
Yuan-Fang Li · Wei Hu
Jin Song Dong · Grigoris Antoniou
Zhe Wang · Jun Sun
Yang Liu (Eds.)

 123

LN
CS

 1
00

55

6th Joint International Conference, JIST 2016
Singapore, Singapore, November 2–4, 2016
Revised Selected Papers

Semantic Technology

Lecture Notes in Computer Science 10055

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Yuan-Fang Li • Wei Hu
Jin Song Dong • Grigoris Antoniou
Zhe Wang • Jun Sun
Yang Liu (Eds.)

Semantic Technology
6th Joint International Conference, JIST 2016
Singapore, Singapore, November 2–4, 2016
Revised Selected Papers

123

Editors
Yuan-Fang Li
Information Technology
Monash University
Melbourne, VIC
Australia

Wei Hu
Computer Science and Technology
Nanjing University
Nanjing
China

Jin Song Dong
Computer Science
National University of Singapore
Singapore
Singapore

Grigoris Antoniou
University of Huddersfield
Huddersfield
UK

Zhe Wang
Information and Communication
Technology

Griffith University
Brisbane, QLD
Australia

Jun Sun
ISTD
Singapore University of Technology
and Design

Singapore
Singapore

Yang Liu
Computer Science and Engineering
Nanyang Technological University
Singapore
Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-50111-6 ISBN 978-3-319-50112-3 (eBook)
DOI 10.1007/978-3-319-50112-3

Library of Congress Control Number: 2016959173

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at JIST 2016: the 6th Joint International
Semantic Technology Conference held during November 2–4, 2016, in Singapore.
JIST 2016 was co-hosted by National University of Singapore, Nanyang Technological
University (Singapore), and Monash University (Australia). JIST is a regional feder-
ation of semantic technology-related conferences. It attracts many participants from
mainly the Asia Pacific region and often Europe and the USA. The mission of JIST is
to bring together researchers in semantic technology research and other areas of
semantic-related technologies to present their innovative research results and novel
applications.

The main topics of JIST 2016 include ontology and reasoning, linked data, and
knowledge graph, among others. JIST 2016 consisted of two keynotes, a main technical
track, including (full and short) papers from the research and the in-use tracks, a poster
and demo session, a workshop, and two tutorials. There were a total of 34 submissions
for the main technical tracks from 17 countries. All papers were reviewed by at least
three reviewers and the results were rigorously discussed by the program co-chairs.
In all, 16 full papers (47%) and eight short papers were accepted in the technical tracks.

The paper topics are divided into six categories: Ontology and Data Management,
Linked Data, Information Retrieval and Knowledge Discovery, RDF and Query,
Knowledge Graph, and Applications of Semantic Technologies.

We would like to thank the JIST Steering Committee, Organizing Committee, and
Program Committee for their significant contributions. We would also like to especially
thank the co-hosts for their support in making JIST 2016 a successful and memorable
event. Finally, we would like to express our appreciation to all speakers and partici-
pants of JIST 2016. This book is an outcome of their contributions.

November 2016 Yuan-Fang Li
Wei Hu

Jin Song Dong
Grigoris Antoniou

Zhe Wang
Jun Sun

Yang Liu

Organization

Program Committee

Paolo Bouquet University of Trento, Italy
Nopphadol Chalortham Silpakorn University, Thailand
C. Chantrapornchai Kasetsart University, Thailand
Gong Cheng Nanjing University, China
Paola Di Maio ISTCS.org/IIT Mandi, India
Stefan Dietze L3S Research Center, Germany
Dejing Dou University of Oregon, USA
Jae-Hong Eom Seoul National University, South Korea
Naoki Fukuta Shizuoka University, Japan
Volker Haarslev Concordia University, Canada
Armin Haller Australian National University, Australia
Masahiro Hamasaki National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Sungkook Han Wonkwang University, South Korea
Koiti Hasida AIST, Japan
Wei Hu Nanjing University, China
Eero Hyvönen Aalto University, Finland
Ryutaro Ichise National Institute of Informatics, Japan
Vahid Jalali Indiana University, USA
Jason Jung Chung-Ang University, South Korea
Yong-Bin Kang Monash University, Australia
Takahiro Kawamura Japan Science and Technology Agency, Japan
Pyung Kim Jeonju National University of Education, South Korea
Seiji Koide Ontolonomy, LLC, Japan
Kouji Kozaki Osaka University, Japan
Seungwoo Lee KISTII, South Korea
Tony Lee Saltlux, Inc., South Korea
Yuan-Fang Li Monash University, Australia
Riichiro Mizoguchi Japan Advanced Institute of Science and Technology,

Japan
Takeshi Morita Keio University, Japan
Ralf Möller Universität zu Lübeck, Germany
Shinichi Nagano Toshiba Corporation, Japan
Ikki Ohmukai National Institute of Informatics, Japan
Artemis Parvizi Oxford University Press, UK
Yuzhong Qu Nanjing University, China
Ulrich Reimer University of Applied Sciences St. Gallen, Switzerland

Giorgos Stoilos National Technical University of Athens (NTUA),
Greece

Umberto Straccia ISTI-CNR, Italy
Boontawee Suntisrivaraporn DTAC, Thailand
Hideaki Takeda National Institute of Informatics, Japan
Holger Wache University of Applied Science Northweastern

Switzerland, Switzerland
Haofen Wang East China University of Science and Technology,

China
Peng Wang Southeast University, China
Xin Wang Tianjin University, China
Zhe Wang Griffith University, Australia
Krzysztof Wecel Poznan University of Economics, Poland
Gang Wu College of Information Science and Engineering,

Northeastern University, China
Guohui Xiao KRDB Research Centre,

Free University of Bozen-Bolzano, Italy
Bin Xu DCST, Tsinghua University, China
Yasunori Yamamoto Database Center for Life Science, Japan
Xiang Zhang Southeast University, China
Yuting Zhao IBM Italy, Italy
Amal Zouaq Royal Military College of Canada, Canada

Organizing Committee

General Chairs

Jin Song Dong National University of Singapore, Singapore
Grigoris Antoniou University of Huddersfield, UK

Program Co-chairs

Yuan-Fang Li Monash University, Australia
Wei Hu Nanjing University, China

Publicity Chair

Zhe Wang Griffith University, Australia

Local Chair

Jun Sun Singapore University of Technology and Design,
Singapore

Workshop Co-chairs

Xin Wang Tianjing University, China
Hanmin Jung Korea Institute of Science and Technology

Information, Korea

VIII Organization

Tutorial Co-chairs

Armin Haller Australian National University, Australia
Gong Cheng Nanjing University, China

Poster and Demo Co-chairs

Zhichun Wang Beijing Normal University, China
Kouji Kozaki Osaka University, Japan

Finance Chair

Yang Liu Nanyang Technological University, Singapore

Publicity Chair

Haofen Wang East China University of Science and Technology,
China

Organization IX

Keynotes

Managing Dynamic Ontologies: Belief Revision
and Forgetting

Kewen Wang

Griffith University, Brisbane, Australia
k.wang@griffith.edu.au

Ontologies have recently been used in a wide range of practical domains such as
e-Science, e-Commerce, medical informatics, bio-informatics, and the Semantic Web.
An ontology is a formal model of some domain knowledge of the world. It specifies the
formalization of the domain knowledge as well as the meaning (semantics) of the for-
malization. The Web Ontology Language (OWL), with its latest version, OWL 2, is
based on description logics (DLs). Thus, an ontology is often expressed as a knowledge
base (KB) in DLs, which consists of both terminological knowledge (or schema
information) in the TBox and assertional knowledge (or data information) in the ABox.
As with all formal knowledge structures, ontologies are not static, but may evolve over
time. Indeed, ontology engineering is described as a life-cycle, which is based on
evolving prototypes and specific techniques peculiar to each ontology engineering
activity. An important and challenging problem is thus how to effectively and efficiently
modify ontologies.

In this talk, we discuss some recent developments and challenges for two paradigms
of ontology changes. We focus on model-based approaches.

Knowledge Update: Outdated and incorrect axioms in an ontology have to be
eliminated from the ontology and newly formed axioms have to be incorporated into the
ontology. In the field of belief change, extensive work has been done on formalising
various kinds of changes over logical knowledge bases. In particular, elimination of old
knowledge is called contraction and incorporation of new knowledge is called revision.
The dominant approach in belief change is the so called AGM framework. Regardless of
its wide acceptance, the AGM framework is incompatible with DLs due to its
assumption on an underlying logic that includes propositional logic. The incompatibility
is the major difficulty in defining DL contraction and revision. Additionally, DL revision
is more involved than AGM revision. AGM revision aims to resolve any inconsistency
caused while incorporating a new formula. Since a meaningful DL ontology has to be
both consistent and coherent (i.e, absence of unsatisfiable concepts), DL revision has to
resolve not only inconsistency but also incoherence. Finally, DL contraction and revi-
sion should lead to tractable instantiations and at the same time respecting the mathe-
matical properties of AGM contraction and revision.

Forgetting: To support the reuse and combination of ontologies in Semantic Web
applications, it is often necessary to obtain smaller ontologies from existing larger
ontologies. In particular, applications may require the omission of many terms, e.g.,
concept names and role names, from an ontology. However, the task of omitting terms

from an ontology is challenging because the omission of some terms may affect the
relationships between the remaining terms in complex ways. The technique of forgetting
provides an effective way for extracting modules from a large ontology.

XIV K. Wang

The Rise of Approximate Ontology Reasoning:
Is It Mainstream Yet?

Jeff Z. Pan

University of Aberdeen, Aberdeen, UK

The last five years have seen a growing volume and complexity of ontologies and large-
scale linked data available,1 which present a pressing need for efficient and scalable
ontology reasoning services. Major technology vendors are starting to embrace semantic
technologies by supporting new standards and integrating with state of the art semantic
tools. For example, in their new release 12.1, Oracle Spatial and Graph supports both
RDF and OWL2-EL natively,2 and integrates with an OWL2-DL reasoner (TrOWL) via
OWL-DBC.3

The second version of the ontology standard OWL (Web Ontology Language) offers
a family of ontology languages, including OWL2-DL, the most expressive decidable
language in the family, and three tractable sub-languages of OWL2-DL, i.e. OWL2-EL,
OWL2-QL and OWL2-RL. Such a two-layered language architecture allows approxi-
mate reasoning for OWL2-DL, by approximating OWL2-DL ontologies to those in its
tractable sub-languages, so as to exploit efficient and scalable reasoners of the sublan-
guages. This is motivated by the fact that real-world knowledge and data are hardly
perfect or completely digitalised. State of the art approximate reasoners, such as the
TrOWL reasoner, can out-perform sound and complete reasoners in time constrained
sound-and-complete reasoner competitions, such as the ORE competitions.

In this talk, we will look into how and why approximate reasoners work. Indeed,
approximation approaches bring a new dimension – quality, in terms of completeness
and soundness of reasoning, into the trade-off between expressiveness and performance,
attempting to strike a balance among the three. Once we start to consider such a third
dimension, many interesting questions follows: What are the typical approximate rea-
soning approaches? Should we approximate the input ontology or the input query? Are
approximations always finite and unique? Given an ontology and some target queries,
are there any best approximations? Why do some approximate reasoning algorithms
lose many reasoning results, while others can enjoy high recall? Are approximate rea-
soning algorithms relevant to optimisations for sound and complete reasoners? Can we
extend approximate reasoning algorithm with some post-processing to ensure soundness
and completeness? I will discuss many of these questions, in the context of the TrOWL
reasoner and related work, and share some thoughts on what approximate reasoning
might bring in the near future.

1 http://lod-cloud.net/state/.
2 http://download.oracle.com/otndocs/tech/semantic_web/pdf/semtech_datamining_v8.pdf.
3 http://download.oracle.com/otndocs/tech/semantic_web/pdf/trowl_integration_with_orasag.pdf.

http://lod-cloud.net/state/
http://download.oracle.com/otndocs/tech/semantic_web/pdf/semtech_datamining_v8.pdf
http://download.oracle.com/otndocs/tech/semantic_web/pdf/trowl_integration_with_orasag.pdf

Contents

Ontology and Data Management

How Can Reasoner Performance of ABox Intensive Ontologies
Be Predicted? . 3

Isa Guclu, Carlos Bobed, Jeff Z. Pan, Martin J. Kollingbaum,
and Yuan-Fang Li

Inquiry into RDF and OWL Semantics . 15
Seiji Koide and Hideaki Takeda

Designing of Ontology for Domain Vocabulary on Agriculture Activity
Ontology (AAO) and a Lesson Learned . 32

Sungmin Joo, Seiji Koide, Hideaki Takeda, Daisuke Horyu,
Akane Takezaki, and Tomokazu Yoshida

SQuaRE: A Visual Approach for Ontology-Based Data Access. 47
Michał Blinkiewicz and Jarosław Bąk

Compression Algorithms for Log-Based Recovery in Main-Memory Data
Management. 56

Gang Wu, Xianyu Wang, Zeyuan Jiang, Jiawen Cui, and Botao Wang

Linked Data

An Empirical Study on Property Clustering in Linked Data 67
Saisai Gong, Haoxuan Li, Wei Hu, and Yuzhong Qu

A MapReduce-Based Approach for Prefix-Based Labeling of Large XML
Data . 83

Jinhyun Ahn, Dong-Hyuk Im, and Hong-Gee Kim

RIKEN MetaDatabase: A Database Platform as a Microcosm of Linked
Open Data Cloud in the Life Sciences . 99

Norio Kobayashi, Kai Lenz, and Hiroshi Masuya

A Preliminary Investigation Towards Improving Linked Data Quality
Using Distance-Based Outlier Detection . 116

Jeremy Debattista, Christoph Lange, and Sören Auer

http://dx.doi.org/10.1007/978-3-319-50112-3_1
http://dx.doi.org/10.1007/978-3-319-50112-3_1
http://dx.doi.org/10.1007/978-3-319-50112-3_2
http://dx.doi.org/10.1007/978-3-319-50112-3_3
http://dx.doi.org/10.1007/978-3-319-50112-3_3
http://dx.doi.org/10.1007/978-3-319-50112-3_4
http://dx.doi.org/10.1007/978-3-319-50112-3_5
http://dx.doi.org/10.1007/978-3-319-50112-3_5
http://dx.doi.org/10.1007/978-3-319-50112-3_6
http://dx.doi.org/10.1007/978-3-319-50112-3_7
http://dx.doi.org/10.1007/978-3-319-50112-3_7
http://dx.doi.org/10.1007/978-3-319-50112-3_8
http://dx.doi.org/10.1007/978-3-319-50112-3_8
http://dx.doi.org/10.1007/978-3-319-50112-3_9
http://dx.doi.org/10.1007/978-3-319-50112-3_9

Information Retrieval and Knowledge Discovery

Linked Data Collection and Analysis Platform for Music Information
Retrieval . 127

Yuri Uehara, Takahiro Kawamura, Shusaku Egami, Yuichi Sei,
Yasuyuki Tahara, and Akihiko Ohsuga

Semantic Data Acquisition by Traversing Class–Class Relationships
Over Linked Open Data . 136

Atsuko Yamaguchi, Kouji Kozaki, Kai Lenz, Yasunori Yamamoto,
Hiroshi Masuya, and Norio Kobayashi

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 152
Shusaku Egami, Takahiro Kawamura, and Akihiko Ohsuga

RDF and Query

ASPG: Generating OLAP Queries for SPARQL Benchmarking 171
Xin Wang, Steffen Staab, and Thanassis Tiropanis

Towards Answering Provenance-Enabled SPARQL Queries Over RDF
Data Cubes . 186

Kim Ahlstrøm, Katja Hose, and Torben Bach Pedersen

Data Analysis of Hierarchical Data for RDF Term Identification 204
Pieter Heyvaert, Anastasia Dimou, Ruben Verborgh, and Erik Mannens

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 213
Xiaowang Zhang, Zhenyu Song, Zhiyong Feng, and Xin Wang

Knowledge Graph

Non-hierarchical Relation Extraction of Chinese Text Based on Scalable
Corpus. 231

Xiaoheng Su, Hai Wan, Ruibin Chen, Qi Liu, Wenxuan Zhang,
and Jianfeng Du

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 239
Tianxing Wu, Shengjia Yan, Zhixin Piao, Liang Xu, Ruiming Wang,
and Guilin Qi

Towards Multi-target Search of Semantic Association 254
Xiang Zhang and Yulian Lv

Linking Named Entity in a Question with DBpedia Knowledge Base 263
Huiying Li and Jing Shi

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-50112-3_10
http://dx.doi.org/10.1007/978-3-319-50112-3_10
http://dx.doi.org/10.1007/978-3-319-50112-3_11
http://dx.doi.org/10.1007/978-3-319-50112-3_11
http://dx.doi.org/10.1007/978-3-319-50112-3_12
http://dx.doi.org/10.1007/978-3-319-50112-3_13
http://dx.doi.org/10.1007/978-3-319-50112-3_14
http://dx.doi.org/10.1007/978-3-319-50112-3_14
http://dx.doi.org/10.1007/978-3-319-50112-3_15
http://dx.doi.org/10.1007/978-3-319-50112-3_16
http://dx.doi.org/10.1007/978-3-319-50112-3_17
http://dx.doi.org/10.1007/978-3-319-50112-3_17
http://dx.doi.org/10.1007/978-3-319-50112-3_18
http://dx.doi.org/10.1007/978-3-319-50112-3_19
http://dx.doi.org/10.1007/978-3-319-50112-3_20

Applications of Semantic Technologies

Hypercat RDF: Semantic Enrichment for IoT . 273
Ilias Tachmazidis, John Davies, Sotiris Batsakis, Grigoris Antoniou,
Alistair Duke, and Sandra Stincic Clarke

Enabling Spatial OLAP Over Environmental and Farming Data with
QB4SOLAP . 287

Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi

Classification of News by Topic Using Location Data 305
Zolzaya Dashdorj, Muhammad Tahir Khan, Loris Bozzato,
and SangKeun Lee

Monitoring and Automating Factories Using Semantic Models 315
Niklas Petersen, Michael Galkin, Christoph Lange, Steffen Lohmann,
and Sören Auer

Author Index . 331

Contents XIX

http://dx.doi.org/10.1007/978-3-319-50112-3_21
http://dx.doi.org/10.1007/978-3-319-50112-3_22
http://dx.doi.org/10.1007/978-3-319-50112-3_22
http://dx.doi.org/10.1007/978-3-319-50112-3_23
http://dx.doi.org/10.1007/978-3-319-50112-3_24

Ontology and Data Management

How Can Reasoner Performance of ABox
Intensive Ontologies Be Predicted?

Isa Guclu1, Carlos Bobed2, Jeff Z. Pan1(B), Martin J. Kollingbaum1,
and Yuan-Fang Li3

1 University of Aberdeen, Aberdeen, UK
jeff.z.pan@abdn.ac.uk

2 University of Zaragoza, Zaragoza, Spain
3 Monash University, Melbourne, Australia

Abstract. Reasoner performance prediction of ontologies in OWL 2 lan-
guage has been studied so far from different dimensions. One key aspect
of these studies has been the prediction of how much time a particular
task for a given ontology will consume. Several approaches have adopted
different machine learning techniques to predict time consumption of
ontologies already. However, these studies focused on capturing general
aspects of the ontologies (i.e., mainly the complexity of their TBoxes),
while paying little attention to ABox intensive ontologies. To address
this issue, in this paper, we propose to improve the representativeness
of ontology metrics by developing new metrics which focus on the ABox
features of ontologies. Our experiments show that the proposed met-
rics contribute to overall prediction accuracy for all ontologies in general
without causing side-effects.

Keywords: Semantic web · Ontology reasoning · Prediction · Random
forests · Knowledge graph · Practical reasoning

1 Introduction

Semantic technologies have been utilized in various application domains for
assisting knowledge management thus far, e.g., data management [13] and soft-
ware engineering [17]. The worst case complexity 2NEXPTIME-complete [6] of
OWL 2 DL, the most expressive profile of OWL 2, constitutes a bottleneck for
performance critical environments. Empirical studies show that even the EL pro-
file, with PTIME-complete complexity and less expressiveness, can become too
time-consuming [4,11]. To have a scalable environment for implementing seman-
tic technologies, an accurate prediction of ontology time consumption which will
guide us about the feasibility of ontology reasoning is needed.

There have been several studies regarding the performance prediction of
ontologies. Kang et al. [10] investigated the hardness category (categories accord-
ing to reasoning time) for reasoner-ontology pairs and used machine learning
techniques to make a prediction. Using FaCT++ [25], HermiT [5], Pellet [23],
and TrOWL [16,18,20,24], they reached high accuracy in terms of hardness cat-
egory, but not reasoning time.
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-50112-3 1

4 I. Guclu et al.

In another study, Kang et al. [12] investigated regression techniques to pre-
dict reasoning time. They made experiments using reasoners FaCT++, HermiT,
JFact, MORe [21], Pellet and TrOWL with their syntactic metrics as features.
These metrics are generally effective when there is a balance between TBox
axioms and ABox axioms. Our experiments show that accuracy of these met-
rics decreases as ABox axiom sizes increase. As ABox constitutes the data in
an ontology [1,8,27], where TBox constitutes the schema, an approach that can
capture the changes in the ABox in a more detailed way is needed to make accu-
rate overall predictions. As observed by Bobed et al. [2], there is an interest in
using semantic technologies in mobile devices. In such scenarios, TBox axioms
are expected to be more static and the ABox axioms (data) tend to be more
frequently changing which necessitates high accuracy in ABox performance pre-
diction. In this paper, we aim to investigate what metrics could help further
improve reasoner predictions of ABox intensive ontologies.

Our main contributions can be summarized as follows.

1. We propose an initial set of metrics which estimate the complexity of the
TBox concepts and propagates it into the estimated complexity of the ABox.

2. We show that our proposed new metrics for representing the structure of
ontologies from the ABox perspective indicate a good research path to
improve the accuracy of predicting time consumption of ontology reasoning.

The rest of the paper is as follows. In Sect. 2, we present some related works
to place our proposal. In Sect. 3, we define the metrics that we propose in our
ongoing work. In Sects. 4 and 5, we explain our experimental settings and the
achieved results, respectively. Finally, in Sect. 6, we make some conclusions and
draw some future work.

2 Related Work and Background

Ontology metrics, which are features of the ontology expressed numerically
or categorically to represent the structure of an ontology, have been effec-
tively utilised in analysing the complexity [28], energy consumption on mobile
devices [7], cohesion [26], quality [3] and population task [15] of ontology rea-
soning.

Kang et al. [10] proposed a set of metrics in 2012 to classify raw reason-
ing times of ontologies into five large categories: [0 s.–100 ms.], (100 ms.–1 s.],
(1 s.–10 s.], (10 s.–100 s.] and (100 s.–∞). Despite the high accuracy of predic-
tion, over an 80%, this approach does not provide actual reasoning time but
time categories, which may become obsolete or meaningless according to needs
of implementation.

In 2014, Kang et al. [12] extended their work and proposed a new set of
metrics to predict actual reasoning time by developing regression models. They
extended the previous 27 metrics [10,28] and developed a set of 91 metrics that
include 24 ontology-level (ONT) metrics, 15 class-level (CLS) metrics, 22 anony-
mous class expression (ACE) metrics, and 30 property definition and axiom
(PRO) metrics.

How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted? 5

While a high number of metrics are usually proposed by researchers, Sazonau
et al. [22] proposed instead a local method which involved selecting a suitable,
small subset of the ontology, and making extrapolation to predict total time
consumption of ontology reasoning using the data coming from the processing of
such small subset. To do so, they used Principal Component Analysis (PCA) [9].
In their experiments, Sazonau et al. [22] observed that 57 of the studied features
can be replaced by just one or two features. Using a sample of size of a 10%
of the ontology for reasoning, they argue that they reached good predictions
with simple extrapolations. They list advantages of their method as: (1) more
accurate performance predictions, (2) not relying on an ontology corpus, (3) not
being biased by this corpus, and (4) being able to obtain information about rea-
soner’s behaviour of linear/nonlinear predictability on the corpus. A remarkable
contribution of this approach is that it saves researchers from the difficulty/risk
of selecting an unbiased corpus [14], which is very difficult while checking the
validity of the prediction model and accuracy of the prediction. However, making
reasoning with the 10% of an ontology may not always be applicable especially
when the ontology requires high reasoning times.

3 Our Approach

Our claim is that increasing the expressivity of ontology metrics directly helps
increasing the accuracy of all the above studies, and enables new studies that
target a more feasible implementation environment for semantic technologies.

Part of 91 metrics proposed by Kang et al. [12] are obtained by transforming
an ontology into a graph which grasps the relationship between of ABox and
TBox axioms. However, their approach calculates the effect of ABox axioms up to
a certain extent. It is apparent that connected ABox axioms are more prone to
cause more inferences than disconnected ABox axioms. These connections can
trigger reasoning time enormously when they come along with a complex TBox.
In our work, we have observed that the models trained with this set of 91 metrics
begin to lose accuracy in predicting time consumption of ontologies as the ratio
between the amount of ABox axioms and TBox axioms increases.

Thus, we propose to include the propagation of the complexity of the TBox
into the ABox. To do so, we extend this set of metrics with our 15 Class Complex-
ity Assertions (CCA) metrics, which can contribute to performance prediction
of ontologies especially when we deal with ontologies which are ABox intensive
(i.e., they exhibit a high ABox/TBox ratio). Experiment results and source codes
are accessible1.

3.1 Class Complexity Assertions Metrics

As above mentioned, to capture the interactions between the complexity of the
different elements of the TBox and the individuals asserted in the ABox, we have

1 http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/.

http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/

6 I. Guclu et al.

developed an initial set of features which aim at propagating the complexity of
each of the concept expressions in the ontology to the ABox, as well as improving
the richness of the TBox metrics.

Thus, let be NCE = {CEi | CEi ∈ O} with CE any concept expression
appearing in any of the logical axioms of the ontology O. For each CE, we
estimate its complexity as follows:

comp(CEi) =
height(CEi) + sigSize(CEi) + const(CEi)

3

with height(CEi) being the height of the expression as a parsing tree,
sigSize(CEi) being the number of different atomic class names that appear
in the expression, and const(CEi) begin the number of class constructors par-
ticipating in the class expression.

With this estimation for each CEi, we calculate the following metrics:

– TBoxSize: The count of TBox axioms obtained from OWLAPI.
– ABoxSize: The count of ABox axioms obtained from OWLAPI.
– ABoxTBoxRatio: The ratio of ABox axioms to TBox axioms.
– TCCA: Total amount of estimated complexity of the ontology O (i.e., the

class expressions in NCE).

TCCA =
∑

CEi∈NCE

comp(CEi)

– AVG CCA: Mean estimated complexity of the class expressions in NCE .

AV G CCA =
TCCA

|NCE |
– MAX CCA: Maximum estimated complexity of the class expressions in NCE .
– MIN CCA: Minimum estimated complexity of the class expressions in NCE .
– STD CCA: Standard deviation of complexity of the class expressions in NCE .
– ENT CCA: Entropy of the complexity distribution of NCE .

To propagate the complexity of each concept expression to the ABox, we use
each of the class assertions as a witness of the complexity of a class expression
within the ontology. Then, we aggregate such values to capture what we name
the witnessed complexity of the ABox. So, let IndNCEi

= {a | a ∈ Ind(O) ∧
CEi(a) ∈ O} the individuals that are explicitly asserted to belong to CEi.
Thus, we define:

– TWCCA: Total witnessed complexity of the ABox, which is calculated sum-
ming all the products of the estimated complexities of the concept expressions
with their witness individuals.

TWCCA =
∑

CEi∈NCE

comp(CEi) ∗ |IndNCEi
|

How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted? 7

– AVG WCCA: Mean witnessed complexity of the ABox of the concept expres-
sions in O.

AV G WCCA =
TWCCA

|NCE |
– MAX WCCA: Maximum witnessed complexity of a concept expression in O.
– MIN WCCA: Minimum witnessed complexity of a concept expression in O.
– STD WCCA: Standard deviation of witnessed complexity of the concept

expressions in O.
– ENT WCCA: Entropy of the witnessed complexity distribution of the concept

expressions in O.

Note that we apply a Laplace smoothing2 to include also into the metrics the
concept expressions which appear in the ontology but do not have any explicit
individual assertion.

4 Experimental Setup

4.1 Evaluation Metrics

R2, MAPE and RMSE are referred to decide whether our regression model is
valid for describing the relation between our metrics and the predictions made by
the model. The coefficient of determination (R2) is a crucial output of regression
analysis, indicating to what extent the dependent variable is predictable. For
example, a value 0.91 for R2 means that 91% percent of the variance in Y is
predictable from X. Let y(t) be the observed value of y in second t, ŷ(t) be the
predicted value for y in second t, and ȳ be the mean of the observed values, then:

R2 =
∑

t (ŷ(t) − ȳ)2∑
t (y(t) − ȳ)2

(1)

The Mean Absolute Percentage Error (MAPE) is a measure of prediction
accuracy of a prediction method in statistics that is used to expresses accuracy
as a percentage. For calculating the MAPE of our prediction model, we will
divide the difference of observed and predicted values, divide this by the observed
values, and get the average of all observations in the scope. Related to this
definition, we define the Mean Absolute Accuracy Percentage (MAAP) of our
prediction model which is given by (1 - MAPE). In this paper, we will refer to
MAAP to explain the accuracy of a model.

MAPE = 100.

n∑
t=1

|ŷ(t)−y(t)|
y(t)

n
(2)

MAAP = 1 − MAPE (3)

2 Adapted from Natural Language Processing, basically, it consists in adding 1 to all
the witnessed values of the concept expressions in the ontology.

8 I. Guclu et al.

Finally, the Root Mean Squared Error (RMSE) is the square root of the
mean/average of the square of all of the error. RMSE represents the sample
standard deviation of the differences between observed and predicted values.

RMSE =

√√√√
n∑

t=1
(y(t) − ŷ)2

n
(4)

4.2 Data Collection

Reasoner: We have used TrOWL 1.5 for testing EL ontologies as the reasoner to
be tested. We deployed ABox Materialization Task with TrOWL as our exper-
imental task. In our experiments, we implemented ABox materialization with
one thread. We could benefit from parallelization in ABox materialization and it
would improve the performance [19] to some extent. As RAM I/O becomes the
bottleneck because of the limited bandwidth [19] of the RAM when many worker
threads compete for RAM access and this would cause some side-effects in mea-
suring the execution time, we preferred to analyse the performance prediction
aspect parallel ABox materialization as future work.

Ontologies: We define an ontology as ABox-intensive if the count of ABox
axioms in such an ontology is at least 10 times the count of TBox axioms.
We made our experiments using ontologies in ORE2014 Reasoner Competition
Dataset3. From 16,555 ontologies, we have filtered 74 ontologies in EL profile
which have the ABox/TBox ratio of at least 10, and created artificial 2779 ABox-
intensive ontologies4 from these ABox-intensive ontologies randomly as follows:
our method uses the TBox of the original ontology and creates a new ontology
using different random subsets of the ABox axioms of the original ontology.

Prediction Model Construction: For predicting the time consumption of ontolo-
gies, a random forest based regression model is implemented, using the metrics
(predictor variables). Standard 10-fold cross-validation is performed to ensure
the generalizability of the model.

5 Results and Evaluation

In our study, we investigated the reasoning performance of a reasoner and
ontology characteristics represented by available metrics and our new metrics
(CCA). While developing our new metrics, we aimed at capturing the complex-
ity of ontologies without losing accuracy when ABox sizes changed. Our claim is
that developing high-quality metrics will increase the accuracy of the prediction

3 https://zenodo.org/record/10791.
4 You can find the code of the OntologyChopper at http://sid.cps.unizar.es/projects/

OWL2Predictions/JIST16/.

https://zenodo.org/record/10791
http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/
http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/

How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted? 9

model. Our goal is to make prediction models that can perform on any ontol-
ogy with high stability using metrics that can represent the ontology with high
expressivity.

To ensure the quality of the dataset, we created 2779 artificial ontologies from
ORE2014 dataset. To avoid a biased corpus, which would result in misleading
generalizations, we generated ontologies with random selection of ABox axioms.
We did not put any threshold to cut the experiment, as we wanted to include
every result of the dataset without missing any point that could be expressed by
the dataset. We believe that wide range of ABox/TBox ratio will help increase
the diversity in ontologies.

While working with the quality of the dataset, quality of the feature selec-
tion should also be taken into consideration. Inspired from the consistent high
accuracy of the Random Forest based regression models in the study of Kang et
al. [12], we adopted the same approach. Instead of categorising the time periods,
we preferred metrics to give prediction results of time consumption in nanosec-
onds. We had specified R2, MAPE, and RMSE values as our performance
criteria for prediction accuracy.

5.1 Combining 91 Metrics with CCA

In our first set of experiments, we combined 91 metrics with CCA metrics to train
the model. We were expecting new CCA metrics would increase the accuracy of
prediction, as it contained metrics that would better express the complexity of
ABox axioms with TBox axioms. The results obtained in the cross validation
procedure for the performance criteria can be seen in Table 1, and in Fig. 1, the
MAPE values obtained are visualized.

When we look at the R2 values, which is indicative to which extent the
dependent variable is predictable, we see that both available 91 metrics and
combined metrics of 91 metrics and CCA metrics have the values between 97%
and 98%. The difference of RMSE values is ≈ 2.5 s. The values of MAPE also
show a difference of ≈ 2%.

Although this absolute value of a ≈ 2% accuracy increase seems very small,
it is a relative improvement of 11% with the first version of our transference
metrics, which encourages us to continue to work in this direction improving
and extending the definition of such kind of metrics.

Table 1. Contribution of CCA metrics to accuracy of prediction.

91 Metrics CCA + 91 Metrics

R2 0.97607 0.97856

MAPE 23.58% 21.10%

RMSE 41.4 s 39.1 s

10 I. Guclu et al.

Fig. 1. Change in MAPE when new metrics are added to the prediction model.

5.2 Using CCA Metrics Instead of some ABox metrics in 91
Metrics v.1

We searched for the metrics in 91 metrics which are more sensitive to ABox
axiom changes. By randomly adding ABox axioms to ontologies, we observed
that the change in ABox axioms is highly correlated with some of 91 metrics,
i.e., “SOV, CYC, RHLC, IHR, IIR, ITR, IND, aCID, mCID, tCID” [10,28].

In our second set of experiments, we removed the metrics “RHLC, IHR, IIR,
ITR, IND, aCID, mCID, tCID” from 91 metrics and replaced with CCA metrics
to train the model. The results obtained in the cross validation procedure for
the performance criteria can be seen in Table 2, and in Fig. 2, the MAPE values
obtained are visualized.

When we look at the R2 values, we see that both models have the values
between 97% and 98%. The difference of RMSE values is ≈ 1 s. The values of
MAPE show a difference of ≈ 4.5%.

The relative improvement in decreasing the average error rate of 91 metrics
is about 20% by replacing some of ABox related metrics in 91 metrics with our
CCA metrics.

Table 2. Contribution of CCA metrics when replaced with some ABox related metrics
in 91 metrics (v.1).

91 Metrics CCA + 91 Metrics (v.1)

R2 0.97607 0.97654

MAPE 23.58 % 19.03 %

RMSE 41.4 s 41.0 s

How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted? 11

Fig. 2. Change in MAPE when some ABox related metrics in 91 metrics are replaced
with CCA metrics (v.1) to the prediction model.

5.3 Using CCA Metrics Instead of some ABox metrics in 91
Metrics v.2

In our third case, we removed the metric “CYC” in addition to “RHLC, IHR,
IIR, ITR, IND, aCID, mCID, tCID” from 91 metrics and replaced with CCA
metrics to train the model. The results obtained in the cross validation procedure
for the performance criteria can be seen in Table 3, and in Fig. 3, the MAPE
values obtained are visualized.

When we look at the R2 values, we see that both models have the val-
ues between 97% and 98%. The value of RMSE worsened here. The values of
MAPE show a difference of ≈ 4%, which is a general improvement but worst
than the previous case.

The relative improvement in decreasing the average error rate of 91 metrics
is about 18% by replacing some of ABox related metrics in 91 metrics with our
CCA metrics.

Table 3. Contribution of CCA metrics when replaced with some ABox related metrics
in 91 metrics (v.2).

91 Metrics CCA + 91 Metrics (v.2)

R2 0.97607 0.97449

MAPE 23.58% 19.25%

RMSE 41.4 s 42.7 s

12 I. Guclu et al.

Fig. 3. Change in MAPE when some ABox related metrics in 91 metrics are replaced
with CCA metrics (v.2) to the prediction model.

5.4 Evaluation

In our work, we have analysed available metrics and investigated how to bring
expressivity of metrics further by developing new metrics to represent ABox
axioms (and its interaction with TBox axioms) aspect of ontologies.

According to initial experiments, which compare 91 metrics with combination
of 91 metrics and CCA metrics, we observe that adding CCA metrics increases
the accuracy of prediction ≈ 2.5% and relatively decreasing average error rate
≈ 11%.

When we replaced some of the metrics (RHLC, IHR, IIR, ITR, IND, aCID,
mCID, tCID) in 91 metrics with CCA metrics, we observe the accuracy of pre-
diction increase ≈ 4.5% and relatively, average error rate decrease ≈ 20%.

In our third case, we also removed the metric (CYC) in 91 metrics and saw
that there was again higher accuracy in prediction but it wasn’t as good as the
previous model.

Seeing the results above, we conclude that CCA metrics contributes to pre-
diction of ABox-intensive ontologies in our preliminary work. Available metrics
(91 metrics proposed by Kang et al. [12]) could grasp the complexity of ontologies
to some extent. ABox materialization necessitates new metrics that will repre-
sent the interaction of ABox axioms with TBox axioms taking its complexity
into account. The weight of ABox axioms in an ontology and their interactions
can cause consuming more execution time than expected if their complexity is
ignored. We propose our CCA metrics to measure the effect of ABox complexity
in performance prediction of ontology reasoning and we want to improve these
metrics to measure this aspect of ontologies more effectively. We believe that
our study will lead to metrics that are generalizable regardless of the weight of
TBox and ABox axioms.

How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted? 13

6 Conclusion

Performance prediction of ontology reasoning is a very interesting and challeng-
ing topic. In this work, we have started to focus on the performance prediction of
ABox-intensive ontologies. We proposed 15 new metrics by extending previous
work of Kang et al. [12]. Preliminary results with adding these 15 metrics show
slight increase (≈ 4.5%) in the prediction accuracy. And, these results even at
the early stages of our research encourage us to continue in this direction. We
believe that awareness of the ABox axiom ratio in ontologies and bringing a solu-
tion to this change will increase the effectiveness and validity of a performance
prediction model.

As future work, firstly, we plan to work on better representation of the inter-
actions between ABox axioms and TBox axioms by developing new metrics.
Secondly, we will make experiments with more reasoners on different ontolo-
gies that will help understanding the interaction of ABox axioms with TBox
axioms in a broader sense. Thirdly, we will use different prediction mechanisms
to leverage the contribution of these metrics.

Acknowledgments. This work was partially supported by the EC Marie Curie
K-Drive project (286348), the CICYT project (TIN2013-46238-C4-4-R) and the DGA-
FSE project.

References

1. Fokoue, A., Meneguzzi, F., Sensoy, M., Pan, J.Z.: Querying linked ontological data
through distributed summarization. In: Proceedings of the 26th AAAI Conference
on Artificial Intelligence (AAAI2012) (2011)

2. Bobed, C., Yus, R., Bobillo, F., Mena, E.: Semantic reasoning on mobile devices:
do androids dream of efficient reasoners? J. Web Semant. 35(4), 167–183 (2015).
ISSN 1570–8268, https://dx.doi.org/10.1016/j.websem.2015.09.002

3. Burton-Jones, A., Storey, V.C., Sugumaran, V., Ahluwalia, P.: A semiotic metrics
suite for assessing the quality of ontologies. Data Knowl. Eng. 55, 84–102 (2005)

4. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for
large ontologies in the OWL 2 EL profile. Semant. Web 2, 71–87 (2011)

5. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2
reasoner. J. Autom. Reasoning 53, 245–269 (2014)

6. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: the next step for OWL. J. Web Sem. 6, 309–322 (2008)

7. Guclu, I., Li, Y.-F., Pan, J.Z., Kollingbaum, M.J.: Predicting energy consumption
of ontology reasoning over mobile devices. In: Groth, P., Simperl, E., Gray, A.,
Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol.
9981, pp. 289–304. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46523-4 18

8. Hogan, A., Pan, J.Z., Polleres, A., Ren, Y.: Scalable OWL 2 reasoning for linked
data. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P.,
Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848,
pp. 250–325. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23032-5 5

9. Jolliffe, I.: Principal Component Analysis. Wiley StatsRef: Statistics Reference
Online (2002)

https://dx.doi.org/10.1016/j.websem.2015.09.002
http://dx.doi.org/10.1007/978-3-319-46523-4_18
http://dx.doi.org/10.1007/978-3-642-23032-5_5

14 I. Guclu et al.

10. Kang, Y.-B., Li, Y.-F., Krishnaswamy, S.: Predicting reasoning performance using
ontology metrics. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649,
pp. 198–214. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1 13

11. Kang, Y.-B., Li, Y.-F., Krishnaswamy, S.: A rigorous characterization of classifi-
cation performance - a tale of four reasoners. In: ORE (2012)

12. Kang, Y.-B., Pan, J.Z., Krishnaswamy, S., Sawangphol, W., Li, Y.-F.: How long
will it take? Accurate prediction of ontology reasoning performance. In: AAAI
(2014)

13. Li, Y.-F., Kennedy, G., Ngoran, F., Wu, P., Hunter, J.: An ontology-centric archi-
tecture for extensible scientific data management systems. Future Gener. Comput.
Syst. 29, 641–653 (2013)

14. Matentzoglu, N., Bail, S., Parsia, B.: A corpus of OWL DL ontologies. In: Pro-
ceedings DL13 (2013)

15. Maynard, D., Peters, W., Li, Y.: Metrics for evaluation of ontology-based informa-
tion extraction (2006)

16. Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artificial
Intelligence 235, 95–155

17. Pan, J.Z., Staab, S., Amann, U., Ebert, J., Zhao, Y.: Ontology-Driven Software
Development. Springer Publishing Company, Incorporated, Ontology-Driven Soft-
ware (2012)

18. Pan, J.Z., Thomas, E., Ren, Y., Taylor., S.: Tractable fuzzy and crisp reasoning in
ontology applications. In: IEEE Computational Intelligence Magazine (2012)

19. Ren, Y., Pan, J.Z., Lee, K.: Optimising parallel ABox reasoning of EL ontologies.
In: Description Logics (2012)

20. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox rea-
soning. In: AAAI (2010)

21. Romero, A.A., Grau, B.C., Horrocks, I.: More: modular combination of OWL rea-
soners for ontology classification. In: SEMWEB (2012)

22. Sazonau, V., Sattler, U., Brown, G.: Predicting performance of OWL reasoners:
locally or globally? In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20–24, 2014 (2014)

23. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical
OWL-DL reasoner. J. Web Sem. 5, 51–53 (2007)

24. Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: tractable OWL 2 reasoning infrastructure.
In: Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral,
L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 431–435. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13489-0 38

25. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). doi:10.1007/11814771 26

26. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and appli-
cation. J. Comput. Sci. 1, 107–113 (2005)

27. Yuan Ren, J.Z.P., Lee, K.: Optimising parallel ABox reasoning of el ontologies. In:
Proceedings of the 25th International Workshop on Description Logics (DL2012)
(2012)

28. Zhang, H., Li, Y.-F., Tan, H.B.K.: Measuring design complexity of semantic web
ontologies. J. Syst. Softw. 83, 803–814 (2010)

http://dx.doi.org/10.1007/978-3-642-35176-1_13
http://dx.doi.org/10.1007/978-3-642-13489-0_38
http://dx.doi.org/10.1007/11814771_26

Inquiry into RDF and OWL Semantics

Seiji Koide1,2(B) and Hideaki Takeda1

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
koide@ontolonomy.co.jp

2 Ontolonomy, LLC., 3-76-3-J901, Mutsukawa, Minami-ku, Yokohama, Japan

Abstract. The purpose of this paper is to present the higher order for-
malization of RDF and OWL with setting up ontological meta-modeling
criteria through the discussion of Russell’s Ramified Type Theory, which
was developed in order to solve Russell Paradox appeared at the last
stage in the history of set theory. This paper briefly summarize some of
set theories, and reviews the RDF and OWL Semantics with higher order
classes from the view of Russell’s Principia Mathematica. Then, a set of
criteria is proposed for ontological meta-modeling. Several examples of
meta-modeling, including sound ones and unsound ones, are discussed
and some of solutions are demonstrated according to the meta-modeling
criteria proposed.

Keywords: RDF semantics · OWL semantics · Set theory · Principia
mathematica · KIF · Membership loop · Higher order class · Meta-
modeling

1 Introduction

The OWL specifications has been split into two parts, Direct Semantics and
RDF-based Semantics. The reason of this unhappy partition originates in the
different formalizations between OWL DL and RDF. In order to match DL-
based semantics to RDF-based semantics, the term of “comprehension condi-
tions (principles)” is introduced into “OWL Semantics and Abstract Syntax,
Sect. 5” (Patel-Schneider et al. 2004a) and “OWL 2 Web Ontology Language
RDF-Based Semantics (Second Edition)” (Schneider 2014). In addition, “RDF-
Compatible Model-Theoretic Semantics” (Patel-Schneider et al. 2004a) states
that the only-if semantic conditions are necessary to prevent semantic para-
doxes with the fourteen comprehension conditions, and OWL2 Appendix1 men-
tions “formal inconsistency” instead of “paradox”. However, these statements
are caused by misunderstanding paradoxes in set theories, and the word “com-
prehension conditions” is still left in “OWL2 (Second edition)”.

Granted that no choice but to introduce some postulates in order to make
OWL semantics compatible to RDF semantics, this misunderstanding is partly

1 http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/#Appendi
x: Comprehension Conditions .28Informative.29.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 15–31, 2016.
DOI: 10.1007/978-3-319-50112-3 2

http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/#Appendix:_Comprehension_Conditions_.28Informative.29
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/#Appendix:_Comprehension_Conditions_.28Informative.29

16 S. Koide and H. Takeda

attributed to RDF semantics itself; indeed, there are not enough explanations in
RDF Semantics (Hayes 2004) on the setup of preventing “membership loops”.
Hayes only claimed that the semantic model distinguishes both properties and
classes, regarded as objects, from their extensions, so that this distinction pre-
vents “membership loops”. He also stated that the violation of the axiom of
foundation, which is one of the axioms of standard set theories like Zermelo-
Fraenkel (ZF) that forbids infinitely descending chains of membership, does not
happen in RDF. However, the mechanism of preventing membership loops is still
obscure for readers of RDF Semantics.

In this paper, at Sect. 2, we describe Russell paradox that has roots in Can-
tor’s naive set theory, and summarize the history of set theories for the resolution
of the paradox. At Sect. 3, we review RDF Semantics and OWL Semantics with
higher order classes. Then, at Sect. 4, we propose a set of criteria for higher order
classes and ontological meta-modeling. Those criteria are actually derived from
the axioms and principles introduced in Ramified Type Theory for the resolution
of Russell paradox in Principia Mathematica (PM, Vol.1). At Sect. 5, several
examples of meta-modeling, including sound ones and unsound ones, are dis-
cussed, and some of solutions are demonstrated according to the meta-modeling
criteria presented here.

We call the OWL Full with these criteria Restricted OWL Full. Thus, ambigu-
ous word “punning” by W3C is clearly fixed on the meta-modeling with higher
order classes and it helps us to deeply understand the semantics and the inference
mechanism of RDF/OWL systems that allow ontological meta-modeling.

2 History of Set Theory and Type Theory

The history of set theory is a history of coping with Russell paradox essentially
contained by the mathematical concept of set. Russell paradox was resolved in
two ways. One is axiom of separation by Zermelo and the other is Ramified Type
Theory by Whitehead and Russell. In the current set theory, a set is discrim-
inated from a class that cannot be a member of set2. It is simply stated by
Bourbaki (Bourbaki 1966) that there are two sorts of relations, i.e., relations
which can make sets and which cannot make sets. This section abstracts set the-
ories by Cantor, Zermelo, type theories by Russell, and the resolution of Russell
paradox in Knowledge Interchange Format (KIF 1994).

2.1 RDF Sematics and Sets of Objects

RDF semantics is built on the foundation of set theory as well as every other
formal theory in mathematics and logics. In fact, Hayes invokes a set theory
named Zermelo-Fraenkel in order to rationalize membership loops that do not
cause any paradoxes.

2 A class notion in set theories is different from one in ontology descriptions.

Inquiry into RDF and OWL Semantics 17

When classes are introduced in RDFS, they may contain themselves. Such
‘membership loops’ might seem to violate the axiom of foundation, one
of the axioms of standard (Zermelo-Fraenkel) set theory, which forbids
infinitely descending chains of membership. However, the semantic model
given here distinguishes properties and classes considered as objects from
their extensions - the sets of object-value pairs which satisfy the property,
or things that are ‘in’ the class - thereby allowing the extension of a prop-
erty or class to contain the property or class itself without violating the
axiom of foundation. (Hayes 2004)

Although the Recommendation claims that the semantic model in RDF seman-
tics does not violate the axiom of foundation on membership loops, yet there are
not enough discussions on why and how the membership loops do not violate the
axiom of foundation. It only states that x �= CEXT(x) for an object x, where
CEXT(x) is the class extension of x, and p �= IEXT(p) for a property p, where
IEXT(p) is the extension of p.

This paper claims the rdfs:Resource and rdfs:Class are proper classes in sets
that do not cause paradoxes on sets, because the extension of rdfs:Resource is
a totality and the extension of rdfs:Class is also a totality. A totality is not
regarded as a set in today’s theory. So, the rdfs:Resource and the rdfs:Class
should be conceived to be a convention of referring the universal class concept
and the universal metaclass concept respectively in the universe of discourse.

2.2 Cantor’s Paradox and His Final Legacy

The history of set theories started with Georg Cantor. It is obvious that Can-
tor assumed members of sets are countable objects and a set is a collection of
objects (Cantor 1895). Yet, he actually did not mention about objects, and he
clarified the concept of natural numbers based on a (naive) set theory. However,
Cantor became to know a paradox (called Cantor’s paradox) contained by his
own set theory in case of handling the totality of infinite sets including sets of
sets3, and he noticed it in his letter to Dedekind4 (Cantor 1967). Aczel wrote,

Cantor’s final legacy, beyond the discovery of the transfinite numbers and
the continuum hypothesis, was his realization that there could be no set
containing everything ... since, given any set, there is a larger set – its set
of subsets, the power set. (Aczel 2000)

Today, we know the power set ℘(a) = {x | x ⊆ a} is too powerful for making
sets of infinite cardinality, whereby Cantor discovered the transfinite ordinal
numbers, but he also opened a door to lead paradoxes involved by set theories.

3 The universe of natural numbers is factually defined as sets of sets that include the
empty set as number zero and powersets of sets as number successors.

4 In the letter, it is stated that “The system Ω of all numbers is an inconsistent,
absolutely infinite multiplicity.”

18 S. Koide and H. Takeda

2.3 Comprehension Principle and Russell Paradox

The followings are some of axioms in naive set theory (Boolos 1971).

∀x∀y∀z[(z ∈ x ⇔ z ∈ y) ⇒ x = y] (1)
∃y∀x[x ∈ y ⇔ x �= x] (2)

∀z∀w∃y∀x[x ∈ y ⇔ (x = z ∨ x = w)] (3)
∃y∀x∃w[x ∈ y ⇔ (x ∈ w ∧ w ∈ z)] (4)

∃y∀x[x ∈ y ⇔ x = x] (5)

The first one is called axiom of extensionality (1), and in order respectively,
empty set (2), pairing (3), union (4), and universal (5). Especially, the empty
set ∅ is defined by the second formula, such that ∅ ≡ {x | x �= x}.

The intensional definition of sets such that {x | ϕ(x)}, where ϕ(x) is any
formula, is called comprehension principle (Kamareddine et al. 2004).

Definition 1 (Comprehension Principle).

∃y∀x[x ∈ y ⇔ ϕ(x)] where y is not free in ϕ(x) (6)

It was once conceived that the comprehension principle was very natural for
intensionally defining a set because any (unary) predicate could be applied to
a given object in order to determine the membership of an object to a set that
holds a property featured by the formula under the law of excluded middle;
namely, we can determine for any objects whether an object belongs to the set
or not. Meanwhile, Russell keenly pointed a paradox in sets. If we take ϕ(x)
to x �∈ x, which intends to denote a set that does not include any membership
loops, then it follows that y = {x | x �∈ x} or ∃y∀x[x ∈ y ⇔ x �∈ x]. Then, in
case of instantiating an arbitrary x to y, we obtain a contradiction as follows.

Definition 2 (Russell Paradox).

∃y[y ∈ y ⇔ y �∈ y].

Russell revealed that the comprehension principle inevitably involves a paradox5.
J. van Heijenoort stated,

Bertrand Russell discovered what became known as the Russell paradox in
June 1901 [. . .]. In the letter [to Frege], written more than a year later and
hitherto unpublished, he communicates the paradox to Frege. The paradox
shook the logicians’ world, and the rumbles are still felt today.(From Frege
to Gödel in van Heijenoort 1967)

5 Exactly, Russell pointed the paradox in the expression of functions rather than sets,
in the letter to Frege (van Heijenoort 1967).

Inquiry into RDF and OWL Semantics 19

2.4 Zermelo’s Axiom of Separation

To avoid Russell paradox, Ernst Zermelo replaced the comprehension principle
with the axiom of separation (aussonderung) (Kamareddine et al. 2004).

Definition 3 (Axiom of Separation).

∃y∀x[x ∈ y ⇔ x ∈ z ∧ ϕ(x)] where y does not occur in ϕ(x) (7)

In this case, y must be a proper subset of a set z, of which members satisfy the
formula. It may be phrased that the paradox is work-arounded by introducing z
distinctively existing. Today, a set theory based on a series of axioms by Zermelo
is called Zermelo-Fraenkel (ZF) set theory together with Fraenkel’s axiom of
replacement.

It is worthy to note that in some of modern computer languages a function-
ality to make a list whose elements are selected from another list so that they
satisfy a specified condition is accidentally misnamed list comprehension6. We
claim that this functionality in computer languages should be properly named
“list-separation” or “list-selection” in order to avoid misunderstanding between
comprehension principle in set theories and list comprehension in computer lan-
guages. As well, the term of “comprehension conditions (principles)”, which is
strongly associated with paradoxes in sets, in “OWL Semantics and Abstract
Syntax, Sect. 5”, should be renamed to “list conditions by selection” or some-
thing else, in order to avoid unfounded fear of paradoxes associated with com-
prehension principle.

2.5 NBG and Set Theory of KIF 3.0

The Knowledge Interchange Format (KIF) 3.0 theory proposed a special set
theory that is based on von Neumann-Bernays-Gödel (NBG) set theory. The
Chap. 7 of the reference manual (KIF 1994), which is titled “Sets”, starts with
the statement below.

In many applications, it is helpful to talk about sets of objects as objects
in their own right, e.g. to specify their cardinality, to talk about subset
relationships, and so forth. The formalization of sets of simple objects is
a simple matter; but, when we begin to talk about sets of sets, the job
becomes difficult due to the threat of paradoxes (like Russell’s hypothe-
sized set of all sets that do not contain themselves).
(Knowledge Interchange Format version 3.0 Reference Manual (KIF 1994))

It is obvious that the KIF Group were worried about involving the paradoxes on
sets in the KIF specification. NBG allows us to make sets that include individuals
and sets or classes of individuals. The axioms in NBG is roughly separated into
two parts; one is for sets, in which a set is expressed using variables with lower
letters, and the other is for classes, in which a class is expressed using variables
6 For example, in Haskell, [x ↑ 2 | x ← [1..5]] produces [1, 4, 9, 16, 25]. (Hutton 2007).

20 S. Koide and H. Takeda

with upper letters. Although both parts of axioms are composed of almost same
forms, they are separated owing to the idea that classes are a different sort from
sets of individuals in NBG.

KIF distinguishes bounded set (set) from unbounded set (proper class). A
bounded set can be a member of a set, but an unbounded set cannot be a
member of set. A bounded set is finite. A finite set is bounded, but an infinite
set is unbounded. It is consistent to the standard set theories, ZF and NBG.
KIF contains one more notion, that is, individuals.

In KIF, a fundamental distinction is drawn between individuals and sets.
A set is a collection of objects. An individual is any object that is not
a set. A distinction is also drawn between objects that are bounded and
those that are unbounded. This distinction is orthogonal to the distinc-
tion between individuals and sets. There are bounded individuals and
unbounded individuals. There are bounded sets and unbounded sets. The
fundamental relationship among these various types of entities is that of
membership. Sets can have members, but individuals cannot. Bounded
objects can be members of sets, but unbounded objects cannot. (It is
this condition that allows us to avoid the traditional paradoxes of set
theory.) (KIF 1994, Sect. 7.1 Basic Concepts)

Although we may have a curiosity what unbounded individuals are, there is no
explanation in KIF what they are, and the study is beyond the scope of this
paper. Russell paradox is described in KIF as follows.

The paradoxes appear only when we try to define set primitives that are
too powerful. We have defined the sentence ‘(member τ σ)’ to be true in
exactly those cases when the object denoted by τ is a member of the set
denoted by σ, and we might consider defining the term ‘(setofall τ φ)’
to mean simply the set of all objects denoted by τ for any assignment of
the free variables of τ that satisfies φ. Unfortunately, these two definitions
quickly lead to paradoxes.
Let φν/τ be the result of substituting term τ for all free occurrences of ν
in sentence φ. Provided that τ is a term not containing any free variables
captured in φν/τ , then the following schema follows from our informal def-
inition. This schema is called the principle of unrestricted set abstraction.

(⇔ (member τ (setofall ν φ)) φν/τ)

(KIF 1994, Sect. 7.4 Paradoxes)

Note that this form is equivalent to the unrestricted comprehension principle (6)
and it causes Russell paradox.

Instead of this principle, Russell paradox is avoided in KIF by restricted set
abstraction, in which a set is restricted to bounded sets.

In the von-Neuman-Gödel-Bernays version of set theory, these paradoxes
are avoided by replacing the principle of unrestricted set abstraction with
the principle of restricted set abstraction given above.

(⇔ (member τ (setofall ν φ)) (and (bounded τ) φν/τ)) (ibid .)

Inquiry into RDF and OWL Semantics 21

Note that this form resembles the axiom of separation (7) in ZF. Here a bounded
object ‘(bounded τ)’ is used instead of the restriction ‘x ∈ z’.

KIF succeeded to eliminate paradoxes by the concept of bounded set of
objects, whereas Russell’s Ramified Type Theory is much suitable to explain how
RDFS can avoid Russell paradox for the correct comprehension of the framework
for meta-modeling7.

2.6 Russell’s Ramified Type Theory

Alfred N. Whitehead and Bertrand Russell developed the first type theory, Ram-
ified Type Theory, in the epoch-making three-volume books, ‘Principia Mathe-
matica’ (hereafter PM for short). They attempted to solve the Russel paradox
together with other paradoxes by capturing them as variations of vicious circle.

An analysis of the paradoxes to be avoided shows that they all result from
a certain kind of vicious circle. (PM, Vol.1 , Introduction, Chap. 2)

They emphasized that statements about “all propositions” are meaningless
owing to the totality contained in the statements.

[...] if we suppose the set to have a total, it will contain members which
presuppose this total, then such a set cannot be a total. (ibid.)

Therefore, they, first of all, postulate the vicious-circle principle in order to avoid
paradoxes caused by self-reference.

The principle which enables us to avoid illegitimate totalities may be stated
as follows: “Whatever involves all of a collection must not be one of the
collection”; or, conversely: “If, provided a certain collection had a total, it
would have members only definable in terms of that total, then the said
collection has no total.” We shall call this the “vicious-circle principle”,
[...] (ibid.)

Whitehead and Russell introduced the idea of propositional function, in
which sentences may include variables for not only objects but also functions8,
and value assignments for all variables of objects and functions turn open sen-
tences unambiguous propositions. Thus, functions are also applied to as logical
expression. For example, Leibniz equality of x = y is defined as ∀f [f(x) ⇔ f(y)].

Ramified Types. Types in PM have a double hierarchy, that is, (simple) types
and orders. The second hierarchy is introduced by regarding also the types of
the variables that are bound by a quantifier. Kamareddine, et al. explained the
reason using a propositional function z()∨¬z(), which can involve an arbitrary

7 The set theory in NBG for individuals and sets can be regarded as a sort of first
order logic, and then classes can be regarded as first order. However, RDFS can be
regarded as much higher order logic as shown at Sect. 3.

8 Predicates are functions that return truth value.

22 S. Koide and H. Takeda

proposition for z, then ∀z ↑()[z() ∨ ¬z()]9 quantifies over all propositions for z
in the universe. We must distinguish a simple proposition C(a) and quantified
∀z ↑()[z() ∨ ¬z()]. The former does not involve any self-reference but the latter
may involve the self reference for z. This problem is solved by dividing types
into orders. An order is simply a natural number that starts with 0, and in ∀z ↑
()[z()∨¬z()] we must restrict the form by mentioning the order of propositions.
Thus, propositional function of the form ∀z ↑()n[z()∨¬z()] quantifies over only
all propositions of order n, and this form has its own order n + 1.

Definition 4 (Ramified Types). PM explained ramified types for only unary
and binary functions. Kamareddine, et al. extended the definition to n-
ary. (Kamareddine et al. 2004).

1. 00 is a ramified type;
2. If ta1

1 , . . . , tan
n are ramified types and a ∈ IN > max(a1, . . . , an), then

(ta1
1 , . . . , tan

n)a is a ramified type (if n = 0 then take a ≥ 0) ;
3. All ramified types can be constructed using rules 1 and 2.

Note that in (ta1
1 , . . . , tan

n)a we demand that a > ai for all i. Furthermore, White-
head and Russell defined predicative condition on ramified types.

Definition 5 (Predicative Types).

(ta1
1 , . . . , tan

n)a where a = 0 if n = 0, else a = 1 + max(a1, . . . , an)

The followings are some examples of predicative types.

– 00;
–

(
00

)1;

–
((

00
)1

,
(
00

)1)2

;

–
((

00
)1

,
((

00
)1

,
(
00

)1)2
)3

.

The above expressions of ramified types are also expressed as follows by
Stevens (Stevens 2003) using function symbol F , G, H, and I, and their argu-
ments.

– 0x0;
– 1F (0/0)(0x0);
– 2H(1/(0/0),1/(0/0))

(
1F (0/0)(0x0), 1G(0/0)(0y0)

)
;

– 3I(1/(0/0),2/(1/(0/0),1/(0/0)))
(
1F (0/0)(0x0), 2H(1/(0/0),1/(0/0))

)
.

9 In this paper ‘↑’ is used to indicate the type of variable instead of colon that is
usually used in type theory, as a colon is confusing with the notation for namespace
in the syntax of Semantic Web.

