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Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Canada

{vjoukov,rs2dsouz,dana.kulic}@uwaterloo.ca

Abstract. Accurate human pose estimation is of vital importance for
a variety of human-robot interaction applications, including cooperative
task execution, imitation learning and robot-assisted rehabilitation. As
robots move from controlled indoor environments to unstructured and
outdoor environments, the ability to accurately measure human pose
without fixed sensors becomes increasingly important. In this paper, we
present a general framework for accurately estimating human pose from
a variety of sensors, including body-worn inertial measurement units and
cameras, that can be used in indoor and outdoor environments to accu-
rately estimate human pose during arbitrary 3D movements. Using a
kinematic model of the human body, the sensor data is fused to esti-
mate the body joint angles and velocities using a constrained Extended
Kalman Filter which automatically incorporates feasible joint limits. For
periodic movement such as gait, performance can be further improved
via online learning of the gait model, individualized to the user. The
proposed approach can deal with intermittent data availability and mea-
surement errors during highly dynamic movements.

Keywords: Human pose estimation · Motion capture · Extended
Kalman Filter

1 Introduction

Accurate human pose estimation is of vital importance for a variety of human-
robot interaction applications, including cooperative task execution, imitation
learning and robot-assisted rehabilitation [1]. The gold standard for human
motion data collection is marker-based motion capture, based on either optical
or magnetic marker technology. A number of commercial solutions are available,
e.g. [2,3]. With optical motion capture systems, small reflective markers are
attached to body landmarks, and observed with a set of cameras. The marker
images and exact knowledge of the relative placements of the cameras are used
to extract accurate 3D positions of each marker, achieving positioning sub mil-
limeter positioning accuracy [2]. The marker positions coupled with a kinematic
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model of the human body and an association between each marker and the
corresponding link in the model are then used to estimate the body pose. How-
ever, even with the high accuracy of marker positioning reported by the system
manufacturers, the quality of pose estimation is frequently corrupted by three
common measurement issues: (1) temporary marker occlusions, (2) unlabeled
markers, and (3) mis-labeled markers.

Temporary marker occlusions occur when no camera has a direct line of sight
to the marker, and can be caused by either occluding objects in the scene or by
self occlusion. Unlabeled markers appear when a marker is measured by one
or more cameras in the capture scene, but cannot be associated with any of
the known markers in the kinematic model. Mis-labeled markers, also known
as marker swapping, occur when markers are incorrectly associated to known
markers in the kinematic model. This issue occurs frequently when many markers
are in a small volume, for example during close contact between demonstrators
or fine hand/finger movements when the hands and fingers are brought together.

These issues can be systematically addressed during off-line post processing,
but for interactive applications, on-line pose estimation is required. Aristidou
and Lasenby [4] proposed an approach for missing marker handling via marker
position prediction, based on previously known marker positions and rigid body
assumptions. Meyer et al. [5] proposed an approach for on-line marker labeling
for full-body motion capture based on a custom initialization and a probabilis-
tic iterative estimation procedure. Maycock et al. [6] propose an approach for
hand movement tracking using unlabeled markers, based on a Global Nearest
Neighbor (GNN) approach. Marker occlusions are handled using interpolation.
Mandery et al. [7] propose an approach for pose estimation using unlabeled
marker measurements using the smart sampling Kalman filter.

While marker-based systems provide high accuracy in indoor settings, they
require extensive camera setup and calibration, as well as line-of-sight visibil-
ity between the cameras and the markers, implying a restricted capture space.
For many practical applications, these requirements are too restrictive. Recently,
alternatives to camera-based motion capture based on body-worn Inertial Mea-
surement Units (IMUs) have been proposed [8]. While IMUs enable capture in
arbitrary environments, they suffer from gyro drift and poorer pose estimation
accuracy than marker-based systems. Kalman filter approaches coupled with a
kinematic model of the body have frequently been applied for IMU-based pose
estimation, to fuse the accelerometer and gyroscope measurements and deal with
gyro drift [9,10].

In this paper, we propose a general framework for human pose estimation
based on the Extended Kalman Filter (EKF) and a skeleton model of the body.
Using the motion model and state and observation covariances estimated by
the EKF, we automatically eliminate missing or incorrectly measured markers,
perform marker matching and pose estimation, handle joint limits and sensor
measurement noise and bias. The proposed approach has been extensively vali-
dated with a variety of dynamic movements and demographics.
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2 Proposed Approach

2.1 Problem Statement

We model the human body with an articulated rigid body skeleton, where adja-
cent bones are articulated via a set of N joint angles qi, i ∈ 1...N . The joint
vector additionally includes the 6 dimensional pose of the body relative to the
inertial frame. For the case of marker-based motion capture, our measurement
consists of Mk marker Cartesian positions and velocities, the number of which
may be different at each time step k.

zmk =
[
yMk

ẏMk

]

where yMk
is the vector of Cartesian marker positions, and ẏMk

is the vector of
Cartesian marker velocities.

