
ASPG: Generating OLAP Queries
for SPARQL Benchmarking

Xin Wang1(B), Steffen Staab1,2, and Thanassis Tiropanis1

1 Web and Internet Science Group, University of Southampton, Southampton, UK
xwang@soton.ac.uk

2 Institute for Web Science and Technology, University of Koblenz-Landau,

Mainz, Germany

Abstract. The increasing use of data analytics on Linked Data leads
to the requirement for SPARQL engines to efficiently execute Online
Analytical Processing (OLAP) queries. While SPARQL 1.1 provides
basic constructs, further development on optimising OLAP queries lacks
benchmarks that mimic the data distributions found in Link Data. Exist-
ing work on OLAP benchmarking for SPARQL has usually adopted
queries and data from relational databases, which may not well represent
Linked Data. We propose an approach that maps typical OLAP oper-
ations to SPARQL and a tool named ASPG to automatically generate
OLAP queries from real-world Linked Data. We evaluate ASPG by con-
structing a benchmark called DBOBfrom the online DBpedia endpoint,
and use DBOB to measure the performance of the Virtuoso engine.

Keywords: OLAP · Linked data · Benchmarking · Query generation ·
SPARQL · DBpedia

1 Introduction

Linked Data principles foster the provisioning and integration of a large amount
of heterogeneous distributed datasets [2]. SPARQL 1.1 [11] has introduced aggre-
gations that enable users to do basic analytics. Though limited, SPARQL 1.1 is
expressive enough to implement Online Analytical Processing (OLAP) which is
an approach to analysing and reporting multidimensional statistics from different
perspectives and levels of granularity [3,5].

OLAP contains a rich set of combinations of analytical operations which gen-
erate a high workload on SPARQL engines that target the support of analytics
queries. In fact, the scalability of SPARQL engines to execute OLAP queries
is still rather limited owing further development and optimization. Such opti-
mization and comparison of best developments critically depend on benchmarks
that can measure the performance of SPARQL engines on analytic tasks from
various perspectives. Several OLAP benchmarks for SPARQL have been pro-
posed. For example Kämpgen and Harth [12] convert queries and data from the
Star Schema Benchmark (SSB) to SPARQL and Linked Data using the RDF
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 171–185, 2016.
DOI: 10.1007/978-3-319-50112-3 13

172 X. Wang et al.

Data Cube Vocabulary [6]. Since SSB is based on a relational database scenario,
its data do not necessarily resemble common Linked Data structures. Another
example, the BowlognaBench [8], uses data and queries based on the Bowlogna
Ontology [7]. Similar to SSB for SPARQL, BowlognaBench covers a specific sce-
nario which may not represent the heterogeneity and structure of Linked Data.

Görlitz et al. [9] propose a SPARQL query generator called SPLODGE to
release benchmarks from pre-defined queries. Following the same direction we
present a tool called Analytical SPARQL Generator (ASPG) that generates
OLAP queries in SPARQL which can be used to construct benchmarks. ASPG
takes an RDF graph as input and selects triples by semi-random walk. Selected
triples are parametrised to generate basic graph patterns (BGPs) which are then
extended with aggregations that resemble OLAP operations. Queries produced
by ASPG are guaranteed to return results from the given RDF graph since
they are parametrised from triples in the RDF graph. We construct an analyt-
ical benchmark based on DBpedia, referred to as DBpedia OLAP Benchmark
(DBOB), using ASPG generated queries. We evaluate Virtuoso1 using DBOB
and present the results.

The remaining sections of this paper are organised as follows: technical details
of ASPG are described in Sect. 2; queries and dataset of DBOB are presented in
Sect. 3; experiment settings and evaluation result of DBOB are given in Sect. 4,
and conclusions are given in Sect. 6. Due to page limit, a complete list of DBOB
queries is given in http://xgfd.github.io/ASPG/.

2 Generating OLAP Queries from Linked Data

In this section we discuss the correspondence between typical OLAP operations
and SPARQL components, and provide details of generating SPARQL queries
from arbitrary RDF graphs that resemble typical OLAP operations.

