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Abstract. This paper aims to provide a unified framework for the eval-
uation and comparison of the many emergent meta-mining techniques.
This framework is illustrated on the case study of the meta-learning prob-
lem in a large scale experiment. The results of this experiment are then
explored through hypothesis testing in order to provide insight regarding
the performance of the different meta-learning schemes, advertising the
potential of our approach regarding meta-level knowledge discovery.

1 Introduction

Meta-mining designates the very general task of finding an efficient (or most
efficient) way to solve a given data mining problem (Fig. 1). As such, it covers a
very wide range of tasks, a good many of which have already been extensively
studied. For instance, if we consider the very specific problem of Boolean Sat-
isfiability (SAT), we can find different approaches, such as [27], based on the
selection of a most efficient algorithm to solve a particular problem instance.
Such approaches are designated as portfolio for the SAT problem, but have
equivalents on many other problems. Their most common denomination would
be algorithm selection methods, many of which have been studied for machine
learning problems, such as classification [11], regression [7], or instance selection
[12]. These many different problems have been well studied on their own, but
the next step for meta-mining research is to start unifying some of them. In par-
ticular the problem of data mining workflow recommendation has received an
increased interest over the last few years [20,22,28]. It consists in the elicitation
of workflows (sequences of operators) solving a range of different data mining
problems, but remains mostly focused on predictive modelling.

As new approaches emerges, we face a new challenge: How to evaluate and
compare those different meta-mining approaches? Indeed, the criteria used by
authors to evaluate their specific approaches will differ greatly, as they address
very dissimilar and sometimes unrelated problems. In order to compare the exist-
ing and upcoming approaches able to cover a range of different problems, we
will need a unified meta-mining evaluation framework. The development of such
framework implies a number of new issues, which would be better illustrated on
an example.
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Fig. 1. A general meta-mining experiment

2 Example of Meta-mining Experiment

In this example, we will perform algorithm selection for the well studied problem
of classification (Fig. 2). Indeed, as it is one of the most prominent cases of the
meta-learning framework, it is notably easier to find well described experiments.
The whole set of data presented hereafter is extracted from OpenML [25], an
important database of machine learning experiments.

For a given dataset, the objective is then to find a particular classifier max-
imising a specified criterion. For the sake of the example, let us simply use the
traditional (albeit recognized insufficient [10]) criterion of predictive accuracy.
To supply our classifier selection, we extract from OpenML two sets of data.
The first one should describe the predictive accuracy of different machine learn-
ing algorithms over a number of datasets (Table 1), while the second should
characterize those datasets according to a number of descriptors (Table 2).

The next step is to decide how to solve the meta-mining problem. In this
example, we will make the näıve choice of identifying the meta-mining prob-
lem with a classification problem over the dataset illustrated in Table 3 (which
will be referred as the meta-dataset). The Class label of a dataset instance of
the metadataset identifies which algorithm performed best (i.e. had the highest
predictive accuracy) on this dataset, according to the data in Table 1.

Fig. 2. An algorithm selection experiment for the classification problem

Table 1. Predictive accuracy of a set of classifiers over a range of datasets

classifier1 classifier2 ... classifier93

dataset1 0.8 0.9 ... ...

dataset2 0.9 0.7 ... ...

... ... ... ... ...

dataset434 ... ... ... ...
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Table 2. Characterization of the datasets

NumberOfInstances NumberOfFeatures ... MetaAttribute105

dataset1 100 62 ... ...

dataset2 5000 13 ... ...

... ... ... ... ...

dataset434 360 20 ... ...

