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Abstract. We describe a learning-based approach to hand-eye coordi-
nation for robotic grasping from monocular images. To learn hand-eye
coordination for grasping, we trained a large convolutional neural net-
work to predict the probability that task-space motion of the gripper will
result in successful grasps, using only monocular camera images and inde-
pendently of camera calibration or the current robot pose. This requires
the network to observe the spatial relationship between the gripper and
objects in the scene, thus learning hand-eye coordination. We then use
this network to servo the gripper in real time to achieve successful grasps.
To train our network, we collected over 800,000 grasp attempts over the
course of two months, using between 6 and 14 robotic manipulators at
any given time, with differences in camera placement and hardware. Our
experimental evaluation demonstrates that our method achieves effec-
tive real-time control, can successfully grasp novel objects, and corrects
mistakes by continuous servoing.
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1 Introduction

When humans and animals engage in object manipulation behaviors, the interac-
tion inherently involves a fast feedback loop between perception and action. Even
complex manipulation tasks, such as extracting a single object from a cluttered
bin, can be performed with hardly any advance planning, relying instead on feed-
back from touch and vision. In contrast, robotic manipulation often (though not
always) relies more heavily on advance planning and analysis, with relatively sim-
ple feedback, such as trajectory following, to ensure stability during execution.
Part of the reason for this is that incorporating complex sensory inputs such as
vision directly into a feedback controller is exceedingly challenging. Techniques
such as visual servoing [Siciliano and Khatib 2007] perform continuous feedback
on visual features, but typically require the features to be specified by hand,
and both open loop perception and feedback (e.g. via visual servoing) requires
manual or automatic calibration to determine the precise geometric relationship
between the camera and the robot’s end-effector.
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Fig. 1. Our large-scale data collection setup, consisting of 14 robotic manipulators. We
collected over 800,000 grasp attempts to train the CNN grasp prediction model.

We propose a learning-based approach to hand-eye coordination, which we
demonstrate on a robotic grasping task. Our approach is data-driven and goal-
centric: our method learns to servo a robotic gripper to poses that are likely to
produce successful grasps, with end-to-end training directly from image pixels
to task-space gripper motion. By continuously recomputing the most promis-
ing motor commands, our method continuously integrates sensory cues from the
environment, allowing it to react to perturbations and adjust the grasp to max-
imize the probability of success. Furthermore, the motor commands are issued
in the frame of the robot, which is not known to the model at test time. This
means that the model does not require the camera to be precisely calibrated
with respect to the end-effector, but instead uses visual cues to determine the
spatial relationship between the gripper and graspable objects in the scene.

Our method consists of two components: a grasp success predictor, which
uses a deep convolutional neural network (CNN) to determine how likely a given
motion is to produce a successful grasp, and a continuous servoing mechanism
that uses the CNN to continuously update the robot’s motor commands. By
continuously choosing the best predicted path to a successful grasp, the servoing
mechanism provides the robot with fast feedback to perturbations and object
motion, as well as robustness to inaccurate actuation.

The grasp prediction CNN was trained using a dataset of over 800,000 grasp
attempts, collected using a cluster of similar (but not identical) robotic manipu-
lators, shown in Fig. 1, over the course of several months. Our experimental eval-
uation demonstrates that our convolutional neural network grasping controller
achieves a high success rate when grasping in clutter on a wide range of objects,
including objects that are large, small, hard, soft, deformable, and translucent.
Supplemental videos of our grasping system show that the robot employs contin-
uous feedback to constantly adjust its grasp, accounting for motion of the objects
and inaccurate actuation commands. We also compare our approach to open-
loop alternative designs to demonstrate the importance of continuous feedback,
as well as a hand-engineering grasping baseline that uses manual hand-to-eye
calibration and depth sensing. Our method achieves the highest success rates in
our experiments1.