SPARQL queries consist of basic graph patterns (BGPs) which can be viewed
as graphs with variable nodes. When evaluating a BGP against a RDF graph,
results are returned if and only if the BGP matches a sub-graph of the given
RDF. Consequently, given an arbitrary RDF graph, we can construct BGPs that
are guaranteed to return results by parametrising sub-graphs in the RDF. By
controlling the structure of sub-graphs we can obtain BGPs that consist of chains
or star-shaped triple patterns of arbitrary lengths. We simulate typical OLAP
operations by summarising along properties (using GROUP BY) with randomly
selected aggregate operations (e.g. SUM, COUNT, AVG etc.). In particular we
discuss the challenges to generate queries from RDF graphs that are too large
to fit in a single store and describe RDF summarising and sampling techniques
to resolve those issues.

2.1 Background of OLAP Operations

OLAP queries operate on a multidimensional data model that is referred to as
an OLAP cube. Each data point in the cube is associated with two types of
1 http://virtuoso.openlinksw.com/.

http://xgfd.github.io/ASPG/
http://virtuoso.openlinksw.com/

ASPG: Generating OLAP Queries for SPARQL Benchmarking 173

21

12

11

35

Q4

S1
S2

S4

47

P1 P3
Pollution (Pollutant)

Ti
m

e
(Q

ua
rt

er
)

Q3

Q2

Q1

S3

P4P2

10 18

30

3226

14

41 02 31

12 20 24 33

24 18 28 14
33 25 23 25

12 1
2

8
0

10
33

14 1
2

7
3
18

(

n)

S S
t ta
at ti

io o
n

measure
values

dimensions

35

27

(a)

Time

Day

Month

Semester

Pollution

Pollutant

Category Type

Group

Quarter

Year

Station

Station

All AllAll

date
season

name

name
loadLimit

name name

name

month

quarter

semester

year

(b)

Fig. 1. A three-dimensional cube having dimensions Time, Pollution, and Station,
and a measure concentration. Dimension hierarchies are shown on the right [4].

attributes, dimensions and measures. Dimensions identify data points and are
usually organised hierarchically. Measures represents associated values of a data
point and are usually operands of aggregations. An example of OLAP cube is
shown in Fig. 1. There is no clear distinction between dimensions and measures.
Any set of attributes that uniquely identifies a data point can be viewed as
dimensions, and the remaining attributes are measures.

Typical OLAP operations defined on cubes include:

– Dice: Selecting a subset of an OLAP cube (Fig. 2a).
– Slice: Slice is a specific case of dice picking a rectangular subset of a cube by

choosing a single value for one of its dimensions (Fig. 2b).
– Roll-up: Aggregating data by climbing up the hierarchy of a dimension

(Fig. 2c).
– Drill-down: Aggregating data at a lower level of the dimension hierarchy

(Fig. 2d). Drill-down is the reverse operation of roll-up.

In this paper we do not take into account operations that involve multiple
OLAP cubes, such as drill-across [4], since multiple RDF graphs can be merged
into one graph by taking their union.

Kämpgen et al. [13] describe an approach to map OLAP queries into SPARQL
queries with the RDF Data Cube (QB) vocabulary [6]. Since many Linked Data
and SPARQL queries do not use QB, we examine the semantics of the above
OLAP operations and propose a mapping between OLAP and SPARQL queries
that are not limited to specific vocabularies.

2.2 Generating Dice and Slice Queries in SPARQL

Dice and Slice select a subset of an OLAP cube while in SPARQL the same
functionality is achieved by BGPs.

174 X. Wang et al.

(a) Dice on Station = ‘S1’ or ‘S2’
and Time.Quarter = ‘Q1’ or
‘Q2’

(b) Slice on Station for Sta-
tionId = ‘S1’

(c) Roll-up to the Semester level (d) Drill-down to the Month level

Fig. 2. OLAP operations [4].

An OLAP data point and its attributes (dimensions and measures) corre-
spond to a subject and its properties in a RDF graph2. Dice selects multiple
data points in an OLAP cube, whereas in SPARQL it is analogous to a BGP
with optional constraints on object values (using FILTER), as shown below:

Query 1.

