

In LMY-GRS, C may sometimes become empty. In this situation, we add a random vertex in C and proceed to search for a better clique.

5 Data Structures

5.1 Connect Clique Degrees and Clique Neighbors

Definition 1. Given a clique C and a vertex $v \notin C$, we define the connect clique degree of v to be $\kappa(v, C) = |\{u \in C | u \text{ and } v \text{ are neighbors.}\}|.$

So the connect clique degree of v is the number of vertices in C that are adjacent to v. Then we can maintain $\kappa(v, C)$ when a vertex is added into or dropped from C, based on the following proposition.

Proposition 3

1. $\kappa(v, C \setminus \{v\}) = |C| - 1$ for any $v \in C$; 2. $\kappa(v, C \setminus \{w\}) = \kappa(v, C) - 1$ for all $v \in (N(w) \setminus C)$; 3. $\kappa(v, C \cup \{w\}) = \kappa(v, C) + 1$ for all $v \in (N(w) \setminus C)$.

In [6], there is a notion named the number of missing connections. In fact the number of v's missing connections is $|C| - \kappa(v, C)$.

Definition 2. Given a clique C, we define the clique neighbor set to be

$$\mathcal{N}(C) = \begin{cases} \{ v \notin C | v \in N(u) \text{ for some } u \in C \} \text{ if } |C| > 0; \\ \emptyset & \text{ if } |C| = 0. \end{cases}$$

So clique neighbors are those vertices outside C which are adjacent to at least one vertex inside C.

When a vertex namely u is added into or dropped from C, $\mathcal{N}(C)$ is updated based on the proposition below.

Proposition 4

- 1. For any vertex $u, u \notin \mathcal{N}(C \cup \{u\});$
- 2. for any $u \in C$, |C| > 1 iff $u \in \mathcal{N}(C \setminus \{u\})$;
- 3. for any $v \notin C$, $\kappa(v, C) > 0$ iff $v \in \mathcal{N}(C)$.

Lastly, we use the following proposition to maintain S_{add} and S_{swap} .

Proposition 5

- 1. For any $v, v \in S_{add}$ iff $v \in \{w \in \mathcal{N}(C) | \kappa(w, C) = |C|\}$;
- 2. there exists $u \in C$ s.t. $(u, v) \in S_{swap}$, iff $v \in \{w \in \mathcal{N}(C) | \kappa(w, C) = |C| 1\}$.

This tells us that we can maintain S_{add} and S_{swap} simply by traversing $\mathcal{N}(C)$, so we do not have to traverse V. Previous local search solvers for MC or MVWC exclusively traverse all the vertices in V to maintain S_{add} and S_{swap} , so our implementation can sometimes be much more efficient. Notice that $|\mathcal{N}(C)| \ll |V|$ usually holds in huge sparse graphs.

5.2 A Hash Table for Determining Neighbor Relations

In graph algorithms there is a common procedure: Given a graph G and two vertices u and v, determining whether u and v are neighbors. In MN/TS, LSCC and LMY-GRS, this procedure is called very frequently, so we have to implement it efficiently. However, it is unsuitable to store the large sparse graphs by adjacency matrices. Therefore, we propose the following data structure which is both memory and time efficient.

We employ a one-to-one function $f: (Z^+, Z^+) \to Z^+$ and use a hash table to implement the procedure above. Given a graph G = (V, E), for any $\{v_i, v_j\} \in E$ where i < j, we store f(i, j) in a hash table \mathcal{T}_h . Then each time when we need to determine whether v_k and v_l (k < l) are neighbors, we simply check whether f(k, l) is in \mathcal{T}_h . If so they are neighbors; otherwise, they are not.

In LMY-GRS, we adopt Cantor's pairing function as the function f above, *i.e.*, $f(x, y) = (x + y)(x + y + 1) \div 2 + y$. Then we can determine whether two vertices are neighbors in O(1) complexity on average.

With the data structures above, our solver is able to perform steps faster than LSCC by orders of magnitude on huge sparse graphs.

6 Experimental Evaluation

In this section, we carry out extensive experiments to evaluate LMY-GRS on large crafted graphs, compared against the state-of-the-art local search MVWC algorithms MN/TS and LSCC.

6.1 Experiment Setup

All the solvers were compiled by g++4.6.3 with the '-O3' option. For the search depth L, MN/TS, LSCC and LMY-GRS set L = 4,000. Both MN/TS and LSCC employ the BMS heuristic, and the parameter k was set to 100, as in [27]. MN/TS employs a tabu heuristic and the tabu tenure TL was set to 7 as in [28]. The experiments were conducted on a cluster equipped with Intel(R) Xeon(R) CPUs X5650 @2.67 GHz with 8 GB RAM, running Red Hat Santiago OS.