Table 3. Meta-dataset for a classification meta-problem

NumberOfInstances ... MetaAttribute105 Class

dataset1 100 ... 4 classifier18

dataset2 5000 ... 92 classifier7

... ... ... ... ...

dataset434 360 ... 13 classifier63

Next, we have to solve this classification problem. In this example, we will
do so according to the following pseudocode:

foreach dataseti (Dataset instance) do
Exclude dataseti from the metadataset
Apply ReliefF [19] attribute selection algorithm on the metadataset
Learn a decision tree from the reduced metadataset using a C4.5 tree based
classifier
Use this decision tree to predict a class label classifierj for dataseti

For each of the datasets, we then have a predicted class label identifying which
algorithm should perform best on it, according to a decision tree grown on every
other dataset instances. We now want to evaluate the efficiency of this example
experiment. For that purpose, we would require a criterion as independent as
possible from all the particular choices made in the experiment. This can be
achieved to some extent by the following:

Definition 1. Let x be the actual value of the objective criterion (accuracy)
achieved on dataseti by the classifier classifierj predicted by our experiment.
Let best be the best value of the objective criterion achieved on dataseti among
the classifiers classifier1..m. Let def be the actual value of the objective criterion
achieved on dataseti by the default classifier (majority class classifier). We
define the performance of our example meta-mining experiment on dataseti:

perf(experiment, dataseti) = 1 − |best− x|
|best− def |

This performance criterion is maximal at 1 when the predicted classifier
achieves the best accuracy among the studied classifiers, and hits 0 when the
predicted classifier achieves the same accuracy as the default classifier. Though
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simple, this criterion allows to compare the performance of meta-mining exper-
iments solving different meta-problems, but needs to be supplied with a default
value for the considered base criterion.

3 Dimensions of Study

The previous example details one single experiment, giving insight on the per-
formance of one particular method of addressing a restricted area of the meta-
mining problem. In order to gain a meaningful insight, one must explore a more
significant domain of both problem and solution. This implies iterating the pre-
vious experiment over a number of dimensions illustrated in Fig. 3 by their par-
ticular values in the example.

Meta-problem. In the example, we chose to identify meta-mining with a classi-
fication problem. This was one of the first stances of meta-learning, and leads
to a very simple experiment, but much more efficient formulations exist. We
could for instance identify meta-mining with a set of regression problems, mod-
elling the performances of the base classifiers, or a set of classification problems,
modelling the applicability of the classifiers [1]. Meta-learning studies introduced
many different definitions of the problem [4]. The approach followed in [7] con-
sists in learning a model for each pair of base classifiers, predicting if one will
significantly outperform the other on a given dataset. This pairwise vision is also
adopted in [21], where particular sets of rules are used to compare the perfor-
mance of the different base learners. [11] introduces active testing, a strategy
minimizing the number of tests necessary to select a good classifier. Growing

Fig. 3. Dimensions of the example experiment for the classification meta-problem
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apart from the meta-learning framework, [14] identifies algorithm selection with
a collaborative filtering problem, addressing in particular the problems of sto-
chastic optimisation and boolean satisfiability. [22] tries to address the selection
of different data mining operators, considering also the optimisation of their
parameters. Finally, [6,15] use the DMOP Ontology to characterize data mining
workflows, and learn models exploited in the construction of such workflow for
new problem instances.

Repeating the experiment with those more complex definitions of the problem
would allow to explore a greater area of the meta-mining problem. Iterating over
other dimensions would then provide a sound comparison of those approaches.

Datasets. In order to allow some generality to the results, the datasets used
in the experiment should reflect well what “real world” datasets are. This is
a well know issue in machine learning and meta-learning, where the validation
of new techniques requires a good enough population of test datasets. Yet, the
inherent properties of real world datasets remains very unclear. In applications
validated over relatively few datasets, it is common to find areas of absolute
inefficiency when testing over new datasets. The common assumption is that a
large sample of datasets provides enough guarantee of generalisability. But once
again, “large” doesn’t mean much, and seems to be often perceived as “larger
than last year”. In this context the meta-database of OpenML [25] provides
a good number of datasets, coming from both the classic literature and from
particular applications. To our knowledge, it could be considered one of the
most accurate depiction of the set of real world datasets available to date, but
such matters are difficult to assess and would deserve further studies.

Dataset Characterization. This problem has been addressed along two directions:

• In the first one, the dataset is described through a set of statistical or informa-
tion theoretic measures. This approach, notably appearing in the STATLOG
project [9,13], and in most studies afterwards [7,26], allows the use of many
expressive measures. But its performance depends heavily on the adequateness
of bias between the meta-level learner and the chosen measures. Experiments
have been done with meta-level feature selection [8,23] in order to understand
the importance of different measures. But the elicited optimal sets of meta-
features to perform algorithm selection over two different pools of algorithms
can be very different, revealing no significant tendencies among the measures
themselves.