SELECT ?P ?Q ?S ?concentration

WHERE

{ ?point :Pollution ?P ; # FILTER(?P ="P1"|| ?P ="P2")

:Time ?Q ; # FILTER(?Q ="Q1"|| ?Q ="Q2")

:Station ?S ; # FILTER(?S ="S1"|| ?S ="S2")

:concentration :?concentration

}

2 Mapping an OLAP data point to a subject is just one intuitive approach. An OLAP
data point can be mapped to any RDF term.

ASPG: Generating OLAP Queries for SPARQL Benchmarking 175

Unlike in relational databases (where dimensions are usually keys that are
distinguished from measures), we argue that dimensions and measures are indis-
tinguishable in RDF and SPARQL. Thus any BGPs correspond to a valid Dice
operation (with Slice as a special case) in OLAP. There may be difficulties to
aggregate on certain types of values, since most aggregations in SPARQL are
arithmetic. Meanwhile it is always possible to convert an arbitrary type to a
numeric. For example a literal can be converted to its length (i.e. STRLEN),
and a resource can be converted to its number of occurrences (i.e. COUNT).
Queries generated with the above modifications may not be meaningful in a
practical sense, they serve the purpose as far as benchmarks are concerned. In
the rest of this paper we interchangeably use Dice query and BGP when no
confusion is caused.

2.3 Generating Roll-Up and Drill-Down Queries in SPARQL

Roll-up and drill-down group measure values at a specific dimension level and
aggregate values in each group using a given aggregate function. Without losing
generality, we focus on the mapping of roll-up since drill-down is the reverse
operation. In SPARQL Roll-up is achieved by GROUPing BY some variables
(i.e. dimensions) in a query and aggregate on other variables (i.e. measures).

Given a Dice query (a BGP basically) that selects entities at the specified
dimension levels (i.e. there is a triple pattern matching each of the specified
dimension levels), simply GROUPing BY the specified dimension levels and
applying an aggregate function on measure values (i.e. any variable object not
appeared in GROUP BY) would simulate Roll-up in SPARQL. Taking Query 1
as an example, if we would like to know the concentration of each pollutant at
each station averaged over all time points, we would GROUP BY variable ?P
and ?S and apply AVG on variable ?concentration, as shown in the query below:

Query 2.

SELECT ?P ?S (AVG(?concentration) AS ?avgCon)

WHERE

{ ?point :Pollution ?P ;

:Time ?Q ;

:Station ?S ;

:concentration :?concentration

} GROUP BY ?P ?S

It is worth noticing that GROUPing BY all variables in a BGP does not
change the result of the BGP3. Thus in SPARQL a Dice query can be trivially
extended to a Roll-up query by appending a GROUP BY all variables clause at
the end of its BGP.

A more involved case is when we are interested in dimension levels that do not
explicitly appear in a Dice query. For example, in Query 2 instead of asking for
3 It is enough to GROUP BY a subset of all variables that uniquely identifies an

entity. Variables excluded from GROUP BY can be selected using the SAMPLE
aggregation.

176 X. Wang et al.

concentration per pollutant, we may ask for the same measure per Category in
the Pollution hierarchy (shown in Fig. 1b). Depending on whether the hierarchy
(dimension instance as in [4]) is explicitly stated in the RDF graph being queried,
we use two different techniques to generate Roll-up queries.

Dimension hierarchy is explicit. Assuming the hierarchy is stated as triples,
e.g. in the form

Pi :rollupTo Cj

where Pi is an instance of Pollutant, Cj is an instance of Category and :rollupTo
states that its object is one level above its subject in the dimension hierarchy,
we can add the triple pattern

?P a Pollutant; :rollupTo ?C. ?C a Category.

to Query 2 and GROUP BY ?C (and ?S) instead of ?P.

Dimension hierarchy is absent. In this case values can be manually cate-
gorised in SPARQL using an IF expression

rdfTerm IF (boolean cond, rdfTerm expr1, rdfTerm expr2)

where the whole expression evaluates to the value of expr1 when cond evaluates
to true, otherwise expr2. By nesting IF expressions, we can define a surjective
(only) function

cat : rdfTerm → rdfTerm

that maps a value to a category defined by users. For example, assuming both
P1, 2 belong to C1, we can express cat in SPARQL as

cat(?P) := IF (?P = P1||?P = P2, C1, Other),

and convert Query 2 to the following query4

Query 3.