1 An extended version of this paper is available online [Levine et al. 2016].
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2 Related Work

Robotic grasping is one of the most widely explored areas of manipulation. A
complete survey of grasping is outside the scope of this work, and we refer the
reader to standard surveys on the subject for a more complete treatment [Bohg
et al. 2014], while in this section we primarily discuss data-driven prior grasping
methods, which are the most related to the present work. Such methods take a
variety of forms, including human-supervised methods that predict grasp config-
urations [Herzog et al. 2014, Lenz et al. 2015] and methods that predict finger
placement from geometric criteria computed offline [Goldfeder et al. 2009]. Both
types of data-driven grasp selection have recently incorporated deep learning
[Kappler et al. 2015, Lenz et al. 2015, Redmon and Angelova 2015]. Feedback
has been incorporated into grasping primarily as a way to achieve the desired
forces for force closure and other dynamic grasping criteria [Hudson et al. 2012],
as well as in the form of standard servoing mechanisms, including visual servoing
(described below) to servo the gripper to a pre-planned grasp pose [Kragic and
Christensen 2002]. The method proposed in this work is entirely data-driven,
and does not rely on any human annotation either at training or test time, in
contrast to prior methods based on grasp points. Furthermore, our approach
continuously adjusts the motor commands to maximize grasp success, provid-
ing continuous feedback. Comparatively little prior work has addressed direct
visual feedback for grasping, most of which requires manually designed features
to track the end effector [Vahrenkamp et al. 2008, Hebert et al. 2012].

Our approach is most closely related to recent work on self-supervised learn-
ing of grasp poses by [Pinto and Gupta 2016]. This prior work proposed to learn
a network to predict the optimal grasp orientation for a given image patch,
trained with self-supervised data collected using a heuristic grasping system
based on object proposals. In contrast to this prior work, our approach achieves
continuous hand-eye coordination by observing the gripper and choosing the
best motor command to move the gripper toward a successful grasp, rather
than making open-loop predictions. Furthermore, our approach does not require
proposals or crops of image patches and, most importantly, does not require
calibration between the robot and the camera, since the closed-loop servoing
mechanism can compensate for offsets due to differences in camera pose by con-
tinuously adjusting the motor commands. We trained our method using over
800,000 grasp attempts on a very large variety of objects, which is more than an
order of magnitude larger than prior methods based on direct self-supervision
[Pinto and Gupta 2016] and more than double the dataset size of prior methods
based on synthetic grasps from 3D scans [Kappler et al. 2015].

Another related area is visual servoing, which addresses moving a camera or
end-effector to a desired pose using visual feedback [Kragic and Christensen 2002,
Siciliano and Khatib 2007]. In contrast to our approach, visual servoing methods
are typically concerned with reaching a pose relative to objects in the scene, and
often (though not always) rely on manually designed or specified features for
feedback control. To the best of our knowledge, no prior learning-based method
has been proposed that uses visual servoing to directly move into a pose that
maximizes the probability of success on a given task (such as grasping).



176 S. Levine et al.

3 Overview

Our approach to learning hand-eye coordination for grasping consists of two
parts. The first part is a prediction network g(It,vt) that accepts visual input
It and a task-space motion command vt, and outputs the predicted probability
that executing the command vt will produce a successful grasp. The second part
is a servoing function f(It) that uses the prediction network to continuously
control the robot to servo the gripper to a success grasp. By breaking up the
hand-eye coordination system into components, we can train the CNN grasp pre-
dictor using a standard supervised learning objective, and design the servoing
mechanism to utilize this predictor to optimize grasp performance. In order to
train our prediction network, we collected over 800,000 grasp attempts using a
set of similar (but not identical) robotic manipulators, shown in Fig. 1. To ensure
generalization of the learned prediction network, the specific parameters of each
robot varied in terms of the camera pose relative to the robot, providing indepen-
dence to camera calibration. Furthermore, uneven wear and tear on each robot
resulted in differences in the shape of the gripper fingers. Although accurately
predicting optimal motion vectors in open-loop is not possible with this degree of
variation, as demonstrated in our experiments, our continuous servoing method
can correct mistakes by observing the outcomes of its past actions, achieving a
high success rate even without knowledge of the precise camera calibration.