For IMU based motion capture, IMUs are attached to a set of body limbs, and
our measurement consists of angular velocities and linear accelerations measured
at each IMU:

zik =
[

ωK

aK

]

where K is the number of IMUs, ωK is the vector of angular velocity and aK is
the vector of linear acceleration measurements in the local IMU frame.

Given the observations at frame k, our objective is to estimate the pose qk.
Additionally, in the case of marker measurements, to deal with missing and
incorrectly labeled or unlabeled markers, we must first associate the observed
markers with the corresponding skeleton location, and discard incorrect markers.

2.2 The Extended Kalman Filter Formulation

The EKF state consists of the joint positions, velocities and accelerations, x =
[q q̇ q̈]T . We assume a constant acceleration state evolution model, such that

xk+1 =

⎡
⎣1 dt dt2/2

0 1 dt
0 0 1

⎤
⎦xk + wk

where xk is the vector of joint angles, velocities and accelerations at time k, dt is
the sampling time interval and w is the process noise, assumed to be zero-mean
Gaussian noise with covariance Qk.

The observations are related to the state via the non-linear forward kinemat-
ics, z = h(x). To perform state estimation, the forward kinematics is linearized
about the current operating point.

zk =
[
J

]
xk + vk
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where J is the Jacobian of the measurement equation with respect to the state x,
and v is the observation noise, assumed to be zero-mean Gaussian noise with
covariance Rk.

The unconstrained EKF formulation described above can lead to joint angle
estimates which are not physically feasible. To ensure that the estimated joint
angles remain physically feasible, the joint angles are constrained to remain
within joint limits, by restricting the Kalman gain to ensure that the updated
state remains within the constraints [11,12].

In IMU based estimation, another significant source of error is the gyroscope
drift, particularly about rotation axes parallel with gravity, i.e., the yaw rotation
in the world frame. With some apriori knowledge of the motion, we can estimate
the mean yaw angle of links with respect to the torso or the world frame. Placing
a virtual yaw sensor on a link and assuming it always takes this mean as mea-
surement effectively prevents drift from accumulating [13]. The measurement
noise covariance of the virtual sensor can be used as a tuning parameter to allow
for accurate yaw motion estimation while reducing the effect of drift. Figure 1
shows the virtual yaw sensor drift correction for a gyroscope with 0.01 rad/s bias
experiencing sinusoidal motion about the world z axis.

For the case of periodic movement, the assumption of constant acceleration
can be removed by learning an individualized model of the periodic movement
over time, to more accurately model the acceleration. This approach explicitly
models the state as a parameterized sum of sinusoids, and learns the model
parameters during online observation of the movement. The learned model
enables drift free integration of the velocity and acceleration measurements, and
improves pose estimation during periodic movement such as gait [13].

At each time step, the EKF estimates the measurement covariance Pk, based
on the Kalman filter update equations [14].
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Fig. 1. Tracking of a single joint model with an IMU sensor experiencing sinusoidal
motion about the world z axis. EKF continues to integrate the bias (0.01 rad/s) in
the gyroscope measurement accumulating error in the joint angle estimate. A virtual
yaw sensor is added with a mean measurement of 0, it does not allow the bias error to
accumulate and maintains accurate motion estimation.



Human Pose Estimation from Imperfect Marker Data 793

2.3 Incorrect and Missing Marker Detection

To allow for incorrect and missing markers during online measurement, at each
time step, the probability distribution of the location of each model marker is
predicted using the current state estimate, the observation model, and the mea-
surement covariance. For each observed marker, the probability that the marker
is generated by the model probability distribution is computed. The observed
marker with the highest probability is associated with the model marker. This
approach simultaneously deals with swapped and unlabeled markers.

To handle missing markers, the observation vector size varies at each time
step, based on the number of markers observed. Missing markers therefore do
not contribute to the measurement update; only the observable markers and the
state evolution model are used to estimate the joint pose. Information from the
observable markers and the estimates of the joint pose and velocity allow the
filter to smoothly deal with temporary marker occlusions.

(a) Initial T-pose. (b) Seated pose. (c) Standing with another
actor to the left.

(d) Pushed by other actor
into an acted fall.

(e) After fall, the
back and markers near
spine/torso is occluded.

(f) Standing up after fall
and restoring T-pose.

Fig. 2. Sequence of frames of sample sequence: two actors interact and one actor then
falls to the ground, occluding the posterior markers. The actor remains on a mattress
for around twenty seconds before standing up. Visible, attached markers shown as red
boxes. Cyan boxes refer to markers that are missing. Yellow boxes refer to identified
mislabeled markers.
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3 Experimental Results

The proposed approach based on marker data is evaluated with a dynamic
motion capture dataset with significant occlusions, marker-swapping and unla-
beled markers. Figure 2 illustrates an exemplar sequence, consisting of two actors
– both outfitted with markers – interacting briefly followed by an acted fall, with
significant marker occlusions during ground contact.

We do not assume that any labels are correct due to the possible swaps and
frequent occlusions in the raw data, and the procedure described in Sect. 2.3 is
applied to all marker measurements at each time step to perform labeling prior
to pose estimation. In the initial frame, observed markers are first assigned to
the actors – and their associated model markers – of the motion capture scene.
An example sequence illustrating marker trajectories and the recovered pose is
shown in Fig. 3.