• The second approach to dataset characterization focuses, not on computed
properties of the dataset, but on the performance of simple learners over the
dataset. It was introduced as landmarking in [17], where the accuracies of a set
of very simple learners are used as meta-features to feed a more complex meta-
level learner. There again, the performance of the method relies heavily on
the adequate choice of both the base and meta-level learner, with no absolute
best combination. Further development introduced more complex measures
than predictive accuracy over the models generated by the simple learners. For
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instance, [16] claims that using as meta-features different structural properties
of a decision tree induced over the dataset by simple decision-tree learners can
also result in well performing algorithm selection.

OpenML features more than a hundred of such dataset characteristics, get-
ting the most of both approaches. But as the few comparative experiments
showed [8,23], the efficiency of a particular characterization mostly depends on
its adequation with the problem at hand and the solving method. As some
successful approaches focus on developing specific characterization adapted to
restricted problems [12], we wish to experiment further by adapting the charac-
terization to the particular set of datasets used in an experiment. In the exam-
ple, the ReliefF algorithm [19] was used on the metadataset deprived from the
ith dataset instance to select best suited dataset characteristics for these par-
ticular datasets. But other attribute selection methods exist, that would return
potentially different subsets of dataset characteristics. Repeating the experiment
with different attribute selection methods or different sets of potential attributes
would allow to investigate the relation between the characterization and the other
aspects of the problem, while also providing good comparison grounds between
the diverse sets of dataset characteristics proposed in the literature.

Solving method. In the example, to predict which method would perform best
on each dataset, we used a decision tree built by a particular C4.5 implementa-
tion, with a given (default) hyperparameter setting. As a model produced with a
different method would possibly be very different, the method employed to solve
the chosen meta-problem has to be considered as a dimension of the experiment.
For the meta-problem of the example, any method capable of nominal classifica-
tion could be used. If we also consider different possible hyperparameter settings
of those methods, this dimension rapidly grows very large. However, exploring
it as well as possible appears critical to the characterization of the different
meta-problems. An ideal setup would be to use hyperparameter optimizations
techniques on the different solving methods, making hyperparameter optimiza-
tion a new separate dimension. However, for reasons of dimensional complexity
(to be discussed later on), we will for now restrict ourselves to defined hyperpa-
rameter settings (hand picked or defaults).

Criterion. The chosen criterion is the measure we wish to enhance through
the meta-mining process. In the example, we used predictive accuracy, which is
a traditional comparison criterion for classification algorithms. But in another
scenario, a different criterion could have made more sense. For instance, in a
situation where false negatives are to be avoided in priority (such as in medical
diagnosis), a more sensible criterion would have been recall. In practice, one
should use a combination of measures to best describe the particular operating
conditions of the data-mining experiment to be produced. However, for the sake
of generality and simplicity, we will only consider a set of 11 simple measures,
such as Cohen’s kappa, or Kononenko’s Information score [10].

Since different criteria will likely behave differently, optimal meta-mining
processes will likely differ over them. This leads us to iterate experiments over
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this new dimension of criteria, in order to determine how the previous dimensions
of study impact performance for each individual criterion.

Dimensional complexity. In order to get any insights, the space of meta-mining
experiments, defined along those dimensions, has to be explored. This means
actually realising as many as possible potential experiments we can build along
those dimensions. Even with low estimations of the size of the different dimen-
sions, it implies a number of individual experiments in the rough order of
magnitude of the billion. As each individual experiment consists in one run of
both meta-attributes-selection and a data-mining algorithm, for each considered
dataset, the exploration of the full dimensional space could span over many years
of machine time. However, as each experiment is completely independent from
the others, the problem can be addressed through massively parallel computing,
which makes exploration possible, even if still time consuming.