Each solver was executed on each instance with a time limit of 1,000 s, with seeds from 1 to 100. For each algorithm on each instance, we report the maximum weight (" w_{max} ") and averaged weight (" w_{avg} ") of the cliques found by the algorithm. To make the comparisons clearer, we also report the difference (" δ_{max} ") between the maximum weight of the cliques found by LMY-GRS and that found by LSCC. Similarly δ_{avg} represents the difference between the averaged weights. A positive δ_{avg} (resp. δ_{max}) indicates that LMY-GRS performed better, while a negative value indicates that LMY-GRS performed worse.

6.2 Main Results

We show the main experimental results in Tables 1 and 2. For the sake of space, we do not report the results on graphs with less than 1,000 vertices.

Quality Improvements. Table 1 shows the performances on the instances where LSCC and LMY-GRS returned different w_{max} or w_{avg} values. From the results in Table 1, we observe that:

- 1. LMY-GRS attained best-known solutions on all the graphs;
- 2. In a large proportion of the graphs, LMY-GRS returned solutions which had better average quality;
- 3. LMY-GRS found new best-known solutions in 4 graphs.

In fact these 4 graphs are the largest ones in the benchmark, and each of them has at least 10^6 vertices. Since LMY-GRS and LSCC present different solution qualities over these instances, it is inconvenient to evaluate the individual impacts of the heuristics and the data structures over these instances.

Time Improvements and Individual Impacts. Table 2 compares the performances on those instances where LSCC and LMY-GRS returned both the same w_{max} and w_{avg} values. We also present the averaged number of steps to locate a solution, and the number of steps executed in each millisecond.

Over these instances, we find that

- 1. The time columns show that LMY-GRS and LSCC performed closely well;
- 2. The step columns show that the heuristic in LMY-GRS is as good as the one in LSCC, since they needed roughly the same number of steps;
- 3. The last two columns show that LMY-GRS sometimes performed steps faster than LSCC, but sometimes slower.

To show the power of our data structures, we present the averaged number of steps per millisecond in some largest instances in Table 3. In this table we found that LMY-GRS is able to perform steps faster than LSCC by orders of magnitudes in some instances.

Based on the discussions above, we conclude that using random walk is roughly as good as using BMS, and our data structures are very powerful on huge sparse graphs.