4 Grasping with CNNs and Continuous Servoing

In this section, we discuss each component of our approach, including a descrip-
tion of the neural network architecture and the servoing mechanism.

4.1 Grasp Success Prediction with Convolutional Neural Networks

The grasp prediction network g(It,vt) is trained to predict whether a given task-
space motion vt will result in a successful grasp, based on the current camera
observation It. In order to make accurate predictions, g(It,vt) must be able
to parse the current camera image, locate the gripper, and determine whether
moving the gripper according to vt will put it in a position where closing the
fingers will pick up an object. This is a complex spatial reasoning task that
requires not only the ability to parse the geometry of the scene from monocular
images, but also the ability to interpret material properties and spatial relation-
ships between objects, which strongly affect the success of a given grasp. A pair
of example input images for the network is shown in Fig. 2, overlaid with lines
colored accordingly to the inferred grasp success probabilities. Importantly, the
movement vectors provided to the network are not transformed into the frame
of the camera, which means that the method does not require hand-to-eye cam-
era calibration. However, this also means that the network must itself infer the
outcome of a task-space motor command by determining the orientation and
position of the robot and gripper.
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Fig. 2. Left: diagram of the grasp sample setup. Each grasp i consists of T time steps,
with each time step corresponding to an image Ii

t and pose pi
t. The final dataset

contains samples (Ii
t ,p

i
T − pi

t, �i) that consist of the image, a vector from the current
pose to the final pose, and the grasp success label. Right: example input image pair
provided to the network, overlaid with lines to indicate sampled target grasp positions.
Colors indicate their probabilities of success: green is 1.0 and red is 0.0. The grasp
positions are projected onto the image using a known calibration only for visualization.
The network does not receive the projections of these poses onto the image, only offsets
from the current gripper position in the frame of the robot.

Data for training the CNN grasp predictor is obtained by attempting grasps
using real physical robots. Each grasp consists of T time steps. At each time
step, the robot records the current image Ii

t and the current pose pi
t, and then

chooses a direction along which to move the gripper. At the final time step T , the
robot closes the gripper and evaluates the success of the grasp (as described in
Sect. 5), producing a label �i. Each grasp attempt results in T training samples,
given by (Ii

t ,p
i
T − pi

t, �i). That is, each sample includes the image observed at
that time step, the vector from the current pose to the one that is eventually
reached, and the success of the entire grasp. This process is illustrated in Fig. 2.
This procedure trains the network to predict whether moving a gripper along a
given vector and then grasping will produce a successful grasp. Note that this
differs from the standard reinforcement-learning setting, where the prediction is
based on the current state and motor command, which in this case is given by
pt+1 − pt.

The architecture of our grasp prediction CNN is shown in Fig. 3. The network
takes the current image It as input, as well as an additional image I0 that is
recorded before the grasp begins, and does not contain the gripper. This addi-
tional image provides an unoccluded view of the scene. The two input images are
concatenated and processed by 5 convolutional layers with batch normalization,
following by max pooling. After the 5th layer, we provide the vector vt as input
to the network. The vector is represented by 5 values: a 3D translation vector,
and a sine-cosine encoding of the change in orientation of the gripper about the
vertical axis.2 To provide this vector to the convolutional network, we pass it
through one fully connected layer and replicate it over the spatial dimensions of
the response map after layer 5, concatenating it with the output of the pooling

2 In this work, we only consider vertical pinch grasps, though extensions to other grasp
parameterizations would be straightforward.
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Fig. 3. The architecture of our CNN grasp predictor. The input image It, as well as
the pregrasp image I0, are fed into a 6 × 6 convolution with stride 2, followed by 3 × 3
max-pooling and 6 5×5 convolutions. This is followed by a 3×3 max-pooling layer. The
motor command vt is processed by one fully connected layer, which is then pointwise
added to each point in the response map of pool2 by tiling the output over the special
dimensions. The result is then processed by 6 3 × 3 convolutions, 2 × 2 max-pooling,
3 more 3 × 3 convolutions, and two fully connected layers with 64 units, after which
the network outputs the probability of a successful grasp through a sigmoid. Each
convolution is followed by batch normalization.

layer. After this concatenation, further convolution and pooling operations are
applied, as described in Fig. 3, followed by a set of small fully connected layers
that output the probability of grasp success, trained with a cross-entropy loss
to match �i, causing the network to output p(�i = 1). The input matches are
512 × 512 pixels, and we randomly crop the images to a 472 × 472 region during
training to provide for translation invariance.