4 Experiment Setup

The metadataset is constructed from the OpenML database, which features
more than 2700 datasets and 2500 base algorithms. As the construction of the
metadataset requires a number of algorithms that were evaluated on the same
datasets, we solved a maximal bi-clique problem with an efficient pattern enu-
merator [24], to find the largest sets of datasets and algorithms such as each
element of both sets has been evaluated on every element of the other. This
restricted us to 93 algorithms and 434 datasets from the OpenML database. We
then extracted the evaluated values of 11 chosen criteria over those 40k runs, and
the values of 105 dataset descriptors over each dataset (see Ressources section
for listings).

In order to run the meta-level experiments, we needed to define a source
for the candidate solution algorithms for the different meta-problems, and for
the different feature selection algorithm. As it is one of the most widely used
and features implementation of many state of the art algorithms, we decided
to use the Weka [5] API framework. Spread over 4 classic meta-problems from
the literature, we thus evaluate more than 2600 solving methods and 60 feature
selection methods built from the Weka API (Fig. 4) (see Ressources section for
listings).

The individual Weka experiments are then generated by a java program (see
Ressources section for source code), that delegates their execution to a SLURM
job scheduler system managing the OSIRIM 640 nodes cluster. The 800k result-
ing experiments sum up to more than three thousand billion individual execu-
tions of machine learning algorithms. Even with good computing power, these
experiments are quite costly: 800k experiments of the magnitude order of the
minute take almost 100 years of computer time, which reduces to 50 days of
parallel execution over the 640 nodes.
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Fig. 4. Rough size of the dimensions

5 Results Interpretation

The setup described in the previous section yields a performance measure for
each of those thousands of experiments. In practice, it takes the form of an
important database, which can be seen as a population of individual experiment
runs, characterized along the earlier described dimensions, and each associated
with its performance. In this framework, every question we may aim to answer
takes the form of a comparison of sub-populations of those experiment runs.
For instance, comparing a new algorithm selection approach to other existing
methods can be done by comparing the population of runs featuring the new
technique to populations featuring the current state of the art for the problem.

A sheer comparison of mean performance already allows the discovery of
tendencies. But to manage the risk of such a tendency not reflecting an actual
difference in the sub-populations, one should conduct appropriate hypothesis
testing over the results. Hypothesis testing has a reputation to be among the
most misused tools in different research areas, and particular care has often
been recommended in its application [2]. In this section, we will thus consider
the appropriate tests for different situations, and demonstrate them over some
cases. Since no assumption can be made regarding the underlying distribution
of the performances, we will have to restrict ourselves to non-parametric tests.
This implies a lower power than parametric tests could offer, but we will see
that the scale of the experiment makes up for this loss.

The first situation we will review is the comparison of two matched sub-
population of same size. For instance, let us say we want to compare the per-
formance (in addressing our classifier selection task) of two variants of the
Sequential Minimal Optimization algorithm [18] using different kernels. The sub-
populations of the runs featuring those two variants have close means (difference
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Table 4. Results of some Wilcoxon signed-rank tests

Population 1 Population 2 Difference of means p-value Effect size

over standard

deviation

SMO PolyKernel SMO Puk 0,02 1,14E-09 0,4

Full set of meta-
attributes

50 best from Reli-
efF

1,2 2,5E-89 0,48

Bagging of Ran-
domForest

RotationForest of
RandomForest

1,8 0,91 0,49

RotationForest
of RandomForest

RotationForest of
NaiveBayesTree

0,04 8,6E-137 0,32

of less than two percent of the population standard deviation), and we can legit-
imately wonder if there is an actual difference of performance. This situation is
ideal for the Wilcoxon signed-rank test (for HO: all performances are identically
distributed), which requires independent pairs of values that we can form with
the runs of the two variants having all other dimensions equal. Wilcoxon’s last
assumption of ordinal measure is also met by our numeric performance criterion.
The test results in a p-value of 10−9 with a 0.4 effect size. This implies that the
observed difference between the two variants have a negligible chance not to rep-
resent an actual performance difference. Table 4 shows some results that can be
obtained with such tests. To interpret these other examples, we could say that
the selection of the 50 best meta-attributes with ReliefF will often result in a loss
of performance on the whole studied meta-problems, relatively to keeping the
full set. The difference of performance between Bagging and RotationForest as
enhancer of RandomForest has little chance of betraying a general tendency on
the whole studied meta-problems, while the way smaller gap between Random-
Forest and NaiveBayesTree in a RotationForest has great chances of denoting
an actual difference.