Inquiry into RDF and OWL Semantics 23

Here the first 0 in (0/0) stands for the order as argument and the last 0 stands
for the type as argument at the individual level. 1 in 1/(0/0) stands for the order
as first order as argument. The prefix number of function stands for orders of
the form.

Suggested by ramified types, we can put orders to classes on RDF seman-
tics with interpreting a class name as unary predicates in predicate calculus or
propositional functions in PM. In the next section, we attempt to formalize RDF
semantics taking into account of orders in Ramified Type Theory for classes, and
claims that RDFS may avoid Russell paradox.

3 Formalization of RDF/OWL Semantics Based
on Higher Order Types

3.1 Preliminary Explanations of Notations, Denotations,
and Universe of Discourse

Notation. In this formulation, R stands for the universe of discourse, P stands
for a finite set of logical predicate symbols, F stands for a finite set of functional
symbols, and V stands for a countable set of vocabularies. Every sentence in this
formulation is a triple like 〈s, p, o〉 composed of words in a vocabulary in V.

Interpretation I is a mapping from a set of triples and vocabularies V into
the universe of discourse R. Logical symbols, i.e., ∈ (relation between elements
and a set), ⊆ (inclusiveness among sets), � (sub/super concept of class relation),
are used in addition to common logical connectives ∧ (conjunction) and ∨ (dis-
junction). In the domain of RDF and OWL, F contains only IEXT(.) (extension
of property) and CEXT(.) (extension of class).

There are no variables except for blank nodes in RDF and OWL. So, note
that every symbol in RDF and OWL standing for an object is a constant term
in logics. However, discussions on sets require variables. Thus, variables for sets
are expressed x, y, . . . or x1, x2, . . . , and xi, yi. When we indicate variables in
logical forms, they may be explicitly expressed with quantifiers ∀ or ∃.

Tarskian Denotational Semantics. We discriminate sentences and words in
sentences from their denotations (Tarski 1946). For example, a word “Tokyo”
as logical term Tokyo interpreted as a city named Tokyo in Japan, and the
denotation is expressed as I[[Tokyo]] or TokyoI . In this case, we say “Tokyo
denotes TokyoI” or “TokyoI is the denotation of Tokyo” for I[[Tokyo]] = TokyoI .
In this representation, x = x is interpreted as xI = xI (as tautology), and
a = b is interpreted to aI = bI (when both denotations are identical). A
sentence denotes truth value, of which truth or falsity is decided depending
on rules of interpretation and models constructed by ontologists. For example,
New YorkI = Apple CityI is true in some case or false in another case.

The interpretation by denotational semantics do not require us to make
unique name assumption. We represent a � b for owl:sameAs and a �� b for

24 S. Koide and H. Takeda

owl:differentFrom in OWL sentences. Then, the followings hold on different nodes
of RDF graph aI and bI in OWL10.

I[[a � b]] ⇒ aI = bI

I[[a �� b]] ⇒ aI �= bI

Universe of Discourse by Set Theory. In set theories, a set is extensionally
defined by enumerating all members of the set, or intensionally defined by using
logical conditions that all members in the set satisfy, which is like comprehension
principle. However, the expression xI = xI is always true in any case, thus the
universe of discourse that stands for the totality can be defined as follows,

R ≡ {xI | xI = xI}.

Note that R as the universe of discourse can contain all denotations (objects in
models), and every entity in the universe always belongs to R because xI = xI is
always true for any xI . Also note that this form looks like a set but R is actually
not a set but a proper class that contains everything in the universe and cannot
be a member of a set.

Property Extension. In this paper, the interpretation of a triple 〈s, p, o〉 or
〈s, o〉 ∈ EXT(p) is represented as 〈sI , oI〉 ∈ IEXT(pI),

I[[〈s, o〉 ∈ EXT(p)]] ⇒ 〈sI , oI〉 ∈ IEXT(pI).

IEXT(pI) is called the (semantic) extension of property pI . IEXT(pI) is a map-
ping into the powerset of direct product R × R, thereby the arguments xI and
yI of an ordered pair 〈xI , yI〉 are in R, namely, (xI ∈ R ∧ yI ∈ R)11.

Class Extension. We express a triple 〈s, rdf : type, o〉 as s↑o in this paper, then
the class extension can be captured as a set of which members can be interpreted
as instances of classes. Namely, for an instance xI of class yI ,

I[[x↑y]] ⇒ xI ⇑yI ≡ 〈xI , yI〉 ∈ IEXT(rdf : typeI) ≡ xI ∈ CEXT(yI).

CEXT(yI) is called the (semantic) class extension of class yI .

3.2 Higher Order Classes

We introduce orders into the description of RDFS classes. Namely,

nxI ⇑myI ≡ 〈nxI ,myI〉 ∈ IEXT(rdf : typeI) ≡ nxI ∈ CEXT(myI) where m > n ≥ 0.

10 A question arises in the case of no statements of owl:sameAs and owl:differentFrom
for atomic nodes in comparison of two different graphs. We proposed the algorithm
named UNA for atomic objects in the non-UNA condition. See the motivation and
the detail in Koide and Takeda 2011.

11 See the simple interpretation 3 in RDF Semantics (Hayes 2004).

Inquiry into RDF and OWL Semantics 25

Here n and m is an order of class x and y, respectively. When exactly m = n+1,
we call it predicative as well as PM.

Definition 6 (Predicative Classes).

nxI ⇑n+1yI ≡ 〈nxI , n+1yI〉 ∈ IEXT(rdf : typeI) where n ≥ 0, (8)
nxI ⇑n+1yI ≡ nxI ∈ CEXT(n+1yI) where n ≥ 0. (9)

We distinguish nxI from n+1xI as different nodes in an RDF graph, while the
x is the same lexical token as IRI or nodeID in V. Therefore, we can obtain the
following lemma without violating vicious circle principle,

Lemma 1.

nxI ⇑n+1xI = 〈nxI , n+1xI〉 ∈ IEXT(rdf : typeI) where n ≥ 0, (10)
nxI ⇑n+1xI = nxI ∈ CEXT(n+1xI) where n ≥ 0. (11)

We assume that rdf:type has the same role in the universe from n = 0 to ∞.
This is actually the same as axiom of reducibility (PM, Vol.1, Introduction, VI),
which is required to enable that there exists a (higher order) function as formally
the same as the predicative function that takes individuals as arguments. We
extend this principle to every RDF and OWL properties later on.

3.3 Subsumption in Higher Order Classes

The RDFS semantic condition on rdfs:subClassOf contains the following con-
dition that is obtained with extending RDFS-original classes to higher order
classes,

nxI � myI ≡ nxI ∈ C ∧ myI ∈ C ∧ CEXT(nxI) ⊆ CEXT(myI) where m, n ≥ 1.

Here � represents subclass-superclass relation that is designated by rdfs:
subClassOf, and C may be called the universal domain of classes, to which
all classes in the universe of discourse belong. The above condition is called
subsumption.

Then, we introduce a new notion onto the subsumption by higher order
classes. If n = m on the above condition, let us call it interpretable.

Definition 7 (Interpretable Class Condition).

nxI � nyI ≡ nxI ∈ C ∧ nyI ∈ C ∧ CEXT(nxI) ⊆ CEXT(nyI)) where n ≥ 1.
(12)

Namely, both classes related by rdfs:subClassOf must be the same order.
The order n of classes should be greater than zero (n > 0), since order 0 is

assigned only individuals and an individual cannot have its own extension. Note

26 S. Koide and H. Takeda

that this interpretable class condition is constructively obtained in accordance
with the definition of “being of the same type” PM *9.131, in which it is stated u
and v “are the same type,” if “(1) both are individuals, (2) both are elementary
functions taking arguments of the same type”. Individuals are interpretable. So,
the first order classes are also interpretable. Then, we consider rdfs:subClassOf
relation among the first order classes also interpretable. Thus, this procedure
may be repeated again and again from order 0 to order n.

3.4 Universal Class in Higher Order Classes

As shown in the entailment rule rdfs4a and rdfs4b (Hayes 2004), every entity
in the universe of discourse is an instance of rdfs :ResourceI ,

� ∀uI [uI ∈ CEXT(rdfs :ResourceI)].

RDFS entailment lemma in (Hayes 2004) states that every entity as class is a
subclass of the class rdfs:Resource,

� ∀cI [cI � rdfs :ResourceI].

We extend these forms for entities and classes to higher order classes in the
universe as well as described above.

� ∀ nuI [nuI ∈ CEXT(n+1rdfs :ResourceI) ≡ n
R] where n ≥ 0, (13)

� ∀ ncI [ncI � nrdfs :ResourceI] where n ≥ 1. (14)

We see that all individuals, which is expressed as 0uI belong to 0
R, and all first

classes, which is expressed as 1uI belong to 1
R, and so forth. Using this extended

rule (13), we see that the universe of discourse R stratifies by orders. Every entity
in n-th order universe n

R is an instance of (n + 1)-th order n+1rdfs :ResourceI .
Therefore, all extensions of nrdfs :ResourceI (n ≥ 1) covers all entities in the
universe and the union of n

R coincides with the universe of discourse R.

Definition 8 (Universal Class and Stratified Universe).
⋃

i=1→∞
CEXT(irdfs :ResourceI) =

⋃

i=0→∞

i
R = R (15)

We abbreviate this form to the following that is described in RDF Semantics.

CEXT(rdfs :ResourceI) = R

Thus, rdfs :ResourceI is appropriate to name universal class due to the extension
being the universe of discourse R.

Inquiry into RDF and OWL Semantics 27

3.5 Universal Metaclass in Higher Order Classes

As well as the universe of discourse R, we set up the universal domain of classes
in discourse, C, in which all classes in the universe exist. Then, we can define
for higher order classes,

ncI ∈ CEXT(n+1rdfs :ClassI) ≡ n
C where n ≥ 1. (16)

Definition 9 (Universal Metaclass and Stratified Universe of Classes).
⋃

i=2→∞
CEXT(irdfs :ClassI) =

⋃

i=1→∞

i
C ≡ C = R\0R (17)

The RDF semantics shows the following condition. It is deemed to be an abbre-
viation of the universal metaclass (17),

CEXT(rdfs :ClassI) = C.

While rdfs :ClassI is appropriate to be called universal metaclass as a represen-
tative class for the universal domain of classes in discourse, we need to make
clear the relation between R and C or rdfs :ResourceI and rdfs :ClassI .

From stratified universe (13) and stratified universal domains of classes (16),
we obtain the followings,

nrdfs :ClassI ∈ CEXT(n+1rdfs :ResourceI) ≡ n
R where n ≥ 2,

nrdfs :ClassI � nrdfs :ResourceI where n ≥ 2.

We distinguish nrdfs :ClassI and n+1rdfs :ClassI as well as we distinguish
nrdfs :ResourceI and n+1rdfs :ResourceI . Thus, we obtain the followings from
(13) and (16),

nrdfs :ResourceI ∈ CEXT(n+1rdfs :ResourceI) ≡ n
R where n ≥ 1,

nrdfs :ResourceI ∈ CEXT(n+1rdfs :ClassI) ≡ n
C where n ≥ 1,

nrdfs :ClassI ∈ CEXT(n+1rdfs :ClassI) ≡ n
C where n ≥ 2.

Let us call these complex relations between rdfs:Resource and rdfs:Class
hemi-cross subsumption, as these equations draw a picture like cross fire but
nrdfs :ResourceI �� nrdfs :ClassI .

Thus, if we neglect the orders of classes, the membership loops appear on
rdfs:Resource and rdfs:Class, but by seeing the orders, no membership loops
exist in the universe.

rdfs :ClassI ∈ CEXT(rdfs :ClassI)
rdfs :ResourceI ∈ CEXT(rdfs :ResourceI)

28 S. Koide and H. Takeda

4 Meta-Modeling Criteria in RDFS and OWL

As shown above, several principles about the order number of classes are
addressed to avoid infinite membership loops. Here we set up them as criteria
for meta-modeling.

1. (reducible) Every property that is applicable to individuals and the first order
classes is applicable to much higher order classes.

2. (predicative) In respect of properties that make the relation of instance and
class, i.e., rdf:type, owl:oneOf, rdfs:domain, rdfs:range, etc., the order of class
must be plus one to the order of the instances.

3. (interpretable) In respect of properties that make the relation among non-
literal objects, the order of arguments must be the same. Note that this prin-
ciple is not applied to instance objects of Datatype such as strings, numbers,
or URLs as datatype.

4. (constructive) Even if we adopt the predicative and the interpretable prin-
ciples, ambiguous and undecidable entities on orders may still remain. Such
a case, the orders must be decidable by ascendingly computing orders from
individuals (n = 0), and first classes (n = 1), or descendingly computable
starting at higher orders to lower orders so that the computation terminates
at individuals level (n = 0).

In RDF-based OWL semantics, the class extension of OWL is defined as
follows12,

CEXT(cI) = {xI ∈ R | 〈xI , cI〉 ∈ IEXT(rdf : typeI)}.

We extend this definition to higher order classes as

CEXT(n+1cI) = {nxI ∈ n
R | 〈nxI , n+1cI〉 ∈ IEXT(rdf : typeI)}. (18)

Namely, all individuals 0xI in OWL belong to 0
R of the RDF universe, and all

first classes 1cI belong to 1
R of the RDF universe, and so forth.

In the document of RDF-based OWL semantics, a special syntax form is used
for sequence of entities, i.e., SEQ ≡ IEXT(rdf :List). In this paper, we express the
sequence of entities simply (x, y, . . .). So, owl:intersectionOf and owl:unionOf13

are extended to higher order classes as follows,

〈 nzI , (ncI
1 , . . . , ncI

m) 〉 ∈ IEXT(owl : intersectionOf) ⇔
nzI , ncI

1 , . . . , ncI
m ∈ n

C ∧ CEXT(nzI) =
⋂

i=1→m

CEXT(ncI
i), (19)

〈 nzI , (ncI
1 , . . . , ncI

m) 〉 ∈ IEXT(owl :unionOf) ⇔
nzI , ncI

1 , . . . , ncI
m ∈ n

C ∧ CEXT(nzI) =
⋃

i=1→m

CEXT(ncI
i). (20)

12 http://www.w3.org/TR/owl-rdf-based-semantics/#Class Extensions.
13 http://www.w3.org/TR/owl2-rdf-based-semantics/#Semantic Conditions for Bool

ean\ Connectives.

http://www.w3.org/TR/owl-rdf-based-semantics/#Class_Extensions
http://www.w3.org/TR/owl2-rdf-based-semantics/#Semantic_Conditions_for_Booleanprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Connectives
http://www.w3.org/TR/owl2-rdf-based-semantics/#Semantic_Conditions_for_Booleanprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Connectives

Inquiry into RDF and OWL Semantics 29

As well, the semantic conditions of enumeration is extended as

〈 n+1zI , (naI
1 , . . . , naI

m) 〉 ∈ IEXT(owl :oneOf) ⇔
n+1zI ∈ n+1

C ∧ CEXT(n+1zI) = {naI
1 , . . . , naI

m}. (21)

5 Related Work and Discussion

On Punning. W3C posed six use cases on “punning”14, but only the first and
the second cases in these use cases deserve to discuss in ontological view.

The first case is solved by making a :Service a meta-class.
2a :Service rdf :subClassOf 2owl :Class .

2a :Service rdf : type 3owl :Class .
1a :Person rdf : type 2owl :Class .

1s1 rdf : type 2a :Service .
1s1 a : input 1a :Person .

The first triple shown above is newly added to the original set of the triples,
so that the system becomes decidable and s1 becomes to be interpreted as the
first order class rather than an individual because n > 1 for nowl :Class. The
last triple must be modified to the form for domain s1 and range a : Person
constraints.

The second use case is a typical quiz for meta-classing. Harry as individual is
a eagle, and the eagle as species is in the Red List as endangered species. In the
following triples, the first and second triples are newly added to the others, so
that they set up a : Species and a : EndangeredSpecies as meta-classes. Then,
the case becomes decidable.

2a :Species rdfs :subClassOf 2owl :Class.
2a :EndangeredSpecies rdfs :subClassOf 2a :Species.

1a :Eagle rdf : type 2owl :Class.
0a :Harry rdf : type 1a :Eagle.
1a :Eagle rdf : type 2a :Species.
1a :Eagle rdf : type 2a :EndangeredSpecies.

Domino-Tilting Puzzle. Motik posed Domino-tilting Puzzle to exemplify
undecidable OWL Full (Motik 2007). In this example, GRID is an OWL class
and does not interpreted as property. However, this model involves the infi-
nite ascending higher order computation by the resulted stratified form such as
nGRID � ∃rdf : type.n+1GRID , starting from an individual GRID a0,0 at the
coordinate (0, 0), and going to a∞,∞. Then we have no way to terminate the
computation.
14 http://www.w3.org/2007/OWL/wiki/Punning#Treating classes as instances of me

taclasses\ .28Class\ .E2/86/94 Individual.29.

http://www.w3.org/2007/OWL/wiki/Punning#Treating_classes_as_instances_of_metaclassesprotect unhbox voidb@x kern .06emvbox {hrule width.3em}.28Classprotect unhbox voidb@x kern .06emvbox {hrule width.3em}.E2/86/94_Individual.29
http://www.w3.org/2007/OWL/wiki/Punning#Treating_classes_as_instances_of_metaclassesprotect unhbox voidb@x kern .06emvbox {hrule width.3em}.28Classprotect unhbox voidb@x kern .06emvbox {hrule width.3em}.E2/86/94_Individual.29

30 S. Koide and H. Takeda

6 Conclusion

We focused on set theories involved in RDF and RDF-based OWL Semantics,
and clarified that stratified proper classes such as nrdfs :Resource, nrdfs :Class
(nowl :Thing and nowl :Class as well) do not include membership loops. Then we
proposed a set of criteria for meta-modeling that is derived from Ramified Type
Theory in Principia Mathematica. While it is obvious that unrestricted OWL
Full may be undecidable, the proposed meta-modeling criteria is not enough to
make meta-modeling computation decidable, even if we fulfill these criteria in
meta-modeling as shown in Domino-tilting Puzzle. Let us call such ones unsound
meta-modeling setup. We need further ways in well-mannered OWL Full meta-
modeling so that the systems would be decidable with the computation of higher
order classes.

References

Aczel, A.D.: The Mystery of the Aleph, Four Walls Eight Windows (2000)
Boolos, G.S.: The Iterative Conception of Set. J. Philosophy 68–8, 215–231 (1971)
Bourbaki, N.: Éléments de Mathématique, Chapitres 1 et 2. Hermann (1966)
Cantor, G.: Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische

Annalen, Bd.46, S.481-512 (1895). Contributions to the Founding of the Theory of
Transfinite Numbers, Dover (1955)

Cantor, G.: Letter to Dedekind (1899) in “From Frege to Gödel A Source Book in
Mathematical Logic, 1879–1931”. In: van Heijenoort, J. (ed.). Harvard (1967)

Doets, H.C.: Zermelo-Fraenkel Set Theory (2002). http://staff.science.uva.nl/vervoort/
AST/ast.pdf

Hutton, G.: Programming in Haskell. Cambridge University Press, New York (2007)
Hayes, P.: RDF Semantics. W3C Recommendation (2004). http://www.w3.org/TR/

2004/REC-rdf-mt-20040210/
Kamareddine, F., Laan, T., Nederpelt, R.: A Modern Perspective on Type Theory.

Kluwer, New York (2004)
Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format version 3.0 Reference

Manual (1994). http://logic.stanford.edu/kif/Hypertext/kif-manual.html
Koide, S., Takeda, H.: Common Languages for Web Semantics, Evaluation of Novel

Approaches to Software Engineering. In: Communications in Computer and Infor-
mation Science, vol. 230, pp. 148–162. Springer (2011)

Motik, B.: On the properties of metamodeling in OWL. J. Logic Comput. 17(4), 617–
637 (2007). doi:10.1093/logcom/exm027

Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL web ontology language semantics
and abstract syntax Sect. 5. RDF-Compatible Model-Theoretic Semantics (2004a).
http://www.w3.org/TR/owl-semantics/rdfs.html

Patel-Schneider, P.F., Horrocks, I.: OWL web ontology language semantics and abstract
syntax Sect. 3. Direct Model-Theoretic Semantics (2004b). http://www.w3.org/TR/
owl-semantics/direct.html

Schneider, M.: OWL 2 web ontology language RDF-based semantics, 2nd edn. (2014).
http://www.w3.org/TR/owl-rdf-based-semantics/

van Heijenoort, J. (ed.): Russell, B.: Letter to Frege (1902) in “From Frege to Gödel
A Source Book in Mathematical Logic, 1879–1931”. Harvard (1967)

http://staff.science.uva.nl/vervoort/AST/ast.pdf
http://staff.science.uva.nl/vervoort/AST/ast.pdf
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://logic.stanford.edu/kif/Hypertext/kif-manual.html
http://dx.doi.org/10.1093/logcom/exm027
http://www.w3.org/TR/owl-semantics/rdfs.html
http://www.w3.org/TR/owl-semantics/direct.html
http://www.w3.org/TR/owl-semantics/direct.html
http://www.w3.org/TR/owl-rdf-based-semantics/

Inquiry into RDF and OWL Semantics 31

Whitehead, A.N., Russell, B.: Principia Mathematica, vol. 1. Merchant Books (1910)
Graham, S.: Re-examining Russell’s paralysis: ramified type-theory and Wittgenstein’s

objection to Russell’s theory of judgment. J. Bertrand Russell Stud. 23, 5–26 (2003)
Tarski, A.: Introduction to Logic. Dover (1946/1995). This book is an extended edition

of the book title “On Mathematical Logic and Deductive Method,” appeared at 1936
in Polish and 1937 in German

Designing of Ontology for Domain Vocabulary
on Agriculture Activity Ontology (AAO)

and a Lesson Learned

Sungmin Joo1(B), Seiji Koide2, Hideaki Takeda1, Daisuke Horyu3,
Akane Takezaki3, and Tomokazu Yoshida3

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
{joo,takeda}@nii.ac.jp

2 Ontolonomy, LLC., 3-76-3-J901, Mutsukawa, Minami-ku, Yokohama, Japan
koide@ontolonomy.co.jp

3 National Agriculture and Food Research Organization, 1-31-1, Kannondai,
Tsukuba, Ibaraki, Japan

{horyu,akane,jones}@affrc.go.jp

Abstract. This paper proposes Agriculture Activity Ontology (AAO)
as a basis of the core vocabulary of agricultural activity. Since concepts of
agriculture activities are formed by the various context such as purpose,
means, crop, and field, we organize the agriculture activity ontology as
a hierarchy of concepts discriminated by various properties such as pur-
pose, means, crop and field. The vocabulary of agricultural activity is
then defined as the subset of the ontology. Since the ontology is consis-
tent, extendable, and capable of some inferences thanks to Description
Logics, so the vocabulary inherits these features. The vocabulary is also
linked to existing vocabularies such as AGROVOC. It is expected to
use in the data format in the agricultural IT system. The vocabulary
is adopted as the part of “the guideline for agriculture activity names
for agriculture IT systems” issued by Ministry of Agriculture, Forestry
and Fisheries (MAFF), Japan. Also we investigated the usefulness of the
ontology as the method for defining the domain vocabulary.

Keywords: Ontology · Agriculture · Agronomic sciences · Knowledge
representation · Core vocabulary · Vocabulary management

1 Introduction

The various IT systems have been introduced in farm management to realize
better management, i.e., more efficient resource management, finer production
control and better product quality. Now data management is indispensable in
farm management. Data in farm management is also used in own purpose but the
aggregated data is used for statistics, analysis and prediction for area agriculture.

Data in agricultural IT systems is nonetheless not easy to federate and inte-
grate since the languages to describe data are not unified. Terminology in agri-
culture such as names of activity, equipment, and crop has not been well stan-
dardized mainly because agriculture has been local. Some of locality comes from
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-50112-3 3

Designing of Ontology for Domain Vocabulary 33

diversity of culture and environment and others from the way of business, i.e.,
farms are small and run independently. But introduction of IT systems changed
the situation; farms can be connected beyond the barrier of individual farms,
regions, and even culture. But un-unified terminology exists as the problem.
Without unified terminology, smooth data exchange cannot be enabled. So stan-
dardization of terminology is the key to enhance agriculture with IT systems. We
focus on agriculture activity in this paper. Agriculture activity is the most basic
element of farm management and also the most difficult to standardize since it
is more abstract than other types of terminology like equipment and crop.

In this paper, we investigate the existing vocabulary system for agricultural
activities. Then we propose the agriculture activity ontology by paying atten-
tion to the linguistic feature of agricultural activities. We also explore reasoning
functions with the ontology and web services to utilize the ontology. Finally, we
discuss the future directions of the improvement and extension of the ontology.

2 An Existing Resource: AGROVOC

In this section, we survey the features of AGROVOC (a portmanteau of agri-
culture and vocabulary) [1] as an existing agricultural vocabulary system.
AGROVOC is the most well-known vocabulary in agriculture supervised by
Food and Agriculture Organization (FAO) of the United Nations. AGROVOC is
the thesaurus containing more than 32,000 terms of agriculture, fisheries, food,
environment and other related fields. It has international interoperability as it
is provided in 21 languages. Each term can have the hierarchical structure with
narrower concept and broader concept, and there are 25 top-most concepts such
as activities, organisms, location, products and so on. 1,434 narrower concepts
are provided in activities which contains the concepts about agriculture activity.

AGROVOC is the well-known vocabulary system which has international
interoperability and it contains many terms. However, There are some insuffi-
cient features in order to use as the core vocabulary. First of all, the relationship
between concepts is not clear. Most of narrower/broader relationship is attached
only by considering the pair-wise relationship. Thus hierarchy by these relation-
ships are not so consistent. For instance, Vegetative propagation has Rooting
as the narrower concept. Figure 1 shows the broader concept and the narrower
concept of harvesting. mowing is located as the narrower concept of harvesting,
but it is not an appropriate classification considering the general meaning of
mowing. This kind of problem occurs because AGROVOC is established vocab-
ulary system as the thesaurus. This vague relationship between concepts makes
the problem when adding a new term; it is difficult to define the relation with
concepts in AGROVOC, i.e., to find the best position to the new term.

In addition, the number of activity names about rice farming, which is impor-
tant in Asia including Japan, are insufficient. For example, in rice farming, espe-
cially pulling seedlings and midseason drainage which are important activity in
a rice paddy, are not contained in AGROVOC.

The ambiguousness of relationship among concepts in the existing vocabulary
system of agricultural activities is thus problematic. It is required to clearly

34 S. Joo et al.

Fig. 1. The broader concept and the narrower concept of harvesting in AGROVOC
(http://oek1.fao.org/skosmos/agrovoc/en/page/c 3500).

define the relationships among concepts and specify them. In order to solve these
problems, this paper suggests the establishment of the ontology for agriculture
activity. The ontology can define the clear concepts by separating concepts and
representation. Also it can reflect the characteristics of the domain more clearly
by structuralizing the relationships.

3 Designing of Agricultural Activity Ontology

This paper describes the Agriculture Activity Ontology (AAO) as the basis of the
core vocabulary of agriculture activity, and it provides semantics for agricultural
activity names. Also, AAO is formalized by Description Logics in order to define
and classify the agricultural activities clearly. Formalization by Description Log-
ics makes it possible to judge the inconsistency and subsumption among con-
cepts, and to enable more logical inferences. The ontology designed by Descrip-
tion Logics can be converted to OWL so that it can processed by computers.

3.1 The Structuralization of the Agricultural Activities

Our strategy to structuralize agricultural activities is the top-down, i.e., start-
ing from the most general activity and expanding it to more specific activities.

http://oek1.fao.org/skosmos/agrovoc/en/page/c_3500

Designing of Ontology for Domain Vocabulary 35

The important criteria for the top-down approach is how we can classify more
specific concepts consistently. We define more specific concepts by specifying
attributes and their values. We furthermore define the general rule for specify-
ing attributes.

We start with the top concept Agriculture Activity which denotes all kind of
activities related on crop and/or fields. Then we break down the concept into
more concrete concepts. When farmers plan or do a certain agricultural activity,
the first decision is what for they would take the action, i.e., purpose is the first
attribute to distinguish agriculture activities. After the purpose is well specified,
we use other attributes, i.e., act (type of action), target, place, means, equipment,
and season in this order. Crop is also introduced so as to define the activity for a
specific crop. These eight attributes are used to define the concept and to form
the hierarchy of the agricultural activity.

The basic idea of formalization of Agriculture Activity Ontology is that con-
cepts correspond to concepts in Descriptions Logics (DLs) while attributes such
as purpose correspond to roles in DLs. By adding the role and the role value,
the concepts is defined as the narrower concept of the original concept. If the
added role is what is already used in the original concept and the value of the
role of the new concept is narrower than that in the original concept, the new
concept is also narrower concept of the original concept. It should be noted;
not all concepts correspond to terms for farm management since some abstract
concepts are introduced just to classify. So we distinguish the abstract concepts
not corresponding to terms and concrete concepts corresponding to terms. We
call former category and the latter term. For example, thinning and cutting root
are terms, and their broader concept activity for uniformity is the category. The
category and the term are succeeding the values of the attributes, and they have
the relationship of inclusion.

Now let’s look at the ontology in detail. At first, we classify the agriculture
activity into two; crop production activity which is related to the crop production
directly, and administrative activity which is related to the farm management.
crop production activity is classified into the following four activities: crop growth
activity which is for the purpose of crop growth, activity for environmental con-
trol which is for the purpose of the environment control, activity for post pro-
duction which is for the purpose of the post production, and activity for support
for crop production which is for the purpose of the indirect support in the crop
production. So as to define narrower concepts, purpose, act, target, place, means,
equipment, season, crop were used as attributes. Classification is conducted by
using values of these attributes.

The activity Seeding can be defined as follows; First of all, Seeding is one of the
activities of Activity for seed propagation, and Activity for control of propagation
is the broader concept of Activity for seed propagation, Crop growth activity is the
broader concept of activity for control of propagation. Crop production activity
is the broader concept of Crop growth activity. Lastly, the broader concept of
Crop production activity is agriculture activity which is the broadest concept.
All these concepts are classified by purpose so that purpose attribute is used.

36 S. Joo et al.

Since the values of purpose attributes are hierarchical, activity concepts are
hierarchical. Seed propagation is the narrower concept of Control of propagation,
and it then the narrower of Crop growth. Crop growth is the narrower concept of
Crop production.

Crop production activity ≡ Agriculture activity

�∀purpose.crop production (1)
Crop growth activity ≡ Crop production activity

�∀purpose.crop growth (2)
Activity for control of propagation ≡ Crop growth activity

�∀purpose.control of propagation (3)
Activity for seed propagation ≡ Activity for control of propagation

�∀purpose.seed propagation (4)

The formula (1), (2), (3), (4) can be represented as the formula (5).

Activity for seed propagation ≡ Agriculture activity

�∀purpose.seed propagation

�∀purpose.control of propagation

�∀purpose.crop growth

�∀purpose.crop production (5)

Here the purposes of seed propagation, control of propagation, crop growth,
crop production have the following relation of inclusion by definition.

seed propagation � control of propagation � crop growth � crop production

(6)

Thus the formula (5) is represented as below.

Activity for seed propagation ≡ Agriculture activity

�∀purpose.seed propagation (7)

On the other hand, Seeding is the activity whose purpose is seed propagation,
place is field, target is seed, and act is sow. So it is defined as below.

Seeding ≡ Activity for seed propagation

�∀act.sow
�∀target.seed
�∀place.field (8)

Designing of Ontology for Domain Vocabulary 37

Therefore, Seeding in the agricultural activities is defined like below from the
formula (7) and (8).

Seeding ≡ Agriculture activity

�∀purpose.seed propagation

�∀act.sow
�∀target.seed
�∀place.field (9)

Among Seeding, when the crop is rice and the place is nursery box, it is
classified as seeding on nursery box, when the place is paddy field, it is classified
as direct seeding in flooded paddy field and when the place is well drained paddy
field, it is classified as direct seeding in well drained paddy field. As a result,
Seeding on nursery box, Direct seeding in flooded paddy field and Direct seeding
in well drained paddy field are in the relationship of siblings, and they are the
narrower concept of seeding. Here these activities can be represented by the
description logic as below.

Seeding on nursery box ≡ Seeding

�∀crop.rice
�∀place.nursery box (10)

Direct seeding in flooded paddy field ≡ Seeding

�∀crop.rice
�∀place.paddy field (11)

Direct seeding in well drained paddy field ≡ Seeding

�∀crop.rice
�∀place.well drainded paddy field

(12)

The place value of nursery box, paddy field and well drained paddy field are
defined as a part of field.

nursery box � field,

paddy field � field,

well drained paddy field � field (13)

Thus, from the formula (11), (12) and (13), we define the activity Seeding
on nursery box, Direct seeding in flooded paddy field and Direct seeding in well
drained paddy field as below.

38 S. Joo et al.

Seeding on nursery box ≡ Agriculture activity

�∀purpose.seed propagation

�∀act.sow
�∀target.seed
�∀crop.rice
�∀place.nursery box (14)

Direct seeding in flooded paddy field ≡ Agriculture activity

�∀purpose.seed propagation

�∀act.sow
�∀target.seed
�∀crop.rice
�∀place.paddy field (15)

Direct seeding in well drained paddy field ≡ Agriculture activity

�∀purpose.seed propagation

�∀act.sow
�∀target.seed
�∀crop.rice
�∀place.well drainded paddy field

(16)

By combining adding more attributes and subdividing the attribute values,
we can flexibly form the hierarchical structure to represent terminology used in
agriculture without loosing logical consistency.

3.2 Polysemic Concepts

There are many activities conducted for the multiple purposes in the agricultural
activities. The typical case is Activity for mulching. One of its purposes is spread-
ing organic matter and other things on the surface of the soil, but there are other
purposes; to keep the temperature optimal and controls the temperature, and to
refrain weeds. The other example is Puddling. It is to plow the bottom of a rice
field, but it is also intended to conduct for the purpose of water retention, i.e.,
preventing from the water leak, and for the purpose of land leveling, i.e., flat-
tening the soil. In our formalization, these concepts are interpreted as polysemic
concept and modelled as disjunction of multiple concepts since none of multiple
concepts are mandatory rather optional. Here puddling can be expressed with
DL as follows;

Puddling ≡ Pulverization

�Land leveling

�Activity for water retention (17)

Designing of Ontology for Domain Vocabulary 39

Now Puddling is expanded as follows;

Puddling ≡ (Agriculture activity

�∀purpose.land preparation

�∀act.crush
�∀place.paddy field)

� (Agriculture activity

�∀purpose.land preparation

�∀act.level
�∀target.field)

� (Agriculture activity � ∀purpose.water retention) (18)

By converting the disjunction form into the formula (18) to the conjunction
form, we can infer the formula (19).

Puddling � Agriculture activity

�∀purpose.(land preparation � water retention)
�∀act.(crush � level)
�∀place.paddy field (19)

The polysemic concepts defined with multiple concepts can properly express
features for the activities conducted for multiple attributions in the Agriculture
Activity Ontology.

3.3 Synonym

There are many synonyms in the vocabulary for agricultural activities. It is easily
treated in DL as follows;

Seeding ≡ Sowing (20)

In addition, expressions in multiple languages are also represented as syn-
onyms. It is important especially for non-English speaking countries1.

(21)

So as to correspond to the variety of the vocabulary, the Agriculture Activity
Ontology enables to separate the concepts themselves and expressions of the
concepts properly.

1 Indeed, AAO is basically written in Japanese and expressions of concepts and roles in
English are optional. But we here provide the English version of AAO for simplicity
of explanation.

40 S. Joo et al.

4 Reasoning by Agriculture Activity Ontology

Generally speaking, the more abstract concepts are, the more difficult it is to
define them. The more specific concepts are, the easier it is to take the specific
attributes into account. On a specific agriculture activity, it is easy to define the
activity with the specific attributes, such as the purpose, the target, the means,
etc. Since the purpose of AAO is to keep the agriculture activity terms consis-
tent and well-organized, placing new terms at the appropriate location in the
ontology is mandatory. For instance, suppose that we want to add a new term
Making scarecrow. It is composed of attribute the purpose of pest animal sup-
pression and attribute the means of physical means, then the abstract activity
Activity for pest animal suppression by physical means may become the abstrac-
tion of Making scarecrow, even if it is not specified explicitly. Furthermore, more
abstract Activity for pest animal suppression must be the abstraction of Activity
for pest animal suppression by physical means without attribute the means.

making scarecrow ≡ ∀purpose.pest animal suppression

�∀act.make

�∀target.scarecrow
�∀means.physical means (22)

The question is what is the broader concept of Making scarecrow in AAO,
and how we can find it. We set up the ontology of attributes with the relationship
of inclusion as follows.

pest animal suppression � biotic suppression � biotic control (23)

We also set up the hierarchical structure of the agriculture activity as follows.

Activity for pest animal suppression by physical means ≡
Activity for pest animal suppression � ∀means.physical means (24)

Activity for pest animal suppression ≡
Activity for biotic control � ∀purpose.pest animal suppression (25)

Activity for biotic control ≡ activity for environmental control

�∀purpose.biotic control (26)

Activity for pest animal suppression by physical means is a conjunction of pest
animal suppression (for purpose) and physical means (for means). Thus, there
is no contradiction by making Activity for pest animal suppression by physical
means a broader concept of Making scarecrow.

The main task of Description Logics is to compute truth value in subsumption
checking [2]. However, it cannot discover subsumers or subsumees for a given sub-
sumee or subsumer in a given ontological hierarchies. Therefore, we introduced

Designing of Ontology for Domain Vocabulary 41

Schank’s algorithm for Case-Based Reasoning (CBR) [3] into our OWL [4] rea-
soning engine named SWCLOS [5,6]2, whereby an appropriate position of a given
collection of pairs of attributes and values can be automatically discovered in
coherent hierarchies of concepts and their attribute values, starting from a given
domain top concept and descending subsuming chains to specific ones. In the
systematization of AAO reasoning, the knowledge expressed in DLs is described
in OWL. The following shows an example of the formula (12) described in
Turtle [7].

cavoc.aao:Direct_seeding_in_well_drained_paddy_field a rdfs:Class ;

rdfs:subClassOf cavoc.aao:Seeding ,

[a owl:Restriction ;

owl:onProperty cavoc:crop ;

owl:allValuesFrom cavoc:rice] ,

[a owl:Restriction ;

owl:onProperty cavoc:place ;

owl:allValuesFrom cavoc:well_drained_paddy_field] .

In SWCLOS, we can see the form of any OWL entity in lisp-like expression.
The following demonstrates the expression of cavoc.aao:making scarecrow
in SWCLOS. Note that it has no subsumer concept defined here. Command
refine-abstraction-from performs Schank’s algorithm with parameters, a
domain top concept and an entity for the discovery of position.

gx(8): (get-form cavoc.aao:Making_scarecrow)

(owl:Class cavoc.aao:Making_scarecrow

(rdfs:subClassOf

(owl:Restriction _:g1937

(owl:onProperty cavoc:purpose)

(owl:allValuesFrom cavoc:pest_animal_suppression))

(owl:Restriction _:g1938

(owl:onProperty cavoc:act)

(owl:allValuesFrom cavoc:make))

(owl:Restriction _:g1939

(owl:onProperty cavoc:target)

(owl:allValuesFrom cavoc:scarecrow))

(owl:Restriction _:g1940

(owl:onProperty cavoc:means)

(owl:allValuesFrom cavoc:physical_means)))

(rdfs:label"\"Making scarecrow\"@en"))

gx(9): (refine-abstraction-from

cavoc.aao:Crop_production_activity cavoc.aao:making_scarecrow)

#<node cavoc.aao:Activity_for_pest_animal_suppression_by_physical_means>

gx(10): (get-form cavoc.aao:making_scarecrow)

(owl:Class cavoc.aao:Making_scarecrow

(rdfs:subClassOf cavoc.aao:Activity_for_pest_animal_suppression_by_physical_means

(owl:Restriction _:g1937

(owl:onProperty cavoc:purpose)

(owl:allValuesFrom cavoc:pest_animal_suppression))

(owl:Restriction _:g1938

(owl:onProperty cavoc:act)

2 SWCLOS is a lisp-based OWL Full processor on top of Common Lisp Object System
(CLOS). It is downloadable from https://github.com/SeijiKoide/SWCLOS.

https://github.com/SeijiKoide/SWCLOS

42 S. Joo et al.

(owl:allValuesFrom cavoc:make))

(owl:Restriction _:g1939

(owl:onProperty cavoc:target)

(owl:allValuesFrom cavoc:scarecrow))

(owl:Restriction _:g1940

(owl:onProperty cavoc:means)

(owl:allValuesFrom cavoc:physical_means)))

(rdfs:label "\"Making scarecrow\"@en"))

Here, in gx(9) the appropriate position in the hierarchy was decided, and
gx(10) demonstrated the cavoc.aao:Making scarecrow should be a subclass
of cavoc.aao:Activity for pest animal suppression by physical means.
Namely, following results were inferred.

making scarecrow � {(∀purpose.activity for pest animal suppression

�∀act.make

�∀target.scarecrow
�∀means.physical means)

�Activity for pest animal suppression by physical means}
(27)

5 Web Services Based on Agricultural Activity Ontology

AAO is hosted on CAVOC (Common Agricultural VOCabulary, www.cavoc.
org). In this section, we explain the web services of CAVOC based on the agri-
cultural activity ontology.

5.1 Namespace of Agriculture Activity

CAVOC allows browsing and searching concepts of AAO (Fig. 2, www.cavoc.
org/aao). The key feature of CAVOC is that it provides URIs for names of
agriculture activities. The agriculture activity ontology has unique namespace,
and each agriculture activity has URI. Each URI is structured using the http://
cavoc.org/aao/ns/1/ namespace, therefore all of the terms and categories are
preceded with this URL. Figure 3 is an example of the URI for Seeding. In the
page, the hierarchical structure is represented in order to indicate the narrower
concept, the broader concept, and the relationship between concepts. In addi-
tion, it provides the brief natural language explanation of the concept by using
values of attributes. The simple interface allows users to browse concepts of AAO
through a tree interface, and to search for specific terms.

5.2 Version History

We have developed the agriculture activity ontology with some versions. Table 1
shows the overview of the versions of the agriculture activity ontology. In ver-
sion 0.94, the first version to open publicly, the concepts were classified by two

www.cavoc.org
www.cavoc.org
www.cavoc.org/aao
www.cavoc.org/aao
http://cavoc.org/aao/ns/1/
http://cavoc.org/aao/ns/1/

Designing of Ontology for Domain Vocabulary 43

Fig. 2. Main page of AAO (http://cavoc.org/aao).

Fig. 3. The namespace of seeding (http://cavoc.org/aao/ns/1/seeding).

http://cavoc.org/aao
http://cavoc.org/aao/ns/1/seeding

44 S. Joo et al.

Table 1. Listing of the history of AAO version changes

Version Date initiated Categories Terms Concepts Attributes Maximum layer

0.94 12/05/2015 59 126 185 2 6

1.00 02/11/2015 67 234 301 7 6

1.10 12/02/2016 73 257 330 7 7

1.31 22/04/2016 86 269 355 8 7

attributes of purpose and method. In version 1.00, the attributes were used to
specify definition of activity concepts and they also have hierarchical structure.
Now the description of the hierarchical relationship was logically defined based
on the description logic. In the version 1.10, More concepts were introduced by
consulting experts in agricultural fields and farm management systems. In the
version 1.31, the newest version, the concepts were classified with eight attributes
of purpose, act, target, place, means, equipment, season and crop.

Fig. 4. The SPARQL endpoint of AAO.

5.3 Data Sharing

The data of AAO can be downloaded in the RDF/Turtle formats from http://
cavoc.org/aao/. This format is well supported by many semantic tools, and it
is possible to convert it into other RDF formats if needed. Also, we provide a
SPARQL endpoint for users to explore AAO data using SPARQL queries (Fig. 4).

http://cavoc.org/aao/
http://cavoc.org/aao/

Designing of Ontology for Domain Vocabulary 45

6 Discussion and Future Work

The agriculture activity ontology ver 1.31, the latest version of the agriculture
activity ontology, has 355 concepts which are either categories and terms. It
covers most of terms in the national agricultural statistics in Japan. Structural-
ization with attributes are our own idea so that we need discussion and commu-
nication with experts in agriculture more extensively to verify the value of the
ontology.

The extension to crop-specific ontologies is one of the important directions
of AAO. The scope of the agriculture activity ontology is not just the general
terms of agriculture but also covers agriculture activities specialized by crop.
The activity specialized in the crop currently contains 10 types of crop such as
rice, melon, and other things. By using the attribute of the crop, it is possible
to extend to the crop-specific ontologies. We are now developing the crop-based
ontologies that can define crop-specific concepts by using crop independent con-
cepts.

There are still issues in Structuralization of the ontology. One of them is
composite concept. In the agriculture IT systems, there are cases in which the
multiple works are managed as a single activity by combining multiple activi-
ties. For example, Raising seedling is composite includingSeeding, Fertilization,
Watering and other things. However, when the agriculture is planned or imple-
mented, it is managed as Raising seedling. We express this activity by combin-
ing existing activities. The concept can be expressed with part-of relationship,
but the simple solution is not always suitable since all of the concepts are not
sometimes necessary. We are now considering more appropriate formalization for
combination of the relevant activities.

International interoperability is next to do. We have already connections with
other activities for agricultural ontologies (for example Crop Ontology Group3).
Our research has begun from the purpose of establishing the core vocabulary for
the field of agriculture of Japan, although it can be independent regardless of
language culture so that it can be applied to various languages and cultures. We
will improve the ontology in order to develop international core vocabulary.

We designed a domain vocabulary by using ontology based on Description
Logics. The design used by the Description Logics can make a concept which
has ambiguous meaning classified clearly and deal with the situation when new
vocabularies have to be added. The meaning of the concept was defined as suit-
able attributes for the domain. The structure was constructed to make sense the
meaning of the concept by using the value of attributes and it could make the
effective processing when the vocabulary lists have to be generated automati-
cally or when the related applications have to be realized. Also it can be used
as a tool like dictionary in a namespace for each vocabulary.

3 https://sites.google.com/a/cgxchange.org/cropontologycommunity/.

https://sites.google.com/a/cgxchange.org/cropontologycommunity/

46 S. Joo et al.

7 Conclusion

We provide the Agriculture Activity Ontology (AAO) so as to standardize the
vocabulary for agricultural activities. By using the ontology, it is possible to
define concepts of agriculture activities beyond the linguistic diversity of the
vocabulary for agricultural activities. The agriculture activity ontology was
adopted as the part of “the guideline for agriculture activity names for agri-
culture IT systems” issued by Ministry of Agriculture, Forestry and Fisheries
(MAFF), Japan in 2016, which is one of the achievements of this study [8].
We are now working to extend our idea to other agriculture domains, i.e., the
standardization of vocabulary for agriculture such as the crop, distribution, and
agricultural pesticide.

Acknowledgement. This work was supported by Council for Science, Technology
and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program
(SIP), “Technologies for creating next-generation agriculture, forestry and fisheries”
(funding agency: Bio-oriented Technology Research Advancement Institution, NARO).

References

1. AGROVOC Multilingual agricultural thesaurus. Subsequences. J. Mol. Biol. 147,
195–197 (1981). http://aims.fao.org/vest-registry/vocabularies/agrovoc-multiling
ual-agricultural-thesaurus

2. Baader, F., et al. (eds.): The Description Logic Handbook. Cambridge University
Press, Cambridge (2003)

3. Riesbeck, Christopher K., Roger C. Schank, Inside Case-Based Reasoning, ISBN
0-89856-767-6, LEA (1989)

4. OWL Web Ontology Language Guide, W3C Recommendation 10, February 2004
https://www.w3.org/TR/owl-guide/

5. Koide, S., Takeda, H.: OWL-full reasoning from an object oriented perspective. In:
Mizoguchi, R., Shi, Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp.
263–277. Springer, Heidelberg (2006). doi:10.1007/11836025 27

6. Koide, S.: Theory and implementation of object oriented semantic web language
Dr.thesis, Department Informatics School of Multidisciplinary Sciences, The Grad-
uate University for Advanced Studies (SOKENDAI) (2010)

7. RDF 1.1 Turtle, Terse RDF Triple Language, W3C Recommendation 25, February
2014. https://www.w3.org/TR/turtle/

8. Ministry of Agriculture, Fisheries and Forestry (MAFF), Japan: the guideline for
agriculture activity names for agriculture IT systems (2016). http://www.kantei.go.
jp/jp/singi/it2/senmon bunka/shiryo/shiryo04.pdf (in japanese)

http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
https://www.w3.org/TR/owl-guide/
http://dx.doi.org/10.1007/11836025_27
https://www.w3.org/TR/turtle/
http://www.kantei.go.jp/jp/singi/it2/senmon_bunka/shiryo/shiryo04.pdf
http://www.kantei.go.jp/jp/singi/it2/senmon_bunka/shiryo/shiryo04.pdf

SQuaRE: A Visual Approach
for Ontology-Based Data Access

Micha�l Blinkiewicz(B) and Jaros�law B ↪ak(B)

Institute of Control and Information Engineering, Poznan University of Technology,
Piotrowo 3a, 60-965 Poznan, Poland

{michal.blinkiewicz,jaroslaw.bak}@put.poznan.pl

Abstract. We present the SPARQL Query and R2RMLmappings Envi-
ronment (SQuaRE) which provides a visual interface for creating map-
pings expressed in R2RML. SQuaRE is a web-based tool with easy to
use interface that can be applied in the ontology-based data access appli-
cations. We describe SQuaRE’s main features, its architecture as well as
implementation details. We compare SQuaRE with other similar tools
and describe our future development plans.

1 Introduction

Ontologies, as a way of expressing knowledge, are becoming more and more pop-
ular in various research and practical fields. They allow to define a knowledge
base using abstract concepts, properties and relations between them. Ontologies
can be expressed in the Web Ontology Language 2 (OWL 2). This is a well-
known format of ontologies and most widely used. Ontologies require data to be
in a format of RDF1 triples. Then, using an appropriate reasoner we can obtain
new data in the same format. Moreover, we can query such RDF data using
SPARQL2 queries. Nevertheless, ontologies and data need to follow the RDF-
based representation. Due to a fact that most of data are stored in different
formats, any application of an OWL/OWL2 ontology rises the integration prob-
lem between an ontology and stored data. In this case we can transfer our current
data format into RDF-based representation and change our software as well as
architecture environment or we can create mappings between ontology and our
data and then use an appropriate tool that handles such a solution. The first
option is very cost-expensive and needs a lot of changes in the current software
architecture. The second approach is easier and cheaper. We need to create map-
pings and then query non-RDF data with SPARQL using ontology, mappings
and a tool that enables on-the-fly transfer from non-RDF into RDF data. In this
method the most important part is to create appropriate mappings. Currently,
a very popular standard for expressing mappings from relational databases to
RDF data is W3C’s R2RML3. The standard allows to use existing relational
data in the RDF data model, and then use SPARQL to query such data.
1 https://www.w3.org/RDF/.
2 https://www.w3.org/TR/sparql11-overview/.
3 https://www.w3.org/TR/r2rml/.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 47–55, 2016.
DOI: 10.1007/978-3-319-50112-3 4

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/r2rml/

48 M. Blinkiewicz and J. B ↪ak

In this paper we describe SQuaRE, the SPARQL Queries and R2RML map-
pings Environment, which provides a graphical editor for creating and managing
R2RML mappings and for creating and executing SPARQL queries. SQuaRE is
a web-based application that simplifies the creation of mappings between a rela-
tional database and an ontology. It also enables to test created mappings by
defining and executing SPARQL queries. The remainder of this paper is orga-
nized as follows. Firstly, we provide preliminary information, then we describe
main features of SQuaRE. Next, we present its architecture as well as imple-
mentation details. Then, we compare SQuaRE with other similar tools. Finally,
we provide conclusions along with future development plans.

2 Preliminaries

SQuaRE is an OBDA-oriented tool which helps inexperienced user to create
mappings between a relational database and ontology, and then test those map-
pings by creating SPARQL queries. Moreover, the tool can be used to write and
execute SPARQL queries. In this section we present the main overview of OBDA
and R2RML.

Ontology-based Data Access (OBDA) is an approach [8] to separate a user
from data sources by means of an ontology which can be perceived as a concep-
tual view of data. Moreover, by using concepts and relations from the ontology
one can define a query in a convenient way. In this case the user operates on
a different abstract level than data source. As a result the user defines queries
using concepts and relations from the domain of interest and creates complex
semantic conditions instead of expressing queries in terms of relational data
model. Nevertheless, in order to use OBDA approach with relational data one
needs to develop mappings between a relational database and an ontology.

The R2RML recommendation provides a language for expressing mappings
from a relational database to RDF datasets. Those mappings allow to view the
relational database as a virtual RDF graph. Then, the relational database can
be queried using the SPARQL language. Each R2RML mapping is a triples map
(an RDF graph) that contains: a logic table (which can be a base table, a view
or a valid SQL query); a subject map which defines the subject of all RDF
triples that will be generated for a particular logical table row; and a set of
predicate-object maps that define the predicates and objects of the generated
RDF triples. In order to create R2RML mappings manually, one needs to know
about ontologies, RDF, R2RML and SQL at the same time.

SQuaRE tries to overcome the aforementioned issues. The main goal of the
tool is to support creation of R2RML mappings and SPARQL queries in a graph-
ical manner. However, at the current state of development SQuaRE supports
a graphical editor for R2RML mappings and a text-based interface for creating
and executing SPARQL queries.

SQuaRE: A Visual Approach for Ontology-Based Data Access 49

3 SPARQL Queries and R2RML Mappings Environment

Features. The SQuaRE environment is aimed at providing easy-to-use func-
tions that will support creation and execution of SPARQL queries as well as
creation of R2RML mappings. Moreover, SQuaRE allows for management of
queries and mappings. A user can save both: mappings and queries for future
reference, execution and management. Currently, the tool supports a graphi-
cal interface for creating mappings and a text-based interface for creating and
executing SPARQL queries. Nevertheless, SQuaRE provides the following useful
features:

1. Browsing a relational database – a user can choose a data source and browse
its schema. In this view the user sees table names, column names as well as
data types stored in each column. An example view of a relational database
is shown in Fig. 1.

Fig. 1. View of a database schema.

2. Browsing an OWL ontology – a user sees hierarchies of classes, object prop-
erties and datatype properties. The user can browse an ontology and search
for its elements (Fig. 2).

Fig. 2. View of an OWL ontology.

50 M. Blinkiewicz and J. B ↪ak

3. Browsing mappings – a list of all created mappings is shown to a user. The
user can choose a mapping and then edit it in the mapping creation view
(shown in Fig. 3).

4. Graphical creation of R2RML mappings – in a mapping creation view a user
can create R2RML mappings. The user needs to choose tables that are going
to be mapped. Then, she/he needs to search for an appropriate classes and
properties to create mappings using a graphical interface. An example map-
ping of a table that contains data about companies to the NPD-benchmark
ontology4 is shown in Fig. 3. Classes are represented with an orange back-
ground, datatype properties with a green background and object properties
with a blue background.

Fig. 3. Creating a mapping.

5. Management of R2RML mappings – each created mapping can be saved for
future reference. A user can delete mappings, correct them or generate an
R2RML file that contains all or selected mappings.

6. Textual creation of SPARQL queries – current version of SQuaRE provides
an option to create SPARQL queries using a text-based interface. A user can
write and execute a query. The view of a user interface for creating queries is
shown in Fig. 4. Graphical editor for creating queries is one of our development
plans.

4 https://github.com/ontop/npd-benchmark.

https://github.com/ontop/npd-benchmark

SQuaRE: A Visual Approach for Ontology-Based Data Access 51

7. Management of SPARQL queries – each constructed SPARQL query can be
saved and used in future. A user can execute, delete or export a SPARQL
query. Moreover, the user can select few queries (or all of them) and generate
a separate .txt file that contains their definitions.

8. Execution of SPARQL queries – created SPARQL queries can be executed
and results are shown as a table.

Fig. 4. Defining and executing a SPARQL query.

The aforementioned main list of features provides an intuitive ontology-based
access to relational data. Moreover, by exporting functionality (importing fea-
tures are still in development) a user can use SQuaRE to create mappings and
test them by creating SPARQL queries, and then save everything into external
files. This allows to import queries and mappings into another tool that supports
SPARQL and R2RML.

Architecture and Applied Tools. SQuaRE is developed in Java as a web
application. The architecture of SQuaRE is presented in Fig. 5.

The main module, from the user’s point of view, is Visual R2RML Mapper
which provides tools for visual (graph-based) mappings of relational database
metadata, such as table columns, and user provided ontology entities.

Moreover, there are modules responsible for data source configuration and
ontology management. The former allows the user to configure a data source by
providing DBMS, host location and port, username and password. The latter
provides an interface to import an ontology and browse hierarchies of classes
and properties.

The server-side modules consist of Data Source and DBMS Manager which
manages the user defined data sources and provides JDBC-based access; Ontol-
ogy Handler for OWL ontology processing; and SPARQL Query Executor which
utilizes already defined mappings and allows to execute SPARQL queries in the
context of a relational database.

52 M. Blinkiewicz and J. B ↪ak

Another key server-side module is Graph to R2RML Converter which is
responsible for converting user defined mappings, supplied with client-side visual
mapper, in the form of a serialized graph. This is a graph of connections between
relational database columns and ontology entities. The graph is then translated
into a valid R2RML representation which may be used by the SPARQL Query
Executor module.

Fig. 5. The architecture of SQuaRE.

SQuaRE applies well-known tools to handle OWL ontologies, relational data
and SPARQL queries. The main tools that SQuaRE uses are the following:

– OWL-API [4] – this is the most often used Java library to handle OWL/OWL2
ontologies. It contains a lot of features that are useful when manipulating
ontology elements, using reasoner or serialising ontologies.

– The Spring Framework5 – it is an application framework for the Java platform.
Among others, it allows for easy creation of RESTful web services and building
backend API.

– -ontop- [2] – it is a platform to query relational databases as virtual RDF
graphs using SPARQL. The tool accepts mappings in R2RML and its own
OBDA mapping language. SQuaRE uses -ontop- to query relational database
using mappings and SPARQL.

– RDF4J6 – it is a framework for processing RDF data. The tool supports
SPARQL in version 1.1 and is used in many third party storage applications.
SQuaRE uses it to save all data connected with created mappings and queries.

– Javascript libraries – we use a set of popular Javascript tools like: AngularJS,
jQuery, Cytoscape.js, jsPlumb and jsTree.

5 http://projects.spring.io/spring-framework/.
6 http://rdf4j.org/.

http://projects.spring.io/spring-framework/
http://rdf4j.org/

SQuaRE: A Visual Approach for Ontology-Based Data Access 53

4 Related Tools

Several tools have been implemented to support a user in defining mappings
between data sources and ontologies. We provide the comparison table of the
most similar tools to SQuaRE (Table 1).

Table 1. Comparison of main features of SQuaRE and related tools

Features SQuaRE OntopPro Map-On ODEMapster Karma RBA

Visual mappings
editor

� – � � � –

Visual SPARQL
queries creator

– – – – – –

SPARQL queries
executor

� � – – – –

Relational database
support

� � � � � �

Other data formats
support

– – – – � –

Ontology browser � � � � � �
Database schema
browser

� – � � � �

Web-based � – � – � –

SQuaRE, Map-On [9], ODEMapster7 and Karma [6] are equipped with a
visual mapping editor. Map-On provides a graph layout for creating mappings as
well as viewing ontologies and databases. ODEMapster supports a tree graphical
layout for database schema and ontology. Karma provides a table-like interface
for representing data sources and tree layout for visualising an ontology. RBA
(R2RML By Assertion) [7] supports a tree layout for displaying databases and
ontologies but a user is not able to see a graphical form of mappings. None
of compared tools likewise SQuaRE do not have a visual SPARQL query cre-
ator. However, only SQuaRE and OntopPro8 enable SPARQL queries execution
against created mappings. All of selected tools are capable to map relational
databases but only Karma also supports other data formats (like JSON, CSV
etc.). Ontology and database schema browsers are built in all aforementioned
tools but OntopPro which is a Protégé plugin does not allow to browse data-
base schema. Furthermore, only SQuaRE, Map-On and Karma are accessible via
a Web-based interface.

The aforementioned tools provide different features that overlap in some
cases. However, none of them provide the comprehensive functionality for
7 http://neon-toolkit.org/wiki/ODEMapster.
8 http://ontop.inf.unibz.it/components/sample-page/.

http://neon-toolkit.org/wiki/ODEMapster
http://ontop.inf.unibz.it/components/sample-page/

54 M. Blinkiewicz and J. B ↪ak

OBDA-based scenario. SQuaRE provides features for creating and managing
of both: R2RML mappings and SPARQL queries. Moreover, it supports users
in the execution of queries and presents results in a table-like way. Moreover,
we are going to implement support for a graphical creation of SWRL rules [5],
which will be another difference to the mentioned tools.

SQuaRE is aimed at providing a simple user interface and easy to use method-
ology. Nevertheless, it should be perceived as a tool that tries to acquire the best
features of other applications and provide them in a graphical way with an easy-
to-use interface. The most similar tool at this stage of development is Karma,
but without handling SPARQL queries and results in a graphical manner (but
Karma provides more mapping methods than SQuaRE and more features regard-
ing data integration). It is worth to notice that SQuaRE is still at the early stage
of development whereas most of the tools from the list are being developed in the
last few years. Some of them are even discontinued, like ODEMapster or RBA.

5 Summary and Future Work

In this paper we presented the SQuaRE tool which is a web-based environment
that provides: (i) creation of R2RML mappings between relational databases
and OWL ontologies, and (ii) creation and execution of SPARQL queries. The
tool provides a lot of useful features that can be applied in an OBDA-based
scenario.

Currently, we are implementing a graph-based method for creating SPARQL
queries. In this case we will fully support a graphical environment for handling
R2RML and SPARQL. We also plan to include RuQAR [1] to extend reasoning
capabilities and provide support for SWRL rules [5]. Moreover, the long term
plans are to support other mapping languages, like D2RQ9 and RML [3]. As
a result we will be able to map different data sources like CSV or JSON.

Acknowledgments. This research has been supported by Polish Ministry of Science
and Higher Education under grant 04/45/DSPB/0149.