Graph	V	E	MN/TS LSCC		LMY-GRS	$\delta_{max}(\delta_{avg})$	
			$w_{max} (w_{avg})$	$w_{max} (w_{avg})$	$w_{max} (w_{avg})$		
ca-coauthors-dblp	540486	15245729	37884 (27411.17)	37884 (34211.68)	37884 (37884.00)	0 (3672.32)	
ca-dblp-2010	226413	716460	7575 (7256.55)	7575 (7470.61)	7575 (7575.00)	0 (104.39)	
ca-dblp-2012	317080	1049866	14108 (11623.72)	14108 (13739.21)	14108 (14108.00)	0 (368.79)	
ca-hollywood-2009	1069126	56306653	222720 (136456.22)	222720 (206446)	222720 (219297.42)	0 (12851.4)	
ca-MathSciNet	332689	820644	2792 (2484.43)	2792 (2518.30)	2792 (2792.00)	0 (273.7)	
inf-roadNet-CA	1957027	2760388	691 (598.72)	668 (622.60)	752 (752.00)	84 (129.4)	
inf-roadNet-PA	1087562	1541514	637 (597.45)	599 (598.86)	669 (669.00)	70 (70.14)	
sc-ldoor	952203	20770807	4074 (3874.34)	4081 (3966.68)	4081 (4081.00)	0 (114.32)	
sc-msdoor	415863	9378650	4088 (3966.31)	4088 (4028.97)	4088 (4088.00)	0 (59.03)	
sc-nasasrb	54870	1311227	4548 (4429.28)	4548 (4546.56)	4548 (4548.00)	0 (1.44)	
sc-pkustk11	87804	2565054	5298 (4794.50)	5298 (5063.51)	5298 (5298.00)	0 (234.49)	
sc-pkustk13	94893	3260967	6306 (5751.92)	6306 (5906.58)	6306 (6287.10)	0 (380.52)	
sc-pwtk	217891	5653221	4596 (4384.80)	4620 (4606.56)	4620 (4620.00)	0 (13.44)	
sc-shipsec1	140385	1707759	3540 (3084.78)	3540 (3294.51)	3540 (3540.00)	0 (245.49)	
sc-shipsec5	179104	2200076	4524 (4320.50)	4524 (4407.96)	4524 (4524.00)	0 (116.04)	
socfb-A-anon	3097165	23667394	2872 (2150.87)	2872 (2172.79)	2872 (2872.00)	0 (699.21)	
socfb-B-anon	2937612	20959854	2537 (1911.92)	2662 (2008.74)	2662 (2583.94)	0 (575.2)	
socfb-OR	63392	816886	3523 (3520.88)	3523 (3516.27)	3523 (3523.00)	0 (6.73)	
soc-brightkite	56739	212945	3672 (3652.86)	3672 (3654.87)	3672 (3661.98)	0 (7.11)	
soc-delicious	536108	1365961	1547 (1532.90)	1547 (1535.79)	1547 (1546.93)	0 (11.14)	
soc-digg	770799	5907132	5287 (4742.21)	5303 (4712.43)	5303 (4839.18)	0 (126.75)	
soc-flickr	513969	3190452	7083 (7032.71)	7083 (7069.15)	7083 (7083.00)	0 (13.85)	
soc-flixster	2523386	7918801	3805 (3389.09)	3805 (3403.42)	3805 (3805.00)	0 (401.58)	
soc-FourSquare	639014	3214986	3064 (3057.10)	3064 (3035.96)	3064 (2980.31)	0 (-55.65)	
soc-gowalla	196591	950327	2335 (2249.70)	2335 (2256.22)	2335 (2253.51)	0 (-2.71)	
soc-lastfm	1191805	4519330	1773 (1770.28)	1773 (1771.50)	1773 (1773.00)	0 (1.5)	
soc-livejournal	4033137	27933062	7238 (2312.07)	$15855 \ (2661.46)$	${\bf 21368}~({\bf 17783.19})$	5513 (15121.7)	
soc-pokec	1632803	22301964	3191 (2132.10)	3191 (2008.17)	3191 (3191.00)	0 (1182.83)	
soc-youtube-snap	1134890	2987624	1787 (1787.00)	1787 (1775.29)	1787 (1787.00)	0 (11.71)	
tech-as-skitter	1694616	11094209	5703 (4894.34)	5703 (5076.34)	5703 (5671.28)	0 (594.94)	
web-it-2004	509338	7178413	45477 (40088.88)	45477 (45380.95)	45477 (45477.00)	0 (96.05)	
web-sk-2005	121422	334419	11925 (10583.83)	11925 (11892.72)	11925 (11925.00)	0 (32.28)	
web-wikipedia2009	1864433	4507315	3823 (1752.62)	3823 (2100.06)	3891 (3833.28)	68 (1733.22)	

Table 1.	. Results	where LSCC	and LMY	-GRS	returned	different	w_{max}	or w_{avq}	values
----------	-----------	------------	---------	------	----------	-----------	-----------	--------------	--------