Another possibility would be to compare n matched populations of identical
size. This is perhaps the most interesting setting, but also the most complex to
study, and will feature the use of the Friedman test, with the same assumptions
as the Wilcoxon signed-rank test. As an example, let us compare different kNN
classifiers with varying k parameter and distance used, (as shown in Table 5),
for use in ensembles of nested dichotomies (END) [3] addressing the classifier
selection problem. Those approaches have very close mean performance, differing
from one another by less than a percent of the global standard deviation. Yet
the Friedman test concludes with a p-value of 10−90 that some are significantly
different from the others.

Finding which one differ for the better will necessitate post-hoc tests, such as
the Nemenyi test, in order to control the family-wise error rate (risk of making
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Table 5. Mean performance of END built on different kNN classifiers

k Distance Mean performance

5 Manhattan 0,8828

5 Euclidean 0,8853

10 Euclidean 0,8899

20 Euclidean 0,8872

20 Manhattan 0,8832

Fig. 5. Results of Nemenyi test, connected groups are not significantly different

at least one incorrect rejection among multiple hypotheses tests). This is often a
real problem, as control of the family-wise error rate imposes much more conser-
vative significance levels of the individual tests. But the scale of our experiment
allows the extreme values it requires. Results are presented in Fig. 5, where the
critical difference is adjusted following Nemenyi procedure to account for the
10 comparison being made (0.05 family-wise error rate). We can see that only
the k = 10, Euclidian and k = 20, Manhattan variants cannot be considered
different from the k = 20, Euclidian at this significance level, while all others
differ by more than the critical difference. In particular, the k = 10, Euclidian
and k = 20, Manhattan variants are significantly different from one another.

Running the Friedman test on a much larger number of populations also
allows to draw interesting results. For instance, let us compare the different
attribute selection methods used. We extracted from the results the performance
of the runs featuring the attribute selection methods in identical setups, for over
a million setups. This represents more than 50 million performance values to
be ranked by Friedman’s procedure. The test returns a p-value of zero (beyond
machine precision), ascertaining the existence of differences among the methods
performance. A Nemenyi test comparing every one of those attribute selection
methods with all the others requires an important number of comparison setups
in order to be able to find any significant differences. Figure 6 shows that even
on a sample 100k setups, the test allows to build groups of methods of equivalent
performance.
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6 Conclusion

In this paper we introduced a meta-mining evaluation framework relying on a
unified performance criterion, and demonstrated it on the problem of classifier
selection. We characterized the different dimensions of the solutions, instanti-
ated a large number of those classifier selection experiments, and applied sta-
tistical hypothesis testing methodologies to the results. These test procedures
allowed to draw precise statistical results regarding the comparative performance
of different approaches. They are able to produce general insight regarding the
optimization potential of particular dimensions. This last result may reveal very
interesting, as it can suggest that a second layer of (meta) algorithm selection
could maximize the performance of the first. Such result meets the insights of [26]
in the suggestion of a recursion of adaptive learners as a possible new paradigm
of meta-learning.

Coming back to the evaluation framework, different aspects will require fur-
ther work, such as the addition of a dimension of hyperparameter optimiza-
tion, and the use of more dataset meta-attributes from the literature. To our
best knowledge, no thorough comparison and review of existing dataset meta-
attributes is available, and as they figure among the dimensions our framework
allows to study, we intend to apply ourselves to such comparisons. The knowl-
edge gained from the experiments described in this paper will be invaluable to
that end, as it will allow to reduce drastically the size of the dimensions, by
considering only the elements that were found significantly different. Similar
approaches could be considered regarding any or all of the possible dimensions.

Ressources. All materials available at: https://github.com/WilliamR03/
Meta-Mining-Evaluation.
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