References

1. Bak, J.: Ruqar: reasoning with OWL 2 RL using forward chaining engines. In: ORE
(2015)

2. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over relational
databases. Semantic Web, (Preprint), pp. 1–17

3. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle,
R.: RML: a generic language for integrated RDF mappings of heterogeneous data.
In: Proceedings of the 7th Workshop on Linked Data on the Web, April 2014

4. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

9 http://d2rq.org/.

http://d2rq.org/

SQuaRE: A Visual Approach for Ontology-Based Data Access 55

5. Horrocks, I., Patel-schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: a semantic web rule language combining OWL and RuleML (2004). Accessed
04 Apr 2013

6. Knoblock, C.A., et al.: Semi-automatically mapping structured sources into the
semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V.
(eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-30284-8 32

7. Neto, L.E.T., Vidal, V.M.P., Casanova, M.A., Monteiro, J.M.: R2RML by Assertion:
a semi-automatic tool for generating customised R2RML mappings. In: Cimiano, P.,
Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol.
7955, pp. 248–252. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41242-4 33

8. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Seman-
tics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-77688-8 5

9. Siciliaa, Á., Nemirovskib, G., Nolleb, A.: Map-on: A web-based editor for visual
ontology mapping. Semantic Web Journal (Preprint), pp. 1–12

http://dx.doi.org/10.1007/978-3-642-30284-8_32
http://dx.doi.org/10.1007/978-3-642-41242-4_33
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5

Compression Algorithms for Log-Based
Recovery in Main-Memory Data Management

Gang Wu(&), Xianyu Wang, Zeyuan Jiang, Jiawen Cui,
and Botao Wang

College of Computer Science and Engineering, Northeastern University,
Shenyang, People’s Republic of China

wugang@mail.neu.edu.cn, wangxianyu04@gmail.com

Abstract. With the dramatic increases in performance requirement of computer
hardware and decreases in its cost in recent years, the relevant research in
main-memory database is becoming more and more popular and has a pros-
perous future. Log-based recovery, which is one of its most important research
directions, is a set of problems accompanied by volatile memory. Its problem of
stagnation in memory/CPU resulted from the slow I/O speed of non-volatile
storage now needs to be addressed urgently. However, there is no specific
platform for log-based recovery research. So the study aims to address this issue.
For the specific platform issue, we design and implement a simulation plat-

form called RecoS. RecoS aims at an implementation of recovery sub-system of
the main-memory database. It uses cluster substrate to simulate more real data
storage and developed interfaces for a variety of recovery strategies. We propose
three log compression methods in this paper: (1) the dictionary encoding, (2) the
indirectly encoding with no threshold limit and (3) the indirect encoding with a
threshold limit. We also adapt ARIES and command logging on the platform,
which represents physical and logical logging respectively, focusing on their
recovery process and some important details. Regard the recovery platform as
the core to investigate the performance of the recovery platform with different
load by using different log sets.

Keywords: Main-memory database � Logging � Checkpointing � Failure
recovery

1 Background

The development of information technology has a great influence on all walks of life.
As a representative one of various techniques, main-memory database has its out-
standing advantages in access time and made a significant impact on many applica-
tions. It has been one of the important research files in the main- memory database
management in recent years. Relying on the background of the main-memory database,
this paper mainly studied on1:

1 This paper is partially supported by the National Natural Science Foundation of China
No. 61370154 and No. 61332006, and the Fundamental Research Funds for the Central Universities
No. N140404009.

© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 56–64, 2016.
DOI: 10.1007/978-3-319-50112-3_5

1. We design and implement a simulation platform called RecoS. RecoS aims at an
implementation of recovery sub-system of main-memory database. It uses cluster
substrate to simulate realer data storage, and developed interfaces for variety of
recovery strategy.

2. We implement the important steps of physical logging and logical logging in
RecoS, stressing the detailed difference caused by volatile memory in log, failure
recovery and checkpointing between main-database and disk database [1].

2 Overview

RecoS is mainly used to implement the recovery sub-system in MMDB, means three
key step, observing log, checkpointing and recovery. The goal of this paper is to
implement the platform based on available means independently.

The superstratum of RecoS refers to the recovery part of H-Store, and using Redis
as storage in the substratum. [2, 3] RecoS is supposed to simulate and implement some
properties and functions such as relational, row store and cluster environment.

2.1 Architecture

RecoS can be a recovery program which is used to compare different strategies with
each other. RecoS consists of master nodes which controls the program and Redis
instances. Redis includes the cluster which is regarded as storage nodes(the cluster has
its own distributed protocols) and the singletons which are regarded as logging record
nodes. Using Redis as storage node and logging record node, and control through the
master nodes, the Redis instances can be abstracted as a kind of distributed system, it
can also abstracted as a kind of distributed system.

Master node: The master node keeps control of the Redis instance and get status
through the network connection. It is mainly used to be responsible for all functions
except storing data and log, including sending a read/write command, simulated
transactions, control timing of logging reading and writing, etc. The master node is aim
to implement three functions: mapping table, recovery simulator, transaction simulator.
Redis cluster: The main roles Redis cluster is of are data storage and checkpointing.
There are some operations for each separate node in the cluster. The connection
between master nodes and sub-nodes is the only problem that the super stratum need to
pay attention to. Redis logging node: Logging nodes are composed of multiple separate
Redis instance. Logging nodes accept the logging of master node and finish the per-
sistence of logging independently. Under the condition that Redis cluster nodes are
used to store data, the logging nodes are used to access the log.

2.2 The Implements of Recovery Strategy

The simulate platform stores the logging dispersedly in the cluster. However, there are
some differences in the recovery strategy between merging the logging and recovering
the logging singly [4].

Compression Algorithms for Log-Based Recovery 57

Physical logging.

(1) Logging format

The platform only record LSN, TxnID, TupleID, and OldValue(NewValue).

(2) Logging record

The logging record are stored in the logging database, then flush the redo logging
into the disk of that node. The undo logging will be cleared after committing the
transaction.

(3) Logging strategy

The logging can be divided into private logging and group logging. The private
logging means a logging chain of a transaction maintenance. The private one will be
combined with other logging into a group logging after the commit of transaction [4].

Logical logging: Compared with physical logging, logical logging has differences in
format, strategy and recovery. In logging format, the logical logging record LSN,
TxnID, SPP, and Params. SPP is the pointer of the store procedure which has been
stored. [6] We need to add a kind of string to the logging as SPP. When the string is
loaded into the master node to recover the logging, it is supposed to point out the
location of stored procedure in the main-memory.

In the logging strategy, we come up with a method which only need to be located in
one node. Firstly, we need to number the working nodes in the cluster. If there were
two nodes in one stored procedure, we would choose the small one to record the
logging.

CheckPointing: The platform uses conforming checkpointing. All the transactions in
the checkpointing are in a same status. In order words, all the transactions should be
ended with committing, so that we just need to REDO once. This can simplify and
accelerate the recovery process [7, 8].

(1) Checkpoints in physical logging
Checkpoints in RecoS use the RDB snapshot of Redis. The system use the SAVE
or BGSAVE command on the all nodes in the cluster at a given checkpoint
timing. It represents that there are some persisting RDB operation in the
background.

(2) Checkpoints in logical logging
Command logging need a transaction conforming checkpointing to cooperate. [9]
Transaction conforming checkpointing is similar to delaying the new transactions,
waiting for the ongoing transaction has been completed, then making
checkpointing.

58 G. Wu et al.

3 Algorithm

3.1 Recovery

(1) Physical logging recovery
Recovery algorithm for physical logging in RecoS

Algorithm3.1 Recovery algorithm for physical logging
Input: the node number N which to be recovered.
Output: null
for(each node in N)

If (checkPointing) import the node ,and implement the recovery of
checkpointing in chapter 3.3.3

Reload the redo_log into main-memory.
Take the redo_log out from master node.
For(all nodes)

Scan all the logging chains excpet redo_log, means scan the txn_redo
logging which has not been committed.

Destroy these private txn_redo log.
After mater node have taken all logging of broken nodes, rank the logging

according to LSN.
According to the ranked redo logging, do the transaction fragments again.

(2) Logical logging recovery
Recovery algorithm for Logical logging in RecoS.

Algorithm3.2 Recovery algorithm for logical logging
Input :the number N of nodes in trouble
Output :null
If(node N is in trouble)

Stop all nodes in the system, if there were a checkpointing, then load the
checkpointing and implement the recovery in 3.3.3

Take the redo_log of all nodes, merge it with master node.
Master nodes rank the logging by LSN.
Execute unified recovery.

For(all nodes)
Scan all the logging chains excpet redo_log, and destroy private txn_redo log if

possible.

Compression Algorithms for Log-Based Recovery 59

3.2 Logging Compression

Compression is aimed to optimize the space of logging and commit ways. We put
forward the coding compression method based on group commit strategy in the commit
of logging process [10, 11].

(1) Dictionary encoding for private logging.
Directory encoding for private log

Algorithm3.4 Directory encoding for private log
Input: the time T of commit, the length L of temporary storage region
Output: a set of directory encoding and relative directory
while(in time T || TS is not full)

TS receive the logging produced by transactions
Query all dictionary according to txnID.
If(the txnID is not in the dictionary)

Record the txnID in the dictionary and then establish a new private logging
of this txnID.

Return dictID, the direction number.
Replace the txnID to dictID
Put this logging into the private logging, and add 1 to the temporary storage

region.
Submit all private logging chains with the order of the dictionary
Submit the corresponding direction of the group.
Clear the temporary storage region

(2) Indirect encoding with threshold limit.
In indirect encoding, suppose that we would like to divide the data into blocks in a
same size, if there were less different values in a block, we could compress this
block in dictionary encoding, the opposite is not.

(1) Finish a group submission in size L and time T, no matter the temporary storage
region is full or not. The logging must be committed when time T out. Set two
pointers, p1 and p2, points to the head and tail of the temporary storage region. P1
moves from head to tail, pointing to the position where the logging will be stored.
P2 moves from tail to head, pointing to the logging beyond threshold value.

(2) When the logging is to fill the i block, we establish the local dictionary di and a
table ti which can only accommodate t value for the range block and the initial
value of these table is empty.

(3) When writing logging items into main-memory, we record the TxnID in the table
and follow the rules below in block i.
If ti is not full, then write the value into the table, establish an item in the
dictionary and write the logging into the block, p1 move to the next position.

60 G. Wu et al.

If there is such value in ti, write the logging into the block, p1 move to the next
position.
If ti is not full and there is not such a value in ti, write the logging into the position
that p2 points to, then p2 move to the former position.

(4) If pi point to the next block, then rebuild di + 1and ti + 1, and now ti is useless,
return to step2. If pointers meet or time out, end the algorithm, commit the partly
logging, the information of pointers in the temporary storage region.

4 Experiments

We use the method of group submission in the experiment. [12] We no longer to
consider whether the transaction are rolled back in order to pay attention to the
compression of transaction logging encoding. In addition, in a simple submission and
submission with the dictionary encoding group, the time occupancy we use for the
encoding is not obvious high. Considering the loggings submission, transaction con-
currency taking up too much time, the advantages of no-encoding have already been
basically eliminated.

4.1 Experimental Environment

The Redis cluster in the experiment contains three nodes. Each node matches to a
logging node, logging nodes are directly connected to the master node.

The master node use an 8 GB memory, a disk of 512 GB and Windows8.1 as
operating system. Cluster nodes and logging nodes use a memory of 10 GB, a disk of
20 GB, and CentOS6.5 operating system. Nodes in the cluster use Redis3.0 version,
other configuration is the same as the default cluster configuration. Logging nodes are
separate Redis3.0 instance with the default configuration. Jedis version is 2.7.0.

4.2 Group Commit of Dictionary Encoding

Figure 1 shows the size of L and the relationship of the space taken up by logging and
dictionary after dictionary encoding. In this experiment, the number of transaction is
fixed to 50, each transaction logging has an average number of 20 and each logging is
about 60 B. We will discuss compression effect on these 1000 loggings in this paper.

In Fig. 1, the “uncompressed” part of the logging remains at 69686 bytes, all the
stores is loggings. The “compressed” part of the storage is the corresponding loggings
and dictionary, the results is about less than 68000 bytes. If the number of logging is
overmuch in each group, compression effect not rises linearly, such as compression rate
rises steadily from 20 to 500 in abscissa, but fall from 500 to 1000. This illustrates that
if the global dictionary contains too many entries, it may affect the final result. At the
L = 500, compression rate is about 95.5%.

Compression Algorithms for Log-Based Recovery 61

4.3 Group Commit of Indirect Encoding

Indirect encoding without threshold limit.
In Fig. 2, the experiment is based on the combination of different transaction number
and the average logging each transaction produced. The diagram shows that indirect
encoding has advantage on the compression when transactions are more and the
average loggings are less.

Indirect encoding with threshold limit.
Encoding with a threshold limit have obvious advantages when the part of to be
compressed is lower. If the logging is 60 bytes. The concurrent transactions increase
but the compressible part become less. Using the dictionary encoding and indirect
encoding are unable to achieve the effect of compression, and indirect encoding with
threshold limit doesn’t produce dictionary for block, then avoid the overhead of the
dictionary, and this makes some effect of compression.

Fig. 1. Group commit with dictionary encoding

Fig. 2. A comparison between indirect and dictionary encoding on the combination of different
transaction number and log per transaction

62 G. Wu et al.

4.4 Comparing of Recovery

We compare the recovering efficiency from no-compression, dictionary encoding and
indirect encoding. Regarding the platform as the core, we inspect the performance
through different loggings scale in different size of the recovery platform load. As
shown in the Fig. 3, there is a list of the recovery time in a scale of 1000, 3000, 6000,
10000, 20000, and 50000.

5 Conclusions

This article has studied study the traditional and active logging recovery from the
availability of the main-memory database. The paper mainly stated the two aspects:

1. In order to study the recovery strategy of main-memory database, especially in the
cluster, we design and implement a simulate platform—RecoS. The platform is
aimed to separate user’s focus from the multifarious database system to the deep
study of recovery sub-system. We use Redis to store data and logging, and the client
logic program to control the nodes.

2. As to logging recovery, the strategies that are not based on logging will be a main
direction of main-memory data recovery development.

References

1. Woo, S., Ho Kim, M., Joon Lee, Y.: Accommodating logical logging under fuzzy
checkpointing in main memory databases. In: Proceedings of the International Database
Engineering and Applications Symposium. IDEAS 1997. IEEE, pp. 53–62 (1997)

2. Kallman, R., Kimura, H., Natkins, J., et al.: H-store: a high-performance, distributed main
memory transaction processing system. Proc. VLDB Endowment 1(2), 1496–1499 (2008)

Fig. 3. Comparison with several methods the recovery of submission

Compression Algorithms for Log-Based Recovery 63

3. Stonebraker, M., Madden, S., Abadi, D.J., et al.: The end of an architectural era: (it’s time for
a complete rewrite). In: Proceedings of the 33rd International Conference on Very Large
Data Bases. VLDB Endowment 2007, pp. 1150–1160 (2007)

4. Yao, C., Agrawal, D., Chen, G., et al.: Adaptive logging: optimizing logging and recovery
costs in distributed In-memory databases. In: International Conference (2016)

5. Mohan, C., Haderle, D., Lindsay, B., et al.: ARIES: a transaction recovery method
supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst. (TODS) 17(1), 94–162 (1992)

6. Stonebraker, M., Weisberg, A.: The VoltDB main memory DBMS. IEEE Data Eng. Bull. 36
(2), 21–27 (2013)

7. Salem, K., Garcia-Molina, H.: Checkpointing memory-resident databases. In: Proceedings of
the Fifth International Conference on Data Engineering, pp. 452–462. IEEE (1989)

8. Elnozahy, E.N., Johnson, D.B., Zwaenepoel, W.: The performance of consistent
checkpointing. In: Proceedings of the 11th Symposium on Reliable Distributed Systems,
pp. 39–47. IEEE(1992)

9. Malviya, N., Weisberg, A., Madden, S., et al.: Rethinking main memory OLTP recovery. In:
2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 604–615. IEEE
(2014)

10. Stonebraker, M., Abadi, D.J., Batkin, A., et al.: C-store: a column-oriented DBMS. In:
Proceedings of the 31st International Conference on Very Large Data Bases. VLDB
Endowment, pp. 553–564 (2005)

11. Abadi, D.J., Boncz, P.A., Harizopoulos, S.: Column-oriented database systems. Proc. VLDB
Endowment 2(2), 1664–1665 (2009)

12. Garcia-Molina, H., Salem, K.: Main memory database systems: an overview. IEEE Trans.
Knowl. Data Eng. 4(6), 509–516 (1992)

64 G. Wu et al.

Linked Data

An Empirical Study on Property Clustering
in Linked Data

Saisai Gong, Haoxuan Li, Wei Hu(B), and Yuzhong Qu

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

ssgong.nju@gmail.com, hxli.nju@gmail.com, {whu,yzqu}@nju.edu.cn

Abstract. Properties are used to describe entities, a part of which are
likely to be clustered together to constitute an aspect. For example, first
name, middle name and last name are usually gathered to describe a per-
son’s name. However, existing automated approaches to property clus-
tering remain far from satisfactory for an open domain like Linked Data.
In this paper, we firstly investigated the relatedness between properties
using five different measures. Then, we employed three clustering algo-
rithms and two combination methods for property clustering. Based on a
moderate-sized sample of Linked Data, we empirically studied the prop-
erty clustering in Linked Data and found that a proper combination of
different measures gave rise to the best result. Additionally, we showed
how the property clustering can improve user experience in our entity
browsing system.

Keywords: Property clustering · Property relatedness · Entity brows-
ing · Empirical study · Linked data

1 Introduction

With the development of Linked Data, billions of RDF triples have been pub-
lished to describe numerous entities. An entity usually involves multiple aspects
and its property-values may focus on different aspects. For instance, graduate
from and work at reveal the career information of a person, while parent, spouse
and child deliver her family information. Therefore, it is natural to cluster prop-
erties into meaningful groups based on the aspects that they intend to describe.
Property clustering is useful for many applications such as entity browsing, ontol-
ogy editing, query completion, etc. It makes the presented information more for-
matted and understandable and significantly enhances the capability of users to
consume the large-scale Linked Data [8].

Take, for example, the case of entity browsing. Many state of the art systems
support users to manually cluster properties [13]. But due to the limited energy
and knowledge of the users, this type of manual operations is only effective at
a small scale. In consideration of an open domain like Linked Data, automated
property clustering is needed to solve the scalability issue, but its performance
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 67–82, 2016.
DOI: 10.1007/978-3-319-50112-3 6

68 S. Gong et al.

is still far from satisfactory. One reason is the fact that, when browsing entities,
the data is multi-sourced and the vocabularies involved are barely predictable,
i.e. probably use any vocabularies, thus it is difficult to find out useful patterns
among properties in advance and make use of them to guide clustering. Another
reason is that the properties used by the entities are largely heterogeneous, which
makes identifying similar aspects more difficult and less reliable.

In this paper, we empirically studied the property clustering in Linked Data,
which is defined as to automatically assign a subset of property set P (collected
from the descriptions of entities) to a set of disjoint clusters {g1, g2, . . . , gm},
such that the properties in a cluster gk focus on an aspect or a dimension of the
content. But, g1 ∪ g2 ∪ . . . ∪ gm is unnecessarily equal to P.

In order to achieve property clustering, we firstly measured the relatedness
of properties from five perspectives: lexical similarity between property names,
semantic relatedness between property names, distributional relatedness between
properties, range relatedness between properties and overlap of property values.
We then employed three widely-used algorithms, namely density-based cluster-
ing, hierarchical clustering and spectral clustering. Furthermore, to combine var-
ious relatedness measures and clustering results, we developed two combination
methods based on linear combination and consensus clustering.

We sampled a moderate-sized dataset of Linked Data for our empirical study
and manually built gold standards to assess the relatedness measures, cluster-
ing algorithms and combination methods. Moreover, we integrated the property
clustering in our entity browsing system called SView1, in order to observe the
use of property clustering in practice. Overall, we tried our best in this study to
provide answers to the following questions:

Q1. What is the most effective measure(s) for measuring the relatedness between
properties?

Q2. What is the most effective algorithm(s) for clustering properties into mean-
ingful groups?

Q3. Can the combination method(s) improve the property clustering and how
largely?

Q4. Are there any general principles or guidelines for using the property clus-
tering in practice?

In the rest of this paper, we first introduce the measures of property relat-
edness in Sect. 2. Then, we present the clustering algorithms in Sect. 3 and the
combination methods in Sect. 4. Our experimental results are reported in Sect. 5.
We show the application of property clustering to entity browsing in Sect. 6 and
discuss related work in Sect. 7. Finally, we summarize our findings in Sect. 8 and
conclude this paper in Sect. 9.

2 Property Relatedness Measures

In this section, we present five types of relatedness between properties and for-
malize them as numerical measures. All the measures are assumed non-negative.
1 http://ws.nju.edu.cn/sview.

http://ws.nju.edu.cn/sview

An Empirical Study on Property Clustering in Linked Data 69

2.1 Lexical Similarity Between Property Names

A property is usually associated with several human-readable names, e.g. labels.
When the names of two properties share many common characters, it indicates
some kind of relatedness between their meanings. For example, both mouth posi-
tion and mouth elevation describe the mouth information of a river. By detecting
this aspect, we took advantage of I-Sub string measure [16] to characterize the
lexical similarity. Let pi, pj be two properties and li, lj be the names of pi, pj
respectively, the lexical similarity between pi and pj , denoted by RI , is mea-
sured by I-Sub as follows:

RI(pi, pj) = I-Sub(li, lj)
= Comm(li, lj) − Diff(li, lj) + Winkler(li, lj), (1)

where Comm(li, lj) represents the commonality of li, lj , while Diff(li, lj) rep-
resents their difference. Winkler(li, lj) is a coefficient to adjust the result. The
score of I-Sub was normalized from [−1, 1] to [0, 1]; a larger value implies a higher
similarity.

2.2 Semantic Relatedness Between Property Names

WordNet provides several semantic relations among concepts/words, e.g. hyper-
onymy, and it is widely considered as a knowledge base for measuring semantic
relatedness between words [3], based on shortest paths, information theory, etc.
To measure the WordNet-based relatedness of two properties pi, pj , we trans-
formed their property names to the normalized forms by splitting names, remov-
ing stop words and stemming. Let l′i, l

′
j be the normalized forms of the names

of pi, pj , respectively. |.| counts the number of words in a normalized name. The
semantic relatedness between pi and pj , denoted by RW , is calculated based on
WordNet 3.0 as follows:

RW (pi, pj) = min(

∑
x∈l′i

maxy∈l′j Lin(x, y)

|l′i|
,

∑
y∈l′j

maxx∈l′i Lin(x, y)

|l′j |
), (2)

where Lin(x, y) denotes the Lin’s WordNet-based word relatedness between x
and y [11], which is based on the shortest path and information theory.

2.3 Distributional Relatedness Between Properties

In the area of computational linguistics, distributional relatedness [5] is a mea-
sure of word relatedness in distributional semantics, through word co-occurrence
in different contexts such as bigrams, sentences or documents. Based on the
selected context, the strength of relatedness between co-occurrent words is quan-
tified by using mutual information or other measures. Inspired by this research
line, we studied property co-occurrence in use and conceived an entity’s RDF
description as the context from which co-occurrence is found, i.e. properties are

70 S. Gong et al.

used together to describe the entity. For example, founded by and key person co-
occur to describe important people in a company. Specifically, we used the sym-
metrical uncertainty coefficient, denoted by RU , which computes the strength of
relatedness between variables in terms of normalized mutual information. Given
two properties pi, pj , the distributional relatedness between pi and pj , denoted
by RU , is calculated using the symmetrical uncertainty coefficient as follows:

RU (pi, pj) = 2 · H(pi) + H(pj) − H(pi, pj)
H(pi) + H(pj)

, (3)

where H(pi) = −∑
x∈{pi,pi} P (x) log P (x) obtains the entropy of pi, H(pi, pj) =

−∑
x∈{pi,pi}

∑
y∈{pj ,pj} P (x, y) log P (x, y) counts the joint entropy of pi, pj . The

score of RU is in [0, 1]; a higher value indicates a stronger relatedness.
To obtain RU , we need the probabilities P (pi), P (pi, pj), P (pi, pj), P (pi, pj).

Let G be the RDF dataset from which the probabilities would be estimated and
pi, pj be two properties. Res(G) denotes the entities appearing in the subject or
object position of any RDF triples in G, and ResDesc(G, pi) be the entities in
G that is particularly described by pi (i.e. pi appears at the predicate position of
any RDF triples). The probabilities P (pi), P (pi, pj), P (pi, pj) and P (pi, pj) are
estimated as follows:

P (pi) =
|ResDesc(G, pi)|

|Res(G)| , (4)

P (pi, pj) =
|ResDesc(G, pi) ∩ ResDesc(G, pj)|

|Res(G)| , (5)

P (pi, pj) =
|ResDesc(G, pi) ∩ (Res(G) − ResDesc(G, pj))|

|Res(G)| , (6)

P (pi, pj) =
|Res(G) − (ResDesc(G, pi) ∪ ResDesc(G, pj))|

|Res(G)| . (7)

We leveraged the Billion Triples Challenge (BTC) 2011 dataset2, a represen-
tative subset of the Linked Data to estimate the above probabilities. As different
URIs may refer to the same entity, which are called coreferent URIs, we firstly
found out the coreferent URIs and then merged their RDF descriptions by replac-
ing coreferent URIs with a uniform ID. We used two kinds of ontology semantics
owl:sameAs and inverse functional properties, and computed a transitive closure
to identify coreferent URIs. More sophisticated coreference resolution algorithms
can be found in [9]. This modified dataset would be treated as the RDF dataset
G as described above.

2.4 Range Relatedness Between Properties

Property ranges may be URIs of related types (i.e. classes), which indicate cer-
tain kind of relatedness as well. For example, if two properties have the ranges
2 http://km.aifb.kit.edu/projects/btc-2011/.

http://km.aifb.kit.edu/projects/btc-2011/

An Empirical Study on Property Clustering in Linked Data 71

delicious food and handicraft respectively, both of them deliver the tourist infor-
mation of a tourist city. We leveraged the ranges of properties to measure their
relatedness, except rdfs:Resource and owl:Thing. If no axioms involving property
ranges can be found, we used the conjunction of the types of the property values
instead. Let pi, pj be two properties and Ti,Tj be the sets of ranges for pi, pj
respectively, the range relatedness between pi, pj , denoted by RT , is calculated
as follows:

RT (pi, pj) = max
ci∈Ti,cj∈Tj

RW (ci, cj), (8)

where RW (ci, cj) reuses Eq. (2) to compute the WordNet-based relatedness of
the names of ci, cj .

Many other relations exist between properties, such as sub-/super-properties
or domain relatedness, which indicate the strength of property relatedness as
well. For example, both medalist and champion are sub-properties of has par-
ticipant, and they give the winner information of a sport event participants. A
part of super-properties exist in ontology axioms, however, a larger amount of
essential super-properties that can be used for property clustering by seman-
tic relatedness are not defined formally in ontologies and thus only latent. For
instance, in most ontologies, the three properties length, width and depth do not
have a super-property like physical dimension. Besides, the work in [9] observed
that property domains are not as useful as ranges. Therefore, we do not consider
those relatedness using other relations presently.

2.5 Overlap of Property Values

There may also exist synonymous properties to describe the same entity. For
example, both has book and write describe a book written by an author. In this
case, common values should be frequently shared by these properties. We used
the vector space model (specifically, the TF/IDF model) to represent the values
of a property. The text of each property value is collected, e.g. local names of
URIs and lexical forms of literals after normalization, and all the terms in the
text are used to construct a term frequency vector, where each component corre-
sponds to the number of occurrences of a particular term. Given two properties
pi, pj , the overlap of property values between pi, pj , denoted by RO, is computed
by the cosine similarity of the corresponding vectors vi,vj :

RO(pi, pj) =
∑n

k=1 vik · vjk
√∑n

k=1 v2
ik ·

√∑n
k=1 v2

jk

, (9)

where n is the dimension of the vector space and vik, vjk are the components of
the vectors vi,vj .

72 S. Gong et al.

3 Property Clustering Algorithms

To work with an arbitrary relatedness measure, we employed the following three
well-known clustering algorithms in Weka 3 [15], which use the previously com-
puted relatedness as input and generate a set of property clusters.

DBSCAN, denoted by CD, finds clusters based on the density of properties in
a region. Its key idea is for each property in a cluster, the neighborhood of a
given radius (Eps) has to contain at least a minimum number of properties
(MinPts). In other words, each non-trivial cluster in the result must own at
least MinPts properties.

Single linkage clustering, referred to as CL, is an agglomerative hierarchical
algorithm, which repeatedly merges two most related clusters in a bottom-
up fashion until meeting some criteria. The single linkage relatedness of two
clusters is derived from the two most related properties in the two clusters.
The single linkage clustering is terminated when the maximum relatedness
of any two clusters is no greater than a threshold θ.

Spectral clustering, denoted by CS , leverages the spectrum of a relatedness
matrix of properties to divide them into clusters. A threshold η for cluster
number needs to be pre-defined.

Except the aforementioned parameters and thresholds, we kept the default
settings in Weka for the three clustering algorithms.

4 Combination Methods

Combining various relatedness measures helps obtain a property clustering with
better accuracy and coverage. There exist two typical methods to conduct com-
bination. One is to combine the measures before clustering, for example, to use a
linear combination of different relatedness measures for each property pair and
carry out a clustering algorithm to produce clusters. Given the five relatedness
measures, the combined relatedness, denoted by Rall, is defined as follows:

Rall(pi, pj) = ω1RI(pi, pj) + ω2RW (pi, pj) + ω3RU (pi, pj)
+ ω4RT (pi, pj) + ω5RO(pi, pj), (10)

where ωi ∈ [0, 1] denotes the weight coefficient value for a specific property
relatedness measure, and

∑5
i=1 ωi = 1. In this study, we investigated various

values for linearly combining our relatedness measures.
Another method is to first conduct clustering based on individual relatedness

measures and then aggregate these individual results using ensemble clustering.
In this study, we selected consensus clustering [1] to realize ensemble cluster-
ing. Given a set of individual clusterings corresponding to different relatedness
measures, the goal of computing a consensus clustering is to achieve a clustering
that minimizes the distance among individual clusterings. The problem of find-
ing an optimal consensus clustering is NP-hard. We implemented CC-Pivot [1],
a 3-approximation algorithm, to calculate the consensus clustering.

An Empirical Study on Property Clustering in Linked Data 73

5 Empirical Study

In this section, we report our study of the relatedness measures, clustering algo-
rithms and combination methods for the property clustering in Linked Data.
The source code and sample data for this empirical study are all available at our
website3.

5.1 Dataset

We randomly sampled 20 entities of various types (classes) in Linked Data, each
of which is integrated from a DBpedia URI with its coreferent URIs that refer
to the same entity using owl:sameAs relations. The finally-selected URIs were
required to be accessible via HTTP protocol (to eliminate outdated ones), and
have sufficient properties and values, i.e. having more than 50 properties. Over-
all, the 20 entities involve 12 sources: DBpedia, DBTune, Freebase, GeoNames,
LinkedGeoData, LinkedMDB, New York Times, OpenCyc, Project Gutenberg,
RDF Book Mashup, The World Factbook and YAGO. We distinguished proper-
ties in the forward and backward directions, and considered that different direc-
tions of the same property represent different properties. The properties holding
a sample entity at the subject position is referred to as the forward properties,
while at the object position is referred to as the backward properties. Table 1
lists the names of the entities with their types and numbers of properties. Note
that an entity can have multiple types and we just show an important one.

Table 1. 20 sample entities with their types and numbers of properties

Entity name Type #Prop. Entity name Type #Prop.

Hong Kong Airport Airport 95 Bob Jones University Institution 130

Michael Nesmith Artist 145 British Museum Museum 110

Jeremy Shockey Athlete 107 Load (album) MusicalWork 91

Deep Purple Band 108 Edmund Stoiber Politician 82

A Clockwork Orange Book 61 Amazon River River 142

The Pentagon Building 110 William H. Holmes Scientist 65

Baltimore City 351 Polymelus Species 51

Adobe Systems Company 127 Doom II Software 79

Finland Country 574 Burlington Township Township 62

Eyes Wide Shut Film 99 Barney & Friends TVShow 79

5.2 Experiment Setup

To observe the prevalence of property clustering in Linked Data and assess the
effectiveness of the relatedness measures, clustering algorithms and combination
3 http://ws.nju.edu.cn/sview/propcluster.zip.

http://ws.nju.edu.cn/sview/propcluster.zip

74 S. Gong et al.

methods, we sought to build for each sample entity a reference clustering that is
meaningful, aspect-coherent and compact, so as to compare the algorithmically-
generated clustering with the reference ones. Due to the large number of prop-
erties (shown in Table 1), it is hard to ask users to manually build the reference
clustering. Hence, we did not start from scratch but leveraged existing reasonably
good clustering.

Freebase divides properties describing similar aspects into types and groups
similar types into domains4. For example, /music/group member describes the
member information of a music group, where group member is a type and music
is a domain. Thus, we invited three PhD candidates in the field of Linked Data
to assign each property of a sample entity to the most relevant /domain/type, for
example assign a property band member to /music/group member, and created
the reference clustering such that properties are clustered together if they are
assigned to the same /domain/type. The average inter-rater agreement score of
the 20 entities, measured by Fleiss’ κ [6], is 0.895, and the minimum inter-rater
agreement score for an entity is 0.814. From the high inter-rater agreement score,
we saw that strong agreement exists among the three judges, which guarantees
the statistical significance of our empirical study.

By using the reference clusterings as our golden standard, we evaluated the
algorithmically-generated property clustering in terms of the following five met-
rics: Precision, Recall, F-Score, Rand Index and Normalized Mutual Information
(NMI). These metrics are the well-known criteria assessing how well a clustering
matches the golden standard. For a clustering π, S(π) gives the total number of
property pairs in the same clusters:

S(π) = {(pi, pj) | ∃gk ∈ π, pi, pj ∈ gk, i < j}. (11)

Let πgs be a golden standard clustering. The Precision, Recall and F-Score
for a computed clustering π w.r.t. πgs are calculated as follows:

Precision =
S(π) ∩ S(πgs)

S(π)
, (12)

Recall =
S(π) ∩ S(πgs)

S(πgs)
, (13)

F-Score =
2 · Precision · Recall
Precision + Recall

. (14)

Rand Index penalizes both false positive and false negative decisions in clus-
tering, while NMI can be information-theoretically interpreted. Their values are
both rational numbers in [0, 1] range, and a higher value indicates a better clus-
tering. We refer the reader to [17] for the detailed calculation.

5.3 Results of Relatedness Measures and Clustering Algorithms

We clustered the properties of the 20 sample entities by using each relatedness
measure and clustering algorithm, and computed the harmonic mean (h-mean)
4 https://developers.google.com/freebase/guide/basic concepts.

https://developers.google.com/freebase/guide/basic_concepts

An Empirical Study on Property Clustering in Linked Data 75

of Precision, Recall, F-Score, Rand Index and NMI, respectively. To obtain the
optimal parameters of a clustering algorithm, we enumerated the values of Eps
and MinPts of DBSCAN in {0.6, 0.7, 0.8, 0.9} and {2, 3, 4, 5} respectively, θ of
single linkage in {0.6, 0.7, 0.8, 0.9, 1.0}, η of spectral clustering from 5 to 20 with
1 interval, and selected the parameters that achieved the highest h-mean of F-
Score for the 20 entities. As a result, we set MinPts = 2, Eps = 0.9, θ = 0.1 and
η = 5.

Table 2. Average performance w.r.t. relatedness measures and clustering algorithms

(a) Precision

CD CL CS

RI .235 .235 .184
RW .215 .215 .198
RU .242 .242 .177
RT .170 .170 .215
RO .247 .247 .188

(b) Recall

CD CL CS

RI .273 .273 .449
RW .266 .266 .337
RU .433 .433 .410
RT .381 .381 .329
RO .137 .138 .427

(c) F-Score

CD CL CS

RI .253 .253 .261
RW .238 .238 .250
RU .310 .310 .248
RT .235 .235 .260
RO .176 .177 .261

(d) Rand Index

CD CL CS

RI .549 .549 .500
RW .672 .672 .584
RU .644 .644 .503
RT .547 .547 .628
RO .709 .708 .516

(e) NMI

CD CL CS

RI .387 .387 .229
RW .441 .441 .231
RU .507 .507 .224
RT .364 .364 .255
RO .520 .520 .216

Table 2 depicts the result of this experiment, where each row and column
represent the relatedness measure and clustering algorithm used, respectively.
From the first two columns of each table, we found that the results of DBSCAN
(CD) and single linkage (CL) are very similar. In fact, when the value of MinPts
of DBSCAN is set to 2, DBSCAN is nearly identical to single linkage. From
Table 2(a), RI , RU and RO achieved the highest values in Precision by using CD

or CL. Among them, RU and RI also achieved high Recall using either clustering
algorithm, as shown in Table 2(b), and thus both of them achieved the highest
values in F-Score as shown in Table 2(c). RT achieved low Precision, but had a
relatively good Recall. Although the F-Score of RT seems good in Table 2(c),
the values of RT in Rand Index and NMI are almost the lowest, as listed in
Table 2(d) and (e). To summarize, RI , RU and RO may be the most effective
measures for clustering in terms of Precision in general. RU , RT and RI may be
the most effective measures in terms of Recall in general. RU and RI may be
the most effective measures in terms of F-Score. These best measures may vary
w.r.t the nature of clustering algorithms used.

From the third column of each table, we saw that the performance of spectral
clustering (CS) is very different from CD (or CL). RT may be the most effective
measure for clustering in terms of Precision in general. RU , RI and RO may

76 S. Gong et al.

be the most effective measures in terms of Recall. RI , RT and RO may be the
most effective measures in terms of F-Score. Also, we can see that the Rand
Index and NMI of CS are generally much lower than the other two algorithms.
These indicate that DBSCAN and single linkage performed better than spectral
clustering in our evaluation.

5.4 Results of Combination Methods

The second experiment is to evaluate whether a certain combination method can
improve the performance of clustering. In this experiment, we used DBSCAN
(CD) with MinPts = 2 and Eps = 0.9, and spectral clustering (CS) with η = 5
as the clustering algorithms since these parameter settings generally achieved
good F-Score according to the results of the previous experiment.

The total number of possible linear combinations of five measures is 26
(= 25 − 1 − 5), which is large. So we did not investigate all these possible
combinations (Recall that we intend to investigate how a proper linear com-
bination improves the performance compared to single measures, not for the
best combination on specific datasets). Instead, for CD we tried to find whether
the linear combination of RI , RU and RO (each of which has a relatively high
Precision) can improve the performance, and whether RT or RW can improve
the performance when combined with RI , RU and RO. As a result, seven linear
combinations were investigated in Table 3 (CD), where ωi ∈ [0, 1] is a weight
coefficient. For CS , similar to the CD, we tried to find seven linear combinations
as well. Because the values of the measures in Precision are similar, we chose
to try the linear combination of RI , RT and RO, each of which has a relatively
high F-Score instead of Precision. Finally, seven linear combinations were inves-
tigated in Table 3 (CS), where ωj ∈ [0, 1] is also a weight coefficient like ωi as
aforementioned. We enumerated each weight coefficient value ωi or ωj from 0
to 1 with 0.05 interval and finally selected the combinations that achieved the
highest F-Score in average. Additionally, we investigated the performance of the
consensus clustering induced by using the corresponding measures. The average
runtime of a clustering algorithm on the 20 entities is in 40 s.

Table 3 shows the harmonic means of Precision, Recall, F-Score, Rand Index
and NMI achieved by using single measures for CD and CS , linear combinations
of various measures and ensemble clustering. For each table, the 6th to 12th
rows represent the linear combination with their weight coefficient values, and
the 13th to 19th rows represent the performance of consensus clustering induced
by using various measures.

For CD, we observed that the linear combination of different measures may
greatly improve the Recall values (about 50% from 0.433 to 0.899 in some cases).
However, the linear combination achieved lower Precision as compared with indi-
vidual measures. Furthermore, it also has a substantial decrease in the values of
Rand Index and NMI (about 50% from 0.709 to 0.364 in some cases on Rand
Index and about 50% from 0.520 to 0.268 in some cases on NMI). These results
may be due to that different measures complemented each other to cover more

An Empirical Study on Property Clustering in Linked Data 77

Table 3. Comparison on single relatedness measures and two combination methods

Clustering algorithm: CD Precision Recall F-Score Rand Index NMI

RI .235 .273 .253 .549 .387

RW .215 .266 .238 .672 .441

RU .242 .433 .310 .644 .507

RT .170 .381 .235 .547 .364

RO .247 .137 .176 .709 .520

.3RI + .7RU .218 .757 .339 .471 .379

.5RI + .5RO .209 .619 .313 .411 .265

.6RU + .4RO .214 .716 .330 .477 .375

.3RI + .5RU + .2RO .211 .883 .341 .398 .318

.3RI + .5RU + .1RT + .1RO .205 .878 .333 .372 .277

.2RI + .1RW + .2RU + .5RO .216 .790 .339 .438 .344

.2RI + .1RW + .15RU + .1RT + .45RO .207 .899 .337 .364 .268

RI , RU .287 .148 .196 .732 .563

RI , RO .331 .051 .089 .744 .566

RU , RO .290 .066 .108 .755 .575

RI , RU , RO .273 .210 .237 .706 .513

RI , RU , RT , RO .292 .102 .151 .744 .560

RI , RW , RU , RO .290 .115 .165 .726 .548

RI , RW , RU , RT , RO .256 .213 .232 .677 .493

Clustering algorithm: CS Precision Recall F-Score Rand Index NMI

RI .184 .449 .261 .500 .229

RW .198 .337 .250 .584 .231

RU .177 .410 .248 .503 .224

RT .215 .329 .260 .628 .255

RO .188 .427 .261 .516 .216

.75RI + .25RT .209 .410 .277 .563 .269

.8RT + .2RO .215 .356 .268 .613 .255

.7RI + .3RO .194 .449 .271 .520 .242

.7RI + .25RT + .05RO .206 .418 .276 .558 .278

.2RI + .5RU + .2RT + .1RO .209 .392 .272 .585 .285

.7RI + .1RW + .1RT + .1RO .191 .464 .271 .497 .249

.2RI + .1RW + .5RU + .1RT + .1RO .198 .455 .276 .499 .234

RI , RT .181 .211 .195 .620 .331

RT , RO .237 .167 .196 .705 .376

RI , RO .218 .160 .184 .691 .361

RI , RT , RO .184 .298 .228 .552 .268

RI , RU , RT , RO .200 .151 .172 .681 .361

RI , RW , RT , RO .202 .129 .158 .691 .362

RI , RW , RU , RT , RO .207 .213 .210 .662 .320

78 S. Gong et al.

types of properties describing similar aspects while bringing noises. The ensem-
ble clustering based on various measures has an increase in Precision (0.247 to
0.331 in some cases) without loss of Rand Index and NMI, due to the fact that
two properties were assigned to the same cluster by ensemble clustering only if
there is sufficient number of individual clustering results. This indicates that,
when seeking for a clustering with a high Precision for CD, the ensemble clus-
tering may be better than the linear combination, while the linear combination
tends to find a clustering with a high Recall.

For CS , we found that the linear combination of different measures can-
not improve the performance for CS . The ensemble clustering based on various
measures has an great decrease in Recall (about 60% from 0.449 to 0.184 in
some cases). This indicates that the combination methods may not be helpful
for improving the performance for CS . The bad results may be related to the
similarity of these measure for CS .

6 Application to Entity Browsing

For years, it has been a great challenge to provide general users with smart views
for browsing interlinked RDF descriptions of entities. As a use scenario of prop-
erty clustering, we developed an online system called SView for browsing linked
entities. It groups and orders property-values of entities by lenses for a neat pre-
sentation, and offers various mechanisms for discovering related entities such as
exploration based on link patterns and similarity-based entity recommendation.
Moreover, users can personalize their browsing experience and they never work
alone. They can edit lenses and consolidate entities following their own opinions,
and their efforts are alleviated due to crowdsourced contributions from all users.
Additionally, SView leverages users’ contributions to generate smart views, e.g.
global lenses and global viewpoints on entity consolidation. The smart views are,
in turn, shared among all users when browsing linked entities.

Figure 1 shows the screenshot for viewing an entity “The Pentagon”5 in
SView. Since this entity contains hundreds of property-values, it is not very
readable if there is no appropriate organizing method. To address this issue,
SView groups and orders property-values with lenses (e.g. “Building”), which
reuse property clustering to describe closely related aspects of an entity and
thus to help users capture related information quickly. A weighted set cover
problem is formulated and solved to automatically pick up a small number of
the lenses that can cover as many relevant properties as possible.

We invited 24 master students in computer science to compare the presen-
tation of 10 DBpedia entities with and without property clustering in SView.
The SUS (System Usability Scale) scores in average indicated that nearly 16%
improvement can be achieved by using the property clustering (72.85 versus
62.86), and this result is statistically significant (p < 0.05).

5 http://dbpedia.org/resource/The Pentagon.

http://dbpedia.org/resource/The_Pentagon

An Empirical Study on Property Clustering in Linked Data 79

Fig. 1. Screenshot for browsing entities in SView with property clustering

It is worth noting that Wikidata6 and Freebase7 also organize related prop-
erties in adjacent positions. See Reasonator8 for an item-type-optimized manner
of Wikidata entity browsing.

7 Related Work

Property similarity is a special kind of property relatedness. Existing work that
dedicates to property similarity finds synonymous or equivalent properties for
applications like ontology mapping [14], entity linkage [10] and query expansion
[2,18]. Specifically, the work in [2] leveraged association rule mining to exploit
synonymous properties. The work in [18] defined statistical knowledge patterns,

6 http://www.wikidata.org.
7 http://www.freebase.com.
8 http://tools.wmflabs.org/reasonator.

http://www.wikidata.org
http://www.freebase.com
http://tools.wmflabs.org/reasonator

80 S. Gong et al.

which identified synonymous properties in and across datasets in terms of triple
overlap, cardinality ratio and clustering. But synonymous or equivalent proper-
ties are inadequate to cover the properties describing similar aspects.

There are also works focusing on a more general notion of relatedness. The
work in [7] used the Web as its knowledge source and utilized the use frequency
provided by search engines to define semantic relatedness measure between ontol-
ogy terms. The work in [4] characterized the relatedness between vocabularies
from four angles: well-defined semantic relatedness, lexical similarity in content,
closeness in expressivity and distributional relatedness. The work in [9] refined
association rule mining to discover frequent property combinations in use. Many
of these works focus on specified vocabularies or ontologies. However, for open
domain entity browsing, the vocabularies are multi-sourced, heterogeneous and
unpredictable. More importantly, none of them further considered property clus-
tering or combination.

Faceted categorization and clustering organize items into meaningful groups
to make sense of the items and help users decide what to do next during Linked
Data exploration [8]. Automated facet construction attracts attentions in many
studies [12], but its accuracy is often limited. Moreover, faceted categorization is
generally used to group entities while our work focuses on clustering properties.
Several browsing systems enable users to manually divide properties and values
[13], but user contributions are usually sparse, especially at a large scale.

8 Discussion of Findings

The experimental results that we have shown allow us to answer our questions
in Sect. 1.

– We empirically evaluated five kinds of relatedness measures between prop-
erties: lexical similarity between property names (RI), semantic relatedness
between property names (RW), distributional relatedness between properties
(RU), range relatedness between properties (RT) and overlap of property val-
ues (RO). The result of our empirical study is uneven for every measure,
which can be explained in two aspects. On one hand, most sample entities
have considerable variance due to difference sources and property numbers;
on the other hand, there is no measure that can achieve a high value for every
clustering algorithm on either of Precision, Recall, Rand Index and NMI. In
terms of F-Score, RI and RU generally generate the clusterings that are closer
to the reference ones in our study than the other measures.

– We empirically evaluated three clustering algorithms: DBSCAN (CD), single
linkage (CL) and spectral clustering (CS). From the overall results, CD is
similar to CL under our parameter settings, and CS is greatly different from
them. The results of CD, CL and CS are uneven for each measure, and that of
CS is relatively stable. However, CD and CL usually generate better clustering
results.

An Empirical Study on Property Clustering in Linked Data 81

– We empirically evaluated the linear combination of measures and ensemble
clustering using CD and CS . For CD, our empirical study shows that the lin-
ear combination of relatedness measures tends to generate a clustering that
features a high Recall, while ensemble clustering (consensus clustering) is rec-
ommended to use if a high Precision is preferred. For CS , both of them are of
little avail.

However, there are some issues that have not been fully covered during our
evaluation:

– There are a diversity of methods to calculate lexical similarity between prop-
erty names. In our study, we only tried I-Sub based on our previous experience
in ontology matching. But it is possible that there is a great difference among
the performances of different similarity measures. Additionally, distributional
relatedness between properties highly depends on the underlying dataset used
for estimation. Leveraging a more appropriate dataset can improve the per-
formance.

– There are not a few well-known clustering algorithms that we have not consid-
ered in our evaluation, i.e. non-negative matrix factorization [15], which may
achieve better performance.

– The two combination methods can improve CD significantly, but can work
on CS barely. It is probable that both of the two combination methods have
special favorites on clustering algorithms. However, due to the limited sam-
ple entities, we have not observed such correlation between the combination
methods and the clustering algorithms.

– In our evaluation, properties used for clustering came from multiple sources
and they were largely heterogeneous. At present, the clustering algorithms
and combination methods have not achieved satisfiable F-Score values. This
implies that more sophisticated solutions need to be developed for property
clustering in Linked Data.

9 Conclusion

In this paper, we studied the property clustering in Linked Data and evaluated
five property relatedness measures, three property clustering algorithms and two
combination methods. Our experimental results demonstrated the feasibility of
the automated property clustering. We also showed that property clustering can
enhance entity browsing in practice.

In future work, we will improve the quality of property clustering by lever-
aging user feedback and active learning. We will also explore more use scenarios
for property clustering in Linked Data.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (No. 61370019). We appreciate our students’ participation in the
experiments.

82 S. Gong et al.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5), 23 (2008)

2. Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol.
7882, pp. 140–154. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8 10

3. Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic
relatedness. Comput. Linguist. 32(1), 13–47 (2006)

4. Cheng, G., Gong, S., Qu, Y.: An empirical study of vocabulary relatedness and
its application to recommender systems. In: Aroyo, L., Welty, C., Alani, H.,
Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011,
Part I. LNCS, vol. 7031, pp. 98–113. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25073-6 7

5. Evert, S.: Corpora and collocations. In: Lüdeling, L., Kytö, M. (eds.) Corpus Lin-
guistics: An International Handbook, pp. 1212–1248. Mouton de Gruyter, Berlin
(2008)

6. Fleiss, J.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76(5), 378–382 (1971)

7. Gracia, J., Mena, E.: Web-based measure of semantic relatedness. In: Bailey, J.,
Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol.
5175, pp. 136–150. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85481-4 12

8. Hearst, M.: Clustering versus faceted categories for information exploration. Com-
mun. ACM 49(4), 59–61 (2006)

9. Hu, W., Jia, C.: A bootstrapping approach to entity linkage on the semantic web.
J. Web Semant. 34, 1–12 (2015)

10. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic pro-
gramming. J. Web Semant. 23, 2–15 (2013)

11. Lin, D.: An information-theoretic definition of similarity. In: ICML 1998, pp. 296–
304. Morgan Kaufmann, San Francisco (1998)

12. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg
(2006). doi:10.1007/11926078 40

13. Quan, D., Karger, D.: How to make a semantic web browser. In: WWW 2004, pp.
255–265. ACM, New York (2004)

14. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

15. Smith, T., Frank, E.: Introducing machine learning concepts with WEKA. In:
Mathé, E., Davis, S. (eds.) Statistical Genomics, pp. 353–378. Springer, Heidelberg
(2016)

16. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol.
3729, pp. 624–637. Springer, Heidelberg (2005). doi:10.1007/11574620 45

17. Wagner, S., Wagner, D.: Comparing clusterings: an overview. Universität
Karlsruhe, Fakultät für Informatik (2007)

18. Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: Statistical
knowledge patterns: identifying synonymous relations in large linked datasets. In:
Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 703–719. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41335-3 44

http://dx.doi.org/10.1007/978-3-642-38288-8_10
http://dx.doi.org/10.1007/978-3-642-25073-6_7
http://dx.doi.org/10.1007/978-3-642-25073-6_7
http://dx.doi.org/10.1007/978-3-540-85481-4_12
http://dx.doi.org/10.1007/11926078_40
http://dx.doi.org/10.1007/11574620_45
http://dx.doi.org/10.1007/978-3-642-41335-3_44

A MapReduce-Based Approach for Prefix-Based
Labeling of Large XML Data

Jinhyun Ahn1, Dong-Hyuk Im2, and Hong-Gee Kim1,3(B)

1 Biomedical Knowledge Engineering Laboratory and Dental Research Institute,
Seoul National University, Seoul, South Korea

{jhahncs,hgkim}@snu.ac.kr
2 Department of Computer and Information Engineering, Hoseo University,

Cheonan, South Korea
dhim@hoseo.edu

3 Institute of Human-Environment Interface Biology, Seoul National University,
Seoul, South Korea

Abstract. A massive amount of XML (Extensible Markup Language)
data is available on the web, which can be viewed as tree data. One
of the fundamental building blocks of information retrieval from tree
data is answering structural queries. Various labeling schemes have been
suggested for rapid structural query processing. We focus on the prefix-
based labeling scheme that labels each node with a concatenation of
its parent’s label and its child order. This scheme has been adapted in
RDF (Resource Description Framework) data management systems that
index RDF data in tree by grouping subjects. Recently, a MapReduce-
based algorithm for the prefix-based labeling scheme was suggested. We
observe that this algorithm fails to keep label size minimized, which
makes the prefix-based labeling scheme difficult for massive real-world
XML datasets. To address this issue, we propose a MapReduce-based
algorithm for prefix-based labeling of XML data that reduces label size
by adjusting the order of label assignments based on the structural infor-
mation of the XML data. Experiments with real-world XML datasets
show that the proposed approach is more effective than previous works.

1 Introduction

A large volume of XML (Extensible Markup Language) data from various areas
are publicly available on the web, with some examples including DBLP (com-
puter science bibliography), UniprotKB (protein information), SwissProt (pro-
tein sequence database), and Treebank (tagged sentences). XML data can be
viewed as a tree data model that represents parent-child relationships between
elements. XPath [1] is widely used to represent structural queries against XML
data. One of the fundamental structural queries requires the determination of
whether an ancestor/descendant relationship exists between two given elements.
The simplest method to answer such queries is to traverse the tree to determine
if a path exists between the two given elements. However, if the elements are far
apart, one has to visit many elements. To overcome this disadvantage, labeling
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 83–98, 2016.
DOI: 10.1007/978-3-319-50112-3 7

84 J. Ahn et al.

schemes have been proposed, in which each node is labeled so that its ances-
tor/descendant relationship can be determined by considering only those two
labels. Interval-based, prefix-based, and prime number-based labeling schemes
exist for tree data models. Of these schemes, we focus on the prefix-based label-
ing scheme that has been extensively utilized in many practical systems [2],
including Microsoft SQL Server [3] and SiREN [4]. Note that SiREN is an infor-
mation retrieval engine for RDF (Resource Description Framework) data that is
a graph data model. In SiREN, RDF triples are converted into tree data struc-
tures by grouping subjects. The prefix-based labeling scheme is adopted to index
the tree. With the popularity of the prefix-based labeling scheme, [5] proposed
a MapReduce-based algorithm for prefix-based labeling of XML data to make it
more applicable for massive real-world XML datasets (or Linked Open Data1 if
processed like SiREN).

Although previous approaches can label large XML data in parallel, they are
not efficient at producing smaller label sizes. This makes it difficult for the prefix-
based labeling scheme to handle massive XML data. Previous approaches assign
labels to each node in the order presented in the XML file. We note that if we
change the label assignment order appropriately, the resultant prefix-based label
size is reduced while conforming to the prefix-based labeling scheme. Reducing
label size is important because the query processing performance depends on
how large the labels are. Obviously, the smaller the labels are, the faster ances-
tor/descendant relationships can be determined. Therefore, devising a way of
generating the smallest label size is very important.

In this paper, we propose a dynamic labeling technique for the prefix-based
labeling scheme, designed to produce a smaller label size than previous works.
Specifically, the proposed approach extends [6]’s MapReduce-based repetitive
prime labeling algorithm, which is similar to prefix-based labeling. The pro-
posed approach adjusts the label assignment order during the labeling process,
enabling it to reduce label size. The adjustment of label assignment is based on
structural properties of the tree that can be obtained during the labeling process.
The proposed approach is implemented on MapReduce, which allows multiple
machines to perform labeling in parallel.

The contribution of this paper is summarized as follows:

– We extend the existing MapReduce-based repetitive prime labeling algorithm
[6] to perform prefix-based labeling more efficiently than the state-of-the-art
prefix-based labeling systems.

– We devise a novel technique that improves the above extension.
– Experiments with real-world XML datasets are conducted to show the effec-

tiveness of the proposed approaches compared with state-of-the-art works.

This paper is organized as follows. Problem definitions and notations are
stated in Sect. 2. Section 3 briefly overviews related work. In Sect. 4, we motivate
our work by discussing the drawbacks of the state-of-the-art approach. Our app-
roach is demonstrated in Sect. 5. Experimental results are discussed in Sect. 6.
The paper is concluded in Sect. 7.
1 http://linkeddata.org.

http://linkeddata.org

A MapReduce-Based Approach for Prefix-Based Labeling 85

2 Preliminarily

We briefly introduce the MapReduce framework, XML data and prefix-based
labeling scheme in this section, as these are closely related in our problem setting.

MapReduce is a programming model in a distributed computing environ-
ment. A MapReduce-based program consists of a map and reduce phase [7].
First, input data is split into several parts by an InputFormat, each of which is
denoted as InputSplit. Each mapper reads each InputSplit and sends a part of
InputSplit that is grouped by a map key to reducers. The reducer then processes
the received data. All mappers and reducers run on each machine independently
in a parallel fashion.

XML data can be viewed as a sequence of start/end-tags. The empty-element-
tags (encoded in <.../>) and text contents between start-tag and end-tag are
ignored in this paper to simplify notation. These can be represented in an
expanded form consisting explicitly of dummy start-tags and end-tags. An ele-
ment is a logical component that is a pair of a start-tag and a matching end-tag.
Specifically, XML InputSplit is taken into account in order to model XML data
in the context of the MapReduce framework. The formal definition of XML
InputSplit is stated in Definition 1.

Definition 1. XML InputSplit : Given an XML file D and a split size b in
bytes. An ith InputSplit Ii(D, b) is the sequence of start/end-tags split by b
bytes, such that

Ii(D, b) = (tj , tj+1, ..., tj+n)

where tj is the jth tag in D such that

tj = (name, offset, type)

The name denotes the string between two brackets. The position of its first
bracket in D is offset, which is provided automatically by the MapReduce
framework. The type is either start or end. For readability, we sometimes denote
tstart = (∗, ∗, start) and tend = (∗, ∗, end). If the context is clear, we simply state
Ii to indicate Ii(D, b).

Example 1. The start-tag of a root element is represented by (dblp, 0, start) if
the name of the root element is “dblp”. The offset of the first child of the root
element is set as 6 since <dblp> has six characters.

We implemented an XMLInputFormat to split an XML file into a sequence
of XML InputSplits, as TextInputFormat provided by Apache Hadoop cannot
be used here because it splits by characters. A tag may be split into different
XML InputSplit (e.g., <d in Ii and blp/> in Ii+1). Thus, the XMLInputFormat
is designed to be split by brackets to split into tags correctly.

Definition 2. XML Data Labeling Problem : Given an XML file D, output
an injective map L from a set of elements E of D to a set LS of particular labels.

L : E −→ LS

86 J. Ahn et al.

Fig. 1. A tree labeled by the prefix-based labeling scheme

L should be injective because every element e ∈ E must be labeled and no
two elements have the same label. LS is based on the choice of labeling scheme.

In particular, we focus on the conventional prefix-based labeling scheme
[8–11], defined in Definition 3.

Definition 3. Prefix-based Labeling Scheme : The prefix-based label L(e)
of an element e is defined as follows:

L(e) = L(pa(e)).order(e)

where pa(e) is the parent of e, period(.) is the delimiter, and order(e) is the child
order of e under pa(e). The label size size(L(e)) of L(e) is the number of digits
in L(e) except for delimiters. To indicate the suffix label order(e), we denote
suffix(L(e)).

Example 2. See Fig. 1. The root element A has 1 as its prefix-based label. L(E)
is 1.2 because we have L(A) = 1 and E is the second child corresponding to
order(E) = 2. The label size of L(H) is 4, while the label size of L(E) is 2.

3 Related Work

Answering ancestor/descendant relationships between two given elements in
XML data can be achieved by tree traversal. However, this approach is inef-
ficient when the two given elements are far away from each other because it
requires visiting all of the intermediate elements in a path connecting them. To
avoid visiting numerous nodes, we may maintain additional data for each ele-
ment. The additional data is called an index or label. For two given elements
a and b, we can determine the ancestor/descendant relationships by applying
operations to the labels of a and b. The simplest labeling scheme is to have the

A MapReduce-Based Approach for Prefix-Based Labeling 87

label to retain a list of ancestor/descendant elements. However, this approach
is inefficient because the space requirement is too large. To overcome the space
disadvantage, diverse tree labeling schemes have been proposed [12].

Previous works are classified in two categories: tree labeling schemes and tree
labeling algorithms. Tree labeling schemes define what the label is, while tree
labeling algorithms define how to label each element. Note that the focus of this
paper is a tree labeling algorithm based on the prefix-based labeling scheme.

Tree Labeling Schemes: The interval-based labeling scheme labels each element
with (start, end, level) [13–17]. The start and end of an element represents the
interval that includes all of its child element’s intervals recursively. Therefore,
the parent/child relationship can be determined from whether or not an interval
is included. Additionally, level is used for determining whether the child is a
direct child. The prime number labeling scheme calculates labels on the basis
of the product of prime numbers [18,19]. In [18], after a unique prime number
is assigned to every element, the product of the parent element’s label and its
own prime number (self-label) becomes the element’s label. The disadvantage is
that a unique prime number must be assigned to every element. If the number of
elements increases, the number of prime numbers used will increase accordingly.
However, variations have been proposed to overcome this disadvantage. In [19],
the prime number recycling method is proposed, in which the self-label becomes
the prime number following the prime number of its parent. This has two advan-
tages over [18]. First, the label size is reduced because this scheme reuses prime
numbers. Second, the keyword-based search query processing is efficient because
self-labels of descendant elements of an element are larger than or equal to the
self-label of the element. The prefix-based labeling scheme is a labeling method
in which the parent element label is the prefix, and the child’s order number
is the suffix [8–11]. A delimiter is needed to distinguish between the prefix and
the suffix. For example, if the root element’s label is 1, its first child element’s
label is 1.1 and its second child element’s label is 1.2, where the period(.) is the
delimiter.

Tree Labeling Algorithm: In-memory tree labeling algorithms can be straight-
forwardly implemented. However, a massive XML file cannot be processed if
there is insufficient memory. To solve this, the MapReduce framework has been
adapted.