SELECT ?C ?S (AVG(?concentration) AS ?avgCon)

WHERE

{ ?point :Pollution ?P ;

:Time ?Q ;

:Station ?S ;

:concentration :?concentration

} GROUP BY (cat(?P) AS ?C) ?S

4 SPARQL 1.1 doesn’t have the ability to define new functions, and therefore cat
should be considered as a macro in Query 3.

ASPG: Generating OLAP Queries for SPARQL Benchmarking 177

This technique is more useful to categorise numerics (or elements of totally
ordered sets) into different ranges. For example, we can define a cat to group
numbers into ranges as

cat(x) := IF (x <= low, “Low′′, IF (x <= high, “Medium′′, “High′′))

where low and high are numbers.
Given a BGP (i.e. a Dice query), ASPG adopts a naive heuristic to extend it

to a Roll-up query: (1) It randomly selects a subset of all variables of the BGP
as dimensions, and the remains as measures; (2) All dimensions are used in a
GROUP BY clause; (3) If a measure is known to be numerical, it is aggregated
using one of the set functions COUNT, MAX, MIN, AVG, SUM, GroupConcat.
Otherwise, this measure is firstly converted to a literal with STR and then to
an integer with STRLEN, and aggregated using a set function. This procedure
is listed below:

queryGen(BGP)
D, M ∈ vars(BGP)
GroupBy ←“GROUP BY”
for d ∈ D

GroupBy ← concat(GroupBy, d)

SELECT ←“SELECT”
for m ∈ M

AGG ∈ {COUNT, MAX, MIN, AVG, SUM, GroupConcat}
if m is numerical

SELECT ← concat(SELECT, AGG(m))
else

SELECT ← concat(SELECT, AGG(STRLEN(STR(m))))

query ← concat(SELECT, BGP, GroupBy)
return query

2.4 Generating Basic Graph Patterns

We generate BGPs by replacing nodes in RDF graphs with variables. A RDF
graph (or a BGP) can be decomposed into star-shaped or chain-shaped sub
graph patterns. Considering a triple (or a triple pattern) as an undirected edge
between subject and object, we define the degree of a node as the number of
edges connecting to this node. A star-shaped graph pattern has one and only
one central node with a degree greater than 1 and all other nodes of degree 1. A
chain only has nodes whose degree are no more than 2. We generate a sub-graph
from a RDF graph by repeating two steps: (1) select one node in the RDF graph
as root, (2) add an edge connected to the root to the sub-graph. A star-shaped
graph pattern is generated by selecting the same node as root in every iteration,
while a chain is generated as selecting as root the other node in the last added

178 X. Wang et al.

edge in each iteration. We generate a mix of stars and chains by controlling a
branching probability of whether to select a different root in each step, as shown
in the pseudo code below, where RDF is a RDF graph, T is a termination
predicate function mapping a BGP to a boolean, p is branching probability, and
parametrise maps a non-property IRI to a variable:

BGPGen(RDF, T, p)
BGP ← {}
root ∈ IRIs(RDF)
while (!T(BGP))

E ← getTriples(root)
e ∈ E
BGP ← parametrise(e) ∪ BGP
if (random() < p)

root ← root
else

root ← getObject(e)
return BGP

The termination function is used to control the length of generated BGPs.
In this paper we define the termination condition to result in true if either the
BGP reaches 10 triple patterns or the longest path in the BGP reaches 5.

The above algorithm guarantees a non-empty result set when evaluating the
generated BGP against the source RDF, but there is no guarantee about the
size of the result. To avoid BGPs whose result size is too small for aggregation,
we evaluate generated BGPs and filter out those whose result size is less than
a threshold. This safe guard is not always necessary. Later we present a set of
queries generated from DBpedia and none of the BGPs falls below a threshold
of 100,000.

Generating BGP with large or remote RDF graphs. When using the
above method, one may encounter difficulties when the RDF graph cannot be
used as a direct input to BGPGen. For example, the graph may be too large to
be traversed or it is only available as a SPARQL endpoint. In order to deal with
such cases, we adopt techniques that combines ontology and triple sampling to
convert large RDF graphs into smaller ones. We describe our techniques using
DBpedia as an example, but the techniques can be applied to any graph.

