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Abstract. We present a solution for constant-time self-calibration and
change detection of multiple sensor intrinsic and extrinsic calibration
parameters without any prior knowledge of the initial system state or the
need of a calibration target or special initialization sequence. This system
is capable of continuously self-calibrating multiple sensors in an online
setting, while seamlessly solving the online SLAM problem in real-time.
We focus on the camera-IMU extrinsic calibration, essential for accurate
long-term vision-aided inertial navigation. An initialization strategy and
method for continuously estimating and detecting changes to the max-
imum likelihood camera-IMU transform are presented. A conditioning
approach is used, avoiding problems associated with early linearization.
Experimental data is presented to evaluate the proposed system and com-
pare it with artifact-based offline calibration developed by our group.

Keywords: Self-calibration + SLAM -+ Constant-time - Change
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1 Introduction

Autonomous platforms equipped with visual and inertial sensors have become
increasingly ubiquitous. Generally these platforms must undergo sophisticated
calibration routines to estimate extrinsic and intrinsic parameters to high degrees
of certainty before sensor data may be interpreted and fused. Even once fielded,
these platforms may experience changes in these parameters. Self-calibration
addresses this by inferring intrinsic and/or extrinsic parameters pertaining
to proprioceptive and exteroceptive sensors without using a known calibra-
tion mechanism or a specific calibration routine. The motivation behind self-
calibration is to remove the explicit, tedious, and sometimes nearly impossible
calibration procedure from robotic applications such as localization and map-
ping. By continuously estimating calibration parameters, no prior knowledge of
calibration procedures is required. Furthermore, with the addition of statistical
change detection on calibration parameters, long-term autonomy applications
are greatly robustified.

Most current techniques for vision-aided inertial navigation use filtering
approaches [1-3] or a smoothing formulation. In either case the estimation is
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Fig. 1. Example pose graph. Poses being estimated (blue) are conditioned on past poses
(red) and landmark positions (stars). Both the fixed sliding window and the adaptive
window are conditioned on previous poses. The candidate window is not conditioned
since it does not make the assumption that previous poses are correctly estimated.

made constant-time by rolling past information into a prior distribution. Fil-
tering methods present the significant drawback of introducing inconsistencies
due to linearization errors of past measurements which cannot be corrected post
hoc, particularly troublesome for non-linear camera models. Some recent work
has tackled these inconsistencies; see, e.g. [4-7]. The state-of-the-art includes
methods to estimate poses and landmarks along with calibration parameters,
but these approaches do not output the marginals for the calibration parame-
ters, which are desirable for long-term autonomy applications.

To address these considerations, we propose a method that avoids using any
prior distribution; instead, a conditioning approach is used [8], coupled with
selecting only highly informative segments of the trajectory [9]. The method
discards segments capturing degenerate motions which provide little to no infor-
mation for both camera intrinsic and camera-IMU extrinsic [1,2] parameters.
However, unlike the intrinsic parameters of a linear camera model [10], the con-
vergence basin for the six degree of freedom camera-IMU transform is found to
be very narrow. An initialization procedure similar to [11,12] is employed to ini-
tialize the camera-IMU transform, which is then used in a maximum-likelihood
estimator. The use of a maximum-likelihood formulation is especially useful as
it provides the covariance matrix for the estimated parameters, which makes it
possible to establish a fitness score for each segment of the trajectory.

We also propose an extension to the framework presented in [9], allowing
for multiple sensors to be self-calibrated in an online setting, leveraging [1,2]
to disambiguate unobservable degrees of freedom. Note that while the global
position of the IMU and the rotation axis about gravity are not observable,
the following quantities are generally observable: (1) IMU roll and pitch with
respect to the horizontal plane; (2) IMU position, orientation and velocity with
respect to the initial IMU position; (3) feature position with respect to the initial
IMU position; and (4) IMU-to-camera transformation. Finally, we introduce per-
sensor candidate trajectory segments, which we find to be necessary to properly
estimate each sensors’ relevant parameters online.
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2 Formulation and Methodology

A keyframe-based [13] pose-and-landmark non-linear maximum likelihood esti-
mation is performed for real-time map updates. The calibration parameters,
including time-varying IMU biases, are also estimated alongside the pose and
landmark parameters on the informative segments of the trajectory. The com-
plete state vector is:

X = [{wwiﬂn Vuw,, bgn ban } {Pk} {mc}]T7 (1)

where x,,, € SE(3) is the transformation from the coordinates of the n'!
keyframe to world coordinates, v,, € R® is the velocity vector of the n'h
keyframe in world coordinates, and by, € R? and b, € R? are the gyroscope and
accelerometer bias parameters for the n' keyframe respectively. {p;} is the 1-D
inverse-depth [14] parameter for the k*® landmark and {z.} are the calibration
parameters. Note that x,,,, has 6 degrees of freedom: 3 for translation, and 3 for
rotation. To avoid singularities arising from a minimal representation (e.g. using
Euler angles), the rotation component of the transformation is represented as a
quaternion, with the optimization lifted to the tangent space (at the identity)
of the SO(3) manifold.