There exists a few studies on XML data labeling algorithms based on MapRe-
duce [5,6]. [5] proposed two MapReduce-based tree labeling algorithms for
interval-based labeling and prefix-based labeling schemes. Let’s first discuss the
interval-based labeling algorithm. During the map phase, start and end values
are assigned to each element in InputSplit. In InputSplit, for a start/end-tag, if
there is no corresponding end/start-tag, then end (or start) value is left empty.
These incomplete labels are sent to reducers. At each map step, the label of
the last element and the number of elements are recorded on an HDFS (Hadoop
Distributed File System) file. When all map steps are completed, all of the infor-
mation collected in the HDFS file is combined to generate one offset table, which

88 J. Ahn et al.

Fig. 2. Label size differs depending on the order of labels for unordered XML data.

can be accessed by all machines. In the reduce step, the offset table is used for
completing the incomplete label of each element.

To explain the motivation for our work, the state-of-the-art MapReduce-
based prefix-based labeling algorithm and its drawbacks are discussed in details
in Sect. 4.

4 Motivation

Regarding the order of child elements, XML data are classified as unordered and
ordered. The order of child elements is significant in ordered XML data, whereas
this order is not significant in unordered XML data. In most real-world XML
data, the order among child elements is unimportant [20,21]. In this regard, this
paper focuses on unordered XML data. Specifically, we note that for unordered
XML data, the order of label assignments affects the size of the resultant labels,
as discussed in [6].

In Fig. 2, two different labeling results are depicted for the same XML data.
The same prefix-based labeling scheme is used here. The figure is drawn on the
assumption that the Asia element precedes the Europe element in the XML data.
We also assume that there are eight elements between Asia and Europe, which are
omitted in the figure. Label assignment on the left is by the order of the elements
serialized in the XML data. We call it static labeling because the order of labels
is determined by the order in the XML data. Asia is assigned 1.1 because it is
the first child. Europe is assigned 1.10 because it is the 10th child. On the other
hand, label assignment on the right is dynamic labeling because label order is
not determined by the order in the XML data. Here, we have L(Europe) = 1.1
and L(Asia) = 1.10. Asia is assigned 10 because it has fewer descendants than
Europe. In dynamic labeling, 10 is inherited to one node, whereas it is inherited
to two elements in static labeling. By changing the label assignment order, we
can reduce the label size (e.g., from 25 to 24 in Fig. 2).

The state-of-the-art prefix-based labeling algorithm [5] contains static label-
ing and does not support dynamic labeling. InputSplits are created from an input

A MapReduce-Based Approach for Prefix-Based Labeling 89

XML file by a given split size, each of which is then assigned to each mapper.
In the map phase, each element with an incomplete prefix-based label is sent to
reducers using the name of the element as the map key. In addition, the follow-
ing information is output from each mapper: the number of not paired end-tags
(called basement), the sibling order of the last element, and the incomplete label
of the last element. The information is stored in an HDFS file to create an offset
table that has n rows, where n is the number of InputSplits. All previous rows
from 1 to n − 1 are combined to obtain the nth row in the offset table. In the
reduce phase, the label in the offset table is appended to the prefix part, and s
suffixes in the incomplete label are removed when s is the basement value. Note
that a row in the offset table is made of all previous rows. Therefore, the order
of the label assignment is the same as the order of InputSplit, which is the same
as the order of rows. In other words, the order of label assignment is fixed to the
order present in the XML file, which corresponds to static labeling.

5 The Proposed Approach

The proposed approach is extended from RepMR [6], which proposes a
MapReduce-based XML data labeling algorithm for the repetitive prime labeling
scheme [19]. It appears that a simple modification of RepMR can achieve our goal
as these two labeling schemes are closely related. We call the simple modification
PrxMR. However, we observe that label size can be further reduced using our
novel DCL(dynamic compressed element labeling) technique. The approach with
DCL is called PrxMR+. Section 5.1 briefly reviews PrxMR. Section 5.2 discusses
the limitations of PrxMR and then explains our alternative PrxMR+.

5.1 PrxMR

PrxMR is a modification of RepMR [6] so that prefix-based labels are generated
instead of repetitive prime labels. The overall algorithm is the same; however,
the difference between them is the labeling scheme employed. This is possible
because prefix-based labels and repetitive prime labels are similar in that labels
are based on parent’s label and child order. These two schemes deal with child
order differently though. An illustrative example of PrxMR is shown in Fig. 3.
Upper Tree Labeling is the process of labeling a portion of elements extracted
from the root (called an upper tree). The label assignment order is determined
based on the number of descendants. The upper tree is stored in an HDFS file
for reducers to access. Label population is performed by reducers independently
by referring to the shared upper tree.

Upper Tree Labeling. Figure 4 illustrates the Upper Tree Labeling step. For
a given split size, we assume that three XML InputSplits are created. One sub-
upper tree (denoted as SUP) is extracted for each InputSplit, in which nested
elements are not included (e.g., type in SUP1). Since these nested elements can
be labeled locally in the Label Population step. Start/end-tags are depicted in

90 J. Ahn et al.

Fig. 3. Conceptual diagram of PrxMR. Prefix-based labels are represented in the
bracket below the element name.

dotted rectangles while elements are in solid rectangles. For sub-upper trees
(e.g. SUP2) that have two or more root elements, a DUMMY tag becomes the
root. These sub-upper trees are merged by paring root elements to create the
upper tree (UP) depicted in the right-most part. The number of all descendants
including itself is dsc, while sibs is the number of siblings including itself. Note
that the order of book, device, and food elements is changed by dsc. The bold
rectangle in UP represents a compressed element that corresponds to a sequence
of elements, defined in Definition 4.

Definition 4. Compressed Element : A compressed element C in UP is con-
structed based on a sequence W ⊂ Ii of tags in an XML InputSplit Ii.

W = {<estarti >, ..., </eendi >, <estartj >, ..., </eendk >}

such that there exists a start-tag <e> in W if and only if there exists a matching
end-tag </e> in W , which means that all tags are paired. The first element
(estarti ,eendi) is called leader. Consider a sub-sequence S ⊂ W of leader’s sibling
elements as follows:

S = {(sstart, send)|level(sstart) = level(leaderstart) and sstart, send ∈ W}

The level values are calculated by iterating over W . The level(leaderstart) is
initially set to 0. The value increases by 1 when a start-tag is encountered and
decreases by 1 for an end-tag. Then C is encoded in a 3-tuple:

(leader, sibs, dsc),

where sibs = |S| and dsc =
∑

s∈S s.dsc.

A MapReduce-Based Approach for Prefix-Based Labeling 91

Fig. 4. Example dataflow of Upper Tree Labeling. Sub-upper trees (SUP) are extracted
from each InputSplits and then merged into an upper tree (UP). Note that elements
that can be labeled locally are not included in UP .

Example 3. (device,10,19) is a compressed element. There exist ten sibling ele-
ments in the same level such that devise is the first one and house is the last one.
Therefore, food element is assigned 1.1.12 because device.sibs = 10.

The order between two (compressed or regular) elements A and B in UP is
determined by the average number of descendants of each direct children defined
in Eq. 1.

order(A) < order(B) iff
A.dsc

A.sibs
≥ B.dsc

B.sibs
(1)

Example 4. In Fig. 4, we have order(book) < order(device) because book.dsc
book.sibs =

3
1 = 3 and device.dsc

device.sibs = 19
10 = 1.9.

Label Population. Figure 5a is an illustrative example of PrxMR that assigns
prefix-based labels to each element by referring to UP in Fig. 4. Three reducers
are executed because InputSplit id is chosen as the map key, which means that
elements in an InputSplit are sent exclusively to a reducer. There are four cases
where each element e is labeled by matching to UP . The offset value is utilized
to match between elements.: 1© If e is found in UP , then take the label in
UP . 2©: If e is not found in UP , but its parent pa(e) is found in UP , then
we automatically obtain L(e) since pa(e) has already been encountered in the
same reducer and therefore L(pa(e)) is available. For example, in Reducer #3,
the title is not in UP , but its parent book is. Therefore, book must have been

92 J. Ahn et al.

Fig. 5. Example dataflow of the Label Population step of PrxMR and PrxMR+. Each
element e is assigned L(e) differently in four cases (1© ∼ 4©) by referring to UP in
Fig. 4. The number of descendants is represented by dsc, which is only exploited by
PrxMR+. Elements in compressed nodes are labeled differently, highlighted in boldface.

encountered before title according to the sequence serialized in the XML data.
3©: e is the compressed element in UP . For example, device is the compressed
element with L(devise) = 1.1.2 from UP . The sub-sequent sibling elements are
labeled in the presented order. 4©: The other case. For example, in Reducer #3,
the age element is automatically labeled because it is the child of the author
element that has been labeled by case 2©.

5.2 PrxMR+

Although PrxMR successfully reduces the label size, it is still inefficient in the
way elements in a compressed element are labeled, corresponding to case 3© in
the Label Population step.

See elements in bold in Fig. 5a. The suffix labels increase sequentially in
the presented order. For example, in Reducer #2, device, school, office, ... ,
house elements are assigned suffix labels from 2 to 11. This corresponds to static
labeling; its inefficiency in terms of the label size was discussed in Sect. 4. We
observed that this inefficiency can be overcome by utilizing the information about
dsc of each sibling elements to adjust suffix labels. In this regard, we devise DCL
in Definition 5.

Definition 5. DCL(Dynamic Compressed Element Labeling): Given a
compressed element C, by Definition 4, we have a sequence W of tags and its

A MapReduce-Based Approach for Prefix-Based Labeling 93

Table 1. Real-world XML Datasets

Name Elements Avg. fanout (max) Avg. depth (max)

treebank 2,437,666 2.2 (51) 7.8 (36)

swissProt 2,977,030 6.6 (342) 3.5 (5)

dblp 3,332,130 9.0 (750) 2.9 (6)

psd7003 21,305,818 3.9 (151) 5.1 (7)

kegg 63,445,091 2.4 (188) 7.3 (10)

sub-sequence S of C.leader’s sibling elements. The dsc of s ∈ S ⊂ W is obtained
as follows:

s.dsc = the number of start-tags in W between sstart and send

By ordering S in decreasing order of dsc, we obtain a sorted set DSC(S). Then,
the label of each element in S is defined as follows:

L(s) = L(pa(C.leader)).i

such that i = suffix(L(C.leader)) + (d − 1) and s is the dth one in DSC(S).

Example 5. See Fig. 5b. In Reducer #1, we have a compressed element
C = (item, 4, 14) and S = {item, ...,police}. We obtain DSC(S) =
{police, ..., item}, because item.dsc < police.dsc assuming that they have the
minimum and maximum dsc among elements in S. We also have L(pa(item)) =
1.2 and suffix(L(item)) = 2. Therefore, we have L(police) = 1.2.2 because
police is the first element in DSC(S).

6 Performance Study

Experiments with real-world XML datasets were conducted. Our cluster consists
of four machines (2.6 GHz CPU, 32 GB RAM). Hadoop 2.7.1 and JDK 1.8 were
used for the implementations. The proposed approaches (PrxMR and PrxMR+)
were compared with the state-of-the-art approach [5], denoted as STATIC. In the
experiments, the split size b was assumed to be 524,288 bytes.

Table 1 lists five datasets obtained from the XML Repository at University
of Washington2. The number of children of an element is fanout. The number of
elements from e to root is the depth of an element e.

6.1 Labeling Time

Figure 6 shows the labeling time for the five datasets. There is no significant
difference between the three approaches for all datasets. Nevertheless, we observe
2 http://www.cs.washington.edu/research/xmldatasets/www/repository.html.

http://www.cs.washington.edu/research/xmldatasets/www/repository.html

94 J. Ahn et al.

Fig. 6. Labeling time

that our approaches are slightly better than STATIC for larger datasets. This can
be understood by the fact that STATIC completes labels in the reduce phase using
a slightly complex operation (i.e., calibration operation stated in [5]), whereas
our approach employs a very simple operation (i.e., Label Population).

6.2 Label Size

The average label size is calculated in the experiments (Table 2). This measure
is more important than the total label size, because prefix matching is per-
formed between individual labels to answer structural queries. For all cases, our
approaches generate smaller label size than STATIC. The Upper Tree Label-
ing technique helps avoid assignments of larger suffix numbers to elements with
many descendants, which contributes to reducing label size. Note that label size
is the number of digits in decimal representation, which means that even a very
small reduction in label size is meaningful. The largest label sizes were seen in
treebank even though it is the smallest dataset due to its large depth. According
to the prefix-labeling scheme, suffix numbers are appended following descen-

Table 2. Average Label Size

PrxMR+ PrxMR STATIC

treebank 11.656 11.658 11.678

swissprot 7.762 7.765 8.291

dblp 7.558 7.559 7.672

psd7003 9.796 9.800 9.913

kegg 10.466 10.466 10.741

A MapReduce-Based Approach for Prefix-Based Labeling 95

Fig. 7. The relative number of labels for each label size, on the basis of PrxMR. X-axis
indicates the label size. For example, individual label sizes of kegg range from 1 to 15.
The y-axis indicates the relative number of elements for a label size x by calculating
|{e|size(LPrxMR+(e)) = x}| − |{e|size(LPrxMR(e)) = x}|, where LPrxMR+ and LPrxMR are
the labeling map by PrxMR+ and PrxMR, respectively.

96 J. Ahn et al.

dants. In the case of kegg, PrxMR+ and PrxMR have the same label size. As
seen in Table 1, kegg has a relatively small average fanout, which means that
there are few chances to employ the DCL technique to help reduce the label size
by adjusting suffix label assignments between elements in a compressed element.

More details on each dataset’s label size are depicted in Fig. 7, which shows
the relative label size of PrxMR+ on the basis of PrxMR. For example, in the
case of psd7003, PrxMR+ assigns labels of size 5 to 5,000 more elements than
PrxMR; on the other hand, PrxMR+ assigns labels of size 9 to 4,000 less elements
than PrxMR. In other words, there are more elements that are assigned smaller
labels by PrxMR+ than PrxMR. The same tendencies are observed in the other
datasets. Among them, psd7003 shows a relatively larger positive area for smaller
label sizes (i.e., label size from 3 to 7) and smaller negative area for larger label
sizes (i.e., label size from 9 to 12). This can be understood by the fact that
psd7003 has both larger average fanout and larger average depth overall. For
larger average depth, there are more chances to reduce the label size by Upper
Tree Labeling. For larger average fanout, there are more chances for DCL to
have an effect on reducing the label size.

7 Conclusion

We proposed a MapReduce-based prefix-based labeling algorithm, which is
extended from a MapReduce-based repetitive prime labeling algorithm [6]. This
algorithm introduces a novel way of dealing with compressed elements to reduce
label size. Experiments on massive XML data showed that the proposed tech-
nique generated smaller labels than the previous algorithms.

In the proposed approach, elements in a mapper are sent exclusively to a
reducer by choosing InputSplit id as the map key. There is no other way because
the sequence of elements should be preserved in the reduce phase to carry out the
Label Population step appropriately. This method does not allow control of the
amount of data sent to reducers via the network. This is not desired because
it cannot fully utilize all workers efficiently in terms of data distribution across
a cluster. A completely new algorithm design is needed to address this issue in
future works.

Acknowledgement. This work was supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. R0101-16-0054, WiseKB: Big data based self-evolving knowledge base and rea-
soning platform) and Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(NRF-2014R1A1A1002236).

A MapReduce-Based Approach for Prefix-Based Labeling 97

References

1. Clark, J., DeRose, S., et al.: XML path language (XPath) (1999)
2. Pal, S., Cseri, I., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras,

A., Berg, B., Churin, D., et al.: XQuery implementation in a relational database
system. In: Proceedings of the 31st International Conference on Very Large Data
Bases, VLDB Endowment, pp. 1175–1186 (2005)

3. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
insert-friendly XML node labels. In: Proceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 903–908. ACM (2004)

4. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G.: A node indexing scheme
for web entity retrieval. In: Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol.
6089, pp. 240–256. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13489-0 17

5. Choi, H., Lee, K.H., Lee, Y.J.: Parallel labeling of massive XML data with mapre-
duce. J. Supercomputing 67(2), 408–437 (2014)

6. Ahn, J., Im, D.H., Lee, T., Kim, H.G.: A dynamic and parallel approach for repet-
itive prime number labeling of XML data with MapReduce. J. Supercomputing
(To Appear)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

8. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: from dewey to a fully dynamic XML
labeling scheme. In: SIGMOD. ACM (2009)

9. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, pp. 204–215. ACM (2002)

10. Lin, R.-R., Chang, Y.-H., Chao, K.-M.: A compact and efficient labeling scheme for
XML documents. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W.
(eds.) DASFAA 2013. LNCS, vol. 7825, pp. 269–283. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37487-6 22

11. Lu, J., Meng, X., Ling, T.W.: Indexing and querying XML using extended dewey
labeling scheme. Data Knowl. Eng. 70(1), 35–59 (2011)

12. Klaib, A., Joan, L.: Investigation into indexing XML data techniques (2014)
13. Xu, L., Bao, Z., Ling, T.W.: A dynamic labeling scheme using vectors. In:

Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653,
pp. 130–140. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74469-6 14

14. Li, C., Ling, T.W.: QED: a novel quaternary encoding to completely avoid re-
labeling in XML updates. In: CIKM. ACM (2005)

15. Christophides, V., Karvounarakis, G., Plexousakis, D., Scholl, M., Tourtounis, S.:
Optimizing taxonomic semantic web queries using labeling schemes. Web Semant.
Sci. Serv. Agents World Wide Web 1(2), 207–228 (2004)

16. Xu, L., Ling, T.W., Wu, H.: Labeling dynamic XML documents: an order-centric
approach. IEEE Trans. Knowl. Data Eng. 24(1), 100–113 (2012)

17. Subramaniam, S., Haw, S.C., Soon, L.K.: Relab: A subtree based labeling scheme
for efficient XML query processing. In: 2014 IEEE 2nd International Symposium
on Telecommunication Technologies (ISTT), pp. 121–125. IEEE (2014)

18. Wu, X., Lee, M.L., Hsu, W.: A prime number labeling scheme for dynamic ordered
XML trees. In: ICDE (2004)

http://dx.doi.org/10.1007/978-3-642-13489-0_17
http://dx.doi.org/10.1007/978-3-642-37487-6_22
http://dx.doi.org/10.1007/978-3-540-74469-6_14

98 J. Ahn et al.

19. Sun, D.H., Hwang, S.C.: A labeling methods for keyword search over large XML
documents. J. KIISE 41(9), 699–706 (2014)

20. Wang, Y., DeWitt, D.J., Cai, J.Y.: X-Diff: An effective change detection algorithm
for XML documents. In: 2003 Proceedings of the 19th International Conference on
Data Engineering, pp. 519–530. IEEE (2003)

21. Leonardi, E., Bhowmick, S.S., Madria, S.: Xandy: Detecting changes on large
unordered XML documents using relational databases. In: Zhou, L., Ooi, B.C.,
Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 711–723. Springer, Heidelberg
(2005). doi:10.1007/11408079 65

http://dx.doi.org/10.1007/11408079_65

RIKEN MetaDatabase: A Database Platform
as a Microcosm of Linked Open Data Cloud

in the Life Sciences

Norio Kobayashi1,2,3(B), Kai Lenz1, and Hiroshi Masuya2,1

1 Advanced Center for Computing and Communication (ACCC), RIKEN,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan

{norio.kobayashi,kai.lenz}@riken.jp
2 BioResource Center (BRC), RIKEN, 3-1-1, Koyadai, Tsukuba,

Ibaraki 305-0074, Japan
hmasuya@brc.riken.jp

3 RIKEN CLST-JEOL Collaboration Center, RIKEN,
6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

Abstract. The amount and heterogeneity of life-science datasets
published on the Web have considerably increased recently. However,
biomedical scientists face numerous serious difficulties in finding, using
and publishing useful databases. In order to solve these issues, we devel-
oped a Resource Description Framework-based database platform, called
RIKEN MetaDatabase, which allows biologists to easily develop, pub-
lish and integrate databases. The platform manages metadata of both
research data and individual data described with standardised vocabular-
ies and ontologies, and has a simple browser-based graphical user inter-
face for viewing data including tabular and graphical views. The platform
was released in April 2015, and 110 databases including mammalian,
plant, bioresource and image databases with 21 ontologies have been
published through this platform as of July 2016. This paper describes
the technical knowledge obtained through the development and opera-
tion of RIKEN MetaDatabase as a challenge for accelerating life-science
data distribution promotion.

Keywords: Semantic web · Database cloud platform · Database inte-
gration · Life sciences

1 Introduction

The life sciences have been developed rapidly and subdivided into specialised
study fields. Thus, the study of the life sciences has generated numerous hetero-
geneous datasets, making it difficult for researchers to find data from this flood
of information, use them appropriately in their research and publishing them in
a useful way for other researchers. Considering these difficulties, two major issues
arise. The first issue is realising rich and useful data integration in a sustainable

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 99–115, 2016.
DOI: 10.1007/978-3-319-50112-3 8

100 N. Kobayashi et al.

way: linking data, integrating data systematically using standardised vocabular-
ies, representing semantics and publishing the data location. The second issue
involves realising easy, flexible and low-cost operation that allows many data
developers and biologists to participate in the process of data integration.

These difficulties also occur within a research institute. RIKEN is the largest
Japanese comprehensive science institute, having both large-scale research cen-
tres and many small-scale laboratories, which generate large-scale life-science
datasets in various fields. The institute is confronted with issues regarding the
realisation of collaborative research promotion over different fields within it.
Therefore, database infrastructure is required for the publication and promotion
of RIKEN’s research results. This situation can be presented as a microcosm of
the linked open data cloud in the life sciences.

We consider RIKEN’s problem described above as a case study of data
utilisation in the life sciences. To solve this problem, we developed RIKEN
MetaDatabase—which is a database platform based on the Resource Description
Framework (RDF), which realises metadata management at low cost, systematic
data integration and global publication on the Web. RIKEN MetaDatabase was
published in April 2015 with RIKEN’s original databases, as well as external
databases associated with these databases and ontologies. Here, we discuss the
advantages of RDF for solving life-science data distribution and future issues,
focusing on RIKEN MetaDatabase implementation, data integration and com-
parison with other cases.

The rest of this paper is organised as follows. Section 2 presents previous
work related to this study. Section 3 discusses the requirement specifications for
the database platform. Sections 4, 5 and 6 discuss design issues including func-
tions, workflow of database publication, detailed data view and implementation.
Sections 7 and 8 introduce available databases and comprehensively review
RIKEN MetaDatabase by introducing concrete database projects. Finally, Sect. 9
concludes this study.

2 Related Work

We here review the existing RDF-based database platforms for life-science data
publication and integration related to RIKEN MetaDatabase.

The Harvard Catalyst (https://catalyst.harvard.edu) is an information
resource-sharing platform for human health research that enables collaboration
among researchers within a group of 31 institutes including Harvard University.
RDF-based data integration and federated search among distributed servers are
used as the network’s mining tool [1]. However, the platform does not aim at
hosting the researchers’ databases for data integration purposes.

Bio2RDF (http://bio2rdf.org) provides major existing life-science datasets
by converting them into the RDF format [2]. The generators of the original data
and the informaticians for RDFising are different in this case. Instead, in our
approach, the original data generators participate in the data integration by
RDFising these data themselves.

https://catalyst.harvard.edu
http://bio2rdf.org

RIKEN MetaDatabase: A Database Platform 101

BioPortal (http://bioportal.bioontology.org) in the National Center for Bio-
medical Ontology (NCBO) is a data federation platform based on RDF and
OWL, as well as our platform [3]. However, the primary focus of BioPortal is
data integration and coordination between ontologies, while our approach focuses
on inter-linking data items in the researchers’ databases directly.

RDF Portal (http://integbio.jp/rdf/) in the National Bioscience Database
Center (NBDC) and our platform apply a common data integration concept,
which collects RDF datasets from various study fields. RDF Portal allows
researchers from different institutes and universities to combine their RDF
datasets. In addition, it provides SPARQL query interfaces for each dataset
and across all datasets. Instead, our platform supports both generating and col-
lecting RDF data. Furthermore, RIKEN MetaDatabase provides a data browser
that can also be used by non-RDF users.

EBI RDF Portal (https://www.ebi.ac.uk/rdf/) currently hosts six datasets
produced by large-scale projects, which are indispensable for data analysis and
integration to many bioinformatists. In contrast, our platform is aimed at host-
ing both large- and middle–small-scale projects and laboratories, all of which
want to contribute to the life sciences through the publication of their research-
based data.

To generate RDF data, we employ a spreadsheet to describe the raw data and
convert them into RDF. A similar tool is OpenRefine (http://openrefine.org/),
which can generate RDF data from various source files including a spreadsheet.
In OpenRefine, the data that are to be converted into RDF are defined outside
the source files. Instead, our spreadsheet includes all the data to be converted
into RDF, and the RDF expert can easily recognise the RDF data structure
from the spreadsheet.

RightField [4] is a tool for editing life-science data given in spreadsheets by
embedding the ontology annotations. A RightField spreadsheet allows a user
to select terms from a given ontology dataset which includes subclass relations,
individuals, and combinations.

3 Requirement Specifications for the Life-Science
Database Platform

3.1 Requirements for Cloud-Based Databases in the Life Sciences

As an in-house database platform for a comprehensive research institute, RIKEN
MetaDatabase should support different types and sizes of datasets generated by
research projects of all scales. At the same time, RIKEN MetaDatabase should
form a uniform knowledge base by including not only RIKEN’s internal datasets
but also global datasets interlinked on the Web. In addition, it should provide a
simple operational workflow, by which biologists can easily participate in global
data integration without specialised data integration skills.

Ideally, both biologists and informaticians should cooperate closely for data
integration and mining through the database platform. Therefore, we conclude

http://bioportal.bioontology.org
http://integbio.jp/rdf/
https://www.ebi.ac.uk/rdf/
http://openrefine.org/

102 N. Kobayashi et al.

that RIKEN MetaDatabase is required to be a database platform providing
well-coordinated datasets, which can be easily integrated into global datasets
and used by data scientists. Furthermore, the data publication workflow should
be simple so that biologists can operate it easily.

To satisfy these requirements, we have designed the database platform as a
cloud-based platform that allows many database developers to deploy their data
without management hardware and to ensure significant and flexible computa-
tional resources. We also decided to adopt Semantic Web technologies. Easily
operable interfaces for data generation and publication were also designed. At
present, there is no other database platform that realises cloud-based data and
database publication independently of the data types and sizes. In other words,
this platform meets various needs of database developers in an organisation or
community in a cost-effective way.

3.2 Data Integration

For developing RIKEN MetaDatabase, we aim to realise the following two types
of data integrations:

1. Data integration in a specialised research field.
Data integration to realise a comprehensive dataset across research projects
(research organisations or international consortium) to form a unified data-
base. In this case, we assume that research projects bring non-redundant
datasets, which may belong to the same data class. Research projects should
share the data structure defined using their class, rather than sharing data
entities (or instances), to enable unified data handling and management.

2. Data integration among different research fields.
Data integration among different research fields or for co-operable research to
realise mutual data links across datasets. In this case, projects provide related
datasets, which belong to different data classes. Here, some data entities may
act as links between the different datasets.

Case 1 can be achieved by introducing common or standardised data
schemata and ontologies, where each data entity is usually described as an
instance of a class or an ontology term. Therefore, data integration is not
achieved by providing a direct link between data entities but by sharing a com-
mon class and semantic links (RDF properties) defining the data structure. In
case 2, data entities from different datasets are directly connected by semantic
links, whereas each dataset is described by different specialised data schemata.
Data entities themselves are the links that allow the expansive combination of
different communities.

Semantic Web employing RDF is a technology that satisfies these two types
of integrations simultaneously; case 1 can be realised using the RDF scheme and
the web ontology language (OWL), whereas, in case 2, a data linking mechanism
can be applied. However, as explained in Sect. 2, most platforms do not satisfy
both cases 1 and 2. Therefore, we propose here a novel practical approach to
solve this problem.

RIKEN MetaDatabase: A Database Platform 103

4 Grand Design of the RDF-based RIKEN MetaDatabase
Platform

4.1 RDF Data Structure Suitable for Life-Science Data Integration

Prior to discussing the grand design, we will investigate the data structures in
the RIKEN databases. These datasets are represented in tabular form or hosted
by a relational database system (data not shown). Therefore, in order to realise
a simple and user-friendly database infrastructure system, as described above,
we restrict the RDF data handled by RIKEN MetaDatabase to tabular-type
database data and tree-type ontology data.

Tabular form used to describe tabular-type database data represents the
RIKEN MetaDatabase data that can be easily generated and browsed. Tree
form used to describe ontology data represents the concepts and data classes
with their conceptual hierarchy to refer to the databases. Using the two kinds
of data forms, RIKEN MetaDatabase aims to build a single integrated RDF
dataset by managing multiple tabular and tree ontology data individually.

4.2 Tabular Data Model

We introduce a tabular data model for describing RDF data in which all RDF
resources are associated with an RDF class. A table is generated for each class
of subject instances of RDF triplets. Figure 1 shows the data structure of the
RDF data described in tabular form. The presented table is separated into an
RDF scheme definition part and a data part.

Fig. 1. A spreadsheet describing RDF data of class Background strain (http://metadb.
riken.jp/db/rikenbrc mouse/animal 0000004) in tabular form. In this example, the sec-
ond column includes a list of instances of class Background strain, the third column
includes a list of literal values of rdf:langString and the fourth column includes a list
of Taxon classes as instances of owl:Class.

Functions of Rows. The RDF scheme definition part is presented in the top
four rows in the table. In the first and second rows, English and Japanese column
names of the table are displayed on the GUI, respectively. The third and fourth

http://metadb.riken.jp/db/rikenbrc_mouse/animal_0000004
http://metadb.riken.jp/db/rikenbrc_mouse/animal_0000004

104 N. Kobayashi et al.

rows describe the properties and classes of the objects of the triplets used to
convert the tabular data into RDF, respectively. The fifth and subsequent rows
include the data.

Functions of Columns. The first column is a comment column, which is not
converted into RDF.

The second column includes a list of instances (resources) of the common
class that is the subject of all triplets described in the table, namely a list of
subject instances. Using the table coordinates (r, c) to locate the data points,
where r is the row and c is the column, (4, 2) contains the data class, (3, 2) is
empty, and (m, 2) for m ≥ 5 are the instances of class (4, 2).

The third and subsequent columns describe the properties and objects for
the subjects listed in the second column. (3, n) is a property and (4, n) is a class
or a data type of the instances or the literals listed as (m,n), respectively, where
m ≥ 5 and n ≥ 3. Here, the triplet (m, 2), (3, n), (m,n) is equivalent to the
following set of RDF triplets:

(m, 2) (3, n) (m,n).
(m, 2) rdf:type (4, 2).
(m,n) rdf:type (4, n).

where (4, n) is a RDF class, or

(m, 2) (3, n) (m,n).
(m, 2) rdf:type (4, 2).

where (4, n) is a data type and (m,n) is a literal denoted as the form of data
type (4, n).

Moreover, each pair of a property and an object class (or data type) in the
third and subsequent columns can appear multiple times, in order to describe
multiple triplets sharing a common subject, property and object class (or data
type).

4.3 Correspondence with the RDF Scheme

In order to manage multiple RDF datasets as databases or ontologies in RIKEN
MetaDatabse, we introduce a specialised data category corresponding to the
existing RDF scheme elements, as shown in Table 1.

A database is an RDF dataset with tabular data which compose an individ-
ual database, and corresponds to an RDF named graph. An ontology is an OWL
ontology managed as an RDF named graph. A property and a class are equiva-
lent to an RDF property and an RDF class as an instance of rdf:Property and
rdfs:Class, respectively. An instance is limited to an instance i of rdf:Resource
explicitly described as triplet i rdf:type c, where c is an RDF class. The reason
we introduce limited instances is to establish data re-usability; when a class is
specified, the instances of that class can be accurately obtained without orphan
instances, which are not associated with any class.

RIKEN MetaDatabase: A Database Platform 105

Table 1. Correspondence between RIKEN MetaDatabase and the RDF scheme

RIKEN MetaDatabase RDF scheme Description

database named graph an individual dataset with
multiple classes

ontology named graph an individual ontology written
in OWL

property instance of rdf:Property equivalent to rdf:Property

class instance of rdfs:Class a concept or a rdf:Resource set

instance instance of class an instance typed by a class

4.4 RDF Data Generation and Publication

We design a procedure through which users can generate and publish their RDF
data. Tree ontology data—usually described in OWL, which can be downloaded
from public repositories or generated by an existing ontology editor—can be
uploaded directly to the RIKEN MetaDatabase platform and immediately pub-
lished. On the other hand, for tabular data, we apply a spreadsheet-based work-
flow, which can be operated by biologists as follows:

Step 1. Generating a spreadsheet. In this step, the user (database developer)
describes the spreadsheet as a Microsoft Excel file or Tab-Separated Values
(TSV) files, which represents a tabular data model. Using multiple spreadsheets
in Microsoft Excel or TSV files, the user can describe a complicated database in
which multiple tables are linked in a relational database management system.

Step 2. Generating an RDF dataset. The spreadsheet generated in the previous
step is converted into RDF by the user using our application program. The
program generates not only the RDF data converted from the raw data but also
a structure definition file that describes the order of the columns and the column
names.

Step 3. Uploading the RDF dataset. Both the database and the structure def-
inition files are uploaded by a service administrator. The uploaded data are
immediately published.

4.5 User Interface for Data Input and Output

RIKEN MetaDatabase employs both a graphical user interface (GUI), working
on the user’s web browser, and an application programming interface (API), for
data input and output.

For data input, a registration interface of RDFised tabular data and tree
ontology data is implemented. This function is closed; only the service adminis-
trators can operate this function since they should be able to check the uploaded
data before publication.

106 N. Kobayashi et al.

The data publishing function is implemented in both API and GUI. As an
API, we use an interface that actuates as a SPARQL endpoint accessible via the
HTTP protocol, which is a standardised RDF data access protocol. The GUI
works on the user’s web browser and displays RDF data in various formats such
as tabular and tree formats. In addition, it offers a list of RDF data archives
for download and access to the SPARQL endpoint described above with query
editor and result display functions.

5 Data Display Functions

To demonstrate the RIKEN management of RDF data, several fixed display
forms are prepared as views for each data category. The data are shown using
only their multilingual labels rather than their Unified Resource Identifiers
(URIs), as a default, but both labels and URIs can be shown to RDF experts.
The implemented views are summarised as follows:

List view shows lists of databases and ontologies, and includes a keyword search
function to filter those data.

Tree view shows OWL ontologies as trees based on the subclass relationships.
Tabular view shows a list of instances of a specified class.
Card view shows a selected instance.
Download view is used for downloading RDF data archives for each database.
SPARQL search view supports editing queries and result displaying.

By default, the tabular and card views are devised to show RDF data to
biologists. We describe these views in detail below.

Tabular View. Tabular view is a special feature of RIKEN MetaDatabase that
shows an RDF graph data in tabular form. This view can be generated for each
class and shows the name and description of the concerned class, all instances
of the class and the triplets whose subject is one of the instances. Moreover,
the triplets, whose object is an instance described not only in the database but
also in other databases, are shown so that data integration via instances can
be realised. A selected RDF class with its instances can be shown in this view.
However, using a structure definition file generated from a spreadsheet of tabular
data, the column names and column order can be customised.

An example of tabular view is shown in Fig. 2. The first column is a list
of instances of the class. The second and subsequent columns form sets, each of
which is associated with a property and describes a list of objects of triplets with
the same property. Furthermore, the columns are reversely linked to the instances
listed in the first column; thus, each column is associated with a property of
triplets reversely linked to the instances of the first column.

By default, the name of the first column is the label of the class and those of
the second and subsequent columns are the labels of the corresponding proper-
ties. However, a structure definition file can be uploaded and the column names
can be overwritten by the column names in the structure definition.

RIKEN MetaDatabase: A Database Platform 107

The data in each row can be sorted in ascending or descending order as
specified by the user. Furthermore, the data in the rows can be filtered by full-
text search for humanly readable metadata of the data records using keywords
specified by the user for each column.

Fig. 2. A snapshot of the tabular view of a class Habitat of the Japan Collec-
tion of Microorganisms (JCM) resource database (http://metadb.riken.jp/metadb/db/
rikenbrc jcm microbe). (A) The third column (class Sample) includes the instances to
link to the subject instances of the first column, namely reversely linked instances of
class Sample. (B1,B2) Multiple objects with same subject and predicate pairs can be
displayed in the form of a list in the corresponding cell.

Card View. Card view, as shown in Fig. 3, is mainly used to show an instance
and its triplets, which is linked to other instances or is reversely linked from other
instances. In the card view, a user can view a long triplet path by traversing the
connected triplets, in a sequence, from the corresponding instance. By default,
only triplets including that particular instance are shown. A user can select
an instance connected via a triplet to show further triplets having the selected
instance, and the new triplets are shown as a new nested card in the original
card view.

6 Implementation

Reducing of both development and operational costs is most important for real-
ising persistent database services worldwide while ensuring service stability. In
our implementation of RIKEN MetaDatabse, we adopt a simple architecture
consisting of two components: (a) a web server providing GUI and (b) an RDF
triplet store. The web server provides web pages having data display functions
through a data display view, as described above. The RDF data displayed on
a view are obtained from the RDF triplet store. In addition, the web server

http://metadb.riken.jp/metadb/db/rikenbrc_jcm_microbe
http://metadb.riken.jp/metadb/db/rikenbrc_jcm_microbe

108 N. Kobayashi et al.

Fig. 3. A snapshot of the card view of an instance of an experimental cohort (http://
metadb.riken.jp/db/IMPC RDF/Cohort) used in the International Mouse Phenotype
Consortium (IMPC) database (described in Sect. 8.2 in detail) that links to the
instances of other databases. (A) is an instance of the Cohort class of KO mice,
(B) represents an allele, Cdh23-v (walther), carried by the cohort in the IMPC data-
base and described in the URI of the Mouse Genome Informatics (MGI) RDF database,
(C) is a list of triplets in the MGI RDF database, (D) is a list of links from the BioRe-
souce Center (BRC) Mouse Strain database and (E) is the detailed information of the
mouse strain which has multiple alleles including Cdh23-v in the BRC Mouse Strain
database.

http://metadb.riken.jp/db/IMPC_RDF/Cohort
http://metadb.riken.jp/db/IMPC_RDF/Cohort

RIKEN MetaDatabase: A Database Platform 109

functions as a SPARQL endpoint for submitting SPARQL queries generated by
the web server. In our current platform, we employ the Openlink Virtuoso open-
source version 7 as the RDF triplet store, and the web server is implemented as a
Java servlet using Apache Tomcat version 8. To ensure stability, portability and
continuity of the platform, we deploy these software components on RIKEN’s pri-
vate cloud, called RIKEN Cloud Service (http://cloudinfo.riken.jp), which pro-
vides multi-purpose Linux-based virtual machines. The web server (a) is located
on a virtual machine connected to the global network. The RDF triplet store
(b) is deployed on a specialised virtual machine to realise fast SPARQL opera-
tions, which connects a 1 TB flash memory storage via an InfiniBand network
where the Virtuoso database directory is located.

7 Available Databases

As of July 2016, 21 public ontologies, including Gene Ontology (GO), Phenotypic
Quality Ontology (PATO), NCBI Organismal Classification (NCBITaxon) and
Semanticscience Integrated Ontology (SIO) have been selected and published
as mirrors. These ontologies refer to 110 databases including 59 of RIKEN’s
original databases. The remaining 51 databases are external databases that are
converted from originally non-RDF databases and linked from RIKEN’s data-
bases. In total, RIKEN MetaDatabase carries 148 million triplets, 797 classes,
2.94 million instances and 1,352 properties. The original databases are from var-
ious research fields, e.g., FANTOM (mammalian [5]), FOX Hunting (plant [6]),
Heavy-atom Database System (protein [7]) and Metadata of BioResouce Center
(BRC) resources (bioresources [8–10]).

7.1 Database Directory Service

RIKEN MetaDatabase provides a specialised database and RDF datasets that
provide easy access to data. The specialised database is the RIKEN Database
Directory, which is a catalogue of RIKEN’s databases including the non-RDF
databases. The catalogue data are designed to be compatible with the Integbio
Database Catalog (http://integbio.jp/dbcatalog/?lang=en), which aims at inter-
ministry integration of life-science databases in Japan. In addition, W3C’s Health
Care and Life Sciences (HCLS) Community Profile data (http://www.w3.org/
TR/hcls-dataset/) including statistics data are generated for each database and
for entire datasets, and are published as RDF archives and via the SPARQL
endpoint. RIKEN MetaDatabase also provides the SPARQL Builder Metadata
(http://sparqlbuilder.org/), which are generated and published for more intel-
ligent SPARQL search. The SPARQL Builder Metadata is a profile of the
SPARQL endpoint that describes the RDF graph structure. Thus, the SPARQL
Builder tool [11] generates a SPARQL query that obtains triplet paths connect-
ing two ontological concepts specified by the user.

http://cloudinfo.riken.jp
http://integbio.jp/dbcatalog/?lang=en
http://www.w3.org/TR/hcls-dataset/
http://www.w3.org/TR/hcls-dataset/
http://sparqlbuilder.org/

110 N. Kobayashi et al.

8 Discussion

We developed RIKEN MetaDatabase as a cloud-based database platform, which
realises Semantic-Web-based data integration with a simplified workflow, imple-
mented through the cooperation of biologists and informaticians. In this section,
we comprehensively review our methodology and the development process and
operation of RIKEN MetaDatabase from various perspectives.

8.1 Contributions of RIKEN MetaDatabase for Different Types
of Users

For Database Publishers. A data publisher is a biologist who has research
results, converts the data into RDF and publishes the converted RDF data. The
advantages of data generation using a spreadsheet are summarised as follows:

1. new columns can be easily added,
2. text format data such as TSV can be easily imported, and
3. the readability of tabular data is high for humans.

Adding new columns is required for including a triplet corresponding to a new
RDF property. This feature is enabled because the RDF is open for adding
new data (the open world assumption). Importing text format allows bioin-
formaticians to input data derived through the existing techniques where life-
science data processing is often performed using script languages such as Perl
and text data are often used for data exchange, rather than the RDF graph for-
mat. Finally, the tabular form is suitable for data typing and data confirmation
before publication.

Especially for biologists, this methodology does not solve RDF-specific diffi-
culties such as usage of URIs for data resource identification and selecting suit-
able vocabularies including ontologies, properties and classes. However, these
difficulties are successfully reduced by generating spreadsheet templates in col-
laboration with informaticians.

Data integration based on RDF is also to the publisher’s advantage. Though
the integration can be realised by creating semantic links from one publisher’s
data to another’s, as RDF triplets, a more attractive advantage is that data
published later may be linked to existing data, which is already integrated by
the original publishers. Furthermore, the appropriate data to link new data can
be easily discovered through the tabular view without SPARQL.

For database users. Previously, database users had great difficulties in dis-
covering the types of databases available, where these were published and how
to use them. RIKEN MetaDatabase collects metadata of databases published by
RIKEN and functions as a one-stop-shop of databases. Indeed, these metadata
are published as a database catalogue in the RIKEN Database Directory and
the HCLS Community Profile using standardised vocabularies, which help users
to discover the data.

RIKEN MetaDatabase: A Database Platform 111

Furthermore, by employing standards for metadata publication such as RDF
and SPARQL, RIKEN MetaDatabase provides standardised API to data access
as a SPARQL endpoint. In addition, for users who are not familiar with RDF, it
provides intuitive data views such as the tabular data view—which is a popular
form for biologists, facilitating data view and operation.

For the RIKEN institute. Since RIKEN has researchers in various fields,
including genome, plant, animal, brain, medical, bioresource and informatics,
we can handle a wide range of metadata descriptions and bio-medical concepts.
Development of a novel ontology is required for new types of research data and
concepts. RIKEN easily realises this collaboration among various researchers
for an internal collaborative research. Consequently, we are accomplishing the
difficult task of the ontology development. We propose that this collaborative
metadata integration model should be used in an open environment.

8.2 Contributions of RIKEN MetaDatabase to Inter-labs
and Global Data Integration

In this section, we present the main contributions of RIKEN MetaDatabase.

Open data promotion. The development of RIKEN MetaDatabase is a step
toward open access to research data. The platform provides easy and interactive
access to previously untapped data stored in laboratory records. In addition,
RIKEN MetaDatabase facilitates an easy, rapid and cost-effective publication
of databases by small laboratories. For example, in the case of ENU-induced
Mutations in RIKEN Mutant Mouse Library (http://metadbdev.riken.jp/
sandbox/db/BRC-ENU-inducedMutationsInRIKENMutantMouseLibrary), the
data developer did not have sufficient expertise and hardware to develop a pub-
lic database. Using RIKEN MetaDatabase, they easily published their data on
the Web. Furthermore, through collaboration with us and the RDF experts in
DNA Data Bank of Japan (DDBJ), their data were integrated with data within
RIKEN and DDBJ by applying a common data scheme as shown below.

Data coordination referring common data resources. The second contri-
bution is the data coordination between different databases hosted in RIKEN
MetaDatabase to share common URI of instances. In order to describe alle-
les and genes in mice, we applied common gene records (http://metadb.
riken.jp/metadb/db/mgi rdf) imported from the Mouse Genome Informatics
(MGI) database (http://www.informatics.jax.org). Here, the MGI approved
the publication of the RDF version of the mouse gene records. We have pro-
moted the common use of MGI gene records in RIKEN MetaDatabase. As
a result, MGI records are used in multiple databases, such as Metadata of
BRC mouse resources and phenotypes (http://metadb.riken.jp/metadb/db/
rikenbrc celle), Metadata of Functional Glycomics with KO mice database

http://metadbdev.riken.jp/sandbox/db/BRC-ENU-inducedMutationsInRIKENMutantMouseLibrary
http://metadbdev.riken.jp/sandbox/db/BRC-ENU-inducedMutationsInRIKENMutantMouseLibrary
http://metadb.riken.jp/metadb/db/mgi_rdf
http://metadb.riken.jp/metadb/db/mgi_rdf
http://www.informatics.jax.org
http://metadb.riken.jp/metadb/db/rikenbrc_celle
http://metadb.riken.jp/metadb/db/rikenbrc_celle

112 N. Kobayashi et al.

(http://metadb.riken.jp/metadb/db/Glycomics mouse) and the International
Mouse Phenotype Consortium (IMPC: http://www.mousephenotype.org) RDF
data (http://metadb.riken.jp/metadb/db/IMPC RDF). In these databases, the
data items related to genes are linked to MGI allele or gene records. Through
this association, the integrated information, including what public experimental
material (mouse strain in this case) are available correspond to the phenotype
data published in IMPC, can be obtained, as shown in Fig. 3.

Scheme-level integration across databases. The third contribution is
towards scheme-level integration. In the ENU-induced Mutations in RIKEN
Mutant Mouse Library, next-generation sequencing (NGS) metadata are
described in the common RDF scheme, which is developed by cooperation of
DDBJ and RIKEN, based on the broadly used XML scheme for the NGS meta-
data. Using this scheme, RIKEN plans to develop a unified pipeline to pub-
lish NGS metadata on the Web and deposit NGS data as public archives oper-
ated by DDBJ. It is expected that this pipeline will promote worldwide sharing
of NGS data from RIKEN. Moreover, metadata from the Japan Collection of
Microorganisms (JCM) resources (http://metadb.riken.jp/metadb/db/rikenbrc
jcm microbe) are described based on a common RDF scheme for strains of
microorganisms, the Microbial Culture Collection Vocabulary (MCCV: http://
bioportal.bioontology.org/ontologies/MCCV), which is used in MicrobeDB.jp
(http://microbedb.jp/). The integrated database represents the encyclopaedia
of microbes based on metagenome data. By applying the MCCV, basic informa-
tion on the microbe strains released from JCM can be related to the metagenome
data in MicorbeDB.jp. Phenotype data of experimental animals are also inte-
grated by the J-phenome project (http://jphenome.info). J-phenome is a portal
of phenotype databases hosted by RIKEN MetaDatabase in which the RDF
scheme for the description of animals’ phenotypes are unified using common
phenotype ontologies such as the Mammalian Phenotype Ontology PATO. The
unified scheme contributes to the development of a common application to deter-
mine the cross-species relationship between phenotypes using an inter-ontology
relationship library produced by machine reasoning [12,13]. In summary, scheme-
level integration in RIKEN MetaDatabase contributes to the common use of
query, application and workflow pipelines to handle the same (or similar) data
across databases.

International collaboration. The integration of multiple datasets in RIKEN
MetaDatabase contributes to international collaboration. IMPC is an umbrella of
comprehensive phenotyping of mouse mutants [14]. Through the cooperation of
this consortium, multiple research centres released measurement data produced
from the standardised phenotyping pipeline. As a member of IMPC, RIKEN
BRC produced RDF version of IMPC phenotype data including more than
50 million triplets, which are now hosted by RIKEN MetaDatabase. Although
the IMPC website provides a rich interface, visualising various phenotype data,
the RDF version of the IMPC data presented in RIKEN MetaDatabase can be

http://metadb.riken.jp/metadb/db/Glycomics_mouse
http://www.mousephenotype.org
http://metadb.riken.jp/metadb/db/IMPC_RDF
http://metadb.riken.jp/metadb/db/rikenbrc_jcm_microbe
http://metadb.riken.jp/metadb/db/rikenbrc_jcm_microbe
http://bioportal.bioontology.org/ontologies/MCCV
http://bioportal.bioontology.org/ontologies/MCCV
http://microbedb.jp/
http://jphenome.info

RIKEN MetaDatabase: A Database Platform 113

used by data scientists who want to integrate these phenotype data with other
datasets related from different databases. For example, using the SPARQL end-
point of RIKEN MetaDatabase (http://metadb.riken.jp/sparql), a data user can
perform a federated query between RIKEN and EBI RDF platform (https://
www.ebi.ac.uk/rdf/) to retrieve what phenotype can be expressed when a spe-
cific biological pathway is inactivate, utilising the connection of IMPC dataset
and Reactome (http://www.reactome.org) dataset.

In summary, using RIKEN MetaDatabase, seamless data integration can be
performed from the inner-research institute to the worldwide level.

8.3 Open Issues

RIKEN MetaDatabase is a simple database system and platform built on our
private cloud infrastructure. Data generation and publication costs for biologists
are reduced, since they do not need to prepare and operate their own server.
Since the system does not support data access control, it cannot handle private
datasets or datasets under development. However, the system is lightweight and
requires only two virtual machines. Therefore, we can build multiple instances
of the system on the private cloud for each research project, with each project
having its own access control using a firewall. However, the federated SPARQL
search is not available yet. Our future work will include the development of such
effective federation among these instances, as an ideal database federation model
on the global Web.

Since the publication of RIKEN MetaDatabase in April 2015, our efforts for
data dissemination are in progress. So far, we have participated in international
database projects such as IMPC, for mouse phenotype databases, and W3C’s
HCLS group, for database profile, so that our published metadata can be easily
linked to other published datasets.

To promote the reuse of common URIs, discussion-based cooperation among
database developers is currently promoted by forming a working group of rep-
resentatives from research centres in RIKEN. However, we have not yet imple-
mented the automatic ontology annotation function on the RIKEN MetaData-
base. To address this issue, application of RightField in data construction
workflow may prove useful in expansion of Excel spreadsheets, allowing semi-
automatic ontology annotation.

9 Conclusions

We discussed the requirement specifications, design, development and operation
of a database platform called RIKEN MetaDatabase handled by the compre-
hensive research institute RIKEN. One of the major difficulties is the practical
co-localisation of open data framework RDF and the development of simple data
processing methods for biologists. In order to solve these issues, we developed
a template spreadsheet for data creation, which is a GUI that realises intuitive
data views including tabular view. The database platform is deployed on our

http://metadb.riken.jp/sparql
https://www.ebi.ac.uk/rdf/
https://www.ebi.ac.uk/rdf/
http://www.reactome.org

114 N. Kobayashi et al.

private cloud infrastructure and multiple system instances can be generated.
Thus far, data integration from different research fields, such as IMPC, has been
successfully realised on the platform.

Future work includes the realisation of practical federation among multiple
system instances, so that an integrated database can be realised that supports
our proposed data views. This will be accomplished by developing an individual
database for each research project in a distributed environment and intelligent
support for selecting suitable vocabularies for biologists.

References

1. Vasilevsky, N., Johnson, T., Corday, K., Torniai, C., Brush, M., Segerdell, E.,
Wilson, M., Shaffer, C., Robinson, D., Haendel, M.: Research resources: curating
the new eagle-i discovery system. Database (Oxford), 20:2012 (2012)

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J Biomed. Inform.
41(5), 706–716 (2008)

3. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache, T.,
Musen, M.A.: BioPortal: enhanced functionality via new Web services from the
National Center for Biomedical Ontology to access and use ontologies in software
applications. Nucleic Acids Res. 39(Web Server issue): W541–W545 (2011)

4. Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep, J.L., du
Preez, F., Goble, C.: RightField: embedding ontology annotation in spreadsheets.
Bioinformatics 27(14), 2021–2012 (2011)

5. The FANTOM Consortium and the RIKEN PMI and CLST (DGT): A promoter-
level mammalian expression atlas. Nature 507, 462–470 (2014)

6. Ichikawa, T., Nakazawa, M., Kawashima, M., Iizumi, H., Kuroda, H., Kondou, Y.,
Tsuhara, Y., Suzuki, K., Ishikawa, A., Seki, M., Fujita, M., Motohashi, R., Nagata,
N., Takagi, T., Shinozaki, K., Matsui, M.: The FOX hunting system: an alternative
gain-of-function gene hunting technique. Plant J. 45, 974–985 (2006)

7. Sugahara, M., Asada, Y., Shimada, H., Taka, H., Kunishima, N.: HATODAS II:
heavy-atom database system with potentiality scoring. J. Appl. Crystallogr. 42,
540–544 (2009)

8. Yoshiki, A., Ike, F., Mekada, K., Kitaura, Y., Nakata, H., Hiraiwa, N., Mochida, K.,
Ijuin, M., Kadota, M., Murakami, A., Ogura, A., Abe, K., Moriwaki, K., Obata,
Y.: The mouse resources at the RIKEN BioResource center. Exp. Anim. 58(2),
85–96 (2009)

9. Nakamura, Y.: Bio-resource of human and animal-derived cell materials. Exp.
Anim. 59(1), 1–7 (2010)

10. Yokoyama, K.K., Murata, T., Pan, J., Nakade, K., Kishikawa, S., Ugai, H., Kimura,
M., Kujime, Y., Hirose, M., Masuzaki, S., Yamasaki, T., Kurihara, C., Okubo, M.,
Nakano, Y., Kusa, Y., Yoshikawa, A., Inabe, K., Ueno, K., Obata, Y.: Genetic
materials at the gene engineering division. RIKEN BioResource Center. Exp. Anim.
59(2), 115–124 (2010)

11. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Yamamoto, Y., Kobayashi, N.:
Efficiently finding paths between classes to build a SPARQL query for life-science
databases. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol.
9544, pp. 321–330. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31676-5 24

http://dx.doi.org/10.1007/978-3-319-31676-5_24

RIKEN MetaDatabase: A Database Platform 115

12. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: PhenomeNET: a whole-phenome
approach to disease gene discovery. Nucleic Acids Res. 39(18), 119 (2011)

13. Robinson, P.N., Khler, S., Oellrich, A.: Sanger Mouse Genetics Project, Wang, K.,
Mungall, C.J., Lewis, S.E., Washington, N., Bauer, S., Seelow, D., Krawitz, P.,
Gilissen, C., Haendel, M., Smedley, D.: Improved exome prioritization of disease
genes through cross-species phenotype comparison. Genome Res. 24(2), 340–348
(2014)

14. Dickinson, M.E., Flenniken, A.M., Ji, X., Teboul, L., Wong, M.D., White, J.K.,
Meehan, T.F., Weninger, W.J., Westerberg, H., Adissu, H., et al.: High-throughput
discovery of novel developmental phenotypes. Nature 537(7621), 508–514 (2016)

A Preliminary Investigation Towards Improving
Linked Data Quality Using Distance-Based

Outlier Detection

Jeremy Debattista(B), Christoph Lange, and Sören Auer

University of Bonn and Fraunhofer IAIS, Bonn, Germany
{debattis,langec,auer}@cs.uni-bonn.de

Abstract. With more and more data being published on the Web as
Linked Data, Web Data quality is becoming increasingly important.
While quite some work has been done with regard to quality assessment
of Linked Data, only few works have addressed quality improvement. In
this article, we present a preliminary an approach for identifying poten-
tially incorrect RDF statements using distance-based outlier detection.
Our method follows a three stage approach, which automates the whole
process of finding potentially incorrect statements for a certain property.
Our preliminary evaluation shows that a high precision is maintained
with different settings.

Keywords: Outlier detection · Data quality · Linked data

1 Introduction

A rationale of the Semantic Web is to provide real-world things, also called
resources, with descriptions in common data formats that are meaningful to
machines. Furthermore, Linked Data emphasises on the reuse and linking of
these resources, thus assisting in the growth of the Web of (meaningful) Data.
Schemas, some being lightweight and others being more complex, have been
defined for various use cases and application scenarios in order provide struc-
ture to the descriptions of semantic resource based on a common understanding.
Nevertheless, since linked datasets are usually originating from various struc-
tured (e.g. relational databases), semi-structured (e.g. Wikipedia) or unstruc-
tured sources (e.g. plain text), a complete and accurate semantic lifting process
is difficult to attain. Such processes can often contribute to incomplete, misrep-
resented and noisy data, especially for semi-structured and unstructured sources.
Issues caused by these processes can be attributed to the fact that either the
knowledge worker is not aware of the various implications of a schema (e.g.
incorrectly using inverse functional properties), or because the schema is not
well defined (e.g. having an open domain and range for a property). In this arti-
cle, we are concerned with the latter, aiming to identify potentially incorrect
statements in order to improve the quality of a knowledge base.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 116–124, 2016.
DOI: 10.1007/978-3-319-50112-3 9

Improving Linked Data Quality Using Outlier Detection 117

When analysing the schema of the DBpedia dataset we found out that from
around 61,000 properties, approximately 59,000 had an undefined domain and
range. This means that the type of resources attached to such properties as
the subject or the object of an RDF triple can be very generic, i.e. owl:Thing.
Whilst this is not forbidden, it makes a property ambiguous to use. For example,
the property dbp:author, whose domain and range are undefined, has instances
where the subject is of type dbo:Book and the object of type dbo:Writer, and
other instances where the subject is of type dbo:Software and the object of
type dbo:ArtificialSatellite.

The key research question in this paper is can distance-based outlier tech-
niques help in identifying quality problems in linked datasets? In this article we
investigate how triples can be clustered together based on their distance. This
distance is identified by a semantic similarity measure that takes into considera-
tion the subject type, object type, and the underlying schema. Furthermore, we
evaluate complementary aspects of the proposed approach. More specifically, we
were interested to see how different settings in our approach affect the precision
and recall values.

This article is structured as follows. The state-of-the-art is described
in Sect. 2. Our proposed approach is explained in Sect. 3. Experiments of our
approach are documented in Sect. 4. Conclusions and an outlook to future work
are discussed in Sect. 5.

2 Related Work

Various research efforts have tackled the problem of detecting incorrect RDF
statements using different techniques. These include statistical distribution [8],
schema enrichment [9,12] and crowdsourcing [1,10]. Outlier detection techniques
such as [11] are used to validate the correctness of data literals in RDF state-
ments, which is out of the scope of this research as our approach considers only
statements where the subject and object are resources.

Statistical Distribution. Paulheim et al. [8] describe an algorithm based on the
statistical distribution of types over properties in order to identify possibly faulty
statements. Statistical distribution was used in order to predict the probability
of the types used on a particular property, thus with some confidence verify the
correctness of a triple statement. Their three step approach first computes the
frequency of the predicate and object combination in order to identify those
statements that have a low value. Cosine similarity is then used to calculate a
confidence score based on the statement’s subject type probability and the object
type probability. Finally, a threshold value is applied to mark those statements
that are potentially incorrect. Our approach uses semantic similarity to identify
whether a statement could be a possibly incorrect statement or not, instead
of statistical distribution probabilities. Therefore, our similarity approach takes
into consideration the semantic topology of types and not their statistical usage.

Schema Enrichment. Schema enrichment is also a popular technique to detect
incorrect statements. Töpper et al. [9] enrich a knowledge base schema with

118 J. Debattista et al.

additional axioms before detecting incorrect RDF statements in the knowledge
base itself. Such an approach requires external knowledge in order to enrich the
ontology. Similarly, Zaveri et al. [12] apply a semi-automated schema enrichment
technique before detecting incorrect triples.

Crowdsourcing WhoKnows? [10] is a crowdsourcing game where users contribute
towards identifying inconsistent, incorrect and doubtful facts in DBpedia. Such
crowdsourcing efforts ensure that the quality of a dataset can be improved with
more accuracy, as a human assessor can identify such problems even from a sub-
jective point of view. During the evaluation, the users identified 342 triples that
were potentially inconsistent from a set of overall 4,051 triples, reporting a preci-
sion value of 46%. A similar crowdsourcing effort was undertaken by Acosta et al.
in [1]. They used pay-per-hit micro tasks as a means of improving the outcome
of crowdsourcing efforts. Their evaluation focuses on checking the correctness
of the object values and their data types, and the correctness of interlinking
with related external sources, thus making it incomparable to our approach. In
contrast to crowdsourcing, our preliminary approach gives a good precision in
identifying outliers without the need of any human intervention, in an acceptable
time (± 3 min to compute outliers of a 10 K dump). Nonetheless, at some point,
human expert intervention would still be required (in our approach) to validate
the correctness of the detected outliers, but with any (semi-)automatic learning
approaches, human intervention is reduced.

3 Improving Dataset Quality by Detecting Incorrect
Statements

The detection and subsequent cleaning of potentially incorrect RDF statements
aids in improving the quality of a linked dataset. There were a number of
attempts to solve this problem in the best possible manner (cf. Sect. 2). We
apply the distance-based outlier technique by Knorr et al. [6] in a Linked Data
scenario. Exploiting reservoir sampling and semantic similarity measures, clus-
ters of RDF statements based on the statement’ subject and object types are
created, thus identifying the potentially incorrect statements. We implemented1

this approach as a metric for Luzzu [2].

3.1 Approach

Following [6], our proposed Linked Data adapted method has three stages: initial,
mapping, and colouring. These three stages automate the whole process of finding
potentially incorrect statements for a certain property. In the initial stage, k
(the size of the reservoir) RDF statements are added to a reservoir sampler.
Following the initialisations of the constants, the mapping stage groups data
objects in various cells based on the mapping properties described in [6]. Finally,
the colouring stage identifies the cells that contain outlier data objects.
1 The Java code can be found in our GIT repository: https://goo.gl/bGRKxi.

https://goo.gl/bGRKxi

Improving Linked Data Quality Using Outlier Detection 119

Initial Stage. The initial steps are crucial for achieving a more accurate result,
i.e. a better identification of potentially incorrect statements. We start by deter-
mining the approximate distance D that is used in the second stage to condition
the mapping, and thus the final clustering of RDF statements. The approximate
value D is valid for a particular property, i.e. the property whose triples are
being assessed. Therefore, two properties (e.g. dbp:author and dbp:saint, i.e. the
patron saint of, e.g., a town) will have different values of D according to the
triples, their types, and ultimately the similarity measure chosen. Currently, in
our approach we assume that a resource is typed with only one class, choos-
ing the most specific type if a resource is multi-typed (e.g. dbo:Writer and not
dbo:Person). Additionally, a threshold fraction p (between 0 and 1) is defined by
the user during the initial phase, affecting the number of data objects in a cluster
M . Therefore, p can be considered to be a sensitivity function that increases or
decreases the amount of data objects in a cluster.