To generate a BGP we need to know the connection between nodes. Such
information is often captured in an ontology-like structure of a RDF graph that
gather all instance level properties to their classes. For simplicity we still use
ontology to refer to such structure. We can issue a SPARQL CONSTRUCT
query to recover the ontology (assuming all instances in the RDF belong to some
classes, i.e. all rdf:type are explicit). However, to construct the whole ontology
in one query is likely to end with a time out. Instead, we first retrieve all classes,
and then use a script to collect properties between any two classes using the
query template below:

ASPG: Generating OLAP Queries for SPARQL Benchmarking 179

Query 4.

CONSTRUCT

{ dbo:$1 ?p dbo:$2 }

SELECT DISTINCT ?p

WHERE { [a dbo:$1] ?p [a dbo:$2]. }

where $1 and $2 are replaced by class names (e.g. Person, Event etc.). The
ontology is the union of all graphs returned by Query 4. The ontology can be
used as the input graph (i.e. the parameter G) in the BGP generation algorithm
with some extra care taken. Since all nodes in the ontology are classes, they
should all be replaced with variables in generated BGPs. In addition, when
following a reflexive property, a new variable should be used as root. For example,
dbo:Person has a reflexive property foaf:knows. When this property is included
in a BGP, its subject and object should be two different variables.

Using the ontology instead of the original RDF graph significantly reduces
the complexity of BGP generation. However it does not always guarantee that
the generated queries have results against the original graphs. For example in
DBpedia both Athlete and Artist are sub-classes of Person, an instance of either
Athlete or Artist may also has a rdf:type property pointing to Person. As a result
properties of both Athlete and Artist are gathered at Person. There is a chance
that an Athlete property and an Artist are connected to the same node in a
BGP, which may not match any triple in the original graph. This issue can be
relieved by gathering properties only to the lowest class of an instance, however
doing that in SPARQL is quite cumbersome5.

When the above method is not applicable (e.g. generating BGPs from DBpe-
dia), we employ triple sampling as an alternative approach to extract subsets
of RDF graphs. By repetitively sampling sub-graphs of simple shapes, a more
complex and larger sub-graph can be constructed. For example, in ASPG we
sample DBpedia using triple chains of length 5, as show in Query 5.

Query 5. Chained triple sampling

CONSTRUCT

{

?s ?p1 ?n1. ?n1 ?p2 ?n2.

?n2 ?p3 ?n3. ?n3 ?p4 ?n4.

?n4 ?p5 ?e.

}

WHERE

{

?s a dbo:$1. ?e a dbo:$2.

?s ?p1 ?n1. ?n1 ?p2 ?n2.

?n2 ?p3 ?n3. ?n3 ?p4 ?n4.

?n4 ?p5 ?e.

}

5 It requires to calculate the position of an item in a linked list and to identify the
maximum item in a set. Refer to https://git.io/vwP0t for more details.

https://git.io/vwP0t

180 X. Wang et al.

where $1 and $2 are replaced by class names. It is left to users to decide how
many and what class pairs are used. For example, in the construction of DBOB
we use the top 50 classes that have most instances, and it turns out that triple
chains sampled by Query 5 intertwine with each other. The result graph is sig-
nificantly smaller than DBpedia while its structure is rich enough to generate
complex queries.

In addition we may also want to identify properties whose ranges are numer-
ics, even it is always possible to convert an arbitrary type to a numeric in
SPARQL. Such information enables us to identify variables of numerics to which
aggregate functions can be directly applied.

2.5 Complexity Analysis

We examine the time complexity of aggregate functions used in ASPG, namely
GROUP BY and set functions COUNT, MAX, MIN, AVG, SUM, GroupConcat
(excluding SAMPLE).

GROUP BY can be realised by the application of a higher-order ‘map’ func-
tion on a constant time lower-order function and each set function can be mapped
to a higher-order ‘fold’ function on a constant time arithmetic function. All
aggregations used in ASPG have O(n) time complexity, where n is the size of
query result regardless of the grouping of the result. We exclude SAMPLE from
ASPG since it is a O(1) operation.