Measurements are formed by tracking image keypoints across frames. A land-
mark parameterized by inverse depth is projected onto an image forming a pro-
jected pixel coordinate p,.,; which is formulated via a transfer function T' as
follows:

Pproj = T(pr7 Twpm7 TprTpC7 ,0)
= (TpiclTujplmTwpercﬂil (pr»p)) . (2)

where p is the inverse depth of the landmark, T}, is the transformation from
the coordinates of the reference keyframe (in which the landmark was first seen
and initialized) to world coordinates, T,,p,, is the transformation from the mea-
surement keyframe to world coordinates, p, is the 2D image location where the
original feature was initialized in the reference keyframe, p,, is the measured
2D image location in the measurement keyframe, T, is the transformation from
the camera to the keyframe coordinates, £2~! is the 2D to 3D back-projection
function and &2 is the 3D to 2D camera projection function which returns the
predicted 2D image coordinates. The camera-to-keyframe transformation T}, is
non-identity as the keyframe is collocated on the inertial frame (the frame in
which inertial measurements are made), to simplify the inertial integration. T},
is the calibration parameter we have interest in estimating. The usual approach
is to assume Gaussian noise and minimize a nonlinear least squares problem with
the following residual function:

— [Pon = Poresl%, - 3)

Lz :”e"f/m,k”zzpm .

N

where p,,  is the measured 2D image location of the k™ landmark in the m'®

keyframe with covariance X,

m,k
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2.1 Initialization

As shown in [11,12], having a good initial estimate can mean the difference
between fast convergence and complete divergence. As such, we leverage the
work from [1,2,11] which shows that with a minimum of three frames and five
tracked features, it is possible to obtain the camera-to-IMU rotation. This initial
rotation estimate can then be used to solve a linear system for an initial guess
at the translation estimate.

We consider the scenario where enough (five or more) features are observed
across at least three frames. The tracked features can be used to obtain the
relative rotation between two camera frames i, j: CRij and integrating the IMU
measurements to obtain the relative rotation: R;j, where C represents the
camera frame and B the body frame, which is defined without loss of generality
as the IMU frame. The following equation relates the camera rotation to the
body rotation:

CRij = CRBRing :>C ngR = CRBRU‘, (4)

where §R is the rotation of the body frame in the camera frame. In order to
obtain gR we employ an error-state formulation to minimize a robustified over-
constrained least squares problem.

In our experience we find that collecting more than 3 frames yielded more reli-
able estimates; therefore, we use 20 frames for the initial rotation estimate. Once
the estimate on gR has converged, translation can be obtained by employing
the method described in [11] by solving a linear system derived from transferring
the 3D position of a landmark from the camera to the body frame.

2.2 Constant Time Self-Calibration

The constant time self-calibrating framework is briefly summarized here; for
more details, refer to [10]. Due to the limited observability and high connectivity
of calibration parameters in the SLAM graph, it is impractical to estimate these
parameters in real-time applications using conventional filtering or smoothing
approaches [3,7,15,16]. Instead every segment of m frames in the trajectory is
analyzed, and the n most informative segments are added to a priority queue,
where m and n are tuning parameters dependent on the calibration parameters
being estimated. In order to assess the informativeness of a segment, a score is
computed based on the marginals of the calibration parameters estimated by a
particular candidate segment.

If the candidate segment outperforms the worst-scoring window in the pri-
ority queue by a predefined margin, it is swapped in. Every time the priority
queue is updated, a batch optimization over poses, landmarks and calibration
parameters is run on all the segments in the queue to obtain a new set of calibra-
tion parameters. As such, the priority queue represents a rolling estimate of the
n most informative segments in the trajectory. For estimating camera intrinsic
parameters, such as focal length and principal point, only visual measurements
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are used in the candidate segment. When the camera-to-IMU transform is esti-
mated, inertial residuals are added to the candidate window estimation. The
priority queue optimization’s null space therefore requires careful treatment as
it is carried out over several non-continuous segments of the trajectory with
varying sensor data. Figure 1 shows the optimization windows over a sample set
of poses. Figure 2 shows the proposed architecture for multiple sensors.

Fig. 2. System architecture with two sensors. For new sensors to be added only the
blue boxes need to be provided. Asynchronous Adaptive Conditioning and the Priority
Queue boxes each run in their own thread (dotted regions). The main thread is only
tasked with the maximum-likelihood estimator and analyzing candidate segments.