Determining the Approximate Distance. Our approach makes use of reservoir
sampling as described in [3]. The rationale is that D is approximated by a sam-
ple of the data objects being assessed, to identify the acceptable maximum dis-
tance between objects mapped together in a cell, in a quick and automated way.
To determine the approximate distance we applied two different implementa-
tions (cf. Sect. 4 for their evaluation), one based on a simple sampling of triples
and another one based on a modified reservoir sampler, which we call the type-
selective. From the sample set (for both implementations), a random data object
is chosen to be the host, and is removed from the sampler. All remaining state-
ments in the sampler are semantically compared with the host individually and
their distance values are stored in a list. The median distance is than chosen
from the list of distances. We chose the median value over the mean value as a
central tendency since the latter can be influenced by outliers.

In the first implementation (simple sampling), the reservoir selects a sample
of triples, irrelevantly of their subject and object types. The main limitation
is that, irrelevantly of the size of the reservoir, the approximate distance D
value can bias towards the more frequent pairs of the subject and object types.
Therefore, the sampler might not represent the broad types attached to the
particular property being assessed.

In order to attempt to solve the sampler representation problem, we propose
the type-selective reservoir sampler. The proposed reservoir sampler modifies
the simple sampler by adding a condition that only one statement with a certain
subject type and object type can be added to the reservoir. In other words, when
there are two distinct statements with matching subject types and object types,
only one of these statements will be added to the reservoir.

Mapping Stage. The mapping stage attends to the clustering of data objects
(i.e. RDF statements in our case) in cells. An RDF statement is chosen at random
from the whole set of data objects and is placed in a random cell. This is called
the host cell. Thereafter, every other RDF statement in the dataset is mapped
to an appropriate cell by first comparing it to the data object in this host cell.

120 J. Debattista et al.

Semantic Similarity Measure. In order to check if an RDF statement fits in a
cell with other similar RDF statements, a semantic similarity measure is used.
More specifically, since we are mostly concerned about the distance between
two statements, we use a normalised semantic similarity measure. The similarity
between two statements S1 and S2 is defined as the average of the similarity
between the statements’ subjects, and the similarity between the statements’
objects.

Colouring Stage. After mapping all data objects to the two-dimensional space,
the colouring process colours cells to identify outlier data objects, based on the
process identified in [6]. In [6], the minimum number of objects (M) required
in a cell such that data objects are not considered as outliers is calculated as
M = N · (1 − p) where N is the total number of data objects, and p is the
threshold fraction value determined in the initial stage.

4 Experiments and Evaluations

The primary aim of this experiment is to compare if the automatic approach
of setting approximate D value gives an advantage over the manual setting.
All experiments in this part of the evaluation used the same similarity measure
configuration, i.e. Zhou IC [13] with the Mazandu measure [7], as implemented
in the Semantic Measures Library & Toolkit [4].

This experiment is split into two sub-experiments. In the first part, we
evaluated triple statements in DBpedia with the predicate http://dbpedia.org/
property/author using the proposed approach with the p and D parameters
manually set to determine the precision and recall values. In the second part of
this evaluation we repeat this experiment but the value of D is determined by
the two automated approaches described in Sect. 3. For both experiments, p was
set to: 0.99, 0.992, 0.994, 0.996, and 0.998.

Sub-experiment #1 – Setting Approximate D Manually. In this manual
experiment, the D value for the evaluated property was obtained as an estimate
from a manual calculation of the similarity values of the different types. From
Fig. 1, we observe that on average our approach achieved around 76% precision.
On the other hand, the recall values were low, with an average of 31%. We also
observed that increasing the approximate value D does not result in an increasing
precision. For example, in Fig. 1 we spot that the precision value for the D value
of 0.3335 is greater than that of 0.3555 when p was set to 0.996. When D was
set to 0.3555, 39 more outliers were detected, (true positives –7, false positives
+42 data objects). This slight change in true positives and false positives was
expected as the data objects cluster with similar data objects whose distance is
the smallest. Therefore, the change in D might have moved some objects from
one cell to another with the consequence that a previously non-outlier cell is now
marked as an outlier, since a number of data objects might have moved to other

http://dbpedia.org/property/author
http://dbpedia.org/property/author

Improving Linked Data Quality Using Outlier Detection 121

Fig. 1. The precision and recall values
for the authors property dump with dif-
ferent values for D and p. The solid
bars denote precision values, whilst the
striped overlapped bars denote recall.

Fig. 2. The F1 score authors property
dump with different values for D and
p.

cells. Figure 2 represents the F1 score for the authors property dump manual
experiment, showing an average of almost 43% for this harmonic mean score.

Sub-experiment #2 – Setting Approximate D Automatically. The same
evaluated property was used in this experiment, where first an approximate D
value was calculated first using the simple reservoir sampler and then using the
type-selective reservoir sampler. A single host was chosen randomly from these
reservoir samplers, together with a starting host location. The choice of a ran-
dom data object will not affect the precision of the algorithm, as all data objects
will be compared and mapped in suitable cells. From Fig. 3 we observe that the
type-selective sampler outperforms its simpler counterpart for all p values with
regard to the precision. One possible reason is due to the low approximate D val-
ues identified by the simple reservoir sampler. Low approximate D values mean
that less data objects get mapped together in cells, since the approximate dis-
tance becomes smaller and data objects will be dispersed throughout the whole
2D space. This means that since less data objects are mapped in the same cell
or surrounding cells, it would be more difficult to reach the M + 1 quota, and
thus more cells will be marked as outliers. Therefore, whilst a low approximate D
could lead for a decrease of false positives in non-outlier cells, it can also increase
of false negatives (thus decreasing true positives), as objects that should not be
marked as outliers could end up in outlier-marked cells. The main factors that
affect the approximate D value are (1) the choice of the semantic similarity mea-
sure, and (2) the underlying schema (cf. limitations in Sect. 4.1). Furthermore,
this approximate D value and the user-defined sensitivity threshold value (p)
affect the precision and recall.

Following these experiments, in Fig. 4 we compared the type-selective preci-
sion and recall results for every p against the manual approach. For this compar-
ison we used the manual scores that got the highest F1 measure for each p value,
thus having a balance between the precision and recall. Figure 4 shows that the
manual approach performed overall better than the automatic one in terms of

122 J. Debattista et al.

Fig. 3. The precision and recall values
for the authors property dump with dif-
ferent values for p and a generated D
value.

Fig. 4. Precision and recall values for
the authors property dump comparing
the manual results against the auto-
matic results for multiple values of the
fraction p.

the F1 measure. Nevertheless, in most cases, there are no large discrepancies
between the two. The automatic approach resulted into a higher approximate D
value than the manual approach. The approximation D value for the automatic
approach was 0.482147, 0.0826 more than the given manual approximation D
value with the highest F1 value (i.e. 0.3995 for threshold fraction p).

4.1 Discussion

The led evaluation is as yet not conclusive, since we only evaluated our approach
with one property. This evaluation also showed that our approach produces a
low recall value and thus a low F1 measure. A higher recall, without comprising
the precision, would have been ideal, as with low recall we are missing a relevant
data objects that should have been marked as outliers. One must also note that
the choice of a semantic similarity measure will also affect the precision and
recall values of such an approach, in a way that its results are the deciding
factor where a data objects is mapped.

Nevertheless, our approach has a number of known limitations:

1. the approach is limited to knowledge bases without blank nodes, which can
effect the degree of similarity, thus making this approach less robust and
generic;

2. the approach does not fully exploit the semantics of typed annotations in
linked datasets, since our approach assumes that an instance is a member of
only one type, in particular the most specific type assigned to the resource;

3. the evaluated semantic similarity measures are limited to hierarchical ‘is-a’
relations that might be more fitting to biomedical ontologies having deep
hierarchies;

4. the sampled population might not reflect the actual diverse population of
the data objects that have to be clustered in both sampler implementations.
Thus, with both implementations we will not achieve the best representative
sample, such as that obtained by stratified sampling [5];

Improving Linked Data Quality Using Outlier Detection 123

5. whilst with the simple sampler outliers might occur in the sample popula-
tion, with the type-selective sampler there is a 100% certainty that outlier
data objects are present in the sample that determines the approximate D.
Knorr et al. [6] had foreseen this problem and whilst suggesting that sampling
provides a reasonable starting value for D, it cannot provide a high degree
of confidence for D because of the unpredictable occurrence of outliers in the
sample.

5 Conclusions

In this article we investigated the possibility of detecting potentially incorrect
RDF statements in a dataset using a time and space efficient approach. More
specifically, we applied a distance-based clustering technique [6] to identify out-
liers in a Linked Data scenario. While providing satisfactory results, our app-
roach has a number of limitations that we are currently addressing. However,
the preliminary results give us an indication on the research question set in the
introduction. In the future, we aim to extend our experiments by using semantic
relatedness measures instead of the semantic similarity measures, thus our dis-
tance based measure will also consider the semantic relationships between two
terms, such as owl:equivalentClass.

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing linked data quality assessment. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41338-4 17

2. Debattista, J., Auer, S., Lange, C.: Luzzu - a framework for linked data quality
analysis. In: 2016 IEEE International Conference on Semantic Computing, Laguna
Hills (2016)

3. Debattista, J., Londoño, S., Lange, C., Auer, S.: Quality assessment of linked
datasets using the approximation. In: 12th European Semantic Web Conference
Proceedings (2015)

4. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic measures for the com-
parison of units of language, concepts or entities from text and knowledge base
analysis, October 2013. arXiv abs/1310.1285

5. Hausman, J.A., Wise, D.A.: Stratification on endogenous variables and estimation:
the gary income maintenance experiment. In: Manski, C.F., McFadden, D.L. (eds.)
Structural Analysis of Discrete Data with Econometric Applications. MIT Press,
Cambridge (1981)

6. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and appli-
cations. VLDB J. 8(3–4), 237–253 (2000)

7. Mazandu, G.K., Mulder, N.J.: A topology-based metric for measuring term simi-
larity in the gene ontology. Adv. Bioinf. 2012, 1–17 (2012)

8. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical
distributions. Int. J. Semant. Web Inf. Syst. 10(2), 63–86 (2014)

http://dx.doi.org/10.1007/978-3-642-41338-4_17
http://dx.doi.org/10.1007/978-3-642-41338-4_17

124 J. Debattista et al.

9. Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency
detection. In: Proceedings of the 8th International Conference on Semantic Sys-
tems, I-SEMANTICS 2012, pp. 33–40. ACM, New York (2012)

10. Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: WhoKnows? - evaluating linked
data heuristics with a quiz that cleans up DBpedia. Int. J. Interact. Technol. Smart
Educ. (ITSE) 8(3), 236–248 (2011)

11. Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In:
Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-07443-6 34

12. Zaveri, A., Kontokostas, D., Sherif, M.A., Bühmann, L., Morsey, M., Auer, S.,
Lehmann, J.: User-driven quality evaluation of DBpedia. In: Proceedings of the
9th International Conference on Semantic Systems, I-SEMANTICS 2013, pp. 97–
104. ACM, New York (2013)

13. Zhou, Z., Wang, Y., Gu, J.: A new model of information content for semantic sim-
ilarity in wordnet. In: FGCNS 2008 Proceedings of the 2008 Second International
Conference on Future Generation Communication and Networking Symposia, vol.
3, pp. 85–89. IEEE Computer Society, December 2008

http://dx.doi.org/10.1007/978-3-319-07443-6_34
http://dx.doi.org/10.1007/978-3-319-07443-6_34

Information Retrieval and Knowledge
Discovery

Linked Data Collection and Analysis Platform
for Music Information Retrieval

Yuri Uehara(B), Takahiro Kawamura, Shusaku Egami, Yuichi Sei,
Yasuyuki Tahara, and Akihiko Ohsuga

Graduate School of Information Systems,
University of Electro-Communications, Tokyo, Japan

{uehara.yuri,kawamura,egami.shusaku}@ohsuga.is.uec.ac.jp,
{seiuny,tahara,ohsuga}@uec.ac.jp

Abstract. There has been extensive research on music information
retrieval (MIR), such as signal processing, pattern mining, and infor-
mation retrieval. In such studies, audio features extracted from music
are commonly used, but there is no open platform for data collection
and analysis of audio features. Therefore, we build the platform for the
data collection and analysis for MIR research. On the platform, we rep-
resent the music data with Linked Data, which are in a format suitable
for computer processing, and also link data fragments to each other. By
adopting the Linked Data, the music data will become easier to publish
and share, and there is an advantage that complex music analysis will be
facilitated. In this paper, we first investigate the frequency of the audio
features used in previous studies on MIR for designing the Linked Data
schema. Then, we build a platform, that automatically extracts the audio
features and music metadata from YouTube URIs designated by users,
and adds them to our Linked Data DB. Finally, the sample queries for
music analysis and the current record of music registrations in the DB
are presented.

Keywords: Linked data · Audio features · Music information retrieval

1 Introduction

Recently, there are a large number of studies on music. Music Information
Retrieval (MIR) deals with music on computers and has been studied in various
ways [1]. In these studies, audio features extracted from music are frequently
used, however, there is no open platform for collecting data including the audio
features for music analysis. Therefore, we propose the platform for MIR research
in this paper.

On the platform, we used Linked Data format, since it is suitable for complex
searches for audio features and songs-related metadata. Also, the music data
in the Linked Data can be easily linked to the external databases (DBs) such
as DBpedia1, and then become more valuable when published and shared in
1 http://wiki.dbpedia.org/.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 127–135, 2016.
DOI: 10.1007/978-3-319-50112-3 10

http://wiki.dbpedia.org/

128 Y. Uehara et al.

public. Thus, we built a platform, that automatically extracts audio features
of music, transforms them to graphs in the Linked Data, and then insert the
graphs to our music Linked Data DBs with connections to the external DBs.
Note that this platform is designed for music-related researchers and developers,
who intend to analyze music information and create their own applications, e.g.,
recommendation mechanism. Use of a listener is beyond the scope of this paper.

The rest of the paper is organized as follows. Related works in terms of
MIR research using audio features and Linked Data are shown in Sect. 2. In
Sect. 3, we describe the schema design of music Linked Data. After the system
for automatically analyzing audio features is proposed in Sect. 4, some examples
of music analysis are described in Sect. 5. Finally, we conclude this paper with
future works in Sect. 6.

2 Related Work

There is MusicBrainz, that is an open database about music. The MusicBrainz
database2 has the music data, such as song title, artist name, etc., which are
described in Resource Description Framework (RDF). The data are created
mainly by participants, and thus there is a mechanism of data registration that
requires the verification and approval of the other participants in order to main-
tain the reliability of the data.

In addition, Music Ontology3 offers the data model related to music. This
provides vocabulary in the RDF model of the MusicBrainz data for describing
the relationship of music information.

Also, in our previous research, the music recommendation using Linked
Data is proposed in [2]. We constructed Linked Open Data (LOD) by the data
retrieved from Last. fm, Yahoo! Local, Twitter, and Lyric Wiki. Then, they pro-
posed a method for recommending songs according to associative relations in
the LOD.

However, there is no data of audio features in the MusicBrainz database, the
Music Ontology, and our previous LOD set. Therefore, we built a platform that
provides audio features combined with music metadata in Linked Data format
for open MIR research.

3 Schema Design of Music Information

In this section, designing Linked Data schema, including audio features and
music metadata is described.

2 https://musicbrainz.org/.
3 http://musicontology.com/.

https://musicbrainz.org/
http://musicontology.com/

Linked Data Collection and Analysis Platform for MIR 129

3.1 Selection of Audio Features

Audio features refer to the characteristics of the music, such as Tempo represent-
ing the speed of the track, tonality of track and quality of sound, the features
used in MIR studies vary. For example, Osmalskyj et al. used Tempo and Loud-
ness to identify cover songs [3]. Luo et al. used the audio features Pitch, Zero
crossing rate, etc. to detect of common mistakes in novice violin playing [4].
Thus, it is necessary to survey which audio features should be prepared in the
music schema.

Thus, we investigated the frequency of the audio features used in previous
MIR studies. We collected 114 papers published in the International Society of
Music Information retrieval (ISMIR)4 in 2015, which is the top conference in the
field of MIR. Table 1 shows the results.

Table 1. Number of using audio features

Audio Features Count

Tempo 18

Pitch 10

MFCC 9

Beat 8

Loudness 7

Chord 5

Chroma, Key, Zero crossing rate, Roll off 3

Roughness, Timbre, Low energy, RMS energy, Brightness, Mode, Duration 2

Harmony, Volume, Articulation, Energy ratio, Swing ratio, Spectral irregu-
larity, Inharmonicity, Vibrate, Rhythm, Dynamics

1

We found in Table 1 that Tempo representing the speed of music songs has
been the most used in many studies, although there are some features which have
been used just once. Then, we selected some of the audio features according to
the following policies.

1. Features which are similar to each other can be integrated. (Beat, Swing ratio and Rhythm
are integrated Tempo.)

2. Features appeared just once in the publications can be ignored. (Harmony, Volume,
Articulation, Energy ratio, Spectral irregularity, Inharmonicity, Vibrate, Dynamics are
deleted.)

3. Features, which cannot be extracted through a song, can be ignored, since a user’s input
is assumed to be song by song. Features in a series of songs can be extracted by querying
for the resulted DB.(Pitch, Loudness, Chord, Chroma, Timbre, Duration are deleted.)

4. Features should be quantitative in numerical values, and qualitative ones like an
emotional feature are not included.(MFCC is deleted.)

4 http://www.ismir.net/.

http://www.ismir.net/

130 Y. Uehara et al.

3.2 Design of the Schema

Linked Data is an RDF format, in which data fragments are linked by any
semantic relations.

We defined original properties for selected audio features, excluding Key and
Mode, since there were no existing properties for them, or the properties are not
appropriate for our purpose. In terms of Key and Mode, there are appropriate
properties in the Music Ontology, and thus we used them. Then, we classified
properties of audio features into some classes for making them easy to use.
Table 2 shows the classes and properties corresponding to the audio features.

Table 2. Class and property of audio features

Class Property Audio Features Count

Tempo tempo Tempo 28

Key key Key, Mode 5

Timbre zerocross Zero crossing rate 3

rolloff Roll off 3

brightness Brightness 2

Dynamics rmsenergy RMS energy 2

lowenergy Low energy 2

In Table 2, Mode can be included in the Key class, thus we used the same
property. Based on these definitions, we designed the music schema and built the
Linked Data set for music. Tempo means speed of the song, Key means tonality
of song, Mode means volume difference of the major chord and a minor chord,
Zero crossing rate means the rate at which the signal changes from positive to
negative or back, Roll off means ratio of bass which accounts for 85 percent
of the total, Brightness means ratio of high-range (more than 1500 Hz), RMS
energy means the average of the volume (root mean square), Low energy means
Ratio of sound low in volume. Figure 1 shows part of the Linked Data.

We designed the music schema with the video id (URI) of YouTube. In Fig. 1,
the id: dvgZkm1xWPE indicates a song “Viva La Vida” by Coldplay. In the
graph, the id node links to the classes of audio features and then links to each
audio feature. Also, we added some degrees for categorizing numerical values
in the features. The lowenergy, the rmsenergy, and the brightness have a class
by 0.1, the zerocross has a class by 100, and the rolloff has a class by 1000.
The tempo has tmarks based on tempo values5, which is a measure of the speed
marks: Slow means 39 or less bpm, Largo means 40–49 bpm, Lento means 50–55
bpm, Adagio means 56–62 bpm, Andante means 63–75 bpm, Moderato means
76–95 bpm, Allegretto means 96–119 bpm, Allegro means 120–151 bpm, Vivace

5 http://www.sii.co.jp/music/try/metronome/01.html.

http://www.sii.co.jp/music/try/metronome/01.html

Linked Data Collection and Analysis Platform for MIR 131

means 152–175 bpm, Presto means 176–191 bpm, Prestissimo means 192–208
bpm, Fast means over 209 bpm.

In addition, we extended the schema of music metadata, that includes not
only song title, artist name, etc. in the Music Ontology, but also lyricist name,
cd name for the complex search for music information. Figure 2 shows part of
the metadata in our Linked Data. In the graph, the video id node links to the
class of metadata, and then links to the detailed value, as well as the graph for
the audio features. Also, some nodes such as the artist name are linked to the
external DBs like DBpedia.

Figures 1 and 2 are the graphs of “Viva La Vida” by Coldplay, and thus the
two graphs can be linked with the video id of YouTube.

4 Music Information Extracting

4.1 System Overview

The system architecture for our music information extraction is shown in Fig. 3,
and its workflow is indicated by the number 1 to 11 as follows.

1. Download the video data from the YouTube video URI designated by a user in a web browser.
2. Call the MATLAB process that analyzes audio features in the video file.
3. Store the obtained audio features in an RDB, MySQL.
4. Call the RDF create program.
5. Obtain the music information for the video from the YouTube website.
6. Search the music metadata using Last.fm API.
7. Query the audio features of the video for MySQL.
8. Convert the metadata and audio features to RDF graphs, and store them in an RDF store,

Virtuoso.
9. Notify the completion to the user.

Fig. 1. Part of audio features in the Linked Data of music songs information

132 Y. Uehara et al.

10. Submit a simple SPARQL query for confirmation.
11. Returns the evidence of the inclusion of new sub-graphs corresponding to the video.

Our system obtains videos to analyze audio features from YouTube, and so
public users can easily extend the music information on the platform. However,
we discard the video files after extracting the audio features, and thus we believe
this process does not cause any legal or moral problems.

The workflow is divided into several phases. The first phase is for analyzing
the audio features of the YouTube video, and the second phase is for acquiring
the metadata of the YouTube video. Then, the third phase converts the metadata
and audio features to RDF graphs, and the RDF graphs are stored in Virtuoso

Fig. 2. Part of meta data in the Linked Data of music songs information

Fig. 3. Structure of the system

Linked Data Collection and Analysis Platform for MIR 133

database. Then, the final phase is for the confirmation of newly added graphs.
We describe the detail of each phase in the following sections.

4.2 Analyzing Audio Features

This phase (1–3 in Fig. 3) obtains and analyzes the audio features described in
Sect. 3 from a specified video on the YouTube website. We used MIRtoolbox
running on the MATLAB for analysis of the audio features. The MIRtoolbox
includes several signal processing algorithms, which are commonly used in MIR.

First, a user inputs a URI of the YouTube video in the input form in a web
browser. Then, the extract program downloads and caches the YouTube video
data, and then it starts the MATLAB program that analyzes audio features of
the video. Finally, the extracted audio features are temporally stored in MySQL
database.

4.3 Searching Music Metadata

This phase (4–6 in Fig. 3) acquires music metadata, such as track title and artist
name base on schema designed in Sect. 3. First, the video information is obtained
from the YouTube. Then, we search the corresponding metadata, such as track
title and artist name using Last.fm API for extending the related information.

4.4 Adding Linked Data

This phase (7 and 8 in Fig. 3) adds the audio features and the metadata to the
music Linked Data.

First, the RDF create program gets the audio features from MySQL database,
then it converts the audio features and the above metadata to RDF graphs based
on the schema design. Finally, the RDF graphs are stored in Virtuoso.

4.5 Confirming Results

Figure 4 shows an example that a user added a new music “Doom and Gloom”
by The Rolling Stones (the id: 1DWiB7ZuLvI) to the existing graph including
“Applause” by Lady Gaga (the id: bHhpufKRjs) in RDF DB. The two graphs
are linked at a classification of the audio feature Low energy since they have the
similar values in that feature. We visualize the RDF graph using the visualization
tool the Visualization of RDF graph by ARC26. Note that part of metadata and
audio features are omitted for convenience.

6 http://www.kanzaki.com/works/2009/pub/graph-draw.

http://www.kanzaki.com/works/2009/pub/graph-draw

134 Y. Uehara et al.

Fig. 4. The graph added new data of music song

5 Example of Music Analysis

The current number of music registered in the platform is 1073 and the number
of triples automatically extracted for representing the audio features and the
metadata for that music is 20858. The platform is publicly available at http://
www.ohsuga.is.uec.ac.jp/music/.

In this section, we show the results of some example queries on the platform,
and how the music Linked Data can be used for MIR.In the SPARQL Query,
we specified the audio feature Brightness of the song “Hello, Goodbye” by The
Beatles, and search other songs, in which the value of the Brightness is similar
to the specified song. As the result, we get 5 songs, in which the Brightness has
the similar degree in Table 3.

[SPARQL Query]
PREFIX mus-voc:<http://www.ohsuga.is.uec.ac.jp/music/vocabulary#>
PREFIX mo:<http://purl.org/ontology/mo/>

SELECT ?artist_x ?title_x ?brightness_x
WHERE { ?metadata rdfs:label ?title .

?resource mus-voc:meta ?metadata .
?resource mus-voc:features ?features .
?features mus-voc:timbre ?timbre .
?timbre mus-voc:brightness ?brightnessc .
?brightnessc rdf:value ?brightness.
?brightnessc_x rdf:value ?brightness_x.
?timbre_x mus-voc:brightness ?brightnessc_x .
?features_x mus-voc:timbre ?timbre_x .
?resource_x mus-voc:features ?features_x .
?resource_x mus-voc:meta ?metadata_x .
?metadata_x rdfs:label ?title_x .
?metadata_x mo:MusicArtist ?MusicArtist_x .
?MusicArtist_x rdfs:label ?artist_x .
FILTER regex(?title,"Hello Goodby") . }

ORDER BY (
IF(?brightness < ?brightness_x,

?brightness_x - ?brightness,
?brightness - ?brightness_x)

) LIMIT 5

http://www.ohsuga.is.uec.ac.jp/music/
http://www.ohsuga.is.uec.ac.jp/music/

Linked Data Collection and Analysis Platform for MIR 135

Table 3. Result of submitting the SPARQL query

artist x title x brightness x

The Beatles Can’t Buy Me Love 0.553889

Whitney Houston Never Give Up 0.559786

Coldplay Princess Of China Ft. Rihanna 0.560039

Lady Gaga Judas 0.550279

The Beatles Penny Lane 0.550221

6 Conclusion and Future Work

In this paper, we proposed a platform for providing audio features and the
music metadata to MIR research. Thus, we designed the Linked Data schema
for audio features and the metadata. Then, we built the platform for the music
data collection and analysis and showed the current status of the dataset and a
simple example of its use.

In future, we plan to provide more sophisticated examples and applications
of music information analysis, which will encourage the expansion of the music
Linked Data to music researchers and developers.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
16K12411, 16K00419, 16K12533.

References

1. Kitahara, T., Nagano, H.: Advancing Information Sciences through Research on
Music: 0. Foreword. IPSJ magazine. Joho Shori 57(6), 504–505 (2016)

2. Wang, M., Kawamura, T., Sei, Y., Nakagawa, H., Tahara, Y., Ohsuga, A.: Context-
aware Music Recommendation with Serendipity Using Semantic Relations. In: Pro-
ceedings of 3rd Joint International Semantic Technology Conference, pp. 17–32
(2013)

3. Osmalskyj, J., Foster, P., Dixon, S., Embrechts, J.J.: Combining features for cover
song identification. In: Proceedings of the 16th International Society for Music Infor-
mation Retrieval Conference, pp. 462–468 (2015)

4. Luo, Y.-J., Su, L., Yang, Y.-H., Chi, T.-S.: Real-time music tracking using multiple
performances as a reference. In: Proceedings of the 16th International Society for
Music Information Retrieval Conference, pp. 357–363 (2015)

Semantic Data Acquisition by Traversing
Class–Class Relationships Over

Linked Open Data

Atsuko Yamaguchi1(B), Kouji Kozaki2, Kai Lenz3, Yasunori Yamamoto1,
Hiroshi Masuya4,3, and Norio Kobayashi3,4,5

1 Database Center for Life Science (DBCLS),
Research Organization of Information and Systems,
178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan

{atsuko,yy}@dbcls.rois.ac.jp
2 The Institute of Scientific and Industrial Research (ISIR),

Osaka University, 8-1 Mihogaoka, Osaka, Ibaraki 567-0047, Japan
kozaki@ei.sanken.osaka-u.ac.jp

3 Advanced Center for Computing and Communication (ACCC), RIKEN,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan

{kai.lenz,norio.kobayashi}@riken.jp
4 BioResource Center (BRC), RIKEN,

3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan
hmasuya@brc.riken.jp

5 RIKEN CLST-JEOL Collaboration Center, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe 650-0047, Japan

Abstract. Linked Open Data (LOD), a powerful mechanism for link-
ing different datasets published on the World Wide Web, is expected
to increase the value of data through mashups of various datasets on
the Web. One of the important requirements for LOD is to be able to
find a path of resources connecting two given classes. Because each class
contains many instances, inspecting all of the paths or combinations of
the instances results in an explosive increase of computational complex-
ity. To solve this problem, we have proposed an efficient method that
obtains and prioritizes a comprehensive set of connections over resources
by traversing class–class relationships of interest. To put our method
into practice, we have been developing a tool for LOD exploration. In
this paper, we introduce the technologies used in the tool, focusing espe-
cially on the development of a measure for predicting whether a path
of class–class relationships has connected triples or not. Because paths
without connected triples can be predicted and removed, using the pre-
diction measure enables us to display more paths from which users can
obtain data that interests them.

Keywords: Linked data · Class–class relationships · Data integration ·
Path finding

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 136–151, 2016.
DOI: 10.1007/978-3-319-50112-3 11

Semantic Data Acquisition by Traversing Class 137

1 Introduction

An important feature of Linked Data is to provide an efficient mechanism
for linking different datasets published on the World Wide Web. The method
enables users to mash up different data, and combinations of various datasets
are expected to contribute to new innovations [1]. The Linked Open Data (LOD)
Cloud (http://lod-cloud.net/) shows the evolution of LOD and many datasets
published as Linked Data in a large variety of domains. In government, publish-
ing government data as open data is promoted as an important policy in many
countries. In science, open science is strongly promoted because open data pub-
lishing is essential for providing evidence for testing new theories. Particularly,
in the life sciences, many Resource Description Framework (RDF) databases
are published as LOD to provide foundations for data integration towards open
science [2–5].

To use these databases published as LOD efficiently, users must be permitted
to obtain data in a flexible manner according to their interests. An important
case is to find paths of links between instances (resources) whose types are
given two classes for integrative data analysis with semantics. For example, when
biomedical researchers obtain molecular pathways through their experiments,
they want to obtain a set of their IDs in the Reactome database1, IDs of proteins
related them, and their protein names. These paths can be obtained by retrieving
chains of properties (links) that connect instances of classes such as Pathway,
Protein and Protein Name. In other words, these paths can be obtained by
traversing paths of class–class relationships over the LOD.

However, many users have difficulty specifying the appropriate path of class–
class relations suitable for their search request, because each RDF dataset has
different data schema that must be analyzed. Therefore, the technologies for
exploring RDF datasets and displaying the summary of paths of class–class
relationships are strongly required. As a method for exploring RDF datasets,
we developed a metadata specification called SPARQL Builder Metadata (SBM)
and a crawling tool to extract SBM through SPARQL endpoints. In addition,
as a means of displaying paths, we developed some graph-based methods for
expressing class–class relationships in what we call a class graph. In this paper,
of these methods, we focus especially on the proposal of a measure for removing
meaningless paths of class–class relationships through which a user cannot obtain
any data.

The remainder of this paper is organized as follows: In Sect. 2, we describe
existing work related to our approach. Section 3 introduces an application,
SPARQL Builder, based on our proposed methods to make the explanations con-
crete. In addition, we explain two technologies, SBM and class graphs, that sup-
port our method, as mentioned above. Section 4 discusses a measure for avoiding
meaningless paths and shows the performance of the proposed measure through
computational experiments. Discussion and conclusion are provided in Sect. 5.

1 https://www.ebi.ac.uk/rdf/services/reactome/.

http://lod-cloud.net/
https://www.ebi.ac.uk/rdf/services/reactome/

138 A. Yamaguchi et al.

2 Related Work

Some methods for obtaining paths from LOD have been proposed. To find a
path or paths between two given resources, RelFinder [6] uses an algorithm
that iteratively finds interim resources (sequentially related triples) by following
RDF triples. Our approach differs from that of RelFinder in that ours accepts
two classes of interest and finds paths between individuals that belong to each
respective class. Because each class often contains thousands of individuals, and
multiple paths between any two end individuals are highly probable, there are
many cases with which RelFinder’s algorithm cannot cope.

Another related application is Visor [7], which enables users to browse RDF
datasets in the light of class–class relationships. For Visor, an exploratory search
called Multi-Pivot, that extracts concepts and relationships from ontologies of
interest to the user, was developed. The extracts are visualized and used for
semantic searches among instances (data) associated with ontology terms. How-
ever, Visor provide no method for finding an end-to-end path through multiple
resources.

As another approach for exploring RDF datasets using classes, a web based
tool named Sparklis2 [8] presents users with lists of classes in its target endpoints
and allows them to construct queries through facet-based graphical user inter-
faces (GUIs). Faceted navigation, such as that in [9], is a very powerful approach
to the browsing of datasets and finding specific resources. However, our approach
focuses on obtaining comprehensive data having a class–class relationship that
interests an user.

Related work regarding class graphs introduced in Subsect. 3.3, includes class
association graphs [10]. Although for both class graphs and class association
graphs nodes correspond to classes, edges of class association graphs correspond
to the number of triples between classes, while edges of class graphs correspond
to properties and their statistical values.

3 Data Acquisition Based on Class–Class Relationships

To discuss the technologies that are required to put our approach, which enables
a user to understand RDF datasets by traversing class–class relationships, into
practice, we first introduce an application called SPARQL Builder. The SPARQL
Builder system generates a SPARQL query based on a path of class–class
relationships over LOD. Then, we briefly explain two important technologies,
SPARQL Builder Metadata (SBM) and class graphs, to realize the system.

3.1 SPARQL Builder

We have been developing a practical LOD search tool called SPARQL Builder
for users who are not familiar with the SPARQL language to generate SPARQL

2 http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html.

http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html

Semantic Data Acquisition by Traversing Class 139

queries without knowledge of SPARQL and RDF data schema [11]. The system
is based on our proposed method, with which users can obtain their required
data flexibly by traversing a path of class–class relationships over LOD.

The most important issue for the application is how to find candidate paths
of class–class relationships for a user. In other words, how to compute candidate
paths more efficiently and accurately is key for the application. To compute paths
efficiently, the system obtains class–class relationships from LOD in advance,
stores it as metadata using SBM, and constructs a labeled multigraph named a
class graph as mentioned in Subsects. 3.2 and 3.3. In addition, we will discuss in
Sect. 4 how to remove unnecessary paths to display paths more accurately.

Fig. 1. An overview of the SPARQL builder system.

An overview of the SPARQL Builder system’s architecture is shown in Fig. 1.
(1) SPARQL Builder manages SBM generated by a crawler to access SPARQL
endpoints of LOD in advance. (2) When a user accesses the SPARQL Builder
system via a web browser as a GUI and selects two classes from a list of classes
shown in the GUI initially, the class graph for the RDF dataset including the
selected two classes is constructed using SBM, and possible paths between the
selected two classes are computed and sent to the GUI. (3) Then, the SPARQL
Builder GUI displays the list of paths in the user’s web browser. If the user selects
one path from the list, the system generates the SPARQL query corresponding
to the path. (4) A user can obtain data by throwing the SPARQL query from
the GUI.

Therefore, using the SPARQL Builder GUI, a user can explore RDF datasets
of interest by specifying classes and a path. SPARQL Builder supports 38
SPARQL endpoints as of March 2016. Subsect. 3.2 relates to step (1) in Fig. 1.
Subsect. 3.3 relats to step (2).

140 A. Yamaguchi et al.

3.2 SBM

SBM is a summary of RDF datasets provided via a SPARQL endpoint. As
described above, SBM is designed for describing a summary of class–class rela-
tionships in RDF datasets provided by SPARQL endpoints to enable SPARQL
Builder to obtains necessary information quickly for computing paths of a
sequentially connected class–class relationships.

SBM is defined as an extension of the VoID3 and SPARQL 1.1 ser-
vice description4 with our original vocabulary of name space sbm:. For a
SPARQL endpoint, SBM consists of summaries of the datasets provided as
named graphs in the endpoint. For an individual RDF dataset, the sum-
mary for the dataset typed by void:Dataset includes a list of classes using
the property void:classPartition, a list of properties using the property
void:propertyPartition. For each class, the class URI with human-readable
labels using rdfs:label and the number of instances using void:entities are
described. Note that the summation of void:entities for all the classes is not
the number of instances for the dataset because some instances might be typed
to two or more classes and some instances might not be typed to any class.

For each property, in addition to statistical values related to the prop-
erty such as the number of triples (void:triples), the numbers of distinct
subjects (void:distinctSubjects) and objects (void:distinctObjects), and
class–class relationships that are distinct pairs of subject classes, object
classes/datatypes, are described using sbm:classRelation propety. For each
class–class relationship, the subject class (sbm:subjectClass) and object
class/datatype (sbm:objectClass or sbm:objectDatatype) are the class of sub-
ject instances and class/datatype of object instances/literals in triples associated
with the concerned property. In addition, statistical values for a class–class rela-
tionship are described just as those for a property. For more information, see the
web page5 of the SBM specification.

To obtain SBM from RDF datasets, we implemented a crawler that gener-
ates SBM data by throwing lightweight but numerous SPARQL queries to the
concerned SPARQL endpoints. The reason we used lightweight queries was to
avoid time out response for a query. Because we found through our preliminary
study that the size of the result for each query is not larger than the maximum
size of result for a SPARQL endpoint, we focused on the response time for each
query more than on the intermediate sizes of results by the queries to obtain
information required for SBM. We have already crawled 38 endpoints including
life-science SPARQL endpoints provided at EBI RDF Platform (https://www.
ebi.ac.uk/rdf/platform) [2], Bio2RDF [3] Release 3 (http://download.bio2rdf.
org/release/3/release.html) and Database Center for Life Science (http://dbcls.
rois.ac.jp/en/services) as of April 2016. The crawled metadata in SBM are avail-
able through the web6.
3 https://www.w3.org/TR/void/.
4 https://www.w3.org/TR/sparql11-service-description/.
5 http://www.sparqlbuilder.org/doc/sbm 2015sep/.
6 http://www.sparqlbuilder.org/sbm/.

https://www.ebi.ac.uk/rdf/platform
https://www.ebi.ac.uk/rdf/platform
http://download.bio2rdf.org/release/3/release.html
http://download.bio2rdf.org/release/3/release.html
http://dbcls.rois.ac.jp/en/services
http://dbcls.rois.ac.jp/en/services
https://www.w3.org/TR/void/
https://www.w3.org/TR/sparql11-service-description/
http://www.sparqlbuilder.org/doc/sbm_2015sep/
http://www.sparqlbuilder.org/sbm/

Semantic Data Acquisition by Traversing Class 141

Because SPARQL Builder discovers sequentially connected triples associated
with a path specified by a user, the comprehensiveness of domain-range infor-
mation for properties and class declarations for instances are important meta-
data. As described in [12], many datasets miss domain-range information for
properties. In addition, a class is sometimes not typed as a class. Therefore, to
make available as many RDF datasets as possible, the crawler extracts not only
declared classes explicitly typed by rdfs:Class and domain–range relationships
using the properties rdfs:domain and rdfs:range, but also classes expressed
implicitly such as a subject or an object for the property rdfs:subClassOf and
implicit class–class relationships found by triples with subjects and objects typed
by some classes. By expanding classes and class–class relationships using such
inferences, over 99.9% of instances of the 38 databases crawled are associated
with classes.

Although SBM is designed for SPARQL Builder, statistical values gathered
by the crawler can be applied to more general cases, such as evaluation of a
SPARQL endpoint and RDF datasets in the endpoints. For example, a qualita-
tive categorization with levels from 1 to 3 of SPARQL endpoints based on SBM
is introduced in [11]: Level 1 corresponds to datasets that have domain-range
declarations for all pf the properties and class declarations for all of the resources.
Level 3 corresponds to datasets fpr which none of the resources is typed by any
class. The other datasets with neither Level 1 or 3 are Level 2. Datasets with
Level 2 can be further evaluated by the ratio of typed resources and the ratio of
properties with domain-range declarations.

3.3 Class Graphs

To compute paths between two classes efficiently, we used a specialized graph
whose nodes and edges correspond to the classes and the class–class relationships,
respectively. We call such a graph a class graph.

Formally, a class graph is defined as follows: Given an RDF dataset R, we
denote by C the set of all classes in R. A class graph GR = (V,E, c, p) of R is
a directed labeled multigraph defined as follows: V is a |C|-sized set of nodes
and c is a one-to-one mapping from V to a set of URLs of C. E is a multiset
of directed edges between the nodes of V , and p maps E to a set of URLs of
predicates in R. To construct E and p from R, we add to E a directed edge
epred from node nd to nr, where c(nd) = classd and c(nr) = classr, and define
p(epred) = pred if pred satisfies either of the following two conditions: (1) both
the triples “pred rdfs:domain classd” and “pred rdfs:range classr” exist in R for
some classes classd and classr; (2) there exist three triples “sub pred ob”, “sub
rdf:type classd”, “ob rdf:type classr” in R, where sub and ob are resources and
classd and classr are classes.

A class graph can be constructed from SBM efficiently, because SBM include
a list of all the classes and a list of all the class–class relationships. V corre-
sponds to a set of objects of the property void:classPartition. We can define
c by referring to objects of the property void:class. Each object of the prop-
erty sbm:classRelation corresponds to edge e in E. From the subject of the

142 A. Yamaguchi et al.

property sbm:classRelation, we can find the property URI for the class–class
relationship. Because inferred classes and class–class relationships are included
in SBM as explained in Subsect. 3.2, nodes include inferred classes and edges
include inferred class–class relationships as the definition of edges includes con-
dition (2).

Given a class graph GR, we define a class path p from a start class start to
an end class end as a sequence (n0, e1, n1, e2, . . . , nk), where the nodes ni and
edges ei of GR satisfy the following conditions: (1) c(n0) = start , c(nk) = end ,
(2) c(ni) �= end for any i �= k, and (3) ei is a directed edge from ni−1 to ni

or from ni to ni−1. An edge ei directed from ni−1 to ni or from ni to ni−1

is called forward or reverse directed, respectively. The length of a class path
(n0, e1, . . . , nk) is defined as k. To compute possible class paths between two
classes in a practical time, the maximum length of class paths is given in advance
and is currently set as 4.

A class path corresponds to a multi-step class–class relationship to obtain the
instances of an end class from the instances of a start class by relating a sequence
of predicates p(ei). By searching the possible class paths from the start class to
the end class, we can obtain candidates of connections between data allowing
a user to select a class path according to the interests of the user. Class paths
between two classes can be found in a practically short time using an algorithm
provided in [13].

4 Removal of Empty Paths

4.1 Measure to Remove Empty Paths

Although many paths can be computed efficiently using the technologies intro-
duced in Sect. 3, we found through our preliminary investigation that some class
paths have no sequence of instances obtained by traversing triples along the class
paths. For example, as in Fig. 2, for a class path (n0, e1, n1, e2, n2) with forward
edges e1 and e2, there might be no two triples of (r1 p(e1) r2) and (r2 p(e1) r3)
such that r1, r2, and r3 are instances of classes c(n0), c(n1), and c(n2), respec-
tively. We call such a path an empty path. A user cannot obtain any data using
an empty path because there are no connected triples from a start class to an end
class. For example, if a user selects an empty path from a list of paths displayed
in the SPARQL Builder GUI at step (3), the generated SPARQL query has no
result at step (4). Therefore, it is important to present a method for removing
as many such empty paths as possible from candidate paths.

An exact method for deciding whether a class path is an empty path
involves using a SPARQL query with ASK corresponding to the path and
deciding it is an empty path if the result is “false”. Concretely, for a class
path (n1, e1, n2, e2, . . . , nm), using the following SPARQL query, we can decide
whether a class path is an empty path.

Semantic Data Acquisition by Traversing Class 143

Fig. 2. Example of an empty path. Although two nodes n0 and n2 are connected in
the class graph, there is no sequence of triples connecting instances in class c(n0) to
those in class n(n2).

ASK {
?r1 p(e1) ?r2. (or ?r2 p(e1) ?r1. if e1 is backward)
?r2 p(e2) ?r3. (or ?r3 p(e2) ?r2. if e2 is backward)
. . .
?rm−1 p(em−1) ?rm. (or ?rm p(em−1) ?rm. if em−1 is backward)
?r1 rdf:type c(n1).
?r2 rdf:type c(n2).
. . .
?rm rdf:type c(nm)
}

If a SPARQL endpoint always returned the result for a query quickly, our
system could extract only non-empty class paths from a set of class paths to show
them to a user. However, using current triple stores, an ASK query sometimes
consumes too much time. In addition, because the number of class paths is
sometimes very large, the total time for computing a set of non-empty paths
from a set of class paths tends to be very long. Furthermore, obtaining results
for ASK in advance as we did for SBM is intractable through the Internet from
SPARQL endpoints because results for all the paths with length four for all the
combinations of classes are required. Therefore, it is not realistic in our approach
at the moment to use ASK query to decide whether a class path is empty. In fact,
although we had tried to use ASK query for SPARQL Builder to remove empty
paths, it had often not worked even for relatively small RDF datasets. Therefore,

144 A. Yamaguchi et al.

we now introduce a measure using statistical values in SBM to predict whether
a class path is an empty path.

The basic idea of the prediction measure is as follows: For each internal node
ni in a path, focusing on the probability of the overlap between two sets of
instances in c(ni), one set is a set of objects for triples corresponding to edge
(ei), and the other set is a set of subjects for triples corresponding to edge (ei+1).
For example, because the class path shown in Fig. 2 has only one internal node
n1, the path is an empty path if and only if a set of objects for e1 and a set of
subjects for e2 do not have overlapping parts. Therefore, we design our measure
to be the probability that there exists an overlapping part for such an internal
node in path. Then, we can predict a class path to be an empty path if the
measure is small.

We here describe a measure for predicting empty paths. To explain the mea-
sure, we first introduce some notations. For an edge e = (n1, n2) of a class
graph, T (e) is a set of triples (s, p, o) such that s is an instance of c(n1),
p = p(e), and o is an instance of c(n2). We define S(e) = {s|(s, p, o) ∈ T (e)} and
O(e) = {o|(s, p, o) ∈ T (e)}. Figure 3 shows a set T (e) of triple and sets S(e) and
O(e) of instances in an RDF dataset for an edge e of a class graph.

Fig. 3. Sets T (e), S(e), and O(e) in an RDF dataset.

For a node ni of a class graph, we denote by |ni| the number of
instances in the class c(ni). Note that |T (e)|, |S(e)|, and |O(e)| are
described using the properties void:triples, void:distinctSubject, and
void:distinctObject, respectively, from instances of sbm:ClassRelation
located in sbm:PropertyPartition of SBM. Similarly, we can obtain
|ni| for each ni from SBM using void:entities from instances of
sbm:ClassPartition.

Semantic Data Acquisition by Traversing Class 145

For a class path p = (n0, e1, n1, . . . , nk), I(p) is a set of sequences (t1, . . . , tk)
of triples satisfying the following two conditions: (1) For ti = (si, pi, oi), if ei is
forward in p, then si is an instance of c(ni−1), p(e) = pi, and oi is an instance
of c(ni). If ei is backward, then si is an instance of c(ni), p(e) = pi, and oi
is an instance of c(ni−1). (2) for two triples ti−1 = (si−1, pi−1, oi−1) and ti =
(si, pi, oi), ri−1 = ri where ri−1 = oi−1 if ei−1 is forward, ri−1 = si−1 if ei−1 is
backward, ri = si if ei is forward, and ri = oi if ei is backward. Note that for an
empty path p, I(p) is empty.

We now introduce our proposed measure Pr based on statistical values, such
as |S(e)| and |O(e)| for edge e, included by SBM. To simplify the definition, we
assume here that all the edges in p = (n0, e1, n1, . . . , nk) are forward. We then
define Pr(p) = (1 − (1 − |S(e2)|/|n1|)|O(e1)|) × (1 − (1 − |S(e3)|/|n2|)|O(e2)|) ×
· · · × (1 − (1 − |S(ek)|/|nk−1|)|O(ek−1)|). Note that if there is a backward edge ei
in p, O(ei) and S(ei) in the corresponding terms for ei of the definition above
must be changed to S(ei) and O(ei), respectively.

Pr(p) is a very rough approximation of the probability of the existence of a
triple sequence in I(p), assuming that each instance in S(e) and O(e) is uniformly
distributed independently of the other in instances of classes c(n1) and c(n2),
respectively, for each edge e = (n1, n2) appearing in p. Even though in reality,
occurrences in instances between c(n1) and c(n2) might not be independent,
because they are connected by triples, this assumption simplifies the definition
of Pr. Under the assumption, if there are two edges ei and ei+1 sharing one node
ni, for each instance in O(ei), the probability of a connecting instance in S(ei+1)
is |S(ei+1)|/|ni|. Therefore, for all the instances in O(ei), because the probability
of having no instances in S(ei+1) is (1 − |S(ei+1)|/|ni|)|O(ei)|, the probability of
having at least one instance is 1 − (1 − |S(ei+1)|/|ni|)|O(ei)|. Because there are
k − 1 such nodes in a path p = (n0, e1, n1, . . . , nk), Pr can be computed by
multiplying the probabilities for the nodes.

Because |O(e)|, |S(e)|, and |ni| can be found in SBM as objects for the prop-
erties void:distinctObjects, void:distinctSubjects, void:entities, respec-
tively, a class graph can hold these values with edges and nodes in a class
graph when being constructed from SBM. Therefore, Pr(p) can be computed
in O(A(n)B(m)k), where A(n) is the look-up time of a node from n nodes, and
B(m) is the look-up time of an edge from m edges in a class graph. Because
the length k of a path is always limited to four or five for the SPARQL Builder
system, and A(n) and B(m) can be almost constant for n and m, respectively,
through implementation using an efficient look-up structure such as a hash table,
the computation time of Pr(p) can be almost constant. Therefore, even for
datasets with very large n and m, Pr(p) can be computed in a short time using
SBM.

4.2 Evaluation of the Measure Through Computational Experiment

To investigate the prediction performances of using the measure Pr, which is
easily computable from SBM, we checked whether each class path p was an
empty path, and we compared the results with the value of Pr(p). We selected

146 A. Yamaguchi et al.

Fig. 4. The distribution of the F-measures with recalls and precisions for an obtained
set of class paths by removing n paths of the smaller Pr(p) for the Allie dataset.

Fig. 5. The distribution of the F-measures with recalls and precisions for an obtained
set of class paths by removing n paths of the smaller Pr(p) for the Reactome dataset.

three datasets from Allie [14], Reactome from EBI RDF Platform [2], Affymetrix
from Bio2RDF [3] as of April 2016 with various ratios, approximately 0.8, 0.4,
and 0.25, respectively, of non-empty paths of all the paths between two classes.

We first processed the datasets to produce metadata written in SBM. We
then set a maximum path length of four for the experiment. Then, we computed

Semantic Data Acquisition by Traversing Class 147

Fig. 6. The distribution of the F-measures with recalls and precisions for an obtained
set of class paths by removing n paths of the smaller Pr(p) for the Affymetrix dataset.

all of the class paths between every pair of classes using the algorithm proposed
in [13] from the metadata previously computed for each dataset. For each class
path p, we then computed Pr(p) using the metadata.

To prepare exact positive and negative sets, i.e., to decide whether each class
path (n1, e1, n2, e2, . . . , nm) is an empty path, we downloaded the three datasets
and checked all of the class paths with a maximum length of four to determine
whether they were empty paths. Concretely, we uploaded these three datasets
locally to the open source version of OpenLink Virtuoso 7.20.3215 on a CentOS
5.11 machine with 24 cores of Intel Xeon 2.53 GHz and accessed the triple store
with Virtuoso Driver 4.0 for JDBC and Virtuoso Jena Driver 2.6.2 using the ASK
SPARQL query described as an exact method in Subsect. 4.1.

To evaluate Pr as the measure for predicting an empty path, we aligned all
of the paths in ascending order with respect to Pr, and computed the precision,
recall, and F-measure of the performance when n paths of the smaller Pr are
removed from the original set of paths. Figure 4 shows the distribution of the
precisions, recalls, and F-measures for the Allie dataset. The x-axis corresponds
to the number of removed paths. The precision for the number n of removed
paths is the ratio of non-empty paths to all of the paths after the n paths from
the smallest Pr are removed. Similarly, the recall for n is the ratio of non-empty
paths to all of the non-empty paths after the n paths are removed. The best
F-measure was 0.944 with precision 0.961, and recall 0.927 was found at the
threshold 0.389 of Pr.

Similarly, Figs. 5 and 6 show the distribution of the precisions, racalls, and
F-measures for the Reactome and Affymetrix datasets. For Reactome, the best
F-measure was 0.721 with precision 0.667 and the recall 0.783 found at the

148 A. Yamaguchi et al.

Fig. 7. Performance using Pr. Allie Pr, Reactome Pr and Affymetrix Pr show accu-
racy rates of the top n (1 ≤ n ≤ 100) paths using Pr, i.e., average ratio of non-empty
paths among top n path for every pair of classes, for Allie, Reactome and Affymetrix
datasets, respectively. Allie Ave, Reactome Ave and Affymetrix Ave show the average
non-empty path ratio for all the paths for Allie, Reactome and Affymetrix, respectively.

threshold 0.000252 of Pr. For Affymetrix, the best F-measure was 0.654 with
precision 0.836 and recall 0.538 found at the threshold 0.121 of Pr.

From a practical point of view, because systems such as SPARQL Builder
can show only a small number, for example, ten, of class paths at one time as
a result of limited screen size, it is important that the top n paths include as
many non-empty paths as possible. Therefore, we plotted the average ratio of
non-empty paths in the top n paths, sorted using the measure Pr. In other words,
we plotted the precision for non-empty paths after all of the paths were removed
except for the top n paths. Figure 7 shows a comparison between the average
ratios of non-empty paths in the top n paths sorted by Pr and the average ratio
of non-empty paths to all paths for Allie, Reactome and Affymetrix datasets.
The x-axis corresponds to the number n of paths from the largest Pr. Because
the average non-empty path ratios for all of the paths are 0.783, 0.393, and 0.25
for Allie, Reactome and Affymetrix datasets, respectively, we expect it to be
easiest for Allie and most difficult for Affymetrix to obtain non-empty paths
from all the class paths among the three datasets. For all three dataset, we can
see from Fig. 7 that the average ratios of non-empty paths for the top n paths
are always more than those for all the class paths. For example, the average
ratios of non-empty paths for the top ten paths are 0.9, 0.893, and 0.555 for
Allie, Reactome and Affymetrix datasets, respectively.

Semantic Data Acquisition by Traversing Class 149

Especially for the Affymetrix dataset, although the average non-empty path
ratio for all of the paths is approximately 0.25, the top five paths have the
average accuracy 0.85. The average non-empty path ratio for all of the paths
corresponds to the expected accuracy of selecting n paths randomly. The top
n paths from one to 100 always obtain better accuracy than the averages for
the three dataset. Therefore, we can claim that Pr is useful in removing empty
paths from a set of class paths.

5 Discussion and Conclusion

In this study, we discussed a novel LOD exploring methodology and its appli-
cation to enabling practical LOD data discovery from a SPARQL endpoint.
We achieved data acquisition using class paths of interest to a user based on
class–class relationships, with paths of traversing class–class relations being com-
puted and used for two classes given by a user. Therefore, our approach requires
some technologies including SBM specification, crawling for obtaining SBM, an
efficient algorithm for finding class paths, and a measure for predicting empty
paths proposed in this paper. These technologies are strongly related to one
another in realizing our approach. For example, because an efficient algorithm
finds many paths, including empty paths, we need a prediction measure for empty
paths. Computing the prediction measure in nearly constant time requires meta-
data written in SBM designed to provide multiple statistical values in machine-
readable form. Obtaining SBM requires an efficient crawler for SBM. Because we
showed that the performance of our proposed measure Pr is practically useful,
our approach is now ready to be realized as a system such as SPARQL Builder
for analysis of LOD.

As for the measure for predicting empty paths based on an approximation of
the existence probability using statistical values in SBM, the proposed measure
were successfully demonstrated by our evaluation experiment, using three life-
science datasets. For the experiment shown in Fig. 7, even though the ratio of
the top n paths for Allie and Reactome datasets are very similar, they are very
different from that for the Affymetrix dataset. The ratio of the top n paths for
the Affymetrix dataset decreases quickly as n increases. This might have resulted
from the lowness of the average ratio of non-empty class paths to all class paths
for the Affymetrix dataset. However, we believe there to be another reason for the
difference of the performance because the performances for Allie and Reactome
are similar, even though the average ratios of non-empty class paths to all class
paths are more different between Allie and Reactome datasets than between
Reactome and Affymetrix. By analyzing datasets in regard to many features,
the measure might be able to improve its performance. In addition, although
this paper proposed only a measure for predicting empty paths, a measure for
estimating the size of data obtained by a path, corresponding to the size of I(p),
might also be useful because data are strongly connected through p if I(p) is
large.

Our approach has been evaluated using life-science datasets. Although we
believe that our approach does not depend on domain-specific techniques, we

150 A. Yamaguchi et al.

would like to confirm it by using datasets from another domain. In addition,
our future work will include an improvement of a federated search across large-
scale SPARQL endpoints by applying our methodology to reduce search space
and enhance the effectiveness of data traversing for searches that have not been
realized. By introducing a federated search system, SPARQL Builder can support
queries using class paths between classes from different datasets.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
25280081, 24120002 and the National Bioscience Database Center (NBDC) of the Japan
Science and Technology Agency (JST).

References

1. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1st edn. 1: 1,
1–136. Morgan & Claypool (2011)

2. Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton,
A., Gehant, S., Laibe, C., Redaschi, N., Wimalaratne, S.M., Martin, M., Le Novére,
N., Parkinson, H., Birney, E., Jenkinson, A.M.: The EBI RDF platform: linked
open data for the life sciences. Bioinformatics 30(9), 1338–1339 (2014)

3. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf.
41(5), 706–716 (2008)

4. Redaschi, N., UniProt Consortium: UniProt in RDF: tackling data integration
and distributed annotation with the semantic web. Nat. Precedings (2009). doi:10.
1038/npre.2009.3193.1

5. Fu, G., Batchelor, C., Dumontier, M., Hastings, J., Willighagen, E., Bolton, E.:
PubChemRDF: towards the semantic annotation of PubChem compound and sub-
stance databases. J. Cheminformatics 7(34) (2015). doi:10.1186/s13321-015-0084-4

6. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y.,
Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol.
5887, pp. 182–187. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10543-2 21

7. Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the dots: a multi-
pivot approach to data exploration. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol.
7031, pp. 553–568. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 35

8. Ferré, S.: Sparklis: a SPARQL endpoint explorer for expressive question answer-
ing. In: Proceedings of the ISWC 2014 Posters & Demonstrations Track, CEUR
Workshop Proceedings 1272, Riva del Garda, Italy (2014)

9. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg
(2006). doi:10.1007/11926078 40

10. Qu, Y., Ge, W., Cheng, G., Gao, Z.: Class association structure derived from linked
objects. In: Proceedings of the Web Science Conference (WebSci 2009: Society On-
Line), Athens, Greece (2009)

http://dx.doi.org/10.1038/npre.2009.3193.1
http://dx.doi.org/10.1038/npre.2009.3193.1
http://dx.doi.org/10.1186/s13321-015-0084-4
http://dx.doi.org/10.1007/978-3-642-10543-2_21
http://dx.doi.org/10.1007/978-3-642-25073-6_35
http://dx.doi.org/10.1007/11926078_40

Semantic Data Acquisition by Traversing Class 151

11. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Kobayashi, N.: An intelligent
SPARQL query builder for exploration of various life-science databases. In: The
3rd International Workshop on Intelligent Exploration of Semantic Data (IESD
2014), CEUR Workshop Proceedings 1279, Riva del Garda, Italy (2014)

12. Villalon, P., Suárez-Figueroa, M.C., Gómez-Pérez, A.: A double classification of
common pitfalls in ontologies. In: Workshop on Ontology Quality (OntoQual 2010),
Lisbon, Portugal (2010)

13. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Yamamoto, Y., Kobayashi, N.:
Efficiently finding paths between classes to build a SPARQL query for life-science
databases. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol.
9544, pp. 321–330. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31676-5 24

14. Yamamoto, Y., Yamaguchi, A., Bono, H., Takagi, T.: Allie: a database and a search
service of abbreviations and long forms. Database (2011). doi:10.1093/database/
bar013

http://dx.doi.org/10.1007/978-3-319-31676-5_24
http://dx.doi.org/10.1093/database/bar013
http://dx.doi.org/10.1093/database/bar013

Estimation of Spatio-Temporal Missing Data
for Expanding Urban LOD

Shusaku Egami1(B), Takahiro Kawamura1,2, and Akihiko Ohsuga1

1 Graduate School of Informatics and Engineering,
The University of Electro-Communications, Tokyo, Japan

egami.shusaku@ohsuga.lab.uec.ac.jp, takahiro.kawamura@jst.go.jp,
ohsuga@uec.ac.jp

2 Japan Science and Technology Agency, Tokyo, Japan

Abstract. The illegal parking of bicycles has been an urban problem
in Tokyo and other urban areas. We have sustainably built a Linked
Open Data (LOD) relating to the illegal parking of bicycles (IPBLOD)
to support the problem solving by raising social awareness. Also, we have
estimated and complemented the temporally missing data to enrich the
IPBLOD, which consisted of intermittent social-sensor data. However,
there are also spatial missing data where a bicycle might be illegally
parked, and it is necessary to estimate those data in order to expand
the areas. Thus, we propose and evaluate a method for estimating spa-
tially missing data. Specifically, we find stagnation points using compu-
tational fluid dynamics (CFD), and we filter the stagnation points based
on popularity stakes that are calculated using Linked Data. As a result,
a significant difference in between the baseline and our approach was
represented using the chi-square test.

Keywords: Linked open data · Urban problem · Illegally parked
bicycles

1 Introduction

The illegal parking of bicycles have been an urban problem in Tokyo and other
urban areas since the number of bicycles owned in Japan is large. An increased
awareness of health problems [1] and energy conservation [2] led to a 2.6-fold
increase in bicycle ownership in Japan from 1970 to 2013. In addition to the
insufficient availability of bicycle parking spaces and public transportations such
as city buses, the inadequate public knowledge on bicycle parking laws, has
contributed to this problem. Illegally parked bicycles obstruct vehicles, cause
road accidents, encourage theft, and disfigure streets.