We conclude that the time complexity of aggregating on a BGP is linear
in the number of aggregate functions and independent of the grouping. In other
words, the time complexity of a query (generated by ASPG) can be characterised
by its BGP and its number of aggregate functions.

3 DBOB: A Benchmark Constructed with ASPG

In order to evaluate ASPG, we construct an OLAP benchmark named DBOB
from DBpedia’s online endpoint. DBOB contains 12 queries, of which Q1–3 are
real-world queries from online analysis and Q4–12 are generated with ASPG.

Query 4–12 are generated following the steps below:

1. Retrieving the top 50 classes from DBpedia having most instances.
2. Sampling from the DBpedia SPARQL endpoint using chains of length 5 whose

endpoints are drawn from instances of the 50 classes.
3. Generating OLAP queries from the RDF graph gained from step 2.
4. Evaluating the query against DBpedia and filtering out those whose result

size is less than 100,000.

Due to the page limit the complete list of DBOB queries is available at http://
xgfd.github.io/ASPG/.

http://xgfd.github.io/ASPG/
http://xgfd.github.io/ASPG/

ASPG: Generating OLAP Queries for SPARQL Benchmarking 181

4 Evaluation

We evaluate ASPG from two perspectives to show that ASPG is able to gen-
erate non-trivial queries. Firstly we compare DBOB queries to OLAP4LD-SSB
queries [12] with respect to query complexity and types of query patterns. Sec-
ondly we use DBOB to evaluate a Virtuoso engine and analyses the result.

4.1 DBOB Quereis Vs. OLAP4LD-SSB Queries

As stated in Sect. 2.5, the time complexity of a query can be decomposed into
the complexity of its BGPs and the numbers of aggregate functions. We roughly
measure the complexity of a BGP by its number of triple patterns6 (Table 1).

Table 1. Comparison of DBOB and OLAP4LD-SSB queries.

DBOB Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

of triple patterns 10 5 4 4 6 4 4 8 7 2 7 7

of group by-s 1 1 3 1 1 1 1 1 1 1 1 1

of set functions 2 3 3 4 5 4 3 8 7 1 7 7

OLAP4LD-SSB

of triple patterns 6 6 7 9 8 8 10 10 8 9 11 13

of group by-s 0 0 0 1 1 1 1 1 1 1 1 1

of set functions 1 1 1 1 1 1 1 1 1 1 1 1

Comparing to OLAP4LD-SSB, the number of triple patterns of ASPG queries
vary a lot, as a result of random sampling. In addition, since ASPG does not
focus on the semantic of queries, it can simply add as many aggregate functions
as required. The ability of providing triple patterns and aggregate functions on
demand makes ASPG a very flexible tool for benchmarking.

4.2 Evaluating Virtuosos with DBOB

We run DBOB on a DBPedia 3.9 endpoint hosted on a machine with the fol-
lowing settings: 4*2.9 GHz CPU, 16 G memory, Ubuntu 14.04.4, Virtuoso open-
source 7.1.0.

We use the BSBM query driver7 to execute all queries with 0 warm up and
20 runs.

6 The complexity of a BGP is also affected by the number of intermediate results in
each join. However the later requires detailed statistics to estimate which are not
always available.

7 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/
BenchmarkRules/index.html#datagenerator.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator

182 X. Wang et al.

The evaluation result is shown in Table 2, where QET stands for query exe-
cution time in seconds, #Rslt is the query result size before aggregation, #Trpl
is the number of triple patterns, and #AF is the number of aggregate func-
tions. We also calculate the correlation between QET and the number of triple
patterns, result size and the number of aggregate functions respectively.

Table 2. DBOB evaluation result.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

#Rslt 600 39.4K 10.4K 95.5K 59.1K 65.3K 548.5K 120.8K 258.8K 81.2M 175.5K 5.0M

QET 0.65 1.19 1.31 0.10 0.72 0.31 2.90 0.08 1.43 19.33 2.74 1.73

Correlation

#Rslt #Trpl #AF

QET 0.99 0.07 0.38

Most queries are finished in no more than 3 s. This may due to that queries
with aggregation usually do not need to materialise all intermediate results. In
addition we see the correlation between QET and the number of triple patterns
is quite low. It is not surprising since QET of BGPs is mainly affected by the
number of intermediate results which is not captured by only the number of
triple patterns. At the same time the number of aggregate functions shows a
higher impact on QET. One possible reason could be the high number of aggre-
gate functions in ASPG queries. Alternatively as the contribution to QET from
aggregation is liner to result size, the relatively higher impact from aggregation
may just be a side effect of the high correlation between the result size and QET.
It may be worth measuring only the execution time of aggregation, however such
measure is usually difficult to obtain from outside of query engines.