Graph	Time		#Step		#Step/ms	
	LSCC	LMY-GRS	LSCC	LMY-GRS	LSCC	LMY-GRS
bio-dmela	0.006	0.005	140.9	564.2	27.995	113.956
bio-yeast	0.002	0.000	390.9	489.16	94.419	745.513
ca-AstroPh	20.896	11.057	425754.9	425117	20.744	40.648
ca-citeseer	202.994	0.647	318659.9	147513	1.604	231.164
ca-CondMat	1.928	0.168	32474.4	36398	17.702	228.675
ca-CSphd	0.003	0.000	523.5	1085.49	57.501	1069.836
ca-Erdos992	0.003	0.000	172.6	183.19	1099	217.888
ca-GrQc	0.062	0.009	4882.4	4496.11	80.002	297.030
ca-HepPh	0.086	0.143	2683.7	5721.1	33.919	33.179
ia-email-EU	0.227	0.079	2129.3	1053.53	9.306	15.749
ia-email-univ	0.000	0.000	270.5	232.85	199.638	348.546
ia-enron-large	6.280	7.197	52895.0	44609.6	8.575	6.443
ia-fb-messages	0.000	0.000	21.8	23.88	130.787	111.793
ia-reality	0.048	0.012	1325.7	1550.71	26.814	117.159
ia-wiki-Talk	0.621	0.433	1855.3	2029.29	2.841	3.666
inf-power	0.027	0.051	932.4	1236.47	33.649	1412.931
rec-amazon	3.096	0.000	4858.8	66364.1	1.618	1642.741
socfb-Berkeley13	49.960	52.664	668700.0	551266	13.601	10.657
socfb-CMU	3.312	11.442	127743.3	145167	39.716	13.538
socfb-Duke14	6.649	19.876	11332.0	210134	28.680	11.280
socfb-Indiana	102.016	90.841	1073259.6	1007020	10.611	12.112
socfb-MIT	3.246	13.241	134955.9	172320	42.597	13.587
socfb-Penn94	104.695	135.512	782995.3	397520	7.638	8,163
socfb-Stanford3	15.511	36 116	371036.8	397520	24.467	11 514
socfb-Texas84	79.057	149.417	673376.8	868678	8.510	6.200
socfb-UCLA	34.333	45.327	511804.3	568163	15.415	13.202
socfb-UConn	18.490	19.268	323312.8	333033	17.653	17.254
socfb-UCSB37	21.804	30.156	426798.7	410292	20.024	14.249
socfb-UF	70.877	73.057	603137.5	513143	8.575	7.671
socfb-UIllinois	158,450	140.481	1539421.1	1633500	10.039	12.798
socfb-Wisconsin87	42.416	34.065	522928.6	479857	12.365	15.266
soc-BlogCatalog	17.210	122.788	45587.6	31182.9	2.778	0.267
soc-buzznet	92.703	79.329	211468.5	17649.3	2.340	0.233
soc-douban	1.770	0.061	2789.6	3718.46	1.801	78.276
soc-epinions	31.984	17.557	356916.5	488393	11.578	28.758
soc-LiveMocha	7.809	15.138	21018.2	31450.8	2.719	2.322
soc-slashdot	12.845	1.557	51360.6	10392.7	4.248	6.993
soc-twitter-follows	8.608	0.511	3994.0	6218.97	0.518	12.417
soc-youtube	23.655	33.585	11783.2	17391	0.507	0.487
tech-as-caida2007	0.094	0.055	951.9	593.18	11.078	3.257
tech-internet-as	0.525	0.803	3871.9	4119.28	7.870	3.503
tech-p2p-gnutella	0.968	0.012	3354.6	3241.77	3.582	317.924
tech-RL-caida	20.520	0.741	29238.2	23989.1	1.487	27.937
tech-routers-rf	0.113	0.116	14551.5	15513.4	127.910	145.814
tech-WHOIS	0.426	1.108	16010.9	21880.5	38.349	19.012
web-arabic-2005	30.543	0.408	57788.0	51285	1.897	86.461
web-Berkstan	0.077	0.001	1555.3	1502.56	22.143	1439.152
web-edu	2.885	0.012	191629.5	2741.87	67.589	211.956
web-google	0.117	0.006	25789.6	15207	220.953	1644.486
web-indochina-2004	0.041	0.011	874.2	1409.67	23.025	124.223
web-spam	9.608	26.431	417141.9	392304	44.426	14.681
web-uk-2005	33.803	0.696	84260.7	93855	2.567	133.358
web-webbase-2001	148.073	2.234	2393708.0	57063.4	16.748	27.596

Table 2. Performances on instances where they returned the same w_{max} and w_{avg} values

Graph	LSCC	LMY-GRS	Graph	LSCC	LMY-GRS
ca-hollywood-2009	0.246	0.365	sc-ldoor	0.310	356.573
socfb-A-anon	0.070	5.261	soc-livejournal	0.057	25.203
socfb-B-anon	0.059	5.751	soc-pokec	0.125	20.734
inf-roadNet-CA	0.070	1175.015	tech-as-skitter	0.125	0.785
inf-roadNet-PA	0.126	1085.205	web-wikipedia2009	0.099	11.713

Table 3. The number of steps per millisecond on huge sparse instances

7 Conclusions and Future Work

In this paper, we developed a local search MVWC solver named LMY-GRS, which significantly outperforms state-of-the-art solvers on large sparse graphs. It attains best-known solutions on all the graphs in the experiments, and it finds new best-known solutions on some of them.

Our contributions are of three folds. Firstly we rigorously showed that the swap-set is usually small even when we are solving large sparse graphs. Secondly we incorporated random walk into the multi-neighborhood greedy search and showed that it is satisfactory. Thirdly we proposed efficient data structures that work well with huge sparse graphs.

In the future we will improve SCC to further avoid cycles. Also we will introduce more diversification strategies into LMY-GRS.

Acknowledgment. We thank all anonymous reviewers for their valuable comments. This work is supported by ARC Grant FT0991785, NSF Grant No.61463044, NSFC Grant No.61572234 and Grant No.[2014]7421 from the Joint Fund of the NSF of Guizhou province of China.

We gratefully acknowledge the support of the Griffith University eResearch Services Team and the use of the High Performance Computing Cluster "Gowonda" to complete this research.