In order to address this problem, we believe it would be useful to publish the
distribution of illegally parked bicycles as Linked Open Data (LOD). For exam-
ple, it would serve to visualize illegally parked bicycles, suggest locations for
optimal bicycle parking spaces, assist with the removal of illegally parked bicy-
cles, and assist with the urban design. Thus, we built the illegally parked bicycle
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 152–167, 2016.
DOI: 10.1007/978-3-319-50112-3 12

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 153

LOD (IPBLOD) based on social data after designing LOD schema [3]. Further-
more, we estimated and complemented temporal missing data using Bayesian
networks, since the temporal missing data of the social sensor data is inevitable.
Therefore, IPBLOD became a temporally enriched LOD, and it became possible
to suggest the efficient timing of removal of illegally parked bicycles by the city,
through the visualization of time-series changes in the distribution of illegally
parked bicycles.

However, there are not only temporal missing data, but also spatial missing
data where bicycles might be illegally parked. It is necessary to complement the
spatial missing data in order to apply IPBLOD to various urban areas. However,
it is not satisfied merely by social sensors when collecting observation points of
illegally parked bicycles.

In this paper, we propose the method for geographically expanding LOD by
estimating spatial missing data. We thought that observation points of illegally
parked bicycles have spatial or geographic features common such as road width
and building density. Thus, we considered the flow of people as the fluid, and
we estimated spatial missing data in such a way as to find stagnation points
of the fluid. Specifically, we first simulated airflow in urban area using com-
putational fluid dynamics (CFD) and found stagnation points using stagnation
point patterns defined by us. Next, we collected POI information around each of
the stagnation points and calculate popularity stakes of the POIs using DBpe-
dia Japanese. Then, we filtered stagnation points if their sum of the popularity
stakes of POIs is less than the threshold. We considered the filtered stagnation
points as estimated data and added the data to IPBLOD separately from real
data. Therefore, our contributions are the geographical expansion of IPBLOD,
development of an approach for estimating spatial missing data using CFD and
Linked Data, and evaluation of this approach. We aim to collect new accurate
data related to estimated observation points from social sensors, by raising social
awareness through the visualization of estimated observation points.

The remainder of this paper is organized as follows. In Sect. 2, correcting
data, building IPBLOD, estimating temporally missing data, and visualization of
IPBLD are presented. In Sect. 3, the approach for estimating spatial missing data
using CFD and DBpedia Japanese is described. Also, we evaluate our results. In
Sect. 4, related works of data collection and urban LOD are described. Finally,
Sect. 5 concludes this paper with future works.

2 Illegally Parked Bicycle LOD

We have sustainably built IPBLOD and applied them to Tokyo and other several
urban areas. Managing urban problem data joining multiple tables in (distrib-
uted) RDBs is troublesome from the aspect of data interoperability and main-
tenance, since the urban problem is closely related to multiple domains, such as
government data, legal data, and social data as we already incorporated POIs
and weather data in this application, and also those have different schemata.
Thus, Linked Data is a suitable format as the data infrastructure of not only

154 S. Egami et al.

illegally parked bicycles, but also urban problems in general, since Linked Data
can have advantages of flexible linkability and schema.

We divided our approach of sustainable LOD construction into the following
five steps. Steps (2) to (5) are executed repeatedly as more input data become
available.

1. Designing LOD schema
2. Collecting observation data and factor data
3. Building the LOD based on schema
4. Using Bayesian networks to estimate the missing number of illegally parked

bicycles at each location
5. Visualizing illegally parked bicycles using LOD.

2.1 Building IPBLOD

First, we designed IPBLOD based on the result of extracting domain require-
ments from Web articles related to illegally parked bicycles. Figure 1 shows an
overview of IPBLOD schema.

Next, we collected tweets containing location information, pictures, hash-
tags, and the number of illegally parked bicycles. Furthermore, we collected
information on POI using Google Places API1 and Foursquare API2. Also,
we obtained bicycle parking information from websites of municipalities and in

Fig. 1. LOD schema containing instances

1 https://developers.google.com/places/?hl=en.
2 https://developer.foursquare.com/.

https://developers.google.com/places/?hl=en
https://developer.foursquare.com/

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 155

Fig. 2. Part of the integrated LOD

cooperation with the Bureau of General Affair of Tokyo3. The Bureau of General
Affairs of Tokyo publishes Open Data on bicycle parking areas as CSV. The data
contain names, latitudes, longitudes, addresses, capacities, and business hours.
More information was collected from municipalities, for example, monthly park-
ing fees and daily parking fees. Also, we retrieved weather information from the
website of the Japanese Meteorological Agency (JMA)4.

The collected data on illegally parked bicycles are converted to LOD based
on the designed schema. First, the server program collects tweets containing
the particular hash-tags, the location information, and the number of illegally
parked bicycles in real time. The number of illegally parked bicycles is extracted
from the text of tweets using regular expressions. Next, the server program checks
whether there is an existing observation point within a radius of less than 30 m by
querying our endpoint5 using the SPARQL query. If there is no observation point
on the IPBLOD, the point is added as a new observation point. In order to add
new observation points, the nearest POI information is obtained using Google
Places API and Foursquare API. The new observation point is generated based
on the name of the nearest POI. It is possible to obtain the types of the POI from
Google Places API and Foursquare API. We map the types of POI to classes in
LinkedGeoData [14]. Thus, the POI is an instance of classes in LinkedGeoData.
However, some POIs do not have a recognized types. Therefore, their types are
decided by a keyword search with the name of the POI. Figure 2 shows part of
the IPBLOD. The LOD are stored in Virtuoso6 Open-Source Edition. Also, the
RDF data set is published with CC-BY license on our website7.

3 http://www.soumu.metro.tokyo.jp/30english/index-en.htm.
4 http://www.jma.go.jp/jma/indexe.html.
5 http://www.ohsuga.is.uec.ac.jp/sparql.
6 http://virtuoso.openlinksw.com/.
7 http://www.ohsuga.is.uec.ac.jp/bicycle/dataset.html.

http://www.soumu.metro.tokyo.jp/30english/index-en.htm
http://www.jma.go.jp/jma/indexe.html
http://www.ohsuga.is.uec.ac.jp/sparql
http://virtuoso.openlinksw.com/
http://www.ohsuga.is.uec.ac.jp/bicycle/dataset.html

156 S. Egami et al.

2.2 Complementing and Estimating Temporally Missing Values

Since we relied on the public to observe illegally parked bicycles, we did not have
round-the-clock data for every place, and thus, missing data in the IPBLOD
were inevitable. However, the number of the illegally parked bicycles should be
influenced by several factors, thus we try to estimate these missing data using
Bayesian networks. If the data is expanded in density through the estimation,
it will serve, for example, as the suitable location of bicycle parking spaces, the
decision on variable prices of the parking fee and efficient timing of removal of
illegally parked bicycles by the city, and part of the references for future urban
design.

Thus, we estimated the number of illegally parked bicycles, at observa-
tion points, where the number data are missing. We used the Bayesian net-
work tool Weka8 to estimate the unknown numbers of illegally parked bicy-
cles. Suppose the aggregates of each factor are given by Location, Day={sun,
mon,...,sat}, Hour={0,1,...,23}, Precipitation={0,1,...}, Temperature={...,-1,0,
1,...}, DailyFee ={0,1,...}, MonthlyFee={0,1,...}, Density={0,1,...}, Com-
muters={0,1,...}, POIs={0,1}, and Number (of illegally parked bicy-
cles)={1,...,4}, then the observation data are stored as an aggregate O of vec-
tors o ∈ Location×Day×Hour×Precipitation×Temperature×DailyFee×
MonthlyFee × Density × Commuters × POIs × Number. In fact, POIs are
divided to 46 elements, for example, restaurant, bar, supermarket, hospital, and
school. The number of illegally parked bicycles is classified into four classes by
Jenks natural breaks [13], which are often used in Geographic Information Sys-
tems (GISs). The range is 0 to 6, 7 to 17, 18 to 3, and 36 to 100. Therefore,
the input data is a set O that consists of vectors with 56 elements, and the
amount of the input data is 897. We used HillClimber as a search algorithm,
and also used Markov blanket classifier. The maximum number of parent nodes
was seven. The average estimation accuracy of ten times 10-fold cross validation
became 70.9%, after random sampling with a 90 % rate.

Then, we examined the observation data in each observation point from the
first observation date to the last observation date. If there are no data at 9 am or
9 pm, we estimated and complemented the number of illegally parked bicycles.
Then, we added the estimated number and its probability to IPBLOD as follows.

@prefix ipb: <http :// www.ohsuga.is.uec.ac.jp/ipblod/

vocabulary#>

@prefix bicycle: <http :// www.ohsuga.is.uec.ac.jp/bicycle/

resource/>

bicycle:ipb_{observation point}_{datetime}

ipb:estimatedValue [rdf:value "0-7" ;

ipb:probability "0.772"^^ xsd:double] .

8 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 157

Fig. 3. Screenshots of the visualization application

2.3 Visualization of IPBLOD

Data visualization enables people to intuitively understand data contents. Thus,
it can possibly raise the awareness of an issue among local residents. Further-
more, it is expected that we shall collect more urban data. In this section our
visualization application of the IPBLOD is described.

As an example of the use of these data, we developed a Web application
that visualizes illegally parked bicycles. The application can display time-series
changes in the distribution of illegally parked bicycles on a map. Also, the appli-
cation has a responsive design, so it is possible to use it on various devices such
as PCs, smartphones, and tablets. When the start and end times are selected,
and the play button is pressed, the time series changes of the distribution of
the illegally parked bicycles are displayed. Figure 3(a) and (b) show screenshots
of an Android smartphone, on which the Web application is displaying such an
animation near Chofu Station in Tokyo using a heatmap and a marker UI.

The IPBLOD contain not only the data collected from Twitter, but also
the data estimated by Bayesian networks. Therefore, time-series changes in the
distribution of illegally parked bicycles become smoother than before estimat-
ing the missing values. Figure 3(c) and (d) show the comparison between the
before and after complementation. The time-series changes after complementa-
tion are successive, whereas the time-series changes before complementation are
intermittent.

3 Estimating Spatial Missing Data

There are spatio-temporal missing data in IPBLOD since the data is collected
from social sensors. We estimated and complemented temporal missing data
with 70.9% accuracy using Bayesian networks. However, spatial missing data

158 S. Egami et al.

Fig. 4. The 3D map around of Chofu Sta. Fig. 5. The view of grid cells

(unobserved points where bicycles might be illegal parked) have not been com-
plemented. In this study, we geographically expand IPBLOD by estimating and
complementing the spatial missing data. We consider the flow of people to the
fluid, and we find stagnation points of areas around train stations by airflow
simulation using 3D maps and CFD. In Japan, since there are generally illegally
parked bicycles around train stations, we selected those as our simulation areas.
Then, we validate correlation of stagnation points and observation points of ille-
gally parked bicycles. Furthermore, we filter stagnation points using DBpedia
Japanese, and we regard these filtered points as new observation points. There-
fore, in this section, we describe the hybrid approach using CFD and Linked
Data for estimating spatial missing data.

3.1 Finding Stagnation Points Using CFD

There are wind tunnel test and CFD as the methods of airflow simulation. CFD
is the method which observes the movements of fluid using computer simula-
tion. A wind tunnel test requires expensive and large equipment, but CFD is
easy to experiment with in different environments when using a computer. How-
ever, CFD can not produce exact copies of fluid movements, since CFD uses an
approximate solution.

We first obtained maps of building from Geospatial Information Authority
of Japan9. This data consists of 2D polygons. We converted the 2D maps to 3D
maps using ArcGIS for Desktop10. Since we could not obtain information on the
height of the buildings, we set the height of all buildings to 30 m. Figure 4 shows
the 3D map around of Chofu Station in Tokyo. Red markers are observation
points of illegally parked bicycles. We obtained observation points in a CSV
format from the SPARQL endpoint of the IPBLOD, and then we imported the
CSV to the 3D map. Next, we simulated the airflow around the station using
Airflow Analyst11, which is a simulation software run on ArcGIS. Figure 5 shows
the grid cells which is set as the analysis range. We set the analysis range to
9 http://www.gsi.go.jp/ENGLISH/index.html.

10 http://www.esri.com/software/arcgis/arcgis-for-desktop.
11 http://www.airflowanalyst.com/en/index.php.

http://www.gsi.go.jp/ENGLISH/index.html
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.airflowanalyst.com/en/index.php

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 159

Fig. 6. The result of the airflow simulation

include all observation points around of Chofu Station. In Fig. 5, we selected
700 × 700 square meteres around Chofu Station as the analysis range. Also, the
node spacing is 5 m, and the number of nodes is 10,000. The wind direction is
set as being parallel to the road of the train station. Since it is considered that
people come to the station from four directions in the case of Chofu Station,
we simulated the airflow while changing the wind directions such as 11-degree,
109-degree, 190-degree, and 288-degree.

Figure 6 shows the visualization of the average wind velocity based on the
results of the simulation, when the wind direction is 11-degree and the wind
speed is 5 m/s. The size of the circle means the average wind velocity. We found
stagnation points based on this numerical data. A stagnation point is a point
where the velocity of the fluid is zero in the flow field. We tried to find stagnation
points using patterns in Fig. 7. A black node is a node with average wind velocity
x > 0.1. The white node is the node which is x = 0. The grey node is the node
that 0 < x ≤ 0.1. In general, a stagnation point is a white node under these
conditions. However, white nodes became buildings in our experiment. Therefore,
we defined grey nodes as stagnation points. Table 1 shows the total accuracy
of the findings of stagnation points around Chofu Station, Fuchu Station, and
Shinjuku Station using the all patterns. The precision is the ratio of stagnation
points within a 20-m radius from an observation point. The recall is the ratio
of observation points that have stagnation points within a 20-m radius. As the
result, the F-measure when we used the pattern (j) became the highest. Hence,

160 S. Egami et al.

Fig. 7. Patterns of stagnation points

we use pattern (j) to find stagnation points in this study. Figure 8 shows the
results of the findings stagnation points around of Chofu Station. This is the
merged result of the simulation results of the four directions.

Table 1. Results of the findings stagnation points when we used patterns in Fig. 7

Pattern Precision Recall F-measure

(a) 0.102 0.286 0.150

(b), (c) 0.0833 0.0357 0.0500

(d), (e), (f), (g), (h), (i) 0.000 0.000 0.000

(j) 0.0913 0.429 0.151

(k) 0.0746 0.107 0.0880

3.2 Filtering Stagnation Points Using DBpedia Japanese

We found the stagnation points, but, there were many noise points as can be
seen in Fig. 8. We assumed that bicycles tend to be parked illegally at stagnation
points having nearby POIs, whose popularity stakes are high. Therefore, we
calculated the popularity stakes of the POIs around of the stagnation points
and then filtered the stagnation points using the popularity stakes.

We first obtained the POIs information within a 20-m radius from the stag-
nation points using Google Places API. Then, we calculated the number of links
from person resources to POIs on DBpedia Japanese. Also, we mapped the types
of POIs to DBpedia Japanese resources. We considered the number of inbound
links from person resources as the popularity stakes, and we obtained the number
of links from instances of foaf:Person to types of POIs. Then, we calculated
the sum of the popularity stakes of POIs, and we filtered stagnation points if the
sum of the popularity stakes is less the threshold. We varied the threshold from

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 161

Fig. 8. The stagnation points around of Chofu station

Fig. 9. The filtered stagnation points around of Chofu station

162 S. Egami et al.

100 to 1,000, and we could achieve the best results when the threshold is 200.
Hence, we set the threshold to 200. Figure 9 shows the results of the filtering.

Furthermore, we added estimated data to IPBLOD separately from real data
as follows. The latitude and the longitude are obtained from ArcGIS. Address
information is obtained from Yahoo! Reverse Geocoder API12. The POIs are
also obtained from Google Places API.

@prefix ipb: <http :// www.ohsuga.is.uec.ac.jp/ipblod/

vocabulary#>

@prefix bicycle: <http :// www.ohsuga.is.uec.ac.jp/bicycle/

resource/>

@prefix geo: <http :// www.w3.org /2003/01/ geo/wgs84_pos#> .

@prefix ogcgs: <http :// www.opengis.net/ont/geosparql#> .

@prefix ngeo: <http :// geovocab.org/geometry#> .

@prefix dcterms: <http :// purl.org/dc/terms/> .

@prefix gn: <http :// www.geonames.org/ontology#> .

@prefix gnjp: <http :// geonames.jp/resource/> .

@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

bicycle:estimated_obs_{timestamp}

rdf:type ipb:EstimatedObservationPoint ;

geo:lat "latitude "^^ xsd:double ;

geo:long "longitude "^^ xsd:double ;

gn:parentADM gnjp:{ Prefecture}

gn:parentADM2 gnjp:{City , Prefecture} ;

gn:parentADM3 gnjp:{Town , City , Prefecture} ;

gn:parentADM4 gnjp:{Land lot , Town , City , Prefecture}

;

ngeo:geometry [a ngeo:Geometry; ogcgs:asWKT "POINT(

latitude ,longitude)"^^<http :// www.openlinksw.com/

schemas/virtrdf#Geometry > .] ;

gn:nearby bicycle :{POI name} ;

dcterms:created "datetime "^^ xsd:dateTime .

3.3 Evaluation and Discussion

In this section, we describe the validation results whether there is a correlation
of the data estimated from our approach and the observation points of illegally
parked bicycles, and discuss the evaluation of the utility of our approach.

We carried out the experiments on Chofu Station, Fuchu Station, and Shin-
juku Station which have multiple observation points of illegally parked bicycles.
The total number of observation points was 56. We validated the utility of the
proposed method by comparing the result of the baseline and the result of the
proposed method. First, we compared the baseline and the stagnation point
method as described in Sect. 3.1. Figure 10 shows the result of the baseline for
the Chofu Station. The baseline estimates the spatial missing data at regular
12 http://developer.yahoo.co.jp/webapi/map/openlocalplatform/v1/reversegeocoder.

html.

http://developer.yahoo.co.jp/webapi/map/openlocalplatform/v1/reversegeocoder.html
http://developer.yahoo.co.jp/webapi/map/openlocalplatform/v1/reversegeocoder.html

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 163

Fig. 10. The stagnation points of baseline

Table 2. Evaluation results of both baseline and stagnation point method

Baseline Stagnation point method

Chofu Sta. Precision 0.0496 0.0726

Recall 0.231 0.423

F-measure 0.0816 0.152

Fuchu Sta. Precision 0.125 0.188

Recall 0.222 0.333

F-measure 0.160 0.240

Shinjuku Sta. Precision 0.0493 0.100

Recall 0.190 0.476

F-measure 0.0784 0.165

Total Precision 0.0550 0.0913

Recall 0.214 0.429

F-measure 0.0876 0.151

164 S. Egami et al.

Table 3. Evaluation results of both baseline and hybrid method

Baseline Hybrid method

Chofu Sta. Precision 0.0469 0.121

Recall 0.115 0.346

F-measure 0.0667 0.180

Fuchu Sta. Precision 0.125 0.250

Recall 0.222 0.333

F-measure 0.160 0.286

Shinjuku Sta. Precision 0.0493 0.117

Recall 0.190 0.476

F-measure 0.0784 0.188

Total Precision 0.0559 0.129

Recall 0.161 0.393

F-measure 0.0829 0.194

intervals, as many as the number of stagnation points. Table 2 shows the accu-
racy of both the baseline and the stagnation point method. As the result, the
precision, the recall, and the F-measure of the stagnation point method became
higher than the result of the baseline. Also, we validated the utility of the stag-
nation point method using the chi-square test. The null hypothesis is that there
is no difference between the result (recall or precision) of the baseline and the
result (recall or precision) of the stagnation point method, and we used a stan-
dard level of significance p < 0.05. As the result, the p-value of precision was
0.01591, and the p-value of recall was 2.244e-06. Hence, we found that there
is a significant difference between the result of baseline and the result of the
stagnation point method.

Next, we compared the baseline and the hybrid method (filtering stagnation
points). Table 3 shows the accuracy of both the baseline and the hybrid method.
As the result, the precision, the recall, and the F-measure of the hybrid method
became higher than the result of the baseline. Also, as it is possible to see
from Tables 2 and 3, the precision and the F-measure of the hybrid method
became higher than the result of the stagnation point method. Therefore, there
is the utility of the hybrid method using POIs and DBpedia Japanese. Also, we
validated the utility of the hybrid method using the chi-square test. The null
hypothesis is that there is no difference between the result of the baseline and
the result of the hybrid method, and we used a standard level of significance
p < 0.05. As the result, the p-value of precision was 7.393e-05, and the p-value
of recall was 2.244e-06. Hence, we found that there is a significant difference
between the result of the baseline and the result of the hybrid method. Although
the accuracy is not high, the data of estimated points are considered to help to
collect new data from social sensors.

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 165

The accuracy of the estimated data in this study was low for the following
reasons. The number of observation points was less. There is a possibility that
new observation points are found around the estimated points. Therefore, we
should conduct a field survey in the future work; then we should evaluate our
approach once again. Also, we could not exclude the stagnation points of the
interior of the premises, since we could not obtain the data of building premises.
The noise points were caused by this reason.

4 Related Work

In most cases, LOD sets have been built based on existing databases. However,
there is little LOD available so far that describes urban problems. Thus, methods
for collecting new data to build urban problem LOD are required. Data collection
methods for building Open Data include crowdsourcing and gamification. A
number of projects have employed these techniques. OpenStreetMap [5] is a
project that creates an open map using crowdsourced data. Anyone can edit the
map, and the data are published as Open Data. Similarly, FixMyStreet [6] is
a platform for reporting regional problems such as road conditions and illegal
dumping. Crowdsourcing to collect information in FixMyStreet has meant that
regional problems are able to be solved more quickly than ever before. Zook et al.
[7] reported a case, where crowdsourcing was used to link published satellite
images with OpenStreetMap after the Haitian earthquake. A map of the relief
efforts was created, and the data were published as Open Data. Celino et al.
[9] proposed an approach for editing and adding Linked Data using a game
with a purpose (GWAP) [8] and human computation. However, since the data
relating to illegally parked bicycles are time-series data, it is difficult to collect
data using these approaches. Therefore, we proposed a method to build IPBLOD
while complementing the spatio-temporal missing data.

Also, there have been studies about building Linked Data for cities. Lopez
et al. [10] proposed a platform that publishes sensor data as Linked Data. The
platform collects streamed data from sensors and publishes Resource Descrip-
tion Framework (RDF) data in real time using IBM InfoSphere Stream and
C-SPARQL [11]. The system is used in Dublinked213, which is a data portal of
Dublin, Ireland, that publishes information about bus routes, delays, and con-
gestion which is updated every 20 s. However, since embedding sensors are costly,
this approach is not suitable for our study.

Furthermore, Bischof et al. [4] proposed a method for the collection, com-
plementation, and republishing of data as Linked Data, as with our study. This
method collects data from DBpedia [12], Urban Audit14, United Nations Sta-
tistics Division (UNSD)15, and U.S. Census16 and then utilizes the similarity
among such large Open Data sets on the Web. However, we could not find the
13 http://www.dublinked.ie/.
14 http://ec.europa.eu/eurostat/web/cities.
15 http://unstats.un.org/unsd/default.htm.
16 http://www.census.gov/.

http://www.dublinked.ie/
http://ec.europa.eu/eurostat/web/cities
http://unstats.un.org/unsd/default.htm
http://www.census.gov/

166 S. Egami et al.

corresponding data sets and thus could not apply the same approach to our
study. Therefore, we estimated temporal missing data using Bayesian network,
and we estimated spatial missing data using CFD and DBpedia Japanese.

In other areas, Bogárdi-Mészöly et al. [15] proposed a method for the detec-
tion of scenic leaves and blossoms viewing places. The proposed system collects
images from Flickr17, and then the system ranks scenic leaves and blossoms
viewing places based on social features and image features. However, since we
do have not enough amounts of the observation point’s data and their images,
this method is not suitable for our study. Furthermore, Hirota et al. [16] proposed
a method for estimating missing metadata of images based on the image simi-
larity, the photo-taking condition similarity, and the tag similarity. This method
assumes that there is a sufficient amount of data for the estimation as well as
Bogárdi-Mészöly et al.

5 Conclusion and Future Work

In this paper, we presented building IPBLOD while complementing temporal
missing data, and we described geographically expansion of IPBLOD by esti-
mating the spatial missing data. The mainly technical contribution is the pro-
posal of a hybrid method using CFD and DBpedia Japanese for estimating the
spatial missing data in LOD. Also, we evaluated our method using indicators
such as precision, recall, and F-measure. Furthermore, we validated the utility of
our method using the chi-square test. We expect that it will increase the social
awareness of local residents regarding the illegally parked bicycle problem and
encourage them to post more data over a wide area, through the visualization
of estimated spatial data (new observation points).

In the future, we will estimate spatial missing data in more urban areas,
and we will check true-false results to go to estimated points. Also, we will
incorporate a new method such as machine learning to solve the problem that
was described in Sect. 3.3. Furthermore, we will visualize estimated observation
points and will design incentive for social sensors (workers of crowdsourcing), in
order to collect more data related to illegally parked bicycles.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
16K12411, 16K00419, 16K12533.

References

1. Nishi, N.: The 2nd Health Japan 21: goals and challenges. J. Fed. Am. Soc. Exp.
Biol. 28(1), 632.19 (2014)

2. Ministry of Internal Affairs, Communications: Current bicycle usage and bicycle-
related accident. http://www.soumu.go.jp/main content/000354710.pdf. Accessed
10 September 2015 (Japanese)

17 https://www.flickr.com/.

http://www.soumu.go.jp/main_content/000354710.pdf
https://www.flickr.com/

Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD 167

3. Egami, S., Kawamura, T., Ohsuga, A.: Building urban LOD for solving illegally
parked bicycles in Tokyo. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch,
M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 291–307.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-46547-0 28

4. Bischof, S., Martin, C., Polleres, A., Schneider, P.: Collecting, integrating, enriching
and republishing open city data as linked data. In: Arenas, M., Corcho, O., Simperl,
E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin,
J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 57–75.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25010-6 4

5. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Comput. 7(4), 12–18 (2008)

6. King, S.F., Brown, P.: Fix my street or else: using the internet to voice local public
service concerns. In: Proceedings of the 1st International Conference on Theory
and Practice of Electronic Governance, pp. 72–80 (2007)

7. Zook, M., Graham, M., Shelton, T., Gorman, S.: Volunteered geographic infor-
mation and crowdsourcing disaster relief: a case study of the Haitian earthquake.
World Med. Health Policy 2(2), 7–33 (2010)

8. von Ahn, L.: Games with a purpose. IEEE Comput. 39(6), 92–94 (2006)
9. Celino, I., Cerizza, D., Contessa, S., Corubolo, M., Dell’ Aglio, D., Valle, E.D.,

Fumeo, S., Piccinini, F.: Urbanopoly: collection and quality assesment of geo-
spatial linked data via a human computation game. In: Proceedings of the 10th
Semantic Web Challenge (2012)

10. Lopez, V., Kotoulas, S., Sbodio, M.L., Stephenson, M., Gkoulalas-Divanis, A.,
Aonghusa, P.M.: QuerioCity: A linked data platform for urban information man-
agement. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012. LNCS, vol. 7650, pp. 148–163. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35173-0 10

11. Barbieri, D.F., Ceri, S.: C-SPARQL: SPARQL for continuous querying. In: Pro-
ceedings of the 18th International Conference on World Wide Web, pp. 1061–1062
(2012)

12. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A
nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 52

13. BlackJenks, G.F.: The data model concept in statistical mapping. Int. Yearb. Car-
tography 7(1), 186–190 (1967)

14. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: A core for a web
of spatialopen data. Semant. Web J. 3(4), 333–354 (2012)

15. Bogárdi-Mészöly, A., Rövid, A., Yokoyama, S.: Detect scenic leaves and blossoms
viewing places from flickr based on social and image features. In: Proceedings of the
5th IIAI International Congress on Advanced Applied Informatics, pp. 1162–1167
(2016)

16. Hirota, M., Fukuta, N., Yokoyama, S., Ishikawa, H.: A robust clustering method
for missing metadata in image search results. J. Inf. Process. 20(3), 537–547 (2012)

http://dx.doi.org/10.1007/978-3-319-46547-0_28
http://dx.doi.org/10.1007/978-3-319-25010-6_4
http://dx.doi.org/10.1007/978-3-642-35173-0_10
http://dx.doi.org/10.1007/978-3-540-76298-0_52

RDF and Query

ASPG: Generating OLAP Queries
for SPARQL Benchmarking

Xin Wang1(B), Steffen Staab1,2, and Thanassis Tiropanis1

1 Web and Internet Science Group, University of Southampton, Southampton, UK
xwang@soton.ac.uk

2 Institute for Web Science and Technology, University of Koblenz-Landau,

Mainz, Germany

Abstract. The increasing use of data analytics on Linked Data leads
to the requirement for SPARQL engines to efficiently execute Online
Analytical Processing (OLAP) queries. While SPARQL 1.1 provides
basic constructs, further development on optimising OLAP queries lacks
benchmarks that mimic the data distributions found in Link Data. Exist-
ing work on OLAP benchmarking for SPARQL has usually adopted
queries and data from relational databases, which may not well represent
Linked Data. We propose an approach that maps typical OLAP oper-
ations to SPARQL and a tool named ASPG to automatically generate
OLAP queries from real-world Linked Data. We evaluate ASPG by con-
structing a benchmark called DBOBfrom the online DBpedia endpoint,
and use DBOB to measure the performance of the Virtuoso engine.

Keywords: OLAP · Linked data · Benchmarking · Query generation ·
SPARQL · DBpedia

1 Introduction

Linked Data principles foster the provisioning and integration of a large amount
of heterogeneous distributed datasets [2]. SPARQL 1.1 [11] has introduced aggre-
gations that enable users to do basic analytics. Though limited, SPARQL 1.1 is
expressive enough to implement Online Analytical Processing (OLAP) which is
an approach to analysing and reporting multidimensional statistics from different
perspectives and levels of granularity [3,5].

OLAP contains a rich set of combinations of analytical operations which gen-
erate a high workload on SPARQL engines that target the support of analytics
queries. In fact, the scalability of SPARQL engines to execute OLAP queries
is still rather limited owing further development and optimization. Such opti-
mization and comparison of best developments critically depend on benchmarks
that can measure the performance of SPARQL engines on analytic tasks from
various perspectives. Several OLAP benchmarks for SPARQL have been pro-
posed. For example Kämpgen and Harth [12] convert queries and data from the
Star Schema Benchmark (SSB) to SPARQL and Linked Data using the RDF
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 171–185, 2016.
DOI: 10.1007/978-3-319-50112-3 13

172 X. Wang et al.

Data Cube Vocabulary [6]. Since SSB is based on a relational database scenario,
its data do not necessarily resemble common Linked Data structures. Another
example, the BowlognaBench [8], uses data and queries based on the Bowlogna
Ontology [7]. Similar to SSB for SPARQL, BowlognaBench covers a specific sce-
nario which may not represent the heterogeneity and structure of Linked Data.

Görlitz et al. [9] propose a SPARQL query generator called SPLODGE to
release benchmarks from pre-defined queries. Following the same direction we
present a tool called Analytical SPARQL Generator (ASPG) that generates
OLAP queries in SPARQL which can be used to construct benchmarks. ASPG
takes an RDF graph as input and selects triples by semi-random walk. Selected
triples are parametrised to generate basic graph patterns (BGPs) which are then
extended with aggregations that resemble OLAP operations. Queries produced
by ASPG are guaranteed to return results from the given RDF graph since
they are parametrised from triples in the RDF graph. We construct an analyt-
ical benchmark based on DBpedia, referred to as DBpedia OLAP Benchmark
(DBOB), using ASPG generated queries. We evaluate Virtuoso1 using DBOB
and present the results.

The remaining sections of this paper are organised as follows: technical details
of ASPG are described in Sect. 2; queries and dataset of DBOB are presented in
Sect. 3; experiment settings and evaluation result of DBOB are given in Sect. 4,
and conclusions are given in Sect. 6. Due to page limit, a complete list of DBOB
queries is given in http://xgfd.github.io/ASPG/.

2 Generating OLAP Queries from Linked Data

In this section we discuss the correspondence between typical OLAP operations
and SPARQL components, and provide details of generating SPARQL queries
from arbitrary RDF graphs that resemble typical OLAP operations.

SPARQL queries consist of basic graph patterns (BGPs) which can be viewed
as graphs with variable nodes. When evaluating a BGP against a RDF graph,
results are returned if and only if the BGP matches a sub-graph of the given
RDF. Consequently, given an arbitrary RDF graph, we can construct BGPs that
are guaranteed to return results by parametrising sub-graphs in the RDF. By
controlling the structure of sub-graphs we can obtain BGPs that consist of chains
or star-shaped triple patterns of arbitrary lengths. We simulate typical OLAP
operations by summarising along properties (using GROUP BY) with randomly
selected aggregate operations (e.g. SUM, COUNT, AVG etc.). In particular we
discuss the challenges to generate queries from RDF graphs that are too large
to fit in a single store and describe RDF summarising and sampling techniques
to resolve those issues.

2.1 Background of OLAP Operations

OLAP queries operate on a multidimensional data model that is referred to as
an OLAP cube. Each data point in the cube is associated with two types of
1 http://virtuoso.openlinksw.com/.

http://xgfd.github.io/ASPG/
http://virtuoso.openlinksw.com/

ASPG: Generating OLAP Queries for SPARQL Benchmarking 173

21

12

11

35

Q4

S1
S2

S4

47

P1 P3
Pollution (Pollutant)

Ti
m

e
(Q

ua
rt

er
)

Q3

Q2

Q1

S3

P4P2

10 18

30

3226

14

41 02 31

12 20 24 33

24 18 28 14
33 25 23 25

12 1
2

8
0

10
33

14 1
2

7
3
18

(

n)

S S
t ta
at ti

io o
n

measure
values

dimensions

35

27

(a)

Time

Day

Month

Semester

Pollution

Pollutant

Category Type

Group

Quarter

Year

Station

Station

All AllAll

date
season

name

name
loadLimit

name name

name

month

quarter

semester

year

(b)

Fig. 1. A three-dimensional cube having dimensions Time, Pollution, and Station,
and a measure concentration. Dimension hierarchies are shown on the right [4].

attributes, dimensions and measures. Dimensions identify data points and are
usually organised hierarchically. Measures represents associated values of a data
point and are usually operands of aggregations. An example of OLAP cube is
shown in Fig. 1. There is no clear distinction between dimensions and measures.
Any set of attributes that uniquely identifies a data point can be viewed as
dimensions, and the remaining attributes are measures.

Typical OLAP operations defined on cubes include:

– Dice: Selecting a subset of an OLAP cube (Fig. 2a).
– Slice: Slice is a specific case of dice picking a rectangular subset of a cube by

choosing a single value for one of its dimensions (Fig. 2b).
– Roll-up: Aggregating data by climbing up the hierarchy of a dimension

(Fig. 2c).
– Drill-down: Aggregating data at a lower level of the dimension hierarchy

(Fig. 2d). Drill-down is the reverse operation of roll-up.

In this paper we do not take into account operations that involve multiple
OLAP cubes, such as drill-across [4], since multiple RDF graphs can be merged
into one graph by taking their union.

Kämpgen et al. [13] describe an approach to map OLAP queries into SPARQL
queries with the RDF Data Cube (QB) vocabulary [6]. Since many Linked Data
and SPARQL queries do not use QB, we examine the semantics of the above
OLAP operations and propose a mapping between OLAP and SPARQL queries
that are not limited to specific vocabularies.

2.2 Generating Dice and Slice Queries in SPARQL

Dice and Slice select a subset of an OLAP cube while in SPARQL the same
functionality is achieved by BGPs.

174 X. Wang et al.

(a) Dice on Station = ‘S1’ or ‘S2’
and Time.Quarter = ‘Q1’ or
‘Q2’

(b) Slice on Station for Sta-
tionId = ‘S1’

(c) Roll-up to the Semester level (d) Drill-down to the Month level

Fig. 2. OLAP operations [4].

An OLAP data point and its attributes (dimensions and measures) corre-
spond to a subject and its properties in a RDF graph2. Dice selects multiple
data points in an OLAP cube, whereas in SPARQL it is analogous to a BGP
with optional constraints on object values (using FILTER), as shown below:

Query 1.

SELECT ?P ?Q ?S ?concentration

WHERE

{ ?point :Pollution ?P ; # FILTER(?P ="P1"|| ?P ="P2")

:Time ?Q ; # FILTER(?Q ="Q1"|| ?Q ="Q2")

:Station ?S ; # FILTER(?S ="S1"|| ?S ="S2")

:concentration :?concentration

}

2 Mapping an OLAP data point to a subject is just one intuitive approach. An OLAP
data point can be mapped to any RDF term.

ASPG: Generating OLAP Queries for SPARQL Benchmarking 175

Unlike in relational databases (where dimensions are usually keys that are
distinguished from measures), we argue that dimensions and measures are indis-
tinguishable in RDF and SPARQL. Thus any BGPs correspond to a valid Dice
operation (with Slice as a special case) in OLAP. There may be difficulties to
aggregate on certain types of values, since most aggregations in SPARQL are
arithmetic. Meanwhile it is always possible to convert an arbitrary type to a
numeric. For example a literal can be converted to its length (i.e. STRLEN),
and a resource can be converted to its number of occurrences (i.e. COUNT).
Queries generated with the above modifications may not be meaningful in a
practical sense, they serve the purpose as far as benchmarks are concerned. In
the rest of this paper we interchangeably use Dice query and BGP when no
confusion is caused.

2.3 Generating Roll-Up and Drill-Down Queries in SPARQL

Roll-up and drill-down group measure values at a specific dimension level and
aggregate values in each group using a given aggregate function. Without losing
generality, we focus on the mapping of roll-up since drill-down is the reverse
operation. In SPARQL Roll-up is achieved by GROUPing BY some variables
(i.e. dimensions) in a query and aggregate on other variables (i.e. measures).

Given a Dice query (a BGP basically) that selects entities at the specified
dimension levels (i.e. there is a triple pattern matching each of the specified
dimension levels), simply GROUPing BY the specified dimension levels and
applying an aggregate function on measure values (i.e. any variable object not
appeared in GROUP BY) would simulate Roll-up in SPARQL. Taking Query 1
as an example, if we would like to know the concentration of each pollutant at
each station averaged over all time points, we would GROUP BY variable ?P
and ?S and apply AVG on variable ?concentration, as shown in the query below:

Query 2.

SELECT ?P ?S (AVG(?concentration) AS ?avgCon)

WHERE

{ ?point :Pollution ?P ;

:Time ?Q ;

:Station ?S ;

:concentration :?concentration

} GROUP BY ?P ?S

It is worth noticing that GROUPing BY all variables in a BGP does not
change the result of the BGP3. Thus in SPARQL a Dice query can be trivially
extended to a Roll-up query by appending a GROUP BY all variables clause at
the end of its BGP.

A more involved case is when we are interested in dimension levels that do not
explicitly appear in a Dice query. For example, in Query 2 instead of asking for
3 It is enough to GROUP BY a subset of all variables that uniquely identifies an

entity. Variables excluded from GROUP BY can be selected using the SAMPLE
aggregation.

176 X. Wang et al.

concentration per pollutant, we may ask for the same measure per Category in
the Pollution hierarchy (shown in Fig. 1b). Depending on whether the hierarchy
(dimension instance as in [4]) is explicitly stated in the RDF graph being queried,
we use two different techniques to generate Roll-up queries.

Dimension hierarchy is explicit. Assuming the hierarchy is stated as triples,
e.g. in the form

Pi :rollupTo Cj

where Pi is an instance of Pollutant, Cj is an instance of Category and :rollupTo
states that its object is one level above its subject in the dimension hierarchy,
we can add the triple pattern

?P a Pollutant; :rollupTo ?C. ?C a Category.

to Query 2 and GROUP BY ?C (and ?S) instead of ?P.

Dimension hierarchy is absent. In this case values can be manually cate-
gorised in SPARQL using an IF expression

rdfTerm IF (boolean cond, rdfTerm expr1, rdfTerm expr2)

where the whole expression evaluates to the value of expr1 when cond evaluates
to true, otherwise expr2. By nesting IF expressions, we can define a surjective
(only) function

cat : rdfTerm → rdfTerm

that maps a value to a category defined by users. For example, assuming both
P1, 2 belong to C1, we can express cat in SPARQL as

cat(?P) := IF (?P = P1||?P = P2, C1, Other),

and convert Query 2 to the following query4

Query 3.

SELECT ?C ?S (AVG(?concentration) AS ?avgCon)

WHERE

{ ?point :Pollution ?P ;

:Time ?Q ;

:Station ?S ;

:concentration :?concentration

} GROUP BY (cat(?P) AS ?C) ?S

4 SPARQL 1.1 doesn’t have the ability to define new functions, and therefore cat
should be considered as a macro in Query 3.

ASPG: Generating OLAP Queries for SPARQL Benchmarking 177

This technique is more useful to categorise numerics (or elements of totally
ordered sets) into different ranges. For example, we can define a cat to group
numbers into ranges as

cat(x) := IF (x <= low, “Low′′, IF (x <= high, “Medium′′, “High′′))

where low and high are numbers.
Given a BGP (i.e. a Dice query), ASPG adopts a naive heuristic to extend it

to a Roll-up query: (1) It randomly selects a subset of all variables of the BGP
as dimensions, and the remains as measures; (2) All dimensions are used in a
GROUP BY clause; (3) If a measure is known to be numerical, it is aggregated
using one of the set functions COUNT, MAX, MIN, AVG, SUM, GroupConcat.
Otherwise, this measure is firstly converted to a literal with STR and then to
an integer with STRLEN, and aggregated using a set function. This procedure
is listed below:

queryGen(BGP)
D, M ∈ vars(BGP)
GroupBy ←“GROUP BY”
for d ∈ D

GroupBy ← concat(GroupBy, d)

SELECT ←“SELECT”
for m ∈ M

AGG ∈ {COUNT, MAX, MIN, AVG, SUM, GroupConcat}
if m is numerical

SELECT ← concat(SELECT, AGG(m))
else

SELECT ← concat(SELECT, AGG(STRLEN(STR(m))))

query ← concat(SELECT, BGP, GroupBy)
return query

2.4 Generating Basic Graph Patterns

We generate BGPs by replacing nodes in RDF graphs with variables. A RDF
graph (or a BGP) can be decomposed into star-shaped or chain-shaped sub
graph patterns. Considering a triple (or a triple pattern) as an undirected edge
between subject and object, we define the degree of a node as the number of
edges connecting to this node. A star-shaped graph pattern has one and only
one central node with a degree greater than 1 and all other nodes of degree 1. A
chain only has nodes whose degree are no more than 2. We generate a sub-graph
from a RDF graph by repeating two steps: (1) select one node in the RDF graph
as root, (2) add an edge connected to the root to the sub-graph. A star-shaped
graph pattern is generated by selecting the same node as root in every iteration,
while a chain is generated as selecting as root the other node in the last added

178 X. Wang et al.

edge in each iteration. We generate a mix of stars and chains by controlling a
branching probability of whether to select a different root in each step, as shown
in the pseudo code below, where RDF is a RDF graph, T is a termination
predicate function mapping a BGP to a boolean, p is branching probability, and
parametrise maps a non-property IRI to a variable:

BGPGen(RDF, T, p)
BGP ← {}
root ∈ IRIs(RDF)
while (!T(BGP))

E ← getTriples(root)
e ∈ E
BGP ← parametrise(e) ∪ BGP
if (random() < p)

root ← root
else

root ← getObject(e)
return BGP

The termination function is used to control the length of generated BGPs.
In this paper we define the termination condition to result in true if either the
BGP reaches 10 triple patterns or the longest path in the BGP reaches 5.

The above algorithm guarantees a non-empty result set when evaluating the
generated BGP against the source RDF, but there is no guarantee about the
size of the result. To avoid BGPs whose result size is too small for aggregation,
we evaluate generated BGPs and filter out those whose result size is less than
a threshold. This safe guard is not always necessary. Later we present a set of
queries generated from DBpedia and none of the BGPs falls below a threshold
of 100,000.

Generating BGP with large or remote RDF graphs. When using the
above method, one may encounter difficulties when the RDF graph cannot be
used as a direct input to BGPGen. For example, the graph may be too large to
be traversed or it is only available as a SPARQL endpoint. In order to deal with
such cases, we adopt techniques that combines ontology and triple sampling to
convert large RDF graphs into smaller ones. We describe our techniques using
DBpedia as an example, but the techniques can be applied to any graph.

To generate a BGP we need to know the connection between nodes. Such
information is often captured in an ontology-like structure of a RDF graph that
gather all instance level properties to their classes. For simplicity we still use
ontology to refer to such structure. We can issue a SPARQL CONSTRUCT
query to recover the ontology (assuming all instances in the RDF belong to some
classes, i.e. all rdf:type are explicit). However, to construct the whole ontology
in one query is likely to end with a time out. Instead, we first retrieve all classes,
and then use a script to collect properties between any two classes using the
query template below:

ASPG: Generating OLAP Queries for SPARQL Benchmarking 179

Query 4.

CONSTRUCT

{ dbo:$1 ?p dbo:$2 }

SELECT DISTINCT ?p

WHERE { [a dbo:$1] ?p [a dbo:$2]. }

where $1 and $2 are replaced by class names (e.g. Person, Event etc.). The
ontology is the union of all graphs returned by Query 4. The ontology can be
used as the input graph (i.e. the parameter G) in the BGP generation algorithm
with some extra care taken. Since all nodes in the ontology are classes, they
should all be replaced with variables in generated BGPs. In addition, when
following a reflexive property, a new variable should be used as root. For example,
dbo:Person has a reflexive property foaf:knows. When this property is included
in a BGP, its subject and object should be two different variables.

Using the ontology instead of the original RDF graph significantly reduces
the complexity of BGP generation. However it does not always guarantee that
the generated queries have results against the original graphs. For example in
DBpedia both Athlete and Artist are sub-classes of Person, an instance of either
Athlete or Artist may also has a rdf:type property pointing to Person. As a result
properties of both Athlete and Artist are gathered at Person. There is a chance
that an Athlete property and an Artist are connected to the same node in a
BGP, which may not match any triple in the original graph. This issue can be
relieved by gathering properties only to the lowest class of an instance, however
doing that in SPARQL is quite cumbersome5.

When the above method is not applicable (e.g. generating BGPs from DBpe-
dia), we employ triple sampling as an alternative approach to extract subsets
of RDF graphs. By repetitively sampling sub-graphs of simple shapes, a more
complex and larger sub-graph can be constructed. For example, in ASPG we
sample DBpedia using triple chains of length 5, as show in Query 5.

Query 5. Chained triple sampling

CONSTRUCT

{

?s ?p1 ?n1. ?n1 ?p2 ?n2.

?n2 ?p3 ?n3. ?n3 ?p4 ?n4.

?n4 ?p5 ?e.

}

WHERE

{

?s a dbo:$1. ?e a dbo:$2.

?s ?p1 ?n1. ?n1 ?p2 ?n2.

?n2 ?p3 ?n3. ?n3 ?p4 ?n4.

?n4 ?p5 ?e.

}

5 It requires to calculate the position of an item in a linked list and to identify the
maximum item in a set. Refer to https://git.io/vwP0t for more details.

https://git.io/vwP0t

180 X. Wang et al.

where $1 and $2 are replaced by class names. It is left to users to decide how
many and what class pairs are used. For example, in the construction of DBOB
we use the top 50 classes that have most instances, and it turns out that triple
chains sampled by Query 5 intertwine with each other. The result graph is sig-
nificantly smaller than DBpedia while its structure is rich enough to generate
complex queries.

In addition we may also want to identify properties whose ranges are numer-
ics, even it is always possible to convert an arbitrary type to a numeric in
SPARQL. Such information enables us to identify variables of numerics to which
aggregate functions can be directly applied.

2.5 Complexity Analysis

We examine the time complexity of aggregate functions used in ASPG, namely
GROUP BY and set functions COUNT, MAX, MIN, AVG, SUM, GroupConcat
(excluding SAMPLE).

GROUP BY can be realised by the application of a higher-order ‘map’ func-
tion on a constant time lower-order function and each set function can be mapped
to a higher-order ‘fold’ function on a constant time arithmetic function. All
aggregations used in ASPG have O(n) time complexity, where n is the size of
query result regardless of the grouping of the result. We exclude SAMPLE from
ASPG since it is a O(1) operation.

We conclude that the time complexity of aggregating on a BGP is linear
in the number of aggregate functions and independent of the grouping. In other
words, the time complexity of a query (generated by ASPG) can be characterised
by its BGP and its number of aggregate functions.

3 DBOB: A Benchmark Constructed with ASPG

In order to evaluate ASPG, we construct an OLAP benchmark named DBOB
from DBpedia’s online endpoint. DBOB contains 12 queries, of which Q1–3 are
real-world queries from online analysis and Q4–12 are generated with ASPG.

Query 4–12 are generated following the steps below:

1. Retrieving the top 50 classes from DBpedia having most instances.
2. Sampling from the DBpedia SPARQL endpoint using chains of length 5 whose

endpoints are drawn from instances of the 50 classes.
3. Generating OLAP queries from the RDF graph gained from step 2.
4. Evaluating the query against DBpedia and filtering out those whose result

size is less than 100,000.

Due to the page limit the complete list of DBOB queries is available at http://
xgfd.github.io/ASPG/.

http://xgfd.github.io/ASPG/
http://xgfd.github.io/ASPG/

ASPG: Generating OLAP Queries for SPARQL Benchmarking 181

4 Evaluation

We evaluate ASPG from two perspectives to show that ASPG is able to gen-
erate non-trivial queries. Firstly we compare DBOB queries to OLAP4LD-SSB
queries [12] with respect to query complexity and types of query patterns. Sec-
ondly we use DBOB to evaluate a Virtuoso engine and analyses the result.

4.1 DBOB Quereis Vs. OLAP4LD-SSB Queries

As stated in Sect. 2.5, the time complexity of a query can be decomposed into
the complexity of its BGPs and the numbers of aggregate functions. We roughly
measure the complexity of a BGP by its number of triple patterns6 (Table 1).

Table 1. Comparison of DBOB and OLAP4LD-SSB queries.

DBOB Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

of triple patterns 10 5 4 4 6 4 4 8 7 2 7 7

of group by-s 1 1 3 1 1 1 1 1 1 1 1 1

of set functions 2 3 3 4 5 4 3 8 7 1 7 7

OLAP4LD-SSB

of triple patterns 6 6 7 9 8 8 10 10 8 9 11 13

of group by-s 0 0 0 1 1 1 1 1 1 1 1 1

of set functions 1 1 1 1 1 1 1 1 1 1 1 1

Comparing to OLAP4LD-SSB, the number of triple patterns of ASPG queries
vary a lot, as a result of random sampling. In addition, since ASPG does not
focus on the semantic of queries, it can simply add as many aggregate functions
as required. The ability of providing triple patterns and aggregate functions on
demand makes ASPG a very flexible tool for benchmarking.

4.2 Evaluating Virtuosos with DBOB

We run DBOB on a DBPedia 3.9 endpoint hosted on a machine with the fol-
lowing settings: 4*2.9 GHz CPU, 16 G memory, Ubuntu 14.04.4, Virtuoso open-
source 7.1.0.

We use the BSBM query driver7 to execute all queries with 0 warm up and
20 runs.

6 The complexity of a BGP is also affected by the number of intermediate results in
each join. However the later requires detailed statistics to estimate which are not
always available.

7 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/
BenchmarkRules/index.html#datagenerator.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator

182 X. Wang et al.

The evaluation result is shown in Table 2, where QET stands for query exe-
cution time in seconds, #Rslt is the query result size before aggregation, #Trpl
is the number of triple patterns, and #AF is the number of aggregate func-
tions. We also calculate the correlation between QET and the number of triple
patterns, result size and the number of aggregate functions respectively.

Table 2. DBOB evaluation result.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

#Rslt 600 39.4K 10.4K 95.5K 59.1K 65.3K 548.5K 120.8K 258.8K 81.2M 175.5K 5.0M

QET 0.65 1.19 1.31 0.10 0.72 0.31 2.90 0.08 1.43 19.33 2.74 1.73

Correlation

#Rslt #Trpl #AF

QET 0.99 0.07 0.38

Most queries are finished in no more than 3 s. This may due to that queries
with aggregation usually do not need to materialise all intermediate results. In
addition we see the correlation between QET and the number of triple patterns
is quite low. It is not surprising since QET of BGPs is mainly affected by the
number of intermediate results which is not captured by only the number of
triple patterns. At the same time the number of aggregate functions shows a
higher impact on QET. One possible reason could be the high number of aggre-
gate functions in ASPG queries. Alternatively as the contribution to QET from
aggregation is liner to result size, the relatively higher impact from aggregation
may just be a side effect of the high correlation between the result size and QET.
It may be worth measuring only the execution time of aggregation, however such
measure is usually difficult to obtain from outside of query engines.

5 Related Work

We divide related work into two categories: SPARQL query generators and
SPARQL benchmarks.

5.1 Related Query Generators

ASPG generates queries from a RDF graph, which is similar to SPLODGE [9].
SPLODGE exploits query characteristics (e.g. join type, query type, variable pat-
tern) and constructs queries from a federated RDF graph. While ASPG focuses
on simulating OLAP queries, SPLODGE aims to generate queries for federated
benchmarks. Both decompose queries into star-shaped or chained triple patterns.
ASPG queries are generated by replacing nodes in a sub-RDF-graph with vari-
ables, while SPLODGE queries are generated from linked predicates (i.e. a pair
of predicates sharing a common node). SPLODGE queries are not guaranteed
to have results, but statistics are used to increase the chance.

ASPG: Generating OLAP Queries for SPARQL Benchmarking 183

FEASIBLE [16] represents a different approach to generate benchmark
queries. Instead of generating queries from a RDF graph, it takes existing queries
(from query logs) as prototypes and generates similar queries. Comparing to
ASPG and SPLODGE, FEASIBLE queries are usually more close to real-world
queries.

5.2 Related Benchmarks

To the best of our knowledge only two existing benchmarks are based in an
OLAP scenario, namely BowlognaBench [8] and OLAP4LD [12]. We also review
a few popular non-OLAP benchmarks.

– Lehigh University Benchmark (LUBM) [10] is designed with focus on inference
and reasoning capabilities of RDF engines.

– SP2Bench [17] has a focus of testing the performance of a variety of SPARQL
features.

– The Berlin SPARQL Benchmark (BSBM) [1] mimics a e-commerce scenario
and its dataset resembles a relational database.

– DBpedia SPARQL Benchmark (DBPSB) [14] uses (a sub set of) DBpedia as
testing data and most used DBpedia queries as testing queries.

– BowlognaBench models an OLAP use case around the Bowlogna Ontology [7]
and implements queries such as TopK, Max, Min, Path etc.

– OLAP4LD converts dataset and queries of the Star Schema Benchmark [15]
into RDF and SPARQL. It resembles OLAP queries in relational databases.

We compare DBOB with aforementioned benchmarks in Table 3.

Table 3. Comparison of DBOB and existing benchmarks, adapted from [14]. Synthetic
stands for artificially generated data; Real stands for real-world data; Mix stands for
a mix of the former two types.

LUMB SP2Bench BSBM DBPSB OLAP4LD Bowlogna DBOB

Dataset
type

Synthetic Synthetic Synthetic Real Synthetic Synthetic Real

Query type Synthetic Synthetic Synthetic Real Synthetic Synthetic Mix

Num. of
classes

43 8 8 239 7 76 239

Num. of
properties

32 22 51 1200 28 36 1200

6 Conclusions and Future Plan

In this paper we present ASPG that can be used to generate Dice, Slice, Roll-up
and Drill-down queries in SPARQL. By exploiting ontologies and triple sampling

184 X. Wang et al.

techniques, ASPG is able to generate queries from large RDF graphs or graphs
available as SPARQL endpoints. We further construct a benchmark called DBOB
with ASPG and DBpedia to evaluate processing time of OLAP SPARQL queries.

Queries generated by ASPG usually have more complex BGPs compared to
real-world queries. Perhaps human users are more likely to issue simple queries
and combine their results afterwards, due to the lack of convenient query builders
and constraints on query complexity from SPARQL endpoints. We argue that
as far as query processing time is concerned, generated queries may give more
insight on the performance of SPARQL engines than simple real-world queries.
In addition, it is likely that the increasing demand of SPARQL analytics will
foster better tools that enable users to generate complex queries. The Roll-up
generation heuristic used by ASPG may contribute to the creation of such tools.

Currently ASPG queries only consist of one BGP and randomly selected
aggregate functions, while real-world queries may also employ FILTERs and sub-
queries (e.g. Q2 and Q3 of DBOB). As a result ASPG queries only represent some
basic analytical needs. A future plan is to extend ASPG to generate multiple
BGPs and sub queries that covers a broader range of analysis operations.

References

1. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. (IJSWIS) - Special Issue on Scalability and Performance of Semantic Web
Systems 5(2), 1–24 (2009)

2. Capadisli, S., Auer, S., Riedl, R.: Linked Statistical Data Analysis. Semantic Web
(2013)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM SIGMOD Record 26(1), 65–74 (1997)

4. Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., Zimányi, E.: Cube
algebra: a generic user-centric model and query language for OLAP cubes. Int. J.
Data Warehous. Min. 9(2), 39–65 (2013)

5. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (on-line Analytical Process-
ing) to user-analysts: an IT mandate. Codd Date 32, 3–5 (1993)

6. Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube Vocabulary
7. Demartini, G., Enchev, I.: The bowlogna ontology: fostering open curricula and

agile knowledge bases for Europe ’ s higher education. Landscape 0, 1–11 (2012)
8. Demartini, G., Enchev, I., Wylot, M., Gapany, J., Cudré-Mauroux, P.:

BowlognaBench-Benchmarking RDF analytics. Data-Driven Process Discovery
Anal. 116, 82–102 (2011)

9. Görlitz, O., Thimm, M., Staab, S.: SPLODGE: systematic generation of SPARQL
benchmark queries for linked open data. In: Cudré-Mauroux, P., et al. (eds.) ISWC
2012. LNCS, vol. 7649, pp. 116–132. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35176-1 8

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
Web Semant. 3(2–3), 158–182 (2005)

11. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (2013)
12. Kämpgen, B., Harth, A.: No size fits all – running the star schema benchmark

with SPARQL and RDF aggregate views. In: Cimiano, P., Corcho, O., Presutti,
V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 290–304.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8 20

http://dx.doi.org/10.1007/978-3-642-35176-1_8
http://dx.doi.org/10.1007/978-3-642-35176-1_8
http://dx.doi.org/10.1007/978-3-642-38288-8_20

ASPG: Generating OLAP Queries for SPARQL Benchmarking 185

13. Kämpgen, B., ORiain, S., Harth, A.: Interacting with Statistical Linked Data via
OLAP Operations. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E.,
Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp.
87–101. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46641-4 7

14. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL
benchmark – performance assessment with real queries on real data. In: Aroyo,
L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25073-6 29

15. Neil, P.O., Neil, B.O., Chen, X.: Star Schema Benchmark - Revision 3. Technical
report, UMass/Boston (2009)

16. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE: a feature-based
SPARQL benchmark generation framework. In: Arenas, M., et al. (eds.) ISWC
2015. LNCS, vol. 9366, pp. 52–69. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25007-6 4

17. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL per-
formance benchmark. In: Proceedings of the International Conference on Data
Engineering, pp. 222–233. IEEE (2009)

http://dx.doi.org/10.1007/978-3-662-46641-4_7
http://dx.doi.org/10.1007/978-3-642-25073-6_29
http://dx.doi.org/10.1007/978-3-319-25007-6_4
http://dx.doi.org/10.1007/978-3-319-25007-6_4

Towards Answering Provenance-Enabled
SPARQL Queries Over RDF Data Cubes

Kim Ahlstrøm(B), Katja Hose, and Torben Bach Pedersen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{kah,khose,tbp}@cs.aau.dk

Abstract. The SPARQL 1.1 standard has made it possible to formu-
late analytical queries in SPARQL. While some approaches have become
available for processing analytical queries on RDF data cubes, little
attention has been paid to answering provenance-enabled queries over
such data. Yet, considering provenance is a prerequisite to being able to
validate if a query result is trustworthy. The main challenge for existing
triple stores is the way provenance can be encoded in standard triple
stores based on context values (named graphs). Hence, in this paper we
analyze the suitability of existing triple stores for answering provenance-
enabled queries on RDF data cubes, identify their shortcomings, and
propose an index to handle the high number of context values that prove-
nance encoding typically entails. Our experimental results using the Star
Schema Benchmark show the feasibility and scalability of our index and
query evaluation strategies.

1 Introduction

The rapid expansion of the Linked Open Data (LOD) cloud and the introduc-
tion of SPARQL 1.1 have created new possibilities for the integration of online
data. It is natural to use this vast amount of linked data to answer analytical
queries [1]. Several initiatives have already been started to facilitate analytics
over the Semantic Web [9,14,18]. When querying data from remote sources,
provenance data is essential to ensure that the results are interpreted in a cor-
rect manner. Provenance data is not limited to quality control, there are many
more uses such as access control, result ranking, query optimization, and prove-
nance filters [19]. Therefore, it is important not to limit the descriptive power of
provenance data. Hence, we use the W3C PROV-O vocabulary [20].

The standard way to encode provenance data is using reification. However,
due to the verbose nature of reification we use provenance identifiers to link the
provenance data as suggested in [13]. The context value of a triple is used to store
a provenance identifier, this identifier corresponds to the subject in a provenance
triple, thus connecting one or more information triples to a provenance triple.

We observe the problem that standard triple stores, i.e., Jena TDB [2] and
RDF4J Native [8], are not designed to support provenance data. Hence, to sup-
port it, we either need to find an encoding so that standard triple stores can
support it or develop a new type of triple store (see related work in Sect. 8). In
this paper we make the following contributions:
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 186–203, 2016.
DOI: 10.1007/978-3-319-50112-3 14

Towards Answering Provenance-Enabled SPARQL Queries 187

– Analysis of the suitability of standard triple stores for answering provenance-
enabled analytical queries.

– Two query processing strategies to enable provenance-enabled SPARQL
queries over RDF data cubes.

– Proposing the Context Index to reduce the number of context values that have
to be considered to answer a query.

– Evaluation of our strategies combined with the index using the Star Schema
Benchmark.

The rest of this paper is structured as follows: we start with preliminaries in
Sect. 2, here we also present our running example. Section 3 presents the base-
line strategy for answering provenance-enabled analytical queries. In Sect. 4 we
propose our novel Context Index. In Sect. 5 we combine the baseline strategy
with the index. Next, in Sect. 6 the materialization strategy is presented and
how it can be combined with the Context Index. In Sect. 7 we evaluate the
proposed strategies. We conclude with related work in Sect. 8 followed by the
conclusion and future work in Sect. 9.