5 Related Work

We divide related work into two categories: SPARQL query generators and
SPARQL benchmarks.

5.1 Related Query Generators

ASPG generates queries from a RDF graph, which is similar to SPLODGE [9].
SPLODGE exploits query characteristics (e.g. join type, query type, variable pat-
tern) and constructs queries from a federated RDF graph. While ASPG focuses
on simulating OLAP queries, SPLODGE aims to generate queries for federated
benchmarks. Both decompose queries into star-shaped or chained triple patterns.
ASPG queries are generated by replacing nodes in a sub-RDF-graph with vari-
ables, while SPLODGE queries are generated from linked predicates (i.e. a pair
of predicates sharing a common node). SPLODGE queries are not guaranteed
to have results, but statistics are used to increase the chance.

ASPG: Generating OLAP Queries for SPARQL Benchmarking 183

FEASIBLE [16] represents a different approach to generate benchmark
queries. Instead of generating queries from a RDF graph, it takes existing queries
(from query logs) as prototypes and generates similar queries. Comparing to
ASPG and SPLODGE, FEASIBLE queries are usually more close to real-world
queries.

5.2 Related Benchmarks

To the best of our knowledge only two existing benchmarks are based in an
OLAP scenario, namely BowlognaBench [8] and OLAP4LD [12]. We also review
a few popular non-OLAP benchmarks.

– Lehigh University Benchmark (LUBM) [10] is designed with focus on inference
and reasoning capabilities of RDF engines.

– SP2Bench [17] has a focus of testing the performance of a variety of SPARQL
features.

– The Berlin SPARQL Benchmark (BSBM) [1] mimics a e-commerce scenario
and its dataset resembles a relational database.

– DBpedia SPARQL Benchmark (DBPSB) [14] uses (a sub set of) DBpedia as
testing data and most used DBpedia queries as testing queries.

– BowlognaBench models an OLAP use case around the Bowlogna Ontology [7]
and implements queries such as TopK, Max, Min, Path etc.

– OLAP4LD converts dataset and queries of the Star Schema Benchmark [15]
into RDF and SPARQL. It resembles OLAP queries in relational databases.

We compare DBOB with aforementioned benchmarks in Table 3.

Table 3. Comparison of DBOB and existing benchmarks, adapted from [14]. Synthetic
stands for artificially generated data; Real stands for real-world data; Mix stands for
a mix of the former two types.

LUMB SP2Bench BSBM DBPSB OLAP4LD Bowlogna DBOB

Dataset
type

Synthetic Synthetic Synthetic Real Synthetic Synthetic Real

Query type Synthetic Synthetic Synthetic Real Synthetic Synthetic Mix

Num. of
classes

43 8 8 239 7 76 239

Num. of
properties

32 22 51 1200 28 36 1200

6 Conclusions and Future Plan

In this paper we present ASPG that can be used to generate Dice, Slice, Roll-up
and Drill-down queries in SPARQL. By exploiting ontologies and triple sampling

184 X. Wang et al.

techniques, ASPG is able to generate queries from large RDF graphs or graphs
available as SPARQL endpoints. We further construct a benchmark called DBOB
with ASPG and DBpedia to evaluate processing time of OLAP SPARQL queries.

Queries generated by ASPG usually have more complex BGPs compared to
real-world queries. Perhaps human users are more likely to issue simple queries
and combine their results afterwards, due to the lack of convenient query builders
and constraints on query complexity from SPARQL endpoints. We argue that
as far as query processing time is concerned, generated queries may give more
insight on the performance of SPARQL engines than simple real-world queries.
In addition, it is likely that the increasing demand of SPARQL analytics will
foster better tools that enable users to generate complex queries. The Roll-up
generation heuristic used by ASPG may contribute to the creation of such tools.