References

- Amgalan, B., Lee, H.: Wmaxc: a weighted maximum clique method for identifying condition-specific sub-network. PLoS ONE 9(8), e104993 (2014)
- Babel, L.: A fast algorithm for the maximum weight clique problem. Computing 52(1), 31–38 (1994). http://dx.doi.org/10.1007/BF02243394
- Balasundaram, B., Butenko, S.: Graph domination, coloring and cliques in telecommunications. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 865–890. Springer, Heidelberg (2006)
- Ballard, D.H., Brown, C.M.: Computer Vision, 1st edn. Prentice Hall Professional Technical Reference, New York (1982)
- Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). http://www.sciencemag.org/cgi/content/abstract/ 286/5439/509

- Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29(4), 610–637 (2001)
- Bomze, I.M., Pelillo, M., Stix, V.: Approximating the maximum weight clique using replicator dynamics. IEEE Trans. Neural Netw. Learn. Syst. 11(6), 1228– 1241 (2000). http://dx.doi.org/10.1109/72.883403
- Brendel, W., Amer, M.R., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011, pp. 1273– 1280 (2011). http://dx.doi.org/10.1109/CVPR.2011.5995395
- Brendel, W., Todorovic, S.: Segmentation as maximum-weight independent set. In: Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6–9 December 2010, Vancouver, British Columbia, Canada, pp. 307–315 (2010). http:// papers.nips.cc/paper/3909-segmentation-as-maximum-weight-independent-set
- Busygin, S.: A new trust region technique for the maximum weight clique problem. Discrete Appl. Math. 154(15), 2080–2096 (2006). http://dx.doi.org/10.1016/ j.dam.2005.04.010
- Cai, S.: Balance between complexity and quality: local search for minimum vertex cover in massive graphs. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 747–753 (2015). http://ijcai.org/papers15/Abstracts/IJCAI15-111. html
- Chung, F., Lu, L.: Complex Graphs and Networks, vol. 107. American Mathematical Society (2006). https://books.google.com.au/books?id=BqqDsEKIAE4C
- Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 January 2004, pp. 718–727 (2004). http://dl.acm. org/citation.cfm?id=982792.982902
- Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using maximum satisfiability reasoning. In: 21st European Conference on Artificial Intelligence, ECAI 2014, 18–22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 303–308 (2014). http:// dx.doi.org/10.3233/978-1-61499-419-0-303
- Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discret. Math. 18(2), 219–225 (2005). http://dx.doi.org/10.1137/S089548010240415X
- Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11–13, 1993. American Mathematical Society, Boston (1996)
- Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, 20–22 March 1972. At the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, pp. 85–103 (1972). http://www.cs.berkeley.edu/luca/cs172/karp.pdf
- Li, N., Latecki, L.J.: Clustering aggregation as maximum-weight independent set. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada, United States, pp. 791–799 (2012). http://papers.nips.cc/paper/4731-clustering-aggregation-as-maximum-weightindependent-set

- Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012, pp. 670–677 (2012). http:// dx.doi.org/10.1109/CVPR.2012.6247735
- Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Complex Syst. 9(3), 193–212 (1995)
- Ostergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4), 424–436 (2001). http://www.cs.helsinki.fi/njc/References/ ostergard2001:424.html
- Pullan, W.J.: Approximating the maximum vertex/edge weighted clique using local search. J. Heuristics 14(2), 117–134 (2008). http://dx.doi.org/10.1007/s10732-007-9026-2
- Ravetti, M.G., Moscato, P.: Identification of a 5-protein biomarker molecular signature for predicting alzheimer's disease. PLoS ONE 3(9), e3111 (2008)
- Rossi, R.A., Ahmed, N.K.: Coloring large complex networks. Soc. Netw. Analys. Min. 4(1), 228 (2014). http://dx.doi.org/10.1007/s13278-014-0228-y
- 25. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
- Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., Patwary, M.M.A.: Fast maximum clique algorithms for large graphs. In: 23rd International World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11 April 2014, Companion Volume, pp. 365–366 (2014). http://doi.acm.org/10.1145/2567948.2577283
- Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016, Phoenix, Arizona, USA, pp. 805–811 (2016). http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
- Wu, Q., Hao, J., Glover, F.: Multi-neighborhood tabu search for the maximum weight clique problem. Ann. OR 196(1), 611–634 (2012). http://dx.doi.org/10.1007/s10479-012-1124-3
- Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable instances. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 337–342. Morgan Kaufmann Publishers Inc., San Francisco (2005). http://dl.acm.org/citation.cfm?id=1642293.1642347
- Yamaguchi, K., Masuda, S.: A new exact algorithm for the maximum weight clique problem. In: ITC-CSCC: 2008, pp. 317–320 (2008)