2 Preliminaries

In this section, we present how provenance data is encoded, define provenance-
enabled analytical queries, and present our running example of a provenance-
enabled analytical query and an RDF data cube.

2.1 Encoding Provenance

Provenance data describes a piece of data, in terms of its origin, how it was
created, when it was changed, and who created it. Reification is the standard
(W3C) for expressing provenance information about triples. However, using the
context value as a provenance identifier is gaining popularity [4,10,13,22,24]. To
further define what provenance is, we need to define an RDF triple.

An RDF triple consists of a subject, predicate, and object, where the subject is
related to the object through the relationship defined by the predicate. Formally
we say a triple t is defined as t = (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L), where
U is a set of IRIs, B is a set of blank nodes, and L is a set of literals. An RDF
graph contains a set of triples, each graph has a unique identifying IRI. When a
triple is contained in an RDF graph, we write the triple as a quad, it consists of
a subject, predicate, object, and context value. The context value contains the
unique identifier of the graph.

Given a set of IRIs U , a set of blank nodes B, a set of literals L, and a
set of query variables V , a triple pattern (TP) is defined as TP = (s, p, o) ∈
(U ∪ B ∪ V)×(U ∪ V)×(U ∪ B ∪ L ∪ V). A basic graph pattern (BGP) consists
of a set of triple patterns joined via shared query variables.

In this work, we distinguish between information triples, metadata triples,
and provenance triples. An information triple represents a piece of information.

188 K. Ahlstrøm et al.

An example of an information triple is: (ex:kim foaf:name "Kim"), this
triple encodes that ex:kim has the name “Kim”. A metadata triple describes
part of the structure of the RDF data cube, e.g., (ex:City ex:rollUpTo
ex:Country), this triple describes that the city level rolls up to the country
level. A provenance triple describes an information triple; in this paper, we use
the W3C PROV Ontology [20] (PROV-O) to describe the provenance data.

PROV-O defines provenance based on three core components: Entities are
defined as conceptual or physical things. In the context of RDF, an entity repre-
sents a set of information triples. Activities express how entities are created or
changed. Agents are actors that interact with activities or entities.

When we have a collection of connected provenance triples, we say that the
provenance triples constitute a provenance graph. Figure 1 illustrates the prove-
nance graph of an information triple using the PROV-O components. The prove-
nance graph has two entities illustrated as ovals. There is one activity, illustrated
by a rectangle, it uses one entity and generates another entity, the generated
entity is marked as trusted. The agent, illustrated as a pentagon, is associated
with the activity.

Fig. 1. Provenance graph

Information triples are linked to a provenance graph via an entity. The iden-
tifier of the entity is linked with the context value of the information triple. We
will show a concrete example of this in the next section.

2.2 Provenance-Enabled RDF Data Cubes

In many ways, an RDF data cube is a traditional cube as defined in the context
of relational databases [17]. However, the underlying data is formatted as RDF
and instead of a schema an ontology is used; a full definition of the standard
ontology for defining RDF data cubes is provided by the W3C [6]. An RDF data
cube contains observations, these are the focus of the desired analysis, e.g., sales
of books. An observation has a set of numerical attributes called measures. The
observations are connected to a set of dimensions through a dimension property.
Dimensions contain hierarchies of levels that are connected via level properties;
each level may contain several attributes.

The RDF data cube in our running example has three dimensions: Date,
Shop, and Location, the observations are sales of books and have one measure

Towards Answering Provenance-Enabled SPARQL Queries 189

:price. The Date dimension has three levels: Day, Month, and Year, the Book
dimension has one level: Book, and the Location has three levels: Shop, City,
and Country. The levels of these dimensions are described by attributes such
as :monthName and :yearNumber. The structure of the RDF data cube is
illustrated in Fig. 2. Throughout this paper, we use the QB4OLAP vocabulary1

to define our cube. We choose this vocabulary because it builds upon the W3C
standard vocabulary [6] and in addition defines levels, aggregate functions, car-
dinalities, and hierarchies. The strategies presented in this paper are not limited
to the QB4OLAP vocabulary.

Fig. 2. Structure of the RDF data cube in running example

Table 1 shows a subset of the RDF data cube consisting of information triples
and metadata triples; the data describes two book purchases made at two differ-
ent dates. For brevity, the example does not contain any Book or Shop dimen-
sions, or the QB4OLAP cube definition.

In this paper, we use provenance identifiers to link information triples to a
provenance graph [13]. A provenance identifier is an IRI that is stored as the
context value of the information triple and as the subject of a provenance triple
from the corresponding provenance graph. In this example, we use capital let-
ters to represent the IRI of the provenance identifiers, e.g., :A. Not all context
values are provenance identifiers, all triples that define part of the cube struc-
ture, e.g., (:january2016 skos:broader :2016), are stored in the graph
:Metadata.

In Table 2, five provenance graphs are displayed. The provenance graphs
describe the provenance identifiers: :A, :B, :C, :D, and :E. These provenance
identifiers link the information triples to the provenance graphs. Each provenance
graph consists of three provenance triples. The provenance identifier represents
the PROV-O entity that has been generated by some activity and the activity
“used” some source entity during the generation. The source entities have a sta-
tus attribute that is either “trusted” or “unknown”. All provenance triples are
stored in the graph :Provenance.

1 https://github.com/lorenae/qb4olap/blob/master/rdf/qb4olap.1.2.ttl.

https://github.com/lorenae/qb4olap/blob/master/rdf/qb4olap.1.2.ttl

190 K. Ahlstrøm et al.

Table 1. The RDF data cube cube showing two book sales made on two different dates

Subject Predicate Object Context value

:observation1 :price 7 :A

:observation1 :date :date31012016 :Metadata

:date31012016 skos:broader :january2016 :Metadata

:january2016 :monthName “January” :B

:january2016 skos:broader :2016 :Metadata

:2016 :yearNumber 2016 :C

:observation2 :price 12 :D

:observation2 :date :date01022016 :Metadata

:date01022016 skos:broader :february2016 :Metadata

:february2016 :monthName “February” :E

:february2016 skos:broader :2016 :Metadata

Table 2. Provenance triples for cube

Subject Predicate Object Context value

:A prov:wasGeneratedBy :BookExtractor :Provenance

:BookExtractor prov:used :DBpedia :Provenance

:DBpedia :status “trusted” :Provenance

:B prov:wasGeneratedBy :DateExtractor1 :Provenance

:DateExtractor1 prov:used :DateRepository1 :Provenance

:DateRepository1 :status “trusted” :Provenance

:C prov:wasGeneratedBy :CalenderExtractor :Provenance

:CalenderExtractor prov:used :CSVFile :Provenance

:CSVFile :status “trusted” :Provenance

:D prov:wasGeneratedBy :WebTableExtractor :Provenance

:WebTableExtractor prov:used :WebTable :Provenance

:WebTable :status “unknown” :Provenance

:E prov:wasGeneratedBy :DateExtractor2 :Provenance

:DateExtractor2 prov:used :DateRepository2 :Provenance

:DateRepository2 :status “trusted” :Provenance

3 Processing Provenance-Enabled Analytical Queries

In this section, we define provenance-enabled analytical queries, propose our
baseline strategy called “Native Querying Strategy”, and conduct an analysis of
shortcomings of standard triple stores in this context.

Towards Answering Provenance-Enabled SPARQL Queries 191

3.1 Provenance-Enabled Analytical Queries

A provenance-enabled analytical query is a SPARQL [12] query that is executed
over an RDF data cube, where the data the query is evaluated over is filtered
using a provenance query. Similar to [24] we adopt an approach where the ana-
lytical part and the provenance part of the query are seperated, both to enhance
understandability and for performance reasons. Alternatively, it is possible to
rewrite the queries such that they are combined into one, however, this is a com-
plex process [24]. Using SPARQL 1.1 we express the analytical query: “find the
average price of sold books per year”, see Query 1. Note that in this query we
use the skos:broader predicate to roll-up a level along a hierarchy, as defined
by the QB4OLAP vocabulary [9].
SELECT ?year AVG(?price)
WHERE {
?fact :price ?price ;

:date ?dayLevel .
?dayLevel skos:broader ?monthLevel .
?monthLevel skos:broader ?yearLevel .
?yearLevel :yearNumber ?year .

}
GROUP BY ?year

Query 1. Analytical query

A provenance query is characterized by always returning a set of context val-
ues, these correspond to the provenance identifiers from the information triples.
Query 2 shows a provenance query that finds the context values of all triples
that originate from trusted sources.
SELECT ?provenanceIdentifiers
FROM :Provenance
WHERE {
?provenanceIdentifiers prov:wasGeneratedBy ?activity .
?activity prov:used ?entity .
?entity :status ?status .
FILTER (?status ="trusted") .

}

Query 2. Provenance query

3.2 Native Querying Strategy

As a baseline strategy, we propose the “Native Querying Strategy”, henceforth
referred to as “Native”. Figure 3 illustrates the steps of this strategy.

Fig. 3. Steps of the native strategy

192 K. Ahlstrøm et al.

First, the provenance query (PQ) is executed and the provenance identifiers
of all matching provenance graphs are returned. When executing Query 2 over
the provenance data presented in Table 2, the following provenance identifiers are
returned: :A, :B, :C, and :E. Second, the analytical query (AQ) is updated by
adding additional FROM clauses, we name this query AQ

′
. For each provenance

identifier, we add a FROM clause with the IRI of the provenance identifier. This
ensures that only information triples with a provenance graph that matches the
provenance query are considered when executing the AQ. Additionally, we need
to make sure that we always have a valid cube. Therefore, a FROM clause with
the :Metadata IRI is always added. In Query 3 we see AQ

′
; four FROM clauses

have been added, one for each of the provenance identifiers and one for the cube
metadata.
SELECT ?year AVG(?price)
FROM :A
FROM :B
FROM :C
FROM :Metadata
WHERE {
?fact :price ?price ;

:date ?dayLevel .
?dayLevel skos:broader ?monthLevel .
?monthLevel skos:broader ?yearLevel .
?yearLevel :yearNumber ?year .

}
GROUP BY ?year

Query 3. Updated analytical query (AQ
′
)

Third, we execute AQ
′

over the RDF data cube. When executed over the
example cube in Table 1 the query will evaluate to: “2016, 7”. This means that
in 2016 the average price for sold books was 7.

3.3 Preliminary Analysis

In this section, we make a preliminary analysis of the Native strategy and how
it performs on standard triple stores to determine its strengths and weaknesses.
We hypothesize that standard triple stores, i.e. Jena TDB [2] Band RDF4J
native [8], are not able to efficiently handle a large number of FROM clauses.
This is important, because the Native strategy may have hundreds of FROM
clauses, depending on the provenance query and the provenance data.

To test this, we create a small RDF data cube with 68,700 triples, where
65% are information triples, 19% are provenance triples, and 16% are metadata
triples. We create three RDF data cubes such that the information triples are
distributed over 1000, 500, and 100 provenance identifiers. We execute the same
query on the three datasets rewritten such that the number of FROM clauses
in the query matches the datasets, i.e., 1000, 500, and 100 FROM clauses. The
experiment is conducted on the Jena TDB and RDF4J native triple stores, both
stores are created with the GSPO, GPOS, GOSP, SPOG, POSG, and OSPG
indices to ensure that the queries are evaluated in an efficient manner. Table 3
shows the results of this experiment. We see that, when the number of FROM

Towards Answering Provenance-Enabled SPARQL Queries 193

Table 3. Runtime of standard triple stores using the native strategy

100 FROM clauses 500 FROM clauses 1000 FROM clauses

Jena TDB 1.4 s 7.5 s 13.7 s

RDF4J native 1.0 s 28.0 s 47.0 s

clauses increases, the query evaluation time increases. Based on this observation,
we can conclude that the hypothesis holds and it is indeed a problem for standard
triple stores to handle a high number of FROM clauses in SPARQL queries.

4 Context Index

To reduce the number of FROM clauses in the AQ, we propose the Context Index.
Using this index it is possible to reduce the number of provenance identifiers that
need to be added as FROM clauses. First, we explain the structure of the index,
then how it is used, and last how it is constructed.

4.1 Structure

The Context Index is an unbalanced tree where each node corresponds to a
predicate from the RDF data cube except the root node. Each child of the root
is a measure or a dimension property; the node is named after the predicate of
the corresponding triple. The following nodes are attributes or level properties,
again named after the corresponding predicates. Each node that is an attribute
is connected to one or more leaf nodes, the leaf nodes are named after provenance
identifiers for that specific attribute.

Figure 4 illustrates the index constructed based on the data used in the
running example, see Table 1. The root node has two children, the measure
:price and the dimension property :date. This dimension property links to
the bottom level of the Date dimension, the Day level. This level does not
have any attributes, only a level property. Recall that QB4OLAP uses the
predicate skos:broader to identify these. The month level has the attribute
:monthName and the level property skos:broader. The year level has the
attribute :yearNumber. The leaves are the property identifiers from Table 1,
such that the provenance identifier of the observations with the predicate
:price are the leaves of that predicate, i.e., :A and :D.

4.2 Lookup

The lookup is split into two steps. First, we analyze the analytical query.
The WHERE clause of the analytical query is traversed when path-shaped

BGPs are extracted. A path-shaped BGP (PSB) is a non-circular chain of
triple patterns {(s1, p1, o1), (s2, p2, o2), ..., (sn, pn, on), ..., (sm, pm, om)}, where

194 K. Ahlstrøm et al.

Fig. 4. The context index.

each triple pattern is linked to at most two triple patterns via object-subject
joins, such that oi = si+1.

If we analyze the analytical query, Query 1, introduced above we see that
two PSBs are found. They are illustrated in Fig. 5.

Fig. 5. Two path-shaped basic graph patterns (Color figure online)

Second, we use the PSB to look up the provenance identifiers in the con-
text index. For each PSB, we perform a lookup in the index. By matching the
predicates of the triple patterns with the predicates in the index, we identify
a set of leaf nodes. This is the set of provenance identifiers that is needed to
answer the analytical query. We have color-coded the two PSBs in Fig. 5 in blue
and yellow, and correspondingly marked the lookup paths in Fig. 4. The result
of the lookup consists of the three provenance identifiers: :A, :D, and :C. This
is useful because any provenance identifier that is not found this way, can be
discarded. This is because they will not be used when answering the analytical
query. Therefore, they can be used to reduce the number of FROM clauses, we
will elaborate on this in Sect. 5.

4.3 Construction

Now we explain how the index is built. The index is precomputed and updated
when the data is updated. To build the index, a full scan of the RDF data cube
is required. First, the RDF data cube definition is traversed; starting from the

Towards Answering Provenance-Enabled SPARQL Queries 195

observations all measures are added as nodes, they are named after the predicate
of the specific measure, e.g., :price. For each dimension, a new node is created,
these nodes are named after the dimension property, e.g., :date. Second, in a
depth-first manner each dimension is traversed one level at a time. All attributes
are added as nodes to their corresponding level and named after the attribute
predicate. Similarly, each parent level spawns a new node. This node is named
after the level property, in QB4OLAP these are always called skos:broader.
This continues until all dimensions have been traversed. Third, for each attribute
a query is generated and issued that returns the provenance identifiers of that
specific attribute. These are added as leafs to the attribute. Figure 4 illustrates
a fully constructed context index.

5 Index-Based Native Strategy

In this section, we combine the Native Querying Strategy with the Context
Index in order to address the problem of too many FROM clauses, as discussed
in Sect. 3.3. In this strategy, we use the fact that the provenance query potentially
finds more provenance identifiers than what are actually needed to answer the
analytical query. Figure 6 illustrates the steps of the strategy.

Fig. 6. Steps of the index-based native strategy

First, the provenance query is executed, as described in Sect. 3.2, and a set
of provenance identifiers is returned. In our running example, this corresponds
to the set: (:A, :B, :C, :E). In parallel to this the analytical query is analyzed
and the path-shaped BGPs are identified. These are used to look up the set of
provenance identifiers in the context index, as described in Sect. 4. This set of
provenance identifiers is: (:A, :D,:C). Second, the intersection of these two sets
is found by finding common IRIs. We say it is minimum because it contains the
minimum set of provenance identifiers that is needed to answer the provenance-
enabled analytical query. The intersection of the two aforementioned sets is:
(:A, :C). This means that only the information triples with these provenance
identifers are needed to answer the provenance-enabled analytical query. The
next two steps are identical to the second and third step in the Native Strategy
(Sect. 3.2). Third, the IRIs of the provenance identifiers are added as FROM
clauses to the analytical query to produce the updated analytical query. Fourth,
the updated analytical query is executed over the RDF data cube.

196 K. Ahlstrøm et al.

6 Materialization Strategy

In this section, we propose an additional strategy that relies on materialization.
Further, we explain how it is combined with the Context Index.

6.1 Materialization Strategy

In this strategy, we materialize the subset of the RDF data cube based on the
provenance identifiers and execute the analytical query over the materialized
subset. Obviously, this strategy allows for reuse of the materialized cube when
identical queries are issued in the fugure. However, this is not the main benefit of
this strategy. As shown in Sect. 3.3, standard triple stores are not able to handle
queries with a large number of FROM clauses. By first materializing the sub-
cube and then executing the analytical query over that, we split a complex query
into two simple queries, which is easier for the triple stores to handle efficiently.

Fig. 7. Steps of the materialization strategy

Figure 7 illustrates the steps of this strategy. Similar to the native strategy,
the first step is to execute the provenance query, to obtain a set of provenance
identifiers. In our running example these are: :A, :B, :C, and :E. Second, a
SPARQL CONSTRUCT query is created. This query creates the sub-cube, we
call this Cube’. In the WHERE clause, we match all triple patterns and in
the CONSTRUCT clause we insert the matching triple patterns but change
the context value to :MaterializedSubCube. For each provenance identifier
a FROM clause is created. Again we also add the :Metadata graph. This
query creates a sub-cube that only contains information triples that satisfy the
provenance query. In Query 4 the CONSTRUCT query for Cube’ is shown. It
creates a set of quads where the subject, predicate, and object remain unchanged
but the context value is set to :MaterializedSubCube.

CONSTRUCT {
GRAPH <:MaterializedSubCube> {?s ?p ?o }

}
FROM <:A>
FROM <:B>
FROM <:C>
FROM <:E>
FROM <:Metadata>
WHERE {
?s ?p ?o

}

Query 4. Query for materializing the sub-cube (Cube’)

Towards Answering Provenance-Enabled SPARQL Queries 197

The result of the CONSTRUCT query is shown in Table 4.

Table 4. The triples of the sub-cube (Cube′)

Subject Predicate Object Context value

:observation1 :price 7 :MaterializedSubCube

:observation1 :date :date31012016 :MaterializedSubCube

:date31012016 skos:broader :january2016 :MaterializedSubCube

:january2016 :monthName “January” :MaterializedSubCube

:january2016 skos:broader :2016 :MaterializedSubCube

:2016 :yearNumber 2016 :MaterializedSubCube

:observation2 :date :date01022016 :MaterializedSubCube

:date01022016 skos:broader :febuary2016 :MaterializedSubCube

:febuary2016 :monthName “Febuary” :MaterializedSubCube

:febuary2016 skos:broader :2016 :MaterializedSubCube

Third, the analytical query is executed over the materialized sub-
cube (Cube’). A single FROM clause is added with the identifier
:MaterializedSubCube. When executed over Cube’, the query will eval-
uate to: “2016, 7”.

6.2 Index-Based Materialization Strategy

The materialization strategy can further be improved by combining it with the
context index. The steps are illustrated in Fig. 8.

Fig. 8. Steps of the index-based materialization strategy

The first two steps are identical to the first two steps explained in Sect. 5.
The last two steps are identical to step two and three from the materialization
strategy explained above. Therefore, we will only give an example. First, the
provenance query is executed yielding the set (:A, :B, :C, :E). The index is
used and the set (:A, :D,:C) is output. Second, the intersection of the two sets
are determined (:A, :C). Third, the CONSTRUCT query for the sub-cube is
built and executed, resulting in the sub-cube Cube’, see Table 5. Fourth, the
analytical query is executed over Cube’.

198 K. Ahlstrøm et al.

Table 5. Materialized cube where index is used

Subject Predicate Object Context value

:observation1 :price 7 :MaterializedSubCube

:observation1 :date :date31012016 :MaterializedSubCube

:date31012016 skos:broader :january2016 :MaterializedSubCube

:january2016 skos:broader :2016 :MaterializedSubCube

:2016 :yearNumber 2016 :MaterializedSubCube

:observation2 :date :date01022016 :MaterializedSubCube

:date01022016 skos:broader :febuary2016 :MaterializedSubCube

:febuary2016 skos:broader :2016 :MaterializedSubCube

7 Experiments

To empirically evaluate our Native and Materialization strategies in combination
with the context index, we conduct a series of experiments on the Jena TDB
triple store. In order to test the scalability of our strategies we use the Star
Schema Benchmark dataset and generate matching provenance data.

7.1 Experimental Environment

Hardware Platform. All experiments were run in a virtual machine with
an AMD Opteron (TM) Processor 6274 (dual core), 16 GB of RAM, 500 GB
harddisk, running Ubuntu 14.04.4 LTS.

SSB Dataset. For evaluating our strategies we use the Star Schema Bench-
mark [21]. This dataset refines the TPC-H benchmark to provide a realistic
analytical benchmark [3]. The dataset has four dimensions: Supplier, Part, Cus-
tomer, and Date, these describe the Lineorder observations. Table 6 shows the
size of the datasets used in our experiments and the distribution of the triples.

Table 6. Overview of the four different sizes of cubes used in the experiments

Triples Information Provenance Metadata Unique provenance

triples triples triples graphs

1,000,000 744,000 6,000 250,000 30,000

1,800,000 1,300,000 10,000 490,000 60,000

8,000,000 5,588,000 12,000 2,400,000 300,000

13,500,000 8,980,000 20,000 4,500,000 600,000

Towards Answering Provenance-Enabled SPARQL Queries 199

Provenance Generation. We generate provenance data for the SSB dataset.
Each provenance graph consists of between 42 and 72 provenance triples with a
varying number of entities, agents, and activities.

We use three different levels of granularity, unique, shared, and split. Unique
is the finest level of granularity, each information triple is described by its own
provenance graph. This means that each information triple has a unique prove-
nance identifier. Shared is the coarsest level of granularity; all information triples
share the same provenance graph, thus all information triples have the same
provenance graph. Split has a varying level of granularity. When splitting we
select an attribute, e.g., :monthName, which encodes the name of the month.
Splitting on this attribute means that all dates from a given month, e.g., Janu-
ary, will share the same provenance graph. Depending on the number of distinct
values for the attribute, the granularity may vary.

We vary the granularity level on each of the four dimensions and the observa-
tions. As default we choose to split the Lineorders by the attribute :custkey,
this means that all Lineorders made by the same customer share the same prove-
nance graph. All information triples from the same dimension share the same
provenance graph, such that all information triples from the supplier dimension
have the same provenance graph.

Workload. As workload we consider an analytical query and a set of synthetic
provenance queries. The provenance queries we use return a slice of the RDF data
cube, such that 10%, 20% ... 90% of the provenance identifiers are selected. This
allows us to measure the performance of the strategies in a controlled manner.
The slice is designed such that a valid RDF data cube will always be returned,
thus ensuring that all provenance-enabled queries are valid over the RDF data
cube.

7.2 Results

Analysis. The scalability and performance of our strategies are reported in
Fig. 9. The x-axis shows the size of the RDF data cubes in millions of triples
and the y-axis shows the execution time in seconds on a logarithmic scale. The
provenance query in this experiment has 10% of the provenance identifiers. Note
that the native and native+Index strategies are omitted for large cubes due to
execution times exceeding one hour. Due to the poor scaling of the Native strate-
gies, it is difficult to make any conclusions. We observe that the materialization
strategies are faster than the native strategies, up to two orders of magnitude,
if we consider the context index, then even more. We also observe that the Con-
text Index reduces the execution time of both strategies. The index provides a
constant improvement of 50% for the Materialization Strategy on all scales. For
the Native Strategy this improvement is only 5%.

Figure 10 illustrates how the strategies scale when the number of provenance
identifiers increase. On the x-axis is the number of FROM clauses and on the
y-axis is the query evaluation time in seconds. In this experiment we use an RDF

200 K. Ahlstrøm et al.

1.0 1.8 8.0 13.5

101

102

103

104

Million of triples

E
va
lu
at
io
n
tim

e
(s
ec
)

Native
Native+Index
Materialized

Materialized+Index

Fig. 9. Query execution over different
sizes of RDF data cubes (log scale)

10 30 50 70 90

50

100

150

200

Percentage size of provenance query

E
va
lu
at
io
n
tim

e
(s
ec
)

Materialized
Materialized+Index

Fig. 10. Query execution with increasing
number of FROM clauses

data cube of 1.8 million triples. Due to very large performance difference, the
Native strategies have been omitted but they show a similar tendency. On the
lower percentage, the Context Index gains a 100% speed up. As the percentage
increases the performance of the index relatively decreases. Again this is because
the index provides a constant improvement.

Discussion. As expected the Context Index reduces the number of FROM
clauses and thereby reduces query time. Because of the synthetic nature of the
provenance queries, we see a fixed performance improvement. However, because
the index is constructed on load time the index has to be rebuilt when the
data is updated. The Materialized strategy benefits the most from the Context
Index. The index does not provide a substantial improvement for the Native
Strategy, because it suffers from poor support in standard triples stores. The
Materialization Strategy is up to 100 times faster than the Native Strategy. The
price for this performance improvement lies in the additional storage cost for
storing and updating the materialized cube. Reuse of the materialized cube was
not part of the evaluation, but we expect that this would further improve this
strategy. Combining the Context Index with the Materialized proves to be the
best strategy.

8 Related Work

Several custom RDF provenance storage systems have been proposed in the lit-
erature. RDFProv [5] is based on a relational store for answering provenance
queries over scientific workflows. By using mappings and translation algorithms
on-the-fly SPARQL queries can be answered over the relational store. This app-
roach is limited to workflow provenance queries. Our work addresses the problem

Towards Answering Provenance-Enabled SPARQL Queries 201

of combining queries with provenance filters. In our work, we propose strategies
for combining analytical queries and provenance queries.

Chebotko et al. [4] optimized Apache HBase to handle a high number of
large provenance graphs, this is primarily done by using specialized indexes for
select and join operations. Similar to PDFProv querying both the provenance
and information triples are not considered.

TriplePROV [23] stores RDF data in molecule templates and custom physical
storage models to enable fast retrieval of triples. When queries are evaluated a
provenance polynomial is constructed that makes it possible to track the triples
used for answering the query. While provenance polynomials are a powerful
tool for some tasks, it is not possible to query the provenance polynomials using
SPARQL. However, by using the context value to identify provenance triples, we
do not suffer from this limitation. These custom RDF storage systems all have in
common that their techniques cannot be applied to standard triple stores such
as Jena TDB [2] or RDF4J Native [8]. The strategies we suggest are applicable
in a storage independent manner.

In this work we build upon the query execution strategies proposed in [24].
However, it is not possible or sensible to directly apply these strategies to answer
provenance-enabled analytical queries over RDF data cubes, because important
metadata would be discarded. Additionally, unlike our strategies these are not
applicable to standard triple stores.

The area of RDF data cubes is in constant growth. While there are sev-
eral groups working towards how to best combine business intelligence and the
Semantic Web [1,7,15,18,19], there is an agreement that this area carries a lot
of potential for enabling web analytics. While some works on optimizing the exe-
cution of analytical queries [14,16] others work on adding spatial concepts [11].
Our work takes a step further by working towards how quality, security, and
traceability can be enabled through provenance. In this paper, we address the
problem of efficiently answering provenance-enabled analytical queries over RDF
data cubes.

9 Conclusions and Future Work

In this paper, we work towards the problem of answering provenance-enabled
analytical queries over RDF data cubes stored in standard triple stores. We
observe that the main problem of evaluating such queries is handling SPARQL
queries with a high number of FROM clauses. We propose the Native Strategy
for answering provenance-enabled analytical queries and present two improve-
ments. The first improvement is the novel Context Index that takes advantage of
the cube structure to reduce the number of FROM clauses. The second improve-
ment is the Materialization Strategy, it splits a provenance-enabled analytical
query into a construction query and an analytical query, thus avoiding executing
complex query over many graphs. Finally, we perform an empirical evaluation
of our strategies using the Star Schema Benchmark augmented with provenance
data. Our experimental evaluation confirms that the materialization strategy is

202 K. Ahlstrøm et al.

efficient and scales for large RDF data cubes and the context index provides a
consistent improvement for both strategies.

Building on the results of this work, we see a number of possible paths of
future work. The current evaluation focuses on scale tests. However, using real-
life data would help us further optimize the strategies and the index. Addition-
ally, we would like to apply our strategies in a distributed setting, this which
involves for a series of new challenges.

Acknowledgments. This research was partially funded by the Danish Council for
Independent Research (DFF) under grant agreement No. DFF-4093-00301.

References

1. Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J.,
Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey.
TKDE 27(2), 571–588 (2015)

2. Apache software foundation. Jena TDB (3.1.0). https://jena.apache.org/
3. Bog, A., Plattner, H., Zeier, A.: A mixed transaction processing and operational

reporting benchmark. ISF 13(3), 321–335 (2011)
4. Chebotko, A., Abraham, J., Brazier, P., Piazza, A., Kashlev, A., Lu, S.: Storing,

indexing and querying large provenance data sets as RDF graphs in apache HBase.
In: Services, pp. 1–8 (2013)

5. Chebotko, A., Lu, S., Fei, X., Fotouhi, F.: RDFProv: a relational RDF store for
querying and managing scientific workflow provenance. DKE 69(8), 836–865 (2010)

6. Cyganiak, R., Reynolds, D.: The RDF data cube vocabulary. W3C recommenda-
tion, W3C, January 2014. http://www.w3.org/TR/2014/REC-vocab-data-cube-
20140116/

7. Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a programmable semantic
extract-transform-load framework for semantic data warehouses. In: DOLAP, pp.
15–24 (2015)

8. Eclipse RDF4J. RDF4J (2.0.1). http://rdf4j.org/
9. Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses

on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-10160-6 5

10. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Color-
ing RDF triples to capture provenance. In: Bernstein, A., Karger, D.R., Heath,
T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC
2009. LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04930-9 13

11. Gür, N., Hose, K., Pedersen, T.B., Zimányi, E.: Modeling and querying spatial
data warehouses on the semantic web. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S.
(eds.) JIST 2015. LNCS, vol. 9544, pp. 3–22. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-31676-5 1

12. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

13. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in
RDF (2014). CoRR abs/1406.3399

https://jena.apache.org/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://rdf4j.org/
http://dx.doi.org/10.1007/978-3-319-10160-6_5
http://dx.doi.org/10.1007/978-3-319-10160-6_5
http://dx.doi.org/10.1007/978-3-642-04930-9_13
http://dx.doi.org/10.1007/978-3-642-04930-9_13
http://dx.doi.org/10.1007/978-3-319-31676-5_1
http://dx.doi.org/10.1007/978-3-319-31676-5_1
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

Towards Answering Provenance-Enabled SPARQL Queries 203

14. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Towards exploratory OLAP
over linked open data - a case study. In: BIRTE, pp. 1–18 (2014)

15. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Processing aggregate queries
in a federation of SPARQL endpoints. In: Gandon, F., Sabou, M., Sack, H.,
d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol.
9088, pp. 269–285. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18818-8 17

16. Jakobsen, K.A., Andersen, A.B., Hose, K., Pedersen, T.B.: Optimizing RDF data
cubes for efficient processing of analytical queries. In: COLD (2015)

17. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data
Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, San Rafael (2010)

18. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: ORE: an iterative approach to
the design and evolution of multi-dimensional schemas. In: DOLAP, pp. 1–8 (2012)

19. Laborie, S., Ravat, F., Song, J., Teste, O.: Combining business intelligence with
semantic web: overview and challenges. In: INFORSID, pp. 99–114 (2015)

20. McGuinness, D., Lebo, T., Sahoo, S.: PROV-o: The PROV ontology. W3C
recommendation, W3C, April 2013. http://www.w3.org/TR/2013/REC-prov-
o-20130430/

21. O’Neil, P., O’Neil, B., Chen, X.: Star schema benchmark. Technical report,
UMass/Boston, June 2019. http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF

22. Wang, H., Wu, T., Qi, G., Ruan, T.: On publishing Chinese linked open schema.
In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D.,
Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 293–308. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11964-9 19

23. Wylot, M., Cudre-Mauroux, P., Groth, P.: TripleProv: efficient processing of lin-
eage queries in a native RDF store. In: WWW, pp. 455–466 (2014)

24. Wylot, M., Cudre-Mauroux, P., Groth, P.: Executing provenance-enabled queries
over web data. In: WWW, pp. 1275–1285 (2015)

http://dx.doi.org/10.1007/978-3-319-18818-8_17
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://dx.doi.org/10.1007/978-3-319-11964-9_19

Data Analysis of Hierarchical Data
for RDF Term Identification

Pieter Heyvaert(B), Anastasia Dimou, Ruben Verborgh, and Erik Mannens

iMinds – IDLab – Ghent University, Ghent, Belgium
pheyvaer.heyvaert@ugent.be

Abstract. Generating Linked Data based on existing data sources
requires the modeling of their information structure. This modeling needs
the identification of potential entities, their attributes and the relation-
ships between them and among entities. For databases this identification
is not required, because a data schema is always available. However, for
other data formats, such as hierarchical data, this is not always the case.
Therefore, analysis of the data is required to support rdf term and data
type identification. We introduce a tool that performs such an analysis
on hierarchical data. It implements the algorithms, Daro and S-Daro,
proposed in this paper. Based on our evaluation, we conclude that S-
Daro offers a more scalable solution regarding run time, with respect to
the dataset size, and provides more complete results.

1 Introduction

Data often originally resides in (semi-)structured formats. Tools [1,2] and map-
ping languages [3,4] allow to describe how Linked Data, via rdf triples, is gener-
ated based on the original data. Information structure modeling [5] (henceforth
referred to as ‘modeling’) is required during the creation of these descriptions.
This modeling includes the following tasks: (1) identify the candidate entities,
their attributes and the relationships among these entities; (2) generate iris for
the entities; and (3) define the data type of each attribute, if needed. For rdf
these tasks align with rdf term identification. However, they can be fulfilled in
different ways, and not every way results in the desired rdf triples. Additionally,
current tools come short in fulfilling these tasks (semi-)automatically or do not
provide the users with the required information to fulfill them manually. This
information includes the data model, keys and data types. Though, this infor-
mation can be found in the data schema, for hierarchical data the schema is not
always available, nor always complete, as opposed to databases. Tools, such as
XmlGrid1 and FreeFormatter2 for xml data, exist to generate these schemas.

The described research activities were funded by Ghent University, iMinds, the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research Flanders (FWO Flanders), and the European Union.

1 http://xmlgrid.net/xml2xsd.html.
2 http://www.freeformatter.com/xsd-generator.html.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 204–212, 2016.
DOI: 10.1007/978-3-319-50112-3 15

http://xmlgrid.net/xml2xsd.html
http://www.freeformatter.com/xsd-generator.html

Data Analysis of Hierarchical Data for RDF Term Identification 205

However, they do not give all the aforementioned information, such as keys, and
the data type information is not fine-grained enough when working with dirty
data. Additionally, manually extracting this information is error-prone and time
consuming, as the complete data source needs to be analyzed. In this paper,
we introduce a tool3 to obtain the required information of hierarchical data to
address the three tasks. The tool implements two algorithms, Daro and S-Daro,
to conduct the data analysis in a scalable way, as the dataset can become large.
Based on theoretical analysis, the key discovery of Daro is not always complete,
while for S-Daro it is. From our evaluation, we conclude that S-Daro has a better
run time when the dataset size increases. The remainder of the paper is struc-
tured as follows. In Sect. 2, we discuss the related work. In Sect. 3, we explain,
using an example, how the data analysis information can be used to fulfill the
modeling tasks. In Sect. 4, we explain the two algorithms. In Sect. 5, we elabo-
rate on the evaluation of the two algorithms. Finally, in Sect. 6, we conclude the
paper.

2 Related Work

For xml the data model, keys and data types can be described via the xml
schema. However, not in all cases is the schema available, nor complete. Tools
exist that allow to generate a schema based on an xml file, such as XmlGrid and
FreeFormatter. The same is applicable for json and the json schema [6]. The
tool at http://jsonschema.net can be used to generate a json schema given a
json input. These tools provide data model and data type information. However,
the latter lacks detail as a single data type is given when certain data fractions
might have different data types. Furthermore, these tools lack key discovery.

3 Example: RDF Term Identification Using Data
Analysis

In most cases Linked Data is interpreted as a graph structure, as done by rdf,
where the nodes (representing the entities and their attributes) are linked using
edges (representing the relationships). Using the xml example in Listing 1.1, we
execute the three aforementioned tasks (see Sect. 1) of the modeling process to
identify the rdf terms, taking into account which information from the data
analysis is used to fulfill each task. We aim to give one possible set of declara-
tive statements of how these terms are generated, using the mapping language
rml [4], based on the data model, keys and data types. Subsequently, these
statements are used to generate rdf triples.

3 https://github.com/RMLio/data-analysis-cli; available under the MIT license.

http://jsonschema.net
https://github.com/RMLio/data-analysis-cli

206 P. Heyvaert et al.

1 <person>
2 <firstName>John</firstName>
3 <lastName>Doe</lastName>
4 <car id="0695-77968-33844">
5 <brand>Peugeot</brand>
6 <purchDate>12-01-2015</purchDate>
7 </car>
8 </person>
9 <person>

10 <firstName>Jane</firstName>

11 <lastName>Doe</lastName>
12 <car id="0695-77968-33897">
13 <brand>Peugeot</brand>
14 <purchDate>16-01-2015</purchDate>
15 </car>
16 </person>
17 </persons>

Listing 1.1. xml example with person
metadata (http://ex.com/persons.xml)

Task 1: Identify Entities, Attributes and Relationships Using Data
Model. rdf term identification is required to find the appropriate iris, blank
nodes, and literals. It is supported by using the data model. The tree structure
of these data sources allows determining possible entities, their literals and rela-
tionships by looking at the xml elements and xml attributes: parent elements
(i.e., elements with child elements) are identified as entities (iris or blank nodes),
and leaf elements (i.e., elements with no child elements) and attributes as the
entities corresponding iris’ or blank nodes’ literals. Additionally, if a parent ele-
ment has a parent element as a child, there exists a relationship between the
corresponding entities. In the example, the parent elements are <person> and
<car>. This leads to:

1 @prefix rr: <http://www.w3.org/ns/r2rml#> . @prefix rml:
2 <http://semweb.mmlab.be/ns/rml#> . @prefix xsd:
3 <http://www.w3.org/2001/XMLSchema#> .
4
5 <#PersonMapping>
6 rml:logicalSource [
7 rml:source "http://ex.com/persons.xml";
8 rml:referenceFormulation ql:XPath;
9 rml:iterator "/persons/person"] .

10 <#CarMapping>
11 rml:logicalSource [
12 rml:source "http://ex.com/persons.xml";
13 rml:referenceFormulation ql:XPath;
14 rml:iterator "/persons/person/car"] .

For each parent elements there is a triples map (lines 5 and 10). Each map
requires a logical source, which includes the path to the parent element (lines
9 and 14). The leaf elements of <person> are <firstName> and <lastName>.
Consequently, they can be identified as literals of the parent element’s iri or
blank node, resulting in:

1 <#PersonMapping> rr:predicateObjectMap <#PreObjMapFirstName> .
2 <#PreObjMapFirstName> rr:objectMap [rml:reference "firstName"] .
3 <#PersonMapping> rr:predicateObjectMap <#PreObjMapLastName> .
4 <#PreObjMapLastName> rr:objectMap [rml:reference "lastName"] .

A predicate object map, with an object map, is added to the triples map for
the <firstName> (lines 1 and 2) and <lastName> (lines 3 and 4). The same is the
case for the parent element <car> and its leaf elements <brand>, <purchDate>,
and the attribute @id, resulting in:

Data Analysis of Hierarchical Data for RDF Term Identification 207

1 <#CarMapping> rr:predicateObjectMap <#PreObjMapBrand> .
2 <#PreObjMapBrand> rr:objectMap [rml:reference "brand"] .
3 <#CarMapping> rr:predicateObjectMap <#PreObjMapID> .
4 <#PreObjMapID> rr:objectMap [rml:reference "@id"] .
5 <#CarMapping> rr:predicateObjectMap <#PreObjMapPurchaseDate> .
6 <#PreObjMapPurchaseDate> rr:objectMap <#ObjMapPurchaseDate> .
7 <#ObjMapPurchaseDate> rml:reference "purchDate" .

Furthermore, we conclude that there is a relationship between these two
entities, because <car> is a child element of <person>. This is done by adding
a new predicate object map to the triples map for <person>, together with a
parent triples map that refers to the triples map for <car>. This results in:

1 <#PersonMapping> rr:predicateObjectMap <#PreObjMapCar> .
2 <#PreObjMapCar> rr:objectMap [rr:parentTriplesMap <#CarMapping>]] .

Task 2: Generate IRIs Using Keys. In most cases the iris have a specific
structure, and certain elements of this structure are depended on the data. Addi-
tionally, each iri has to represent at most one entity. This can be accomplished
by using keys as part of the iris. Keys are data fractions that have a unique
value for each entity in the original data. In the example, a key identified for the
persons is firstName. A key identified for the cars is @id. This results in:

1 <#PersonMapping> rr:subjectMap [rr:template "http://ex.com/person/{firstName}] .
2 <#CarMapping> rr:subjectMap [rr:template"http://ex.com/car/{@id}] .

A subject map is added to the triples map of each element together with a
possible template to generate iris using the specified keys.

Task 3: Define Data Types. The data types of all values are string with
exception of the purchase date (<purchDate>; lines 7 and 15), which is a date.
This results in the following statement, where date data type is added to the
object map corresponding with <purchDate>.

1 <#ObjMapPurchaseDate> rr:datatype xsd:date .

Subsequently, these statements can be used directly or via a tool, e.g., the
RMLEditor [1], to provide the predicates to generate the desired triples.

4 Algorithms

Preliminaries. We structure hierarchical data using a tree, in which each node
has a set of properties, regardless of the data format, e.g., xml or json. Each
property points to one or more children or data values. For the example in Listing
1.1, the properties of <person> are given by the paths firstName, lastName and
car. N is the set of all nodes in the tree. P is the set of all multi-level properties of
a node. Multi-level properties are the properties of a node including all properties
of that node’s childnode trees. For the example in Listing 1.1, the multi-level
properties of <person> are given by the paths firstName, lastName, car/brand,
car/id, car/purchaseDate. P is used for a set of properties where P ⊆ P. The

208 P. Heyvaert et al.

value v of a node n for a certain (multi-level) property p is defined as (n, p, v) ∈
N × P × V , where V represents all values. Two nodes are distinguishable from
each other given a set of properties if for at least one property the values of both
nodes are not the same. This is formally given in Eq. 1.

dist(n, n′, P) = ∃p ∈ P ∧ ∃(n, p, v) ∈ N × P × V ∧
∃(n′, p, v′) ∈ N × P × V : v �= v′ (1)

Daro. The first algorithm is based on the rocker algorithm, which uses a
refinement operator for the discovery of keys, proposed by Soru et al. [7]. The
operator refines which keys are worth checking, opposed to checking all pos-
sible keys. Originally, it was applied for key discovery on rdf datasets. Our
version supports hierarchical data sources, and is called ‘Data Analysis using
the rocker Operator’ (Daro). It uses a scoring function that gives the ratio of
the number of nodes that is distinguishable given a set of properties over the
total number of nodes (score(P) in Eq. 2). P is a key if score(P) = 1, because
that means that all nodes are uniquely identifiable using P . Additionally, the
function sortByScore(P) returns the properties of P ascendantly ordered using
their score, i.e., ∀pi, pj ∈ P : i ≤ j =⇒ score(pi) ≥ score(pj).

score(P) =
|{n ∈ N | ∀n′ ∈ N : n �= n′ ⇒ dist(n, n′, P)}|

|N | (2)

The refinement operator (ρ(P) in Eq. 3) defines which sets of properties need
to be checked next given a set of (previously checked) properties. It requires the
properties of P to be ordered using sortByScore(P).

ρ(P) =

⎧
⎪⎨

⎪⎩

P if P = ∅,

{P ∪ {p1}, . . . , P ∪ {pi}} : p′
0 ∈ sortByScore(P) ∧

(∃pj ∈ P : p′
0 = pj) ∧ (pi ∈ P : i < j)

(3)

∅

{brand}

{purchDate, brand}

{@id, purchDate, brand}

{@id, brand}

{purchDate}

{@id, purchDate}

{@id}

Fig. 1. Complete refinement operator tree for <car> of Listing 1.1

We explain the operator using <car> from Listing 1.1. In Fig. 1 you can see
the complete refinement tree for the child elements and attributes of <car>, i.e.,

Data Analysis of Hierarchical Data for RDF Term Identification 209

P = {@id,purchDate,brand}. First, we start with an empty set of sets (= ∅),
because we do not have a set of properties. Applying the operator on the empty
set (= ρ(∅)) results in the following sets of properties: {@id}, {purchDate} and
{brand}. This is visualized in the second level of the tree. The sets on the third
and fourth level of the tree are generated by applying refinement operator on
each element on the second and third level, respectively. The theorems and
proofs regarding the operator are given in the original work by Soru et al. [7].
Additionally, we created a function to generate the data model and a method
that analyzes the values of the properties in order to provide the data types.

Algorithm 1. Daro
1: nodes ← xml.query(nodePath)
2: foundKeys ← []
3: if ¬nodes.isEmpty() then
4: paths ← getPaths(nodes)
5: buildTreeAndIndex(nodes,paths)
6: model ← getModel(paths)
7: paths ← sortByScore(paths)
8: if score(paths) = 1 then
9: q ← new PriorityQueue()
10: q.add(∅, 0)
11: while ¬q.isEmpty() do
12: P ← q.pop()
13: P’ ← ρ(P)
14: for p in P ′ do
15: s ← score(p)
16: if s = 1 then
17: foundKeys.add(p)
18: else
19: q.add(p, s)
20: end if
21: end for
22: end while
23: end if
24: end if

Algorithm 2. S-Daro
1: nodes ← xml.query(nodePath)
2: trees ← []
3: if ¬nodes.isEmpty() then
4: paths ← getPaths(nodes)
5: model ← getModel(paths)
6: possibleKeys ← generateKeys(paths)
7: for node in nodes do
8: for key in possibleKeys do
9: if ¬key.parent.valid() then
10: groups ← []
11: for path in key do
12: value ← node.query(path)
13: analyze(value)
14: tree ← trees.search(path)
15: group ← tree.search(value)
16: groups.add(group)
17: end for
18: if groups.hasDupNode() then
19: key.valid(false)
20: end if
21: end if
22: end for
23: end for
24: end if

The pseudo-code4 of the algorithm can be found in Algorithm 1. The prop-
erties and the nodes are used to build a search tree of the nodes and an index
over the values, during which also the data types are determined (line 5). The
data model is generated using the properties (line 6). If the score of the set of all
properties is 1, then all nodes are unique when taking into account all properties
(line 8). Only when this is true, we continue the key discovery.

Keys that are supersets of already found keys will not be returned, because
the algorithm only adds set of properties to the queue again when they are
not keys. Therefore, the number of found keys might be smaller than the total
number of keys. It depends on the data which keys will be found and which keys
not, as the refinement operator is based on the scores of the properties. These
scores are based on the actual values of the data. However, the algorithm always
returns all keys consisting of one property, together with all the keys that contain

4 For brevity, we did not include the code that allows users to determine the data
model, keys, and data types separately.

210 P. Heyvaert et al.

a property that on itself is not a key. The reason is that the empty set (added
on line 10) results in checking all possible keys consisting of one property, and
properties that are not a key are used to generate new possible keys using the
operator (line 19) until a key is found or none can be found.

Key discovery is the most expensive part of the analysis, because the differ-
ent elements of the data have to be compared. The other elements of the data
analysis only require a single pass over the data. However, they are done during
the key discovery, because it is needed to iterate over the data in any case.

S-Daro. The second algorithm is called ‘Scalable Data Analysis using the
rocker Operator’ (S-Daro). While building upon the rocker algorithm, it
builds up an index for each property containing all possible values present in that
dataset together with the nodes that have this value. Additionally, it does not
use the scoring function to lower the run time. Algorithm 2 contains the pseudo
code. Using the refinement operator of the previous algorithm, we determine all
the possible sets of properties (line 6). They are all possible keys. Additionally,
for each set we remember on which other set it was based, if applicable. In the
refinement operator tree, this is the set on the lower level to which it connects.
We call this set the parent set. A set is only evaluated if the parent set is not
valid (i.e., not a key; line 9). If the parent set is valid than the current set stays
valid, because the properties of the current set are a superset of the properties of
the parent set [8]. If for all properties with those values there is one node (besides
the current node) that is present (line 18), than the set is not a key. The current
node and that specific node are indistinguishable using these properties.

As opposed to Daro, this algorithm returns all keys, because, besides the keys
that were marked valid during checking, also the keys that have a valid parent
key are valid keys. Like for Daro, key discovery is the most expensive part of the
analysis, because the different elements of the data have to be compared.

5 Evaluation

In this section, we elaborate on the evaluation conducted on Daro and S-Daro.
The criterion of the evaluation is the run time, because the algorithms are only
useful for practical purposes if they finish within a reasonable amount of time.
We have evaluated5 both algorithms using 4 sets of 240 artificially generated
files6. These files have between 100 and 30,000 nodes, and have between 6 and
13 properties. Their data is about people and their jobs. In Fig. 2a and b plots
of the fitted functions of the run times for both algorithms can be found for 6
and 13 properties, respectively. We see that S-Daro outperforms Daro, when the
number of nodes becomes larger. The functions are polynomial of the second

5 All experiments were conducted on a 64-bit Ubuntu 14.04 machine with 128 GB of
RAM and a 24-core 2.40 GHz CPU. Each algorithm was run in a Docker container
and was able to use at any moment a maximum of 8 GB of RAM and 1 CPU core.

6 http://rml.io/data/ISWC16/ph/files.

http://rml.io/data/ISWC16/ph/files

Data Analysis of Hierarchical Data for RDF Term Identification 211

100 30,000
79.5

2,013.1
Daro

S-Daro

|N |

run time (s)

(a) 6 properties/node

100 30,000

1,872.7

23,569.4
Daro

S-Daro

|N |

run time (s)

(b) 13 properties/node

Fig. 2. Daro vs S-Daro

degree for both algorithms. Nevertheless, the function for S-Daro rises slower
than for Daro, because the coefficient of the quadratic number of nodes of S-
Daro remains small when compared to the coefficient for Daro. However, the
coefficient for S-Daro can still be fitted to an exponential function. The reason
for this is the exponential growth of possible keys in function of the total number
of properties [7]. Therefore, when the number of properties becomes too large
even S-Daro might not be able to provide a result within a desired time frame.

6 Conclusion

Our tool implements the two algorithms Daro and S-Daro with support for xml
data sources. However, they are applicable to other formats of hierarchical data,
such as json. Although both algorithms benefit from the refinement operator
regarding their run times, the evaluation showed that S-Daro outperforms Daro
when the number of nodes becomes larger. Furthermore, the incompleteness of
the key discovery of Daro drives the choice towards S-Daro when all keys are
required. However, certain use cases might find the results of Daro sufficient.

References

1. Heyvaert, P., Dimou, A., Herregodts, A.-L., Verborgh, R., Schuurman, D., Mannens,
E., Walle, R.: RMLEditor: a graph-based mapping editor for linked data mappings.
In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C.
(eds.) ESWC 2016. LNCS, vol. 9678, pp. 709–723. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-34129-3 43

2. Pinkel, C., Schwarte, A., Trame, J., Nikolov, A., Bastinos, A.S., Zeuch, T.: DataOps:
seamless end-to-end anything-to-RDF data integration. In: Gandon, F., Guéret,
C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC
2015. LNCS, vol. 9341, pp. 123–127. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25639-9 24

3. Das, S., Sundara, S., Cyganiak, R., R2RML: RDB to RDF mapping language. Work-
ing group recommendation, W3C. http://www.w3.org/TR/r2rml/

4. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Rik Van de Walle,
R.M.L.: A generic language for integrated rdf mappings of heterogeneous data. In:
Workshop on Linked Data on the Web (2014)

http://dx.doi.org/10.1007/978-3-319-34129-3_43
http://dx.doi.org/10.1007/978-3-319-25639-9_24
http://dx.doi.org/10.1007/978-3-319-25639-9_24
http://www.w3.org/TR/r2rml/

212 P. Heyvaert et al.

5. Chen, P.P.-S.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. (TODS) 1(1), 9–36 (1976)

6. Galiegue, F., Zyp, K., Json schema: core definitions and terminology. In: Internet
Engineering Task Force (IETF) (2013)

7. Soru, T., Marx, E., Ngonga Ngomo, A.-C.: ROCKER - a refinement operator for key
discovery. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 1025–1033. International World Wide Web Conferences Steering Committee
(2015)

8. Pernelle, N., Säıs, F., Symeonidou, D.: An automatic key discovery approach for
data linking. Web Semant. Sci. Serv. Agents WWW 23, 16–30 (2013)

PIWD: A Plugin-Based Framework
for Well-Designed SPARQL

Xiaowang Zhang1,3,4, Zhenyu Song1,3, Zhiyong Feng2,3(B), and Xin Wang1,3

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 School of Computer Software, Tianjin University, Tianjin 300350, China

zyfeng@tju.edu.cn
3 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

4 Key Laboratory of Computer Network and Information Integration,

Southeast University, Ministry of Education, Nanjing 211189, China

Abstract. In the real world datasets (e.g., DBpedia query log), queries
built on well-designed patterns containing only AND and OPT opera-
tors (for short, WDAO-patterns) account for a large proportion among
all SPARQL queries. In this paper, we present a plugin-based framework
for all SELECT queries built on WDAO-patterns, named PIWD. The
framework is based on a parse tree called well-designed AND-OPT tree
(for short, WDAO-tree) whose leaves are basic graph patterns (BGP)
and inner nodes are the OPT operators. We prove that for any WDAO-
pattern, its parse tree can be equivalently transformed into a WDAO-
tree. Based on the proposed framework, we can employ any query engine
to evaluate BGP for evaluating queries built on WDAO-patterns in
a convenient way. Theoretically, we can reduce the query evaluation
of WDAO-patterns to subgraph homomorphism as well as BGP since
the query evaluation of BGP is equivalent to subgraph homomorphism.
Finally, our preliminary experiments on gStore and RDF-3X show that
PIWD can answer all queries built on WDAO-patterns effectively and
efficiently.

Keywords: SPARQL · BGP · Well-designed patterns · Subgraph
homomorphism

1 Introduction

Resource Description Framework (RDF) [23] is the standard data model in
the semantic web. RDF describes the relationship of entities or resources using
directed labelling graph. RDF has a broad range of applications in the seman-
tic web, social network, bio-informatics, geographical data, etc. [3,28,29]. The
standard query language for RDF graphs is SPARQL [19]. Though SPARQL is
powerful to express queries over RDF graphs [2], generally, the query evaluation
of the full SPARQL is PSPACE-complete [18].

Currently, there are some popular query engines for supporting the full
SPARQL such as Jena [7] and Sesame [6]. However, they become not highly
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 213–228, 2016.
DOI: 10.1007/978-3-319-50112-3 16

214 X. Zhang et al.

efficient when they handle some large RDF datasets [33,34]. Currently, gStore
[33,34] and RDF-3X [16] can highly efficiently query large datasets. But gStore
and RDF-3X merely provide querying services of BGP. Therefore, it is very nec-
essary to develop a query engine with supporting more expressive queries for
large datasets.

Since the OPT operator is the least conventional operator among SPARQL
operators [30], it is interesting to investigate those patterns extending BGP with
the OPT operator. Let us take a look at the following example.

An RDF example in Table 1 describes the entities of bloggers and blogs.
The relationship between a blogger and a blog is revealed in the property of
foaf:maker. Both blogger and blog have some properties to describe themselves.
Triples can be modeled as a directed graph substantially.

Table 1. bloggers.rdf

Subject Predict Object

id1 foaf:name Jon Foobar

id1 rdf:type foaf:Agent

id1 foaf:weblog foobar.xx/blog

foobar.xx/blog dc:title title

foobar.xx/blog rdfs:seeAlso foobar.xx/blog.rdf

foobar.xx/blog.rdf foaf:maker id1

foobar.xx/blog.rdf rdf:type rss:channel

Example 1. Consider the RDF dataset G storing information in Table 1. Given
a BGP Q = ((?x, foaf:maker, ?y) AND (?z, foaf:name, ?u)), its evaluation over
G is as follows:

�Q�G =
?x ?y ?z ?u

foobar.xx/blog.rdf id1 id1 Jon Foobar

Consider a new pattern Q1 obtained from Q by adding the OPT operator in
the following way:
Q1 = (((?x, foaf:maker, ?y) OPT (?y, rdf:type, ?v)) AND (?z, foaf:name, ?u)),
the evaluation of Q1 over G is as follows:

�Q1�G =
?x ?y ?v ?z ?u

foobar.xx/blog.rdf id1 foaf:Agent id1 Jon Foobar

Consider another pattern Q2 = (((?x, foaf:maker, ?y) OPT (?y, rdf:type, ?z))
AND (?z, foaf:name, ?u)), the evaluation of Q2 over G is the empty set, i.e.,
�Q2�G = ∅.

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 215

In the above example, Q1 is a well-designed pattern while Q2 is not a well-
designed pattern [18].

In fact, we investigate that queries built on well-designed patterns are very
popular in a real world. For example, in LSQ [20], a Linked Dataset describing
SPARQL queries extracted from the logs of four prominent public SPARQL
endpoints containing more than one million available queries shown in Table 2,
queries built on well-designed patterns are over 70% [9,22].

Table 2. SPARQL logs source in LSQ

Dataset Date Triple number

DBpedia 30/04/2010 to 20/07/2010 232,000,000

Linked Geo Data (LGD) 24/11/2010 to 06/07/2011 1,000,000,000

Semantic Web Dog Food (SWDF) 16/05/2014 to 12/11/2014 300,000

British Museum (BM) 08/11/2014 to 01/12/2014 1,400,000

Furthermore, queries with well-designed AND-OPT patterns (for short,
WDAO-patterns) are over 99% among all queries with well-designed patterns
in LSQ [9,22]. In short, the fragment of WDAO-patterns is a natural extension
of BGP in our real world. Therefore, we mainly discuss WDAO-patterns in this
paper.

In this paper, we present a plugin-based framework for all SELECT queries
built on WDAO-patterns, named PIWD. Within this framework, we can employ
any query engine evaluating BGP for evaluating queries built on WDAO-patterns
in a convenient way. The main contributions of this paper can be summarized
as follows:

– We present a parse tree named well-designed AND-OPT tree (for short,
WDAO-tree), whose leaves are BGP and all inner nodes are the OPT opera-
tor and then prove that for any WDAO-pattern, it can be translated into a
WDAO-tree.

– We propose a plugin-based framework named PIWD for query evaluation of
queries built on WDAO-patterns based on WDAO-tree. Within this frame-
work, a query could be evaluated in the following three steps: (1) translating
that query into a WDAO tree T ; (2) evaluating all leaves of T via query
engines of BGP; and (3) joining all solutions of children to obtain solutions of
their parent up to the root.

– We implement the proposed framework PIWD by employing gStore and RDF-
3X and evaluate the experiments on LUBM.

The rest of this paper is organized as follows: Sect. 2 briefly introduces the
SPARQL, conception of well-designed patterns and OPT normal form. Section 3
defines the well-designed and-opt tree to capture WDAO-patterns. Section 4
presents PIWD and Sect. 5 evaluates experimental results. Section 6 summarizes
our related works. Finally, Sect. 7 summarizes this paper.

216 X. Zhang et al.

2 Preliminaries

In this section, we introduce RDF and SPARQL patterns, well-designed patterns,
and OPT normal form [18].

2.1 RDF

Let I, B and L be infinite sets of IRIs, blank nodes and literals, respectively.
These three sets are pairwise disjoint. We denote the union I ∪ B ∪ L by U , and
elements of I ∪ L will be referred to as constants.

A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. A basic
graph pattern (BGP) is a set of triple patterns.

2.2 Semantics of SPARQL Patterns

The semantics of patterns is defined in terms of sets of so-called mappings, which
are simply total functions μ : S → U on some finite set S of variables. We denote
the domain S of μ by dom(μ).

Now given a graph G and a pattern P , we define the semantics of P on G,
denoted by �P �G, as a set of mappings, in the following manner.

– If P is a triple pattern (u, v, w), then

�P �G := {μ : {u, v, w} ∩ V → U | (μ(u), μ(v), μ(w)) ∈ G}.

Here, for any mapping μ and any constant c ∈ I ∪L, we agree that μ(c) equals
c itself. In other words, mappings are extended to constants according to the
identity mapping.

– If P is of the form P1 UNION P2, then �P �G := �P1�G ∪ �P2�G.
– If P is of the form P1 AND P2, then �P �G := �P1�G �� �P2�G, where, for any

two sets of mappings Ω1 and Ω2, we define

Ω1 �� Ω = {μ1 ∪ μ2 | μ1 ∈ Ω1 and μ2 ∈ Ω2 and μ1 ∼ μ2}.

Here, two mappings μ1 and μ2 are called compatible, denoted by μ1 ∼ μ2,
if they agree on the intersection of their domains, i.e., if for every variable
?x ∈ dom(μ1) ∩ dom(μ2), we have μ1(?x) = μ2(?x). Note that when μ1 and
μ2 are compatible, their union μ1∪μ2 is a well-defined mapping; this property
is used in the formal definition above.

– If P is of the form P1 OPT P2, then

�P �G := (�P1�G �� �P2�G) ∪ (�P1�G � �P2�G),

where, for any two sets of mappings Ω1 and Ω2, we define

Ω1 � Ω2 = {μ1 ∈ Ω1 | ¬∃μ2 ∈ Ω2 : μ1 ∼ μ2}.

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 217

– If P is of the form SELECTS(P1), then �P �G = {μ|S∩dom(µ) | μ ∈ �P1�G},
where f |X denotes the standard mathematical notion of restriction of a func-
tion f to a subset X of its domain.

– Finally, if P is of the form P1 FILTER C, then �P �G := {μ ∈ �P1�G | μ(C) =
true}.
Here, for any mapping μ and constraint C, the evaluation of C on μ, denoted
by μ(C), is defined in terms of a three-valued logic with truth values true, false,
and error . Recall that C is a boolean combination of atomic constraints.
For a bound constraint bound(?x), we define:

μ(bound(?x)) =

{
true if ?x ∈ dom(μ);
false otherwise.

For an equality constraint ?x =?y, we define:

μ(?x =?y) =

⎧
⎪⎨

⎪⎩

true if ?x, ?y ∈ dom(μ) and μ(?x) = μ(?y);
false if ?x, ?y ∈ dom(μ) and μ(?x) 	= μ(?y);
error otherwise.