Currently ASPG queries only consist of one BGP and randomly selected
aggregate functions, while real-world queries may also employ FILTERs and sub-
queries (e.g. Q2 and Q3 of DBOB). As a result ASPG queries only represent some
basic analytical needs. A future plan is to extend ASPG to generate multiple
BGPs and sub queries that covers a broader range of analysis operations.

References

1. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. (IJSWIS) - Special Issue on Scalability and Performance of Semantic Web
Systems 5(2), 1–24 (2009)

2. Capadisli, S., Auer, S., Riedl, R.: Linked Statistical Data Analysis. Semantic Web
(2013)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM SIGMOD Record 26(1), 65–74 (1997)

4. Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., Zimányi, E.: Cube
algebra: a generic user-centric model and query language for OLAP cubes. Int. J.
Data Warehous. Min. 9(2), 39–65 (2013)

5. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (on-line Analytical Process-
ing) to user-analysts: an IT mandate. Codd Date 32, 3–5 (1993)

6. Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube Vocabulary
7. Demartini, G., Enchev, I.: The bowlogna ontology: fostering open curricula and

agile knowledge bases for Europe ’ s higher education. Landscape 0, 1–11 (2012)
8. Demartini, G., Enchev, I., Wylot, M., Gapany, J., Cudré-Mauroux, P.:

BowlognaBench-Benchmarking RDF analytics. Data-Driven Process Discovery
Anal. 116, 82–102 (2011)

9. Görlitz, O., Thimm, M., Staab, S.: SPLODGE: systematic generation of SPARQL
benchmark queries for linked open data. In: Cudré-Mauroux, P., et al. (eds.) ISWC
2012. LNCS, vol. 7649, pp. 116–132. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35176-1 8

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
Web Semant. 3(2–3), 158–182 (2005)

11. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (2013)
12. Kämpgen, B., Harth, A.: No size fits all – running the star schema benchmark

with SPARQL and RDF aggregate views. In: Cimiano, P., Corcho, O., Presutti,
V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 290–304.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8 20

http://dx.doi.org/10.1007/978-3-642-35176-1_8
http://dx.doi.org/10.1007/978-3-642-35176-1_8
http://dx.doi.org/10.1007/978-3-642-38288-8_20

ASPG: Generating OLAP Queries for SPARQL Benchmarking 185

13. Kämpgen, B., ORiain, S., Harth, A.: Interacting with Statistical Linked Data via
OLAP Operations. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E.,
Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp.
87–101. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46641-4 7

14. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL
benchmark – performance assessment with real queries on real data. In: Aroyo,
L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25073-6 29

15. Neil, P.O., Neil, B.O., Chen, X.: Star Schema Benchmark - Revision 3. Technical
report, UMass/Boston (2009)

16. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE: a feature-based
SPARQL benchmark generation framework. In: Arenas, M., et al. (eds.) ISWC
2015. LNCS, vol. 9366, pp. 52–69. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25007-6 4

17. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL per-
formance benchmark. In: Proceedings of the International Conference on Data
Engineering, pp. 222–233. IEEE (2009)

http://dx.doi.org/10.1007/978-3-662-46641-4_7
http://dx.doi.org/10.1007/978-3-642-25073-6_29
http://dx.doi.org/10.1007/978-3-319-25007-6_4
http://dx.doi.org/10.1007/978-3-319-25007-6_4

	ASPG: Generating OLAP Queries for SPARQL Benchmarking
	1 Introduction
	2 Generating OLAP Queries from Linked Data
	2.1 Background of OLAP Operations
	2.2 Generating Dice and Slice Queries in SPARQL
	2.3 Generating Roll-Up and Drill-Down Queries in SPARQL
	2.4 Generating Basic Graph Patterns
	2.5 Complexity Analysis

	3 DBOB: A Benchmark Constructed with ASPG
	4 Evaluation
	4.1 DBOB Quereis Vs. OLAP4LD-SSB Queries
	4.2 Evaluating Virtuosos with DBOB

	5 Related Work
	5.1 Related Query Generators
	5.2 Related Benchmarks

	6 Conclusions and Future Plan
	References