2.3 Change Detection

The priority queue posterior (with covariance X'%)) represents the uncertainty
over the calibration parameters considering the top k segments in the trajec-
tory. As these segments are usually not temporally consecutive, this distribution
encodes the long term belief over the calibration parameters. Conversely, the can-
didate segment posterior (with covariance X) is calculated based on the most
recent measurements and represents an instantaneous belief over the calibration
parameters. If there is a sudden change in calibration parameters, for example
if the camera is rotated or moved to a different location on the platform, then
this will manifest as a difference in the means of the two posterior distributions.
This task of comparing the means of two multivariate normal distributions with
different covariances is known as the Multivariate Behrens-Fisher problem.
When the posterior of the priority queue and the candidate segment is over
a set of calibration parameters that represent an SE(3) pose, special attention
has to be given to comparing the means of these distributions, particularly with
regards to the rotation. A minimal local parameterization is used for the rotation
component of the 6 DOF SE(3) pose, so when comparing two posteriors over
rotations in the s0(3) tangent space, one posterior must be transported to the
tangent space of the other by means of the Adjoint map, which for SO(3) is:
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Adp :R® - R, Adp =R, (5)

which allows moving the matrix exponential from the right-hand side to the
left-hand side:

—

A-exp(T) =exp(Ada - x) - A, (6)

where if ¢ € s0(3) is in minimal 3-vector tangent representation, and Ms, 5 is

the space of (3 x 3) skew-symmetric matrices, then the map (-) : ¢ — M, 5.

By transporting the tangent space rotation posterior from the candidate
segment to the tangent space of the priority queue posterior, the null hypothesis
that the means are equal can be tested:

Hy = ppq = ps (7)

The F distribution for the null hypothesis is as in [9].

2.4 Adaptive Asynchronous Conditioning

An adaptive asynchronous conditioning [8] solution is employed to avoid the
use of a prior distribution on the sliding window SLAM. When conditioning
is used instead of marginalization, current active parameters are conditioned
on previous parameters, which are assumed to be correct. However since new
information may alter the estimate for previous poses, a sliding window pose
and landmark estimation is run on a separate thread. This sliding window can
adaptively increase its size to alter previous poses based on new measurements.
The criteria to increase the window is based on the “tension” of the condition-
ing residuals, explained as follows. Conditioning residuals are the residual terms
connecting an active and inactive pose. For example, a landmark that has a
reference frame in an inactive pose, but is seen in an active pose will have a
conditioning visual residual. The window is expanded when the current estimate
for a parameter falls outside of the expected estimate based on the conditioning
residual. Since multiple sensor modalities are used, the Mahalanobis distance of
each conditioning residual is thresholded in a x? test to probabilistically deter-
mine when a residual is outside of its expected interval (inducing “tension” in
that residual).

3 Experimental Results

In order to evaluate the proposed method, experiments were run on two sensor
platforms known as “rigs.” Both rigs were equipped with a monocular camera
and a commercial grade MEMS-based IMU. Rig A is a smartphone-like mobile
device with an integrated global shutter camera with a wide field-of-view lens at
640 x 480 resolution and a commercial MEMS IMU sampled at 120 Hz. Rig B
is a Ximea MQO022CG-CM camera with a wide field-of-view lens at 2040 x 1080
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resolution downsampled to 640 x 480 coupled with a LORD MicroStrain 3DM-
GX3 MEMS IMU, sampled at 200 Hz. Cameras on both rigs capture images
at 30 frames per second. In all experiments, the AAC system is comprised of
a fixed-window estimator with a 10 keyframe window width and an asynchro-
nous adaptive estimator (as per Sect.2.4) with a minimum window size of 20
keyframes. As broached in Sect.2.1, when both the camera intrinsic parame-
ters and the camera-to-IMU transform are unknown, an initial batch optimiza-
tion comprising all poses, landmarks and calibration parameters (but no IMU
measurements) runs until its entropy falls below a predetermined threshold, at
which point the camera intrinsic calibration is handed over to the self-calibration
framework discussed in Sect. 2.2. At this point the IMU initialization procedure
is engaged—first separately estimating rotation and translation by solving a lin-
ear system, then handing over initial estimates on the camera-to-IMU transform
to a batch estimation for refinement. Once the batch camera-to-IMU estimation
has fallen below a predetermined entropy, the estimation is passed on to the
rolling self-calibrating framework for constant-time estimation.