Once trained the network g(It,vt) can predict the probability of success of
a given motor command, independently of the exact camera pose. In the next
section, we discuss how this grasp success predictor can be used to continuous
servo the gripper to a graspable object.

4.2 Continuous Servoing

In this section, we describe the servoing mechanism f(It) that uses the grasp
prediction network to choose the motor commands for the robot that will maxi-
mize the probability of a success grasp. The most basic operation for the servoing
mechanism is to perform inference in the grasp predictor, in order to determine
the motor command vt given an image It. The simplest way of doing this is
to randomly sample a set of candidate motor commands vt and then evaluate
g(It,vt), taking the command with the highest probability of success. However,
we can obtain better results by running a small optimization on vt, which we
perform using the cross-entropy method (CEM) [Rubinstein and Kroese 2004].
CEM is a simple derivative-free optimization algorithm that samples a batch of
N values at each iteration, fits a Gaussian distribution to M < N of these sam-
ples, and then samples a new batch of N from this Gaussian. We use N = 64 and
M = 6 in our implementation, and perform three iterations of CEM to determine
the best available command v�

t and thus evaluate f(It). New motor commands
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are issued as soon as the CEM optimization completes, and the controller runs
at around 2 to 5 Hz.

One appealing property of this sampling-based approach is that we can easily
impose constraints on the types of grasps that are sampled. This can be used,
for example, to incorporate user commands that require the robot to grasp in a
particular location, keep the robot from grasping outside of the workspace, and
obey joint limits. It also allows the servoing mechanism to control the height
of the gripper during each move. It is often desirable to raise the gripper above
the objects in the scene to reposition it to a new location, for example when
the objects move (due to contacts) or if errors due to lack of camera calibration
produce motions that do not position the gripper in a favorable configuration
for grasping.

We can use the predicted grasp success p(� = 1) produced by the network
to inform a heuristic for raising and lowering the gripper, as well as to choose
when to stop moving and attempt a grasp. We use two heuristics in particular:
first, we close the gripper whenever the network predicts that (It, ∅), where ∅
corresponds to no motion, will succeed with a probability that is at least 90%
of the best inferred motion v�

t . The rationale behind this is to stop the grasp
early if closing the gripper is nearly as likely to produce a successful grasp as
moving it. The second heuristic is to raise the gripper off the table when (It, ∅)
has a probability of success that is less than 50% of v�

t . The rationale behind
this choice is that, if closing the gripper now is substantially worse than moving
it, the gripper is most likely not positioned in a good configuration, and a large
motion will be required. Therefore, raising the gripper off the table minimizes
the chance of hitting other objects that are in the way. While these heuristics
are somewhat ad-hoc, we found that they were effective for successfully grasping
a wide range of objects in highly cluttered situations, as discussed in Sect. 6.
Pseudocode for the servoing mechanism f(It) is presented in Algorithm 1.

Algorithm 1. Servoing mechanism f(It)
1: Given current image It and network g.
2: Infer v�

t using g and CEM.
3: Evaluate p = g(It, ∅)/g(It, v

�
t ).

4: if p > 0.9 then
5: Output ∅, close gripper.
6: else if p ≤ 0.5 then
7: Modify v�

t to raise gripper height and execute v�
t .

8: else
9: Execute v�

t .
10: end if
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Fig. 4. Images from the cameras of each of the robots during training, with each
robot holding the same joint configuration. Note the variation in the bin location, the
difference in lighting conditions, the difference in pose of the camera relative to the
robot, and the variety of training objects.