Fig. 3. A sample marker trajectory (a) illustrating the position of an occluded and
mislabeled marker, together with the corresponding recovered joint angle trajectory
(b). One standard deviation (covariance estimate by EKF) is shown as the filled region
surrounding the estimate. Estimates made by EKF (solid) and observed marker data
(thick dotted, if visible) are both shown.

The proposed approach is compared to off-line pose estimation and a Jaco-
bian inverse based approach [15]. For off-line pose estimation, pre-processing is
applied to fill-in missing marker data, remove spurious markers and correct any
mislabeling, and the pose is then estimated using global optimization. The Root
Mean Squared Error (RMSE) between the measured marker positions and their
estimates based on the recovered joint angles and the forward kinematics are
compared in Table 1.

As can be seen from Table 1, the proposed method significantly outper-
forms the Jacobian-based approach, and achieves performance comparable to
the off-line method. In particular, performance for the right hand is significantly
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Table 1. Root mean squared errors (cm) of the off-line, Jacobian inverse and the
proposed EKF-based methods. Standard deviation of errors (cm) are in parentheses.
The marker that was visible for most of the dataset was chosen on each extremity for
these calculations.

Marker subset Post-processed Jacobian EKF

Left Hand 3.95 (1.87) 3.65 (0.38) 2.34 (0.25)

Right Hand 3.47 (1.51) 14.46 (2.58) 2.11 (0.33)

Left Foot 1.79 (0.18) 2.88 (0.64) 2.60 (0.13)

Right Foot 2.00 (0.33) 4.28 (1.12) 2.56 (0.45)

Head 5.43 (2.20) 3.06 (0.37) 2.84 (0.18)

Right Shoulder 3.51 (1.83) 9.60 (0.86) 1.61 (0.05)

Left Shoulder 2.52 (1.15) 3.09 (0.76) 3.96 (0.56)

improved; the right hand is occluded for over ten seconds followed by mislabel-
ing of the marker which the Jacobian inverse based approach cannot recover
from. The proposed method detects the incorrect label and reassigns the marker
appropriately.

Also noteworthy is the standard deviation of the error, shown in Table 1
within parentheses. The proposed approach generally minimizes this deviation,
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Fig. 4. Marker jumps in the raw data impact the continuity of joint angle velocities
produced by the Jacobian inverse approach (bottom). The proposed approach (top)
preserves continuity by throwing away data that is unlikely to match the prediction
made by EKF.
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Fig. 5. Joint angles produced for the right elbow joint. Range of motion permitted is
filled in with red.

indicating smoother and more consistent generated motion as opposed to that
of the Jacobian inverse approach. One possible reason for this can be the marker
jumps found in the raw data. Marker jumps are where markers erroneously jump
a few meters yet remain visible. Since the Jacobian inverse approach cannot
effectively determine which data to reject, it generates visible discontinuities
in the resulting joint angle velocities, shown in Fig. 4. In addition to rejecting
these jumping markers the proposed approach may temporarily assign a nearby,
unassigned marker as per Sect. 2.3.

Figure 5 illustrates the constrained estimation, taking into account joint lim-
its for the elbow joint, which is limited by a 150◦ range. The over-extension of
the elbow joint is prevented during the occlusion time frames.

The proposed IMU only approach was compared to the marker based EKF.
Participants were asked to march in place while wearing IMU sensors at the
waist, thighs, and ankles. Three markers were placed on each IMU to estimate
their orientation with respect to the limbs. Markers were also placed on the
ankles, knees, and hips; these were used to estimate the joint centers and link
lengths to generate the kinematic models as well as for ground truth inverse kine-
matics using the proposed marker EKF approach. Figure 6 shows the right knee
joint angle estimation of the IMU EKF and Periodic-EKF [13] approaches com-
pared to the marker based estimation, the proposed methods achieve an accuracy
of 2.79 and 2.07 degrees RMSE respectively. IMU only estimation achieves accu-
racy comparable to that of camera based motion capture and can be utilized in
environments for which camera based systems are not suitable.
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Fig. 6. Right knee joint angle estimation with IMU EKF and Periodic-EKF compared
to the marker based EKF for marching motion. The IMU based approaches are com-
parable in accuracy to the motion capture. Due to periodic nature of marching, the
IMU Periodic-EKF converges to an accurate motion model and improves estimation.

4 Conclusions and Future Work

In this paper, a comprehensive framework for online pose estimation was devel-
oped based on the Extended Kalman filter. The proposed approach models the
human body as an articulated skeleton, and estimates the body position and
orientation in space, together with the joint positions and velocities via fusion
of a motion model and noisy measurements. Imperfect motion capture measure-
ments, including missing and mislabeled markers, as well as IMU measurements,
can be incorporated into the same framework. The proposed method is evaluated
on a variety of datasets and demonstrates improved performance over state-of-
the-art systems.
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