83 \\, _ N ——roll (rad)
0 \:\’\ ””” e 0.05 |\ v -~ ao T
—02} T AR S
0.4 Y o
0 500 1,000 0 500 1,000
0.4 0.05
0 —
oA —005, — pitch (rad)
4 _01 =
0 500 1,000 0 500 1,000
1.62 —
83 ) —— 7z (meters) [ . .
I NS — - 1.58 - 8
o2l T 156 — =
—04 1.54 1.7~ —— yaw (rad)
’ 1.52
0 500 1,000 > 0 500 1,000
keyframe keyframe

Fig. 3. Results of a reconstructed indoor dataset spanning 1200 keyframes and 2972
frames. The priority queue consisted of 5 segments with 30 poses in each segment.
Camera-to-IMU translation and rotation estimates (solid blue line), with their 3 sigma
bounds (dotted red line). The pseudo ground truth (solid black line), obtained by offline
calibration procedures is shown to be close to the online estimates, with average sub-
degree rotation error and centimeter-level translation error.

The first experiment was run on Rig A, with unknown camera and camera-to-
IMU calibration parameters. The camera calibration was initialized to common
values: focal lengths f, and f, were set to 90° and the central points ¢, and ¢,
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were set to half the image width and height, respectively. The initial camera-
to-IMU transform is set to identity, i.e. that the sensors are co-located. Figure 3
shows the results of camera-to-IMU estimation of the system running on a sample
data-set, in which it can be seen that the priority queue is successfully tracking
the offline estimates [17]. Of note are the limited observability of the rotation
about the axis of gravity (yaw) and the relatively constant uncertainty. This
is due to the fixed number of segments in the priority queue, which can be
expanded to include more segments and approximate the batch estimate, at the
cost of computational processing. Figure4 shows the camera intrinsics on the
same dataset.

A second experiment was performed on Rig B, where only the camera-to-IMU
parameters were being estimated, but the position of the IMU was physically
changed mid-dataset. This experiment’s results are show in Fig. 5.
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Fig. 4. Self-calibration camera intrinsic parameters. Neither camera intrinsic or
camera-to-IMU extrinsic parameters were known. Even with total uncertainty on all
calibration parameters at the start, convergence to offline values is observed for both
camera intrinsic and extrinsic parameters.

4 Discussion

In Fig.4, a sharp drop is witnessed in uncertainty on all intrinsic parameters
around keyframe 820, where a particularly informative segment was swapped
into the queue. The same behavior is not witnessed around keyframe 820 for the
camera-to-IMU transform estimate in Fig. 3, which strongly suggests the need
for different queues for different sensors. Supporting the initialization sequence
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Fig. 5. Indoor dataset on Rig B, the IMU position was manually changed mid-dataset.
Only the y component of translation was changed, all other parameters remained the
same. as shown by the pseudo ground truth line (black line). The system automatically
detected a change in mean and re-estimated all parameters.

used for SE(3) transform approximation, Fig. 5 demonstrates rapid convergence
to new translation parameters when the sensors are moved with respect to one
another on Rig B. The entropy of the priority queue increases temporarily until
enough post-change segments are added.

Some discrepancies between the offline values and the estimates from the
priority queue can be observed (such as on the rotation values in Fig. 3). This
can be caused by a number of factors: (1) the offline calibration is only a pseudo-
ground truth, and (2) lack of observability of these parameters, especially yaw,
since we only use naturally occurring features. Note that the self-calibration
sequence we suggest relies on non-degenerate motions that excite the appropriate
degrees of freedom so as to render them observable, which we have found to occur
naturally in experimental hand-held datasets.

A particular failure case is through slow changes of calibration parameters
through a data collection. Changes in parameter values are currently induced as
a step function; however, if a calibration parameter changes incrementally over
time, it will not trigger a change event, as per Sect. 2.3. Instead, new segments
with low entropy will be swapped into the priority queue, mixed with past seg-
ments that presented a different mean. Another failure case is related to the
determinant-based scoring system, which could result in a very low uncertainty
for an unobservable parameter. These drawbacks warrant further development
of a more robust scoring system.
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5 Conclusions and Future Work

This paper presents online, constant-time self-calibration and change detection
with re-calibration for joint estimation of camera-to-IMU transform and cam-
era intrinsic parameters, using only naturally occurring features. The system
is evaluated with experimental data and shown to converge to offline calibra-
tion estimates with centimeter level accuracy for camera-to-IMU translation,
and sub-degree accuracy for rotation. The statistical change detection frame-
work presented in [9] and summarized in Sect.2.3 has been extended to the
camera-to-IMU transform, including a statistical comparison of distributions
over candidate segments for a SE(3) pose.

The use of an adaptive conditioning window for re-estimation of past poses
allows this framework to operate in long-term applications where the accumu-
lation of linearization errors in a prior distribution would lead to significant
drift. We presented a framework that supports adding additional sensors while
maintaining online operation. To the authors’ best knowledge this is the first
application of multi-sensor self-calibration with automatic change detection and
re-estimation of parameters.
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