5 Large-Scale Data Collection

monocular
camera

7 DoF
arm

2-finger
gripper

object
bin

In order to collect training data to train
the prediction network g(It,vt), we used
between 6 and 14 robotic manipulators at
any given time. A diagram of one such
robot appears on the right, and an illustra-
tion of our data collection setup is shown
in Fig. 1. We collected about 800,000 grasp
attempts over the course of two months,
using between 6 and 14 robots at any given
point in time, without any manual anno-
tation or supervision. The data collection
process started with random motor com-
mand selection and T = 2, which was used to collect about half of the dataset.
For the other half, the network was updated about 4 times, and the number of
steps was gradually increased to T = 10. The last command is always vT = ∅
and corresponds to closing the gripper without moving. When executing com-
pletely random motor commands, the robots were successful on 10%–30% of the
grasp attempts, depending on the current objects.

The objects were chosen to be common household and office items, and
ranged from a 4 to 20 cm in length along the longest axis. Some of these are
shown in Fig. 4. The objects were periodically swapped out to increase the diver-
sity of the training data.

Grasp success was evaluated using two methods: first, we marked a grasp as
successful if the position reading on the gripper was greater than 1 cm, indicating
that the fingers had not closed fully. However, this method often missed thin
objects, and we also included a drop test, where the robot picked up the object,
recorded an image of the bin, and then dropped any object that was in the
gripper. By comparing the image before and after the drop, we could determine
whether any object had been picked up.
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6 Experiments

Fig. 5. Previously unseen objects used
for testing (left) and the setup for
grasping without replacement (right).
The test set included heavy, light, flat,
large, small, and translucent objects.

To evaluate our continuous grasping sys-
tem, we conducted a series of quantitative
experiments with novel objects that were
not seen during training. The particular
objects used in our evaluation are shown
in Fig. 5. This set of objects presents a
challenging cross section of common office
and household items, including objects
that are heavy, such as staplers and tape
dispensers, objects that are flat, such as
post-it notes, as well as objects that are
small, large, rigid, soft, and translucent.

6.1 Experimental Setup

The goal of our evaluation was to answer the following questions: (1) does
continuous servoing significantly improve grasping accuracy and success rate?
(2) how well does our learning-based system perform when compared to alter-
native approaches? To answer question (1), we compared our approach to an
open-loop method that observes the scene prior to the grasp, extracts image
patches, chooses the patch with the highest probability of a successful grasp,
and then uses a known camera calibration to move the gripper to that location.
This method is analogous to the approach proposed by Pinto and Gupta [2016],
but uses the same network architecture as our method and the same training
set. We refer to this approach as “open loop,” since it does not make use of con-
tinuous visual feedback. To answer question (2), we also compared our approach
to a random baseline method, as well as a hand-engineered grasping system that
uses depth images and heuristic positioning of the fingers. This hand-engineered
system is described further in the extended version of the paper [Levine et al.
2016]. Note that our method requires fewer assumptions than either of the two
alternative methods: unlike Pinto and Gupta [2016], we do not require knowl-
edge of the camera to hand calibration, and unlike the hand-engineered system,
we do not require either the calibration or depth images.

We evaluated the methods using two experimental protocols. In the first
protocol, the objects were placed into a bin in front of the robot, and it was
allowed to grasp objects for 100 attempts, placing any grasped object back into
the bin after each attempt. Grasping with replacement tests the ability of the
system to pick up objects in cluttered settings, but it also allows the robot to
repeatedly pick up easy objects. To address this shortcoming of the replacement
condition, we also tested each system without replacement, as shown in Fig. 5,
by having it remove objects from a bin. For this condition, which we refer to
as “without replacement,” we repeated each experiment 4 times, and we report
success rates on the first 10, 20, and 30 grasp attempts.
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6.2 Comparisons

without
replacement

first 10
(N = 40)

first 20
(N = 80)

first 30
(N = 120)

random 67.5% 70.0% 72.5%
hand-designed32.5% 35.0% 50.8%
open loop 27.5% 38.7% 33.7%
our method 10.0% 17.5% 17.5%

with
replacement

failure rate (N = 100)

random 69%
hand-designed35%
open loop 43%
our method 20%

Fig. 6. Failure rates of each method for each
evaluation condition. When evaluating without
replacement, we report the failure rate on the
first 10, 20, and 30 grasp attempts, averaged
over 4 repetitions of the experiment.

The results are presented in Fig. 6.
The success rate of our method
exceeded the baseline and prior
methods in all cases. Without
replacement, our method cleared
the bin after 30 grasps on one
of the 4 attempts, and had only
one object left in the other
3 attempts. The hand-engineered
baseline struggled to resolve gras-
pable objects in clutter, since the
camera was positioned about a
meter away from the table, and
its performance also dropped in
the non-replacement case as the
bin was emptied, leaving only
small, flat objects that could not
be resolved by the depth cam-
era. Many practical grasping sys-
tems use a wrist-mounted camera
to address this issue [Leeper et al. 2014]. In contrast, our approach did not
require any special hardware modifications. The open-loop baseline was also less
successful. Although it benefited from the large dataset, which was more than
an order of magnitude larger than in prior work [Pinto and Gupta 2016], it did
not react to perturbations, movement of objects, and variability in actuation
and gripper shape.

Fig. 7. Left: grasps chosen for objects with similar blue appearance but different mate-
rial properties. Note that the soft sponge was grasped with a very different strategy
from the hard objects. Right: examples of difficult objects grasped by our algorithm,
including objects that are translucent, awkardly shaped, and heavy.
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6.3 Qualitative Results

Qualitatively, our method exhibited some interesting behaviors. Figure 7 shows
the grasps that were chosen for soft and hard objects. Our system preferred to
grasp softer objects by embedding the finger into the center of the object, while
harder objects were grasped by placing the fingers on either side. Our method
was also able to grasp a variety of challenging objects, some of which are shown
in Fig. 7. Other interesting grasp strategies, corrections, and mistakes can be
seen in our supplementary video: https://youtu.be/cXaic k80uM

7 Discussion and Future Work

We presented a method for learning hand-eye coordination for robotic grasping,
using deep learning to build a grasp success prediction network, and a contin-
uous servoing mechanism to use this network to continuously control a robotic
manipulator. By training on over 800,000 grasp attempts from 14 distinct robotic
manipulators with variation in camera pose, we can achieve invariance to camera
calibration and small variations in the hardware. Our approach does not require
calibration of the camera to the robot, instead using continuous feedback to cor-
rect errors resulting from discrepancies in calibration. Our experiments demon-
strate that our method can effectively grasp a wide range of different objects,
including novel objects not seen during training. Our results also show that
our method can use continuous feedback to correct mistakes and reposition the
gripper in response to perturbation and movement of objects in the scene.

One of the most exciting aspects of the proposed grasping method is the
ability of the learning algorithm to discover unconventional and non-obvious
grasping strategies. We observed, for example, that the system tended to adopt
a different approach for grasping soft objects, as opposed to hard ones. For hard
objects, the fingers must be placed on either side of the object for a success-
ful grasp. However, soft objects can be grasped simply by pinching into the
object, which is most easily accomplished by placing one finger into the mid-
dle, and the other to the side. In future work, we plan to further explore the
relationship between our self-supervised continuous grasping approach and rein-
forcement learning, in order to allow the methods to learn a wider variety of
grasp strategies from large datasets of robotic experience.

At a more general level, our work explores the implications of large-scale
data collection across multiple robotic platforms. In the long term, this class of
methods is particularly compelling for robotic systems that are deployed in the
real world, and therefore are naturally exposed to a wide variety of environments,
objects, lighting conditions, and wear and tear. A particularly exciting avenue
for future work is to explore how our method would need to change to apply it
to large-scale data collection across a large number of deployed robots engaged
in real world tasks, including grasping and other manipulation skills.

https://youtu.be/cXaic_k80uM
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