Thus, when ?x and ?y do not both belong to dom(μ), the equality constraint
evaluates to error . Similarly, for a constant-equality constraint ?x = c, we
define:

μ(?x = c) =

⎧
⎪⎨

⎪⎩

true if ?x ∈ dom(μ) and μ(?x) = c;
false if ?x ∈ dom(μ) and μ(?x) 	= c;
error otherwise.

A boolean combination is then evaluated using the truth tables given in
Table 3.

Table 3. Truth tables for the three-valued semantics.

p q p ∧ q p ∨ q

true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error

p ¬p
true false
false true
error error

2.3 Well-Designed Pattern

A UNION-free pattern P is well-designed if the followings hold:

– P is safe;

218 X. Zhang et al.

– for every subpattern Q of form (Q1 OPT Q2) of P and for every variable ?x
occurring in P , the following condition holds:

If ?x occurs both inside Q2 and outside Q, then it also occurs in Q1.

Consider the definition of well-designed patterns, some conceptions can be
explained as follows:

Remark 1. In the fragment of and-opt patterns, we exclude FILTER and UNION
operators and it contains only AND and OPT operators at most. It is obvious
that and-opt pattern must be UNION-free and safe.

We can conclude that WDAO-patterns are decided by variables in subpat-
tern.

– UNION-free Pattern: P is UNION-free if P is constructed by using only
operators AND, OPT, and FILTER. Every graph pattern P is equivalent to
a pattern of the form denoted by (P1 UNIONP2 UNION · · ·UNIONPn). Each
Pi (1 ≤ i ≤ n) is UNION-free.

– Safe: If the form of (P FILTER R) holds the condition of var(R) ⊆ var(P),
then it is safe.

Note that the OPT operator provides really optional left-outer join due to
the weak monotonicity [18]. A SPARQL pattern P is said to be weakly monotone
if for every pair of RDF graphs G1, G2 such that G1 ⊆ G2, it holds that �P �G1 �
�P �G2 . In other words, we assume μ1 represents �P �G1 , and μ2 represents �P �G2 .
Then there exists μ′ such that μ2 = μ1 ∪ μ′. Weakly monotone is an important
property to characterize the satisfiability of SPARQL [31]. For instance, consider
the pattern Q1 in Sect. 1, (?y, rdf:type, ?v) are really optional.

2.4 OPT Normal Form

A UNION-free pattern P is in OPT normal form [18] if P meets one of the
following two conditions:

– P is constructed by using only the AND and FILTER operators;
– P = (P1 OPT P2) where P1 and P2 patterns are in OPT normal form.

For instance, the pattern Q aforementioned in Sect. 1 is in OPT normal form.
However, consider the pattern (((?x, p, ?y) OPT (?x, q, ?z)) AND (?x, r, ?z)) is
not in OPT normal form.

3 Well-Designed And-Opt Tree

In this section, we propose the conception of the well-designed and-opt tree
(WDAO-tree), any WDAO-pattern can be seen as an WDAO-tree.

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 219

3.1 WDAO-tree Structure

Definition 1 (WDAO-tree). Let P be a well-designed pattern in OPT normal
form. A well-designed tree T based on P is a redesigned parse tree, which can be
defined as follows:

– All inner nodes in T are labeled by the OPT operator and leaves are labeled
by BGP.

– For each subpattern (P1 OPT P2) of P , the well-designed tree T1 of P1 and
the well-designed tree T2 of P2 have the same parent node.

For instance, consider a WDAO-pattern P 1

P = (((p1 AND p3) OPT2 p2) OPT1

((p4 OPT4 p5) OPT5 (p6 OPT6 p7))).

The WDAO-tree T is shown in Fig. 1. As shown in this example, BGP -
(p1 AND p3) is the exact matching in P , which corresponds to the non-optional
pattern. Besides, in WDAO-tree, it is the leftmost leaf in T . We can conclude
that the leftmost node in WDAO-tree means the exact matching in well-designed
SPARQL query pattern.

OPT1

OPT2

p1 AND p3 p2

OPT3

OPT4

p4 p5

OPT5

p6 p7

Fig. 1. WDAO-tree

3.2 Rewritting Rules over WDAO-tree

As described in Sect. 1, WDAO-tree does not contain any OPT operator in its
leaves. In this sense, patterns as the form of Q1 in Sect. 1 cannot be transformed
into WDAO-tree since it is not OPT normal form.

Proposition 1. [18, Theorem 4.11] For every UNION-free well-designed pat-
tern P , there exists a pattern Q in OPT normal form such that P and Q are
equivalent.
1 We give each OPT operator a subscript to differentiate them so that readers under-

stand clearly.

220 X. Zhang et al.

In the proof of Proposition 1, we apply three rewriting rules based on the
following equations: let P,Q,R be patterns and C a constraint,

– (P OPT R) AND Q ≡ (P AND Q) OPT R;
– P AND (Q OPT R) ≡ (P AND Q) OPT R;
– (P OPT R) FILTER C ≡ (P FILTER C) OPT R.

Intuitively, this lemma states that AND operator can forward and OPT oper-
ator can backward in a well-designed pattern with preserving the semantics. The
above three rules can be deployed on a WDAO-tree. For each WDAO-tree T ,
there exists T ′ corresponding to T after applying rewriting rules.

Figures 2 and 3 have shown that the process of rewriting rules after generating
grammar tree and finally WDAO-tree can be obtained. Clearly, WDAO-tree has
less height than the grammar tree.

AND

OPT

P R

Q

⇔

OPT

AND

P Q

R

⇔

OPT

P AND Q R

Fig. 2. Rewritting rule-1

AND

P OPT

Q R ⇔

OPT

AND

P Q

R

⇔

OPT

P AND Q R

Fig. 3. Rewritting rule-2

3.3 WDAO-tree Construction

Before constructing WDAO-tree, we recognize query patterns and attachments
at first. Then we rewrite query patterns by rewritting rules, which leads to a new
pattern. Based on this new pattern, we construct WDAO-tree in the principle
of Definition 1.

In the process of the WDAO-tree construction, we firstly build the grammar
tree of SPARQL patterns, whose inner node is either AND operator or OPT
operator. This process is based on recursively putting the left pattern and right
pattern of operator in the left node and right node respectively until the pat-
tern does not contain any operator. Then we apply the rewritting rules to the

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 221

Algorithm 1. rewritting rules

Input: GrammarTree with Root;
Output: RewriteTree with Root;
1: while not all AND.child IS OPT do
2: Procedure ReWriteRules(Root)
3: if Root IS AND then
4: if Root IS OPT then
5: swap(Root.left,Root.right.left);
6: swap(Root.right,Root.right);
7: swap(Root.left.left,Root);
8: swap(Root.left.right,Root.left.right);
9: end if

10: if Root.right IS OPT then
11: swap(Root.left,Root.left);
12: swap(Root.right,Root.left.left);
13: swap(Root.left.left,Root);
14: swap(Root.left.right,Root.left.right);
15: end if
16: end if
17: Procedure ReWriteRules(Root.left)
18: End Procedure
19: Procedure ReWriteRules(Root.right)
20: End Procedure
21: End Procedure
22: end while
23: return Root;

grammar tree in Algorithm 1 to build rewriting-tree whose only leaf node is
single triple pattern. Different rewritting rules are adopted depending on OPT
operator are AND operator’s left child or right child. Since WDAO-tree’s inner
nodes only contain AND operators, After getting rewriting-tree, we merge the
AND operators only containing leaf child nodes with its child nodes into new
nodes in order to get a WDAO-tree.

The WDAO-tree construction can be executed in PTIME. Given a pattern
containing n ANDs and m OPTs, the construction of the grammar tree and
rewriting tree have O(n + m) time complexity and O(nm) time complexity,
respectively. Furthermore, the merge of nodes whose parent is AND has O(n)
time complexity.

4 PIWD Demonstration

In this section, we introduce PIWD, which is a plugin-based framework for well-
designed SPARQL.

222 X. Zhang et al.

4.1 PIWD Overview

PIWD is written in Java in a 2-tier design shown in Fig. 4. The bottom layer
consists of any BGP query framework which is used as a black box for evalu-
ating BGPs. Before answering SPARQL queries, the second layer provides the
rewriting process and left-outer join evaluation, which lead to the solutions.

Fig. 4. PIWD architecture

BGP query framework supports both query and RDF data management, such
as gStore, RDF-3X and so on, which solve the problem of subgraph isomorphism.
PIWD provides the left-outer join between the BGPs. That is, the problem of
answering well-designed SPARQL has been transformed into the problem of
subgraph isomorphism and left-outer join between triple patterns.

4.2 Answering Queries over PIWD

The query process over PIWD can be described as follows:
Firstly, WDAO-tree is built after rewriting rules on the grammar tree. Sec-

ondly, post-order traversal is applied on WDAO-trees. The traversal rule is: If
the node is a leaf node without the OPT operator, BGP query framework is
deployed on it to answer this query and return solutions which is stored in a
stack. If the node is an inner node labeled by the OPT operator, we get the top
two elements in the stack and left-outer join them. We repeat this process until
all of WDAO-tree’s nodes are visited. Finally, only one element in the stack is
the final solutions.

In the querying processing, BGP query framework serves as a query engine
to support queries from leaves in WDAO-trees. OPT operators take an essential
position in the query processing. Users receive optional solutions based on OPT
operators which contribute to the semantic abundance degree since optional
solutions are considered in this sense. In other words, OPT operators lead to the
explosive growth of the solution scale.

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 223

The query process is described in Algorithm 2.

Algorithm 2. Query Processing over PIWD
Input: WDAO-tree with Root; Prefix prefix; Stack to store subresults;
Output: Query result result;
1: Procedure TraverseTree(Root)
2: if root is not null then
3: Procedure TraverseTree(Root → Lnode)
4: End Procedure
5: Procedure TraverseTree(Root → Rnode)
6: End Procedure
7: if node is not OPTIONAL then
8: subquery=AssembleQuery(prefix,node);
9: subresult=QueryIngStore(subquery);

10: Push(Stack , subresult);
11: else
12: r=Pop(Stack);
13: l=Pop(Stack);
14: result=l r;
15: Push(Stack , result);
16: end if
17: end if
18: End Procedure
19: list=ConvertToList(Stack);
20: return list;

5 Experiments and Evaluations

This section presents our experiments. The purpose of the experiments is to
evaluate the performance of different WDAO-patterns.

5.1 Experiments

Implementations and running environment. All experiments were carried out on
a machine running Linux, which has one CPU with four cores of 2.40GHz, 32GB
memory and 500GB disk storage. All of the algorithms were implemented in
Java. gStore [33,34] and RDF-3X [16] are used as the underlying query engines to
handle BGPs. In our experiments, there is no optimization in our OPT operation.

gStore and RDF-3X. Both gStore and RDF-3X are SPARQL query engines for
subgraph matching. gStore stores RDF data in disk-based adjacency lists, whose
format is [vID,vLabel,adjList], where vID is the vertex ID, vLabel is the corre-
sponding URI, and adjList is the list of its outgoing edges and the corresponding
neighbor vertices. gStore converts an RDF graph into a data signature graph
by encoding each entity and class vertex. Some different hash functions such
as BKDR and AP hash functions are employed to generate signatures, which
compose a novel index (called VS∗-tree). A filtering rule and efficient search

224 X. Zhang et al.

algorithms are developed for subgraph queries over the data signature graph in
order to speed up query processing. gStore can answer exact SPARQL queries
and queries with wildcards in a uniform manner. RDF-3X engine is a RISC-style
architecture for executing SPARQL queries over large repositories of RDF triple.
Physical design is workload-independent by creating appropriate indexes over a
single giant triples table in RDF-3X. And the query processor is RISC-style by
relying mostly on merge joins over sorted index lists. gStore and RDF-3X have
good performances in BGPs since their query methods are based on subgraph
matching.

Dataset. We used LUBM2 as the dataset in our experiments to investigate the
relationship between query response time and dataset scale. LUBM, which fea-
tures an ontology for the university domain, is a standard benchmark to evalu-
ate the performance of semantic Web repositories, In our experiments, we used
LUBM1, LUBM50, LUBM100, LUBM150 and LUBM200 as our query datasets.
The LUBM dataset details in our experiments are shown in Table 4.

Table 4. LUBM Dataset Details

Dataset Number of triples RDF NT File Size(bytes)

LUBM1 103,104 14,497,954

LUBM50 6,890,640 979,093,554

LUBM100 13,879,971 1,974,277,612

LUBM150 20,659,276 2,949,441,119

LUBM200 27,643,644 3,954,351,227

SPARQL queries. The queries over LUBM were designed as four different forms,
which corresponds to different WDAO-trees. The details of queries are described
in Table 5. Clearly, OPT nesting in Q2 is the most complex among four forms.
Furthermore, we build the AND operator in each query.

Table 5. SPARQL queries Details

QueryID Pattern OPT amount

Q1 (P1 AND P2 AND P3) OPT P4 1

Q2 ((P1 AND P2 AND P3) OPT P4) OPT (P5 OPT P6) 3

Q3 ((P1 AND P2 AND P3) OPT P4) OPT P5 2

Q4 P1 OPT ((P2 AND P3 AND P4) OPT P5) 2

2 http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 225

5.2 Evaluation on PIWD

The variation tendencies of query response time are shown in Tables 6 and 7 and
Fig. 5. Query efficiency is decreased with higher response time when OPT nesting
becomes more complex. Furthermore, there has been a significant increase in
query response time when the dataset scale grows up. For instance, we observe
Q2, which corresponds to the most complex pattern in our four experimental
SPARQL patterns. When the dataset is ranging from LUBM100 to LUBM200, its
query response time extends more than five times even though the dataset scale
extends two times. In this sense, OPT nesting complexity in WDAO-patterns
influences query response time especially for large dataset scale.

Table 6. Query Response Time[ms] on gStore

LUBM1 LUBM50 LUBM100 LUBM150 LUBM200

Q1 1,101 617, 642 1,329,365 2,126,383 2, 978, 237

Q2 1,870 1, 010, 965 2,901,295 6,623,806 10, 041, 836

Q3 1,478 637, 128 1,359,315 2,191,356 3, 068, 692

Q4 1,242 644, 155 1,456,232 2,151,811 3, 129, 246

Table 7. Query Response Time[ms] on RDF-3X

LUBM1 LUBM50 LUBM100 LUBM150 LUBM200

Q1 1,231 625, 703 1,401,782 2,683,461 3, 496, 156

Q2 1,900 1, 245, 241 2,983,394 7,286,812 10, 852, 761

Q3 1,499 640, 392 1,427,392 2,703,981 3, 672, 970

Q4 1,316 648, 825 1,531,547 2,791,152 3, 714, 042

LUBM1 LUBM50 LUBM100 LUBM150LUBM200

0

0.2

0.4

0.6

0.8

1

·107

Dataset scale

T
im

e[
m

s]

Q1

Q2

Q3

Q4

(a) Performance on gStore

LUBM1 LUBM50 LUBM100LUBM150LUBM200

0

0.2

0.4

0.6

0.8

1

·107

Dataset scale

T
im

e[
m

s]

Q1

Q2

Q3

Q4

(b) Performance on RDF-3X

Fig. 5. Query response time over LUBM

226 X. Zhang et al.

6 Related Works

In this section, we survey related works in the following three areas: BGP query
evaluation algorithms, well-designed SPARQL and BGP query evaluation frame-
works.

BGP query algorithms have been developed for many years. Existing algo-
rithms mainly focus on finding all embedding in a single large graph, such as
ULLmann [24], VF2 [14], QUICKSI [21], GraphQL [11], SPath [32], STW [25]
and TurboIso [10]. Some optimization method has been adapted in these tech-
niques, such as adjusting matching order, pruning out the candidate vertices.
However, the evaluation of well-designed SPARQL is not equivalent to the BGP
query evaluation problem since there exists inexact matching.

It has been shown that the complexity of the evaluation problem for the
well-designed fragment is coNP-complete [18]. The quasi well-designed pattern
trees (QWDPTs), which are undirected and ordered, has been proposed [12].
This work aims at the analysis of containment and equivalence of well-designed
pattern. Efficient evaluation and semantic optimization of WDPT have been
proposed in [4]. Sparm is a tool for SPARQL analysis and manipulation in [13].
Above-mentioned all aim at checking well-designed patterns or complexity analy-
sis without evaluation on well-designed patterns. Our WDAO-tree is different
from QWDPTs in structure and it emphasizes reconstructing query plans. The
OPT operation optimization has been proposed in [15], which is different from
our work since our work aims to handle a plugin in any BGP query engine in
order to deal with WDAO-patterns in SPARQL queries.

RDF-3X [16], TripleBit [27], SW-Store [1], Hexastore [26] and gStore [33,34]
have high performance in BGPs. RDF-3X create indexes in the form of B+ tree,
as well as TripleBit in the form of ID-Chunk. All of them have efficient perfor-
mance since they concentrate on the design of indexing or storage. However, they
can only support exact SPARQL queries, since they replace all literals (in RDF
triples) by ids using a mapping dictionary. In other words, they cannot support
WDAO-patterns well. Virtuoso [8] and MonetDB [5] support open-source and
commercial services. Jena [7] and Sesame [6] are free open source Java frame-
works for building semantic web and Linked Data applications, which focus on
SPARQL parse without supporting large-scale date. Our work is independent on
these BGP query frameworks, and any BGP query engine is adaptable for our
plugin.

7 Conclusion

In this paper, we have presented PIWD, which is a plugin adaptable for any BGP
query framework to handle WDAO-patterns. Theoretically, PIWD rebuilds the
query evaluation plan based on WDAO-trees. After employing BGP query frame-
work on WDAO-trees, PIWD supports the left-outer join operation between
triple patterns. Our experiments show that PIWD can deal with complex and
multi-level nested WDAO-patterns. In the future, we will further handle other

PIWD: A Plugin-Based Framework for Well-Designed SPARQL 227

non-well-designed patterns and deal with more operations such as UNION.
Besides, we will consider OPT operation optimization to improve efficiency of
PIWD and implement our framework on distributed RDF graphs by applying
the distributed gStore [17].

Acknowledgments. This work is supported by the programs of the National Key
Research and Development Program of China (2016YFB1000603), the National Nat-
ural Science Foundation of China (NSFC) (61502336), and the open funding project of
Key Laboratory of Computer Network and Information Integration (Southeast Univer-
sity), Ministry of Education (K93-9-2016-05). Xiaowang Zhang is supported by Tianjin
Thousand Young Talents Program and the project-sponsored by School of Computer
Science and Technology in Tianjin University.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-store: a vertically
partitioned DBMS for semantic web data management. VLDB J. 18(2), 385–406
(2009)

2. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88564-1 8

3. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Proceedings
of SIGMOD 2011, pp. 305–316 (2011)

4. Barcelo, P., Pichler, R., Skritek, S.: Efficient evaluation and approximation of well-
designed pattern trees. In: Proceedings of PODS 2015, pp. 131–144 (2015)

5. Boncz, P.A., Zukowski, M., Nes, N.J.: MonetDB/x100: Hyper-pipelining query
execution. In: Proceedings of CIDR 2005 (2005)

6. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: a generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). doi:10.1007/
3-540-48005-6 7

7. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of WWW
2004, pp. 74–83 (2004)

8. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. Studies in Compu-
tational Intelligence, pp. 7–24 (2009)

9. Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G.: On the statistical analysis of
practical SPARQL queries. In: Proceedings of WebDB 2016, Article 2(2016)

10. Han, W.S., Lee, J., Lee, J.H.: Turbo ISO: Towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: Proceedings of SIGMOD 2013,
pp. 337–348 (2013)

11. He, H., Singh, A.K.: Query language and access methods for graph databases. In:
Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Springer,
Heidelberg (2010)

12. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries. Proceedings of PODS 38(4), 84–87 (2012)

13. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: SPAM: a SPARQL analysis and
manipulation tool. Proc. VLDB 5(12), 1958–1961 (2012)

http://dx.doi.org/10.1007/978-3-540-88564-1_8
http://dx.doi.org/10.1007/978-3-540-88564-1_8
http://dx.doi.org/10.1007/3-540-48005-6_7
http://dx.doi.org/10.1007/3-540-48005-6_7

228 X. Zhang et al.

14. Luigi, P.C., Pasquale, F., Carlo, S., Mario, V.: A (sub)graph isomorphism algorithm
for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–
1372 (2004)

15. Medha, A.: Left bit right: for SPARQL join queries with OPTIONAL patterns
(left-outer-joins). In: Proceedings of SIGMOD 2015, pp. 1793–1808 (2015)

16. Neumann, T., Weikum, G.: The RDF3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

17. Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL queries
over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)

18. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 30–43 (2009)

19. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-
ommendation (2008)

20. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked
SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol.
9367, pp. 261–269. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25010-6 15

21. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. Proc. VLDB 1(1), 364–375 (2008)

22. Song, Z., Feng, Z., Zhang, X., Wang, X., Rao, G.: Efficient approximation of well-
designed SPARQL queries. In: Song, S., Tong, Y. (eds.) WAIM 2016. LNCS, vol.
9998, pp. 315–327. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47121-1 27

23. Swick, R.R.: Resource description framework (RDF) model and syntax specifica-
tion. In: W3C Recommendation (1998)

24. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

25. Wang, H.: Efficient subgraph matching on billion node graphs. In: Proc. of VLDB
2012, 5: article 9 (2012)

26. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. Proc. VLDB 1, 1008–1019 (2008)

27. Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., Liu, L.: Triplebit: a fast and compact
system for large scale RDF data. Proc. VLDB 6(7), 517–528 (2013)

28. Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free path queries on
RDF graphs. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue,
F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 632–648. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-46523-4 38

29. Zhang, X., Van den Bussche, J.: On the power of SPARQL in expressing naviga-
tional queries. Computer J. 58(11), 2841–2851 (2015)

30. Zhang, X., Van den Bussche, J.: On the primitivity of operators in SPARQL. Inf.
Process. Lett. 114(9), 480–485 (2014)

31. Zhang, X., Van den Bussche, J.: On the satisfiability problem for SPARQL pat-
terns. J. Artif. Intell. Res. 56, 403–428 (2016)

32. Zhao, P., Han, J.: On graph query optimization in large networks. Proc. VLDB
3(1–2), 340–351 (2010)

33. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: answering SPARQL queries
via subgraph matching. Proc. VLDB 4(8), 482–493 (2011)

34. Zou, L., Özsu, M.T., Chen, L., Shen, X., Huang, R., Zhao, D.: gStore: a graph-
based SPARQL query engine. VLDB J. 23(4), 565–590 (2014)

http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1007/978-3-319-47121-1_27
http://dx.doi.org/10.1007/978-3-319-46523-4_38

Knowledge Graph

Non-hierarchical Relation Extraction of Chinese
Text Based on Scalable Corpus

Xiaoheng Su1, Hai Wan1(B), Ruibin Chen1, Qi Liu1, Wenxuan Zhang1,
and Jianfeng Du2

1 School of Data and Computer Science, Sun Yat-sen University,
Guangzhou 510006, China
wanhai@mail.sysu.edu.cn,

{suxh8,chenrb6,liuq99,zhangwx26}@mail2.sysu.edu.cn
2 Guangdong University of Foreign Studies, Guangzhou 510006, China

dududjf@gmail.com

Abstract. As for ontology construction from Chinese text, the non-
hierarchical relation extraction is harder than the concept extraction
and its extraction effect is still not satisfactory. In this paper, we put
forward a scalable corpus model, which uses Tongyici Cilin and word2vec
to calculate terms’ similarity and add the qualified candidate terms to the
corpora. In this way we can expand the scalable corpus while extracting
non-hierarchical relations. In turn, the scalable corpus that has been
expanded with the new terms will facilitate the non-hierarchical relation
extraction further. We carry out the experiment with Chinese texts in
the domain of Computer, whose results show that with expansion of the
corpus, the extraction effect will be better and better.

Keywords: Relation extraction · Scalable corpus · Chinese text

1 Introduction

Maedche et al. defined the ontology structure as a five tuple: O := {C,R,
HC , rel, AO}, where O, C, R and AO indicated the ontology, the set of con-
cepts, the set of relations and the set of axioms respectively. And HC denotes
a set of hierarchical relations among concepts with inheritance, for example,
HC(C1, C2) expresses C1 is a subconcept of C2; rel : R → C × C is a func-
tion, rel(R) = (C1, C2) can also written in R(C1, C2), denoting a set of non-
hierarchical relations, such as capital(China,Beijing) [1]. Therefore the main
tasks of ontology construction from the Chinese text are concept and relation
extractions, where the non-hierarchical relation extraction is a harder problem.
The difficulty lies in unstructured organization of Chinese text and various rela-
tions occurring in Chinese sentences. Aiming at the non-hierarchical relation
extraction, two kinds of methods are focused on. One is based on lexical rules
matching, which is mainly suitable for English, while not working well in Chinese.
The other is based on association rule analysis, which can determine whether
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 231–238, 2016.
DOI: 10.1007/978-3-319-50112-3 17

232 X. Su et al.

there exist relations between two terms, however it is difficult to extract the exact
relations. In this case, the paper tries to establish a robust non-hierarchical rela-
tion extraction model, making relations extraction in Chinese texts accurate
and stable. In the model, firstly initialize the two scalable corpora including the
concept corpus and the relation corpus, then use Density Extraction Algorithm
proposed in the paper to extract the core concepts from the Chinese text, and
seek for high quality of domain terms through core concepts, then add them into
scalable corpora, next take advantage of improved association rule analysis to
capture term pairs based on similarity analysis including word2vec and Tongyici
Cilin, and extract relations after pruning sentences, finally expand corpus again.
The rest of this paper is organized as follows: Sect. 2 introduces research sta-
tus of ontology construction. Section 3 elaborates the main ideas of our method.
Section 4 exhibits the experimental design and result analysis. Finally, Sect. 5
concludes our work.

2 Related Work

Nowadays ontology construction has received widespread attention from
researchers. Generally, ontology construction algorithms are based on statisti-
cal methods and lexical syntactic patterns, and the idea of combining multiple
methods has become a mainstream [2]. In the study of the concept extraction,
Roberto et al. presented a novel method for filtering uncorrelated terms from
candidate terms based on Domain Relevance(DR) and Domain Consensus (DC),
their methods made the extracted concepts more representative for consistency
of terms in the same domain [3]. On this basis, Haitao He et al. presented a
method of the domain concept extraction based on semantic rules and associa-
tion rules [4]. And for the relation extraction, there are two major approaches,
lexical syntactic patterns [5] and association rule analysis [6]. By the limitations
of these two methods, Jun Gu et al. proposed a improved association rule to
acquire relations, which applied association rule to two terms and a verb at
the same time, and could get pretty triples, however it ignored the case that
noun expressions act as relations [7]. In order to extract more relations includ-
ing nouns, Fan Yu raised a set of grammatical rules, which paid attention to
the elimination of pseudo verbs and nouns, and experiments proved that this
method helped getting subjects, predicates and objects precisely [8]. To improve
the quality of extraction, Yufang Zhang et al. integrated similarity analysis based
on the context into above methods [9]. Compared with literatures, our method
does not require plenty of data to identify the domain terms and maintains
the higher F1-value of relation extraction. More important is that we develop a
robust extraction model, which can rigorously expand the scalable corpora and
find more concepts and non-hierarchical relations from corpora in turn.

3 Extraction Based on Scalable Corpora

The scalable corpus is a set of domain terms that are the most common expres-
sions in this domain and can be divided into the scalable concept corpus and the

Non-hierarchical Relation Extraction of Chinese 233

scalable relation corpus. The scalable concept 1 corpus refers to a set of concepts
or instances mainly including nouns and noun phrases, and the scalable relation
corpus is composed by a set of relations mainly in verbs or nouns. Our proposed
extraction model includes the following two parts. But firstly we need establish
a higher purity of initial corpora, this step is introduced in Part 4 detailedly.

3.1 Part One: Expand the Scalable Corpora

Since the scalable corpora are not complete and some domain terms in the
document may not be in initial corpora, the primary objective of this part is to
expand corpora with key terms of the document preliminarily, which lays the
foundation of association rule analysis in the second part. Figure 1 depicts the
work flow of the first part.

Firstly, segment the document and extract core concepts with Density
Extraction Algorithm, and add them to the concept corpus. Secondly, locate
the context of the core concepts and extract nouns and verbs around them.
After that, filter out nouns that are not suitable for concepts through TF-IDF,
and put the remainders keeping higher scores to the concept corpus. Last, filter
out nouns and verbs that are unlikely to be relations with similarity analysis
based on existent corpora, and add the remaining verbs or nouns to the relation
corpus.

Fig. 1. Flow diagram of the first part

3.2 Part Two: Extract Relations

After the first part, the corpora have filled with key terms of this document,
which can be regarded as the clue to extraction of concepts and relations further.
The main goal in this part is to extract more non-hierarchical relations and
concepts and expand the corpora again. Figure 2 shows the whole process.

Firstly, use the improved Apriori algorithm and the scalable concept corpus to
get term pairs which may have the strong relations. Next, prune sentences where
term pairs are and extract predicates as candidate relations. Then, filter out the
relations and concepts using similarity analysis including word2vec and Tongyici
1 In the paper, the concept refers to some concept or the instance of some concept.

234 X. Su et al.

Fig. 2. Flow diagram of the second part

Cilin. If the pair of terms are both in concept corpus, then extract relations with
the maximum similarity; if either of the pair of terms is in concept corpus, choose
candidate relations whose similarity is greater than the preset threshold as the
relation and the other term as the new concept. Finally, obtain the all relations
and concepts from the previous step, and add them into corpora respectively.

3.3 Density Extraction Algorithm

The core concepts are the central words mainly depicted by a document. Gen-
erally a core concept represents a part of knowledge in the document. All core
concepts together organize the content of the whole document. Besides, the doc-
ument is the description of core concepts and distributed around core concepts.
Based on this, we put forward the following assumptions: (1) the content of the
document is spread out with core concepts; (2) the relevant part of knowledge
about each core concept are distributed into the corresponding block in the doc-
ument. In the paper, we propose Density Extraction Algorithm that is used to
extract the core concepts from a single document based on the line density and
uniformity.

Firstly, the document needs to have a segmentation including removing stop
words and to be processed in the form of one sentence in one line. Then calculate
the line density of each word, with the way that the number of total occurrences is
divided by the number of spanning lines. Next, consider uniformity of each word,
which refers to uniform distribution of each word in the corresponding block. In
order to achieve the word uniformity, we divide the corresponding block of each
word into consecutive several bands with equality, at the same time every band
is made up with consecutive several rows. To this end each core concept must
appear at least specified number of times in all bands. In order to enforce this
method perfectly, we need to choose different arguments including the number
of bands, the number of consecutive lines in one band and the specified density
value according to the length of the specified Chinese document to process.

Non-hierarchical Relation Extraction of Chinese 235

3.4 Improved Apriori Algorithm

Apriori Algorithm is a kind of realization of association rule analysis, aiming at
getting some items that may have correlations between them [11]. The basic idea
is that if items often appear in the same sentences, there probably be relations
between them. Here we apply it to the term pairs extraction from documents,
then find the concrete relations between term pairs.

Firstly, define a terms set T = {t1, t2, ..., tm} which contains the basic terms,
S = {s1, s2, ..., sn} is a sentence set where the si expresses the ith sentence in S
and is a set that contains some terms in T , si ⊆ T .

Then define an association rule A ⇒ B, where A ⊆ T , B ⊆ T , A ∩ B = ∅.
The rule is implemented by support and confidence.

Support of A ⇒ B is the ratio of sentences containing both A and B to all
sentences referred to as Sup(A ⇒ B). It is also the probability P (A ∪ B).

Confidence of A ⇒ B is the ratio of sentences containing A and B to sentences
containing A referred to as Conf(A ⇒ B). It is also the probability P (A∪B

A).
In order to get the higher quality of term pairs, we make some improvements

in choosing sentences. A sentence must contain at least a term in the concept
corpus. From this perspective, it is beneficial to expand the corpora through core
concepts beforehand in Part 1.

3.5 Prune Sentences

In a sentence, some nouns are not always used as subject or objects and the
verbs are not for predicates. We call these words pseudo nouns and pseudo verbs
[8]. For example, noun in preposition + noun. In the paper we take the following
methods to prune sentences such that the sentence only includes standard nouns
and verbs.

Firstly, merge some consecutive nouns and consecutive verbs because a com-
plete sense of phrase may be split by the segmentation tool. Secondly, as some
special words in Chinese which have a collocation with ordinary words will
change the part of speech, we need to remove these collocations or change their
parts of speech. Next, delete all adjectives and time words and these collocations:
preposition + verb, noun + conjunction, conjunction + noun, preposition +
noun, noun + particle. Finally, delete all remaining non-nouns and non-verbs.

3.6 Similarity Analysis

In order to expand our concept and relation corpus but no introduction of impu-
rity, we use similarity analysis method including Tongyici Cilin and word2vec to
expand our corpora.

The first similarity calculation method is based on synonyms, using the
coding and structural features of the extended version of Tongyici Cilin [10].
Tongyici Cilin classification adopts hierarchy system with 5 layers of structure.
With increasing of the level, the semantic description is closer and closer, and
the similarity and correlation are higher.

236 X. Su et al.

Literature [12] presented a kind of semantic method based on context, but
selected words must involve cooccurring words in all sentences. Here we find
that word2vec is a natural tool for semantic similarity, which converts a word
to a vector based on context using deep learning [13]. We compare the terms’
similarity by computing the cosine value of their vectors. In addition, word2vec
can also compute the similarity between relations.

4 Experiment and Analysis

Purity of the initial corpora is critical to extract the new concepts and relations
from the specified domain documents. Initially, We crawls pages in the domain of
Computer from Baidu Encyclopedia and extracts concepts and relations accord-
ing to HTML tags to initialize the corpora. But we find that there is still a few
impurities in corpora, so secondary purification is required.

Owing to special nature of Chinese text, we need to carry on the Chinese word
segmentation. Here we choose “Jieba”2 Chinese text segmentation tool. “Jieba”
allows user to load a customer’s dictionary of segmentation, we combine the
relation corpus and the concept corpus as a synthetic term dictionary of “Jieba”,
to some extent it can solve a part of long tail concepts problem. Then we use the
above crawled documents to train a word2vec model. Afterwards pick out 300
concepts from the initial concept corpus manually that can represent the domain
of Computer. Then compute the average similarity distance between each term in
initial corpora and 300 concepts though word2vec, finally filter the concepts lower
than preset threshold that can be viewed as impurities. Similarly for relations.
Eventually about 8000 pure concepts and 3000 relations are obtained.

In the paper, the precision rate, recall rate and F1-value are adopted to mea-
sure the results of extraction. Specially, we just evaluate the extracted relations
from Chinese documents. Here we choose 50 documents from the Chinese ver-
sion of “Computer Culture” written by June Jamrich Parsons as experiment
documents, contents of these documents involve computer memory, operating
system, CPU, computer network, database, software engineering and so on.

We mainly discuss two kinds of experiments with different expansion of cor-
pora. One is expansion inside a single document, namely, all documents adopt
the same initial corpora. And the other is continuous expansion within all doc-
uments. That is, the current document may adopt the corpora produced from
the previous document. Here we choose the first 10 documents and compute the
assessment values. Concrete results are shown in Fig. 3.

The average F1-value of the first expansion reaches to 76.9 %, even more
exciting is that the F1-value of the second expansion reaches to 82.7 %. Besides,
for the same document the precision value of the first expansion is generally
greater than the second, stable at 85.3 %, and the recall value of the second
expansion is commonly greater than the first, as high as 89.6 %. In fact the first
expansion just follows the basic procedure depicted by our model, and concepts

2 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba

Non-hierarchical Relation Extraction of Chinese 237

or relations in the front of the document may not be extracted because initial
corpora are smaller and incomplete. Therefore the precision is not too high but
stable in the first case. Unlike the first expansion, the second expansion is a
continuous process beneficial to find more concepts and relations. For example,
a domain concept does not exist in the concept corpus, but after extraction of
the last document, the concept is captured and added into the corpus, so in
this round, we can extract relative relations and concepts about the concept.
We continue to conduct the same experiment in the following 40 documents, the
results of the experiments are not quite different.

Fig. 3. The first expansion (left) and the second expansion (right)

Here we compare our method with the relevant method [8], which also uses
association rule analysis and sentence pruning technique, but adopts different
strategies. Detailed comparison is seen in the following table.

Table 1. Comparison with other method

Methods Precision Recall F1

Literature [8] (2013) 77.1 % 71.4 % 72.6 %

Our method 78.6 % 89.6 % 82.7 %

Table 1 shows that all evaluation values of our method are higher than Liter-
ature [8] on the same test documents. Although we utilize method of Literature
[8], our scalable corpora are expanding while extracting relations, more domain
terms not just simple results of text segmentations are extracted.

5 Conclusion

The paper puts forward a new ontology extraction model by setting up two
scalable corpora. In this model, expanding corpora and extracting new concepts
or relations occur at the same time. Scalable corpora facilitate concept and
relation extractions which enrich the corpora in turn. The result of experiment
indicates that overall F1-value of this method is 82.7 %, and it is better than
related methods. More importantly, our method can perform better and better

238 X. Su et al.

when extraction continues all the way. Besides, it has a strong portability, that
is to say, concepts and relations in other domain can be extracted in the same
way without a large number of modification.

Acknowledgments. Hai Wan’s research was in part supported by the National Nat-
ural Science Foundation of China under grant 61573386, Natural Science Foundation of
Guangdong Province under grant 2016A030313292, Guangdong Province Science and
Technology Plan projects under grant 2016B030305007, and Sun Yat-sen University
Young Teachers Cultivation Project under grant 16lgpy40.

References

1. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst.
16(2), 72–79 (2001)

2. Jia, X., Wen, D.: A survey of ontology learning from text. Comput. Sci. 34(2),
181–185 (2007)

3. Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses
and dedicated web sites. Comput. Linguist. 30(2), 151–179 (2004)

4. He, H., Shanhong, Z., et al.: Research on domain ontology the concept extraction
based on association rule and semantic rules. J. Jilin Univ. (Info. Sci. Edt.) 32(06),
657–663 (2014)

5. Hearst, M.A.: Automatic acquisition of hyponyms on large text corpora. In: Pro-
ceedings of the 14th International Conference on Computational Linguistics, pp.
539–545, Nantes, France (1992)

6. Buitelaar, P., Daniel, O., et al.: A Protege plug-in for ontology extraction from
text based on linguistic analysis. In: Proceedings of the 1st European Semantic
Web Symposium (2004)

7. Gu, J., Yan, M., et al.: Research on ontology relation acquisition based on improved
association rule. Info. Stud. Theo. Appl. 34(12), 121–125 (2011)

8. Yu, F., Cheng, H., et al.: Non-hierarchical relations extraction of chinese texts
based on grammar rules and improved association rules. Lib. Info. Ser. 57(22),
126–131 (2013)

9. Zhang, Y., Yang, F., et al.: Study on context based domain ontology the concept
extraction and the relation extraction. Appl. Res. Comput. 27(1), 74–76 (2010)

10. Tian, J., Zhao, W.: The method of word similarity calculation based on synonym
word lin. J. Jilin. Univ. 28(6), 602–608 (2010)

11. Agrawal, R., Ramakrishnan, S.: Fast algorithms for mining association rule in large
databases. In: Proceedings of the 20th International Conference on Very Large Data
Bases, pp. 487–499. VLDB (1994)

12. Zhang, Y., Yang, F.: Study on context based domain ontology the concept extrac-
tion and the relation extraction. Appl. Res. Comput. 27(1), 74–76 (2010)

13. Mikolov, T., Chen et al.: Efficient estimation of word representations in vector
space. arXiv preprint arxiv:1301.3781 (2013)

http://arxiv.org/abs/1301.3781

Entity Linking in Web Tables with Multiple
Linked Knowledge Bases

Tianxing Wu(B), Shengjia Yan, Zhixin Piao, Liang Xu, Ruiming Wang,
and Guilin Qi

School of Computer Science and Engineering, Southeast University, Nanjing, China
{wutianxing,sjyan,piaozhx,liang.xu,wangruiming,gqi}@seu.edu.cn

Abstract. The World-Wide Web contains a large scale of valuable rela-
tional data, which are embedded in HTML tables (i.e. Web tables). To
extract machine-readable knowledge from Web tables, some work tries
to annotate the contents of Web tables as RDF triples. One critical step
of the annotation is entity linking (EL), which aims to map the string
mentions in table cells to their referent entities in a knowledge base (KB).
In this paper, we present a new approach for EL in Web tables. Different
from previous work, the proposed approach replaces a single KB with
multiple linked KBs as the sources of entities to improve the quality of
EL. In our approach, we first apply a general graph-based algorithm to
EL in Web tables with each single KB. Then, we leverage the existing
and newly learned “sameAs” relations between the entities from differ-
ent KBs to help improve the results of EL in the first step. We conduct
experiments on the sampled Web tables with Zhishi.me, which consists
of three linked encyclopedic KBs. The experimental results show that
our approach outperforms the state-of-the-art table’s EL methods in dif-
ferent evaluation metrics.

Keywords: Entity linking · Web tables · Linked knowledge bases

1 Introduction

The current World-Wide Web contains a large scale of relational data in the
form of HTML tables (i.e. Web tables), which have already been viewed as an
important kind of sources for knowledge extraction on the Web. To realize the
vision of Semantic Web, various efforts [9–12,19,20] have been made to interpret
the implicit semantics of Web tables by annotating their contents as RDF triples.
One critical step of such annotation is entity linking (EL), which refers to map
the string mentions in table cells to their referent entities in a given knowledge
base (KB). For example, in the third column of the Web table in Fig. 1, EL aims
to link the string mention “Michael Jordan” to the entity “Michael Jordan
(American basketball player)” in a given KB. Without correct identified
entities, the annotation on Web tables is hard to get accurate RDF triples.
Thus, in this paper, we focus on studying the problem of EL in Web tables.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 239–253, 2016.
DOI: 10.1007/978-3-319-50112-3 18

240 T. Wu et al.

Fig. 1. An example of web table describing the information of NBA teams

There exist two main problems in previous work for EL in Web tables as
follows. (1) Many work [9–11,19,21,22] strongly relies on the features based on
specific information, such as column headers (e.g. “Team”, “City”, etc. in the
first row of Fig. 1) in Web tables, entity types in the target KB, and so on.
Therefore, it is obvious that these approaches can not work well when the given
Web table or KB contains no or few such information. (2) Most of the existing
approaches [2,9,10,16,19,21,22] only consider linking string mentions in table
cells to a single KB, which can not ensure good coverage of EL in Web tables.
This problem is also presented in [15] when performing EL in natural language
text.

To overcome the above problems, we propose a new general approach for EL
in Web tables with multiple linked KBs. The proposed approach contains two
steps. We first apply a graph-based algorithm without using any specific informa-
tion to EL in Web tables with each single KB. Then, we present three heuristic
rules leveraging the existing and newly learned “sameAs” relations between the
entities from different KBs to improve the results of EL in the first step. The
second step of our approach can not only reduce the errors generated by EL with
each single KB, but also improve the coverage of the EL results. In experiments,
we map the string mentions in the cells of sampled Web tables to the entities in
Zhishi.me [14], which is the largest Chinese linked open data and composed of
three Chinese linked online encyclopedic KBs: Chinese Wikipedia1, Baidu Baike2

and Hudong Baike3. The evaluation results show that our approach outperforms
two state-of-the-art systems (i.e. TabEL [2] and LIEGE [16]) in terms of MRR
(i.e. Mean Reciprocal Rank4), precision, recall and F1-score.

The rest of this paper is organized as follows. Section 2 outlines some related
work. Section 3 introduces the proposed approach in detail. Section 4 presents
the experimental results and finally Sect. 5 concludes this work and describes
the future work.

1 https://zh.wikipedia.org.
2 http://baike.baidu.com.
3 http://www.baike.com.
4 https://en.wikipedia.org/wiki/Mean reciprocal rank.

https://zh.wikipedia.org
http://baike.baidu.com
http://www.baike.com
https://en.wikipedia.org/wiki/Mean_reciprocal_rank

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 241

2 Related Work

In this section, we review some related work regarding semantic annotation on
Web tables, which usually tackles three tasks: entity linking (EL), column type
inference and relation extraction between the entities in the same row but differ-
ent columns. After Cafarella et al. [6] reported that there are more than 150 mil-
lion Web tables embedded with high-quality relational data, lots of researchers
realized that Web tables are important sources that can be used for many appli-
cations, such as information extraction and structured data search. Hence, there
emerged various work about semantic annotation on Web tables.

Hignette et al. [9] proposed an aggregation approach to annotate the contents
of Web tables using vocabularies in the given ontology. It first annotates cells,
then columns, finally relations between those columns. Similarly, Syed et al.
[19] also presented a pipeline approach, which first infers the types of columns,
then links cell values to entities in the given KB, finally selects appropriate
relations between columns. Zhang [22] designed a tool called TableMiner for
annotating Web tables. TableMiner only focuses on column type inference and
EL, and can not extract relations from Web tables. Afterwards, Zhang [21] also
proposed some strategies to improve TableMiner. Limaye et al. [10] and Mulwad
et al. [11] described two approaches which can respectively jointly model the
EL, column type inference and relation extraction tasks for Web tables. The
main difference between our approach and these work is that we do not use any
specific information for the task of EL, such as column headers and captions of
Web tables, entity types in KBs, semantic markups in Web pages, and so on.

There also exists some work in specific scenarios about semantic annotation
on Web tables without the step of EL. In the work of Venetis et al. [20], their
approach weakens the impacts of EL, and directly infers the types of columns and
determines the relationships by the frequency of different patterns in large scale
isA and relation databases, which are both built from Web pages but usually
unavailable to most of the researchers. Besides, Muñoz et al. [12] proposed an
approach to mine RDF triples from Wikipedia tables. In this work, they can
directly identify the entities in Wikipedia with internal links and article titles.

The closest work to our approach is done by Shen et al. [16] and Bhagavatula
et al. [2]. Shen et al. [16] tried to link the string mentions in list-like Web tables
(multiple rows with one column) to the entities in a given KB. Bhagavatula et
al. [2] presented TabEL, a table entity linking system, which uses a collective
classification technique to collectively disambiguate all mentions in a given Web
table. Both of these two work do not use any specific information for EL, and can
be applied to any KB. Here, we focus on EL with multiple linked KBs instead
of a single KB, in order to improve the quality of EL in Web tables.

3 Approach

In this section, we introduce our proposed approach for entity linking (EL) in
Web tables, which consists of two main steps: EL with any single KB and improv-
ing EL using “sameAs” links between multiple linked KBs.

242 T. Wu et al.

Fig. 2. An example of related mentions in the same row or column

3.1 Entity Linking with a Single KB

Candidate Generation. For each string mention in table cells, we first need
to identify its candidate referent entities in the given KB. Here, we segment
each mention in word level, so each mention can be represented by a set of
words. If an entity e in the given KB or one of e’s synonyms in BabelNet [13]
(a Web-scale multilingual synonym thesaurus) contains at least one word of
some mention m, then e is taken as one candidate referent entity of the mention
m. For example, the mention “Charlotte” has candidate referent entities such
as “Charlotte, North Carolina”, “Charlotte, Illinois” and “Charlotte
Hornets”. The results of candidate generation is that each mention may corre-
spond to a set of candidate entities.

Entity Disambiguation. In entity disambiguation, we aim to choose an entity
from the candidate set as each mention’s referent entity in the given KB. As
shown in Fig. 2, we can easily find that mentions in the same row or column tend
to be related. In other words, there exists some potential association between any
two mentions appearing in the same Web table. Therefore, we choose to jointly
disambiguate all the mentions in one table using a graph-based algorithm:

(a) Firstly, for each given table, we build an Entity Disambiguation Graph only
using mentions and their candidate referent entities as the graph nodes.

(b) Secondly, in each constructed Entity Disambiguation Graph, we compute
the initial importance of each mention for joint disambiguation and the
semantic relatedness between different nodes as the EL impact factors to
decide whether an entity is the referent entity of a given mention.

(c) Finally, with iterative probability propagation using the EL impact factors
until convergence, each entity gets its probability to be the referent entity
of the given mention and our algorithm makes the EL decisions based on
these probabilities.

In the following part of this section, we describe the above three steps in detail.

(a) Building Entity Disambiguation Graph. For each given table, we build
an Entity Disambiguation Graph, which consists of two kinds of nodes and two
kinds of edges introduced as follows.

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 243

Fig. 3. An example of constructed Entity Disambiguation Graph

– Mention Node: These nodes refer to the mentions in Web tables.
– Entity Node: These nodes represent mentions’ candidate referent entities in

the given KB.
– Mention-Entity Edge: A mention-entity edge is an undirected edge between

a mention and one of its candidate referent entities.
– Entity-Entity Edge: An entity-entity edge is an undirected edge between

entities.

An example of the constructed Entity Disambiguation Graph is given in
Fig. 3. Due to the limited space, it is only the part of the constructed Entity Dis-
ambiguation Graph for the Web table in Fig. 2, and lots of nodes and edges are
not shown in Fig. 3. Note that each mention such as “Michael Jordan” should
has a mention-entity edge linking to any of its candidate entities “Michael J.
Jordan (NBA player)” and “Michael I. Jordan (CS scientist)”. Entity-
entity edges should also be created between all the entity nodes in the graph.

(b) Computing the EL Impact Factors. After constructing the Entity Dis-
ambiguation Graph for the given Web table, each node or edge is assigned with
a probability. For the entity nodes, their probabilities refer to the possibilities
of they being the referent entities of mentions, and are initialized as 0 before
affected by the EL impact factors, which are actually (1) the probabilities of
mention nodes, and they can be viewed as the importance of mentions for joint
disambiguation; (2) the probabilities assigned to edges, and they are semantic
relatedness between nodes. In this paper, we equally treat each mention, so when
there exist k mentions in the Web table, the importance of each mention is ini-
tialized to 1/k. Since there are two kinds of edges in each constructed Entity
Disambiguation Graph, entity-entity edges and mention-entity edges should be
respectively associated with the semantic relatedness between entities and that
between mentions and entities.

For the semantic relatedness between mentions and entities, we use
two features to measure it as follows.

244 T. Wu et al.

– String Similarity Feature. If a mention m and an entity e are of similar
strings, it is possible that e is m’s the referent entity in the given KB. Hence,
we define the string similarity feature strSim(m, e) as

strSim(m, e) = 1 − EditDistance(m, e)
max{|m|, |e|} (1)

where |m| and |e| are the string lengths of the mention m and entity e, respec-
tively. EditDistance(m, e) means the edit distance5 between m and e, and it
is a way to quantify how dissimilar two strings are. In other words, the more
similar in string level mention m and entity e are, the higher the value of
strSim(m, e) is.

– Mention-Entity Context Similarity Feature. Given a mention m and
one of its candidate referent entities e, if they are semantic related, they tend
to share similar context. Here, for obtaining the context of the given mention
m, we first collect other mentions in the row or column where m locates.
Then, we segment each collected mention into a set of words. Finally, we take
all the words as the context of m and it is denoted by menContext(m). For
the context of the entity e, we first collect all the RDF triples which e exists
in, and then segment each object (when e is the subject) or each subject
(when e is the object) into a set of words. These words are also treated as
e’s context entContext(e). To calculate the mention-entity context similarity
feature contSimme(m, e) between the mention m and the entity e, we apply
the Jaccard Similarity6 as follows:

contSimme(m, e) =
|menContext(m) ∩ entContext(e)|
|menContext(m) ∪ entContext(e)| (2)

Given a mention m and an entity e, to integrate the string similar-
ity feature strSim(m, e) with the mention-entity context similarity feature
contSimme(m, e), we define the Mention-Entity Semantic Relatedness
SRme(m, e) as follows:

SRme(m, e) = 0.99 × (α1 · strSim(m, e) + β1 · contSimme(m, e)) + 0.01 (3)

where both α1 and β1 are set to 0.5 in this work. SRme(m, e) at least equals 0.01,
in order to keep the connectivity of the Entity Disambiguation Graph during the
subsequent process of probability propagation.

For the semantic relatedness between entities, we also define following
two features to measure it.

– Triple Relation Feature. If two entities are in the same RDF triple, they
are obviously semantic related. Thus, we compute the triple relation feature
IsRDF (e1, e2) between the entity e1 and the entity e2 as

IsRDF (e1, e2) =
{

1, e1 and e2 are in the same RDF triple
0, otherwise

(4)

5 https://en.wikipedia.org/wiki/Edit distance.
6 https://en.wikipedia.org/wiki/Jaccard index.

https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Jaccard_index

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 245

– Entity-Entity Context Similarity Feature. Similar to the idea intro-
duced in the mention-entity context similarity feature, i.e. semantic related
entities may be of similar context, and we use the same process for extract-
ing the context of each entity. Given an entity e1 and an entity e2, we also
use Jaccard Similarity to compute the entity-entity context similarity fea-
ture contSimee(e1, e2) between their respective context entContext(e1) and
entContext(e2) as

contSimee(e1, e2) =
|entContext(e1) ∩ entContext(e2)|
|entContext(e1) ∪ entContext(e2)| (5)

To acquire the semantic relatedness between an entity e1 and an entity e2, we
compute the Entity-Entity Semantic Relatedness SRee(e1, e2) integrating
triple relation feature IsRDF (e1, e2) with the entity-entity context similarity
feature contSimee(e1, e2) as follows:

SRee(e1, e2) = 0.99 × (α2 · IsRDF (e1, e2) + β2 · contSimee(e1, e2)) + 0.01 (6)

where both α2 and β2 are also set to 0.5.

(c) Iterative Probability Propagation. To combine different EL impact fac-
tors for the EL decisions, we utilize iterative probability propagation to compute
the probabilities associated with entity nodes (i.e. the probabilities for entities
to be the referent entities of mentions) until convergence. The detailed process
of our proposed iterative probability propagation on each Entity Disambiguation
Graph is described as follows.

Given an Entity Disambiguation Graph G = (V,E) containing n nodes
(with k mention nodes and l entity nodes), each node is assigned to an inte-
ger index from 1 to n. We use these indexes to represent the nodes, and an
n × n adjacency matrix of the Entity Disambiguation Graph G is denoted as A,
where Aij refers to the transition probability from the node i to the node j and
Aij = Aji. Since the edge between the node i to the node j has been associated
with a probability, which is the semantic relatedness (defined in Eqs. 3 and 6)
between different nodes, we define Aij as

Aij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SRme(i,j)
SRme(i,∗) , if i �= j and i represents a mention node

γ × SRee(i,j)
SRee(i,∗) , if i �= j and i, j represent two entity nodes

(1 − γ) × SRme(i,j)
SRme(i,∗) , if i �= j, i is an entity node and j is a mention node

0, if i = j

(7)

where SRme(i, j) is the mention-entity semantic relatedness between a mention
node and an entity node (defined in Eq. 3), SRme(i, j) = SRme(j, i), SRee(i, j)

246 T. Wu et al.

is the entity-entity semantic relatedness between entity nodes (defined in Eq. 6),
SRee(i, ∗) means the total entity-entity semantic relatedness between i and
its adjacent entity nodes and γ is set to 0.5. If i represents a mention node,
SRme(i, ∗) is the total mention-entity semantic relatedness between i and all of
its adjacent nodes. If i denotes an entity node, SRme(i, ∗) is the total mention-
entity semantic relatedness between i and its adjacent mention nodes.

Here, we finally define a notation, i.e. an n×1 vector r for all the nodes, where
r(i) means the probability for the node i to be the referent entity of some mention
(if i is an entity node). To compute r with iterative probability propagation, we
first set its initial value r0. As introduced before, if the node i is a mention node,
r0(i) is set to the initial importance of i, i.e. 1/k. If i is an entity node, r0(i) = 0.
Then, we update r in the process of iterative probability propagation using other
EL impact factors, i.e. mention-entity semantic relatedness and entity-entity
semantic relatedness encoded in the matrix A. In this way, the recursive form
of r is given as follows:

rt+1 = ((1 − d) × E

n
+ d × A) × rt (8)

where t is the number of iterations and E is an n × n square matrix of all
1’s. In this formula, to ensure the matrix A is aperiodic to converge, we add
a special kind of undirected edges from each node to all the other nodes and
give each edge a small transition probability controlled by the damping factor
d. In other words, during the process of iterative probability propagation, there
exists a probability that the EL impact factors are propagated by neither the
defined mention-entity edges nor entity-entity edges, but the above special kind of
edges associated with small transition probabilities. Since the process of iterative
probability propagation is similar to the PageRank algorithm [5], we apply the
same setting that d = 0.85. After the iterative probability propagation, given a
mention m and its corresponding set of candidate referent entities ESet(m) =
{e1, e2, ..., es}, we pick the entity which is of the highest probability in ESet(m)
as the referent entity of m.

Different from other methods, our approach for EL in Web tables with a single
KB does not rely on any specific information but only general RDF triples. Thus,
it can be applied to any KB containing RDF triples in Linking Open Data7,
including DBpedia [1,3], Yago [17,18], Freebase [4], Zhishi.me [14] and etc.

3.2 Improving Entity Linking with Multiple Linked KBs

Entity Linking (EL) in Web tables only with a single KB can not always ensure
a good coverage. One solution is to respectively perform the task of EL with
different KBs so that we can improve the coverage of the EL results. However, the
problem is that there may exist conflicts among the results of EL with different
KBs. In this paper, we have done a test on Zhishi.me consisting of three largest
Chinese linked online encyclopedic KBs, i.e. Chinese Wikipedia, Baidu Baike and
7 http://linkeddata.org/.

http://linkeddata.org/

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 247

Fig. 4. An example of EL results: the ranking lists of entities in different KBs for the
mention “Charlotte” in Fig. 2

Hudong Baike. We first apply our proposed approach for EL with a single KB
to our extracted Web tables (more than 70 thousand) with Chinese Wikipedia,
Baidu Baike and Hudong Baike, respectively. Then, given a mention in a Web
table and its identified entities in three KBs, if two identified entities have the
“sameAs” relation, they can be considered as the same individual, otherwise
they are different, i.e. there exists a conflict. According to the statistics, the
conflicts exist in totally 38.94 % EL results (one result refers to a mention with
its identified entities from different KBs). After that, we observe the EL results
of the above test and analyse the reasons for such conflicts among the results of
EL with different KBs as follows:

– Reason 1: For some KBs, the EL results are really incorrect, that is to say,
some potential correct referent entities do not rank the highest.

– Reason 2: The “sameAs” relations are incomplete between KBs, i.e. there
does not exist the “sameAs” relations between some equivalent entities from
different KBs.

Based on these two reasons, we present our approach in detail to solve the
conflicts of EL with different KBs in the following part of this section.

Suppose that there are n different linked KBs. For each given KB, we first
apply our proposed approach to EL with a single KB to the given Web table.
Then, for each mention, we can get its n ranking lists of referent entities. After-
wards, with the “sameAs” relations between entities in different KBs, we group
the entities representing the same individual into different sets. For example, in
Fig. 4, we can get 4 sets as follows:
(1) Set1 = {“Charlotte, North Carolina” (KB1), “Charlotte, North Carolina”

(KB2), “Charlotte, North Carolina” (KB3)};
(2) Set2 = {“Charlotte, Illinois” (KB1), “Charlotte, Illinois” (KB2),

“Charlotte, Illinois” (KB3)};

248 T. Wu et al.

(3) Set3 = {“Charlotte Hornets” (KB1), “Charlotte Hornets” (KB2) };
(4) Set4 = {“Charlotte, Iowa” (KB3)}.
After that, we compute the average ranking, the highest ranking and the number
of the entities in each set. For example, for the entities in set1, the average
ranking is computed as (1 + 2 + 1)/3 = 1.33, the highest ranking is 1 and the
number is 3. Finally, we propose three rules as follows to solve the conflicts by
choosing one set as the final EL results for the given mention.

– Rule 1: If both the average ranking and the highest ranking of the entities
in a set rank the highest, and the number of the entities in this set is not less
than half of the number of KBs, then we choose this set as the final EL results
for the given mention.

– Rule 2: If there exist two or more sets that the average ranking and the
highest ranking of the sets’ corresponding entities are the same and rank the
highest, also the number of the entities in each of these sets is not less than
half of the number of KBs, then we choose one set at random as the final EL
results for the given mention.

– Rule 3: If the number of the entities in each set is less than half of the number
of KBs, the original EL results of the given mention remain unchanged.

To obtain the global and local optimal EL results at the same time, we consider
not only the average ranking and the highest ranking of the entities in each
set, but also the number of times that each individual (represented by a set of
entities) occurs in different KBs. If the number of the entities in a set is less than
half of the number of KBs, it means that the individual represented by these
entities is covered by few KBs, so the average ranking is not convincing and it is
not reasonable to take this set of entities to solve the conflicts among the results
of EL with all the KBs.

According to Reason 2, if there exist more “sameAs” relations between the
entities from different KBs, we may better solve the conflicts with our proposed
rules. Here, in order to learn new “sameAs” relations, we define three features
and train a supervised learning classifier Support Vector Machine (SVM), which
is of the best performance in most situations [8]. The proposed features are
introduced as follows:

– Synonym Feature. This feature tries to detect that whether the strings of
two entities may represent synonyms. We input the strings of two entities e1
and e2 into BabelNet [13], if these two strings may represent synonyms in
BabelNet, the synonym feature isSyn = 1, otherwise isSyn = 0.

– String Similarity Feature. This feature captures the linguistic relatedness
between entities. It is denoted by strSim(e1, e2), where e1 and e2 are entities.
We use Eq. 1 to compute this feature using edit distance.

– Entity-Entity Context Similarity Feature. For two given entities in dif-
ferent KBs, this feature measures the similarity between the extracted context
of entities and is already defined in Eq. 5.

After completing the “sameAs” relations with this SVM classifier, we also utilize
our proposed rules to decide the final EL results. It is to verify whether the

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 249

performance is improved compared with that of the rules only using the existing
“sameAs” relations.

4 Experiments

In this section, we evaluated our approach on the sampled Web tables with
three linked KBs (i.e. Chinese Wikipedia, Baidu Baike and Hudong Baike) in
Zhishi.me, and compared our approach with two state-of-the-art systems for EL
in Web tables and two degenerate versions of our approach.

4.1 Data Set and Evaluation Metrics

Since entity linking in Web tables with multiple linked KBs is a new task, we do
not have any existing benchmark. Therefore, we need to generate ground truths
by ourselves. We have extracted more than 70 thousand Web tables containing
relational data from the Web. We randomly sampled 200 Web tables and invited
five graduate students to manually map each string mention in table cells to the
entities in each KB of Zhishi.me. The labeled results is based on majority voting
and are publicly available8. Besides, in order to train the SVM classifier to
learn new “sameAs” relations between different KBs, we also need to manually
generate the labeled data. We first randomly selected 500 existing “sameAs”
relations as the positive labeled data. Then, we random selected 3,000 entity
pairs, each of which consists of the entities from different KBs. Finally, we also
asked the five graduate students to label them and 3,000 entity pairs were all
labeled as negative.

For each sampled Web table, we performed EL with our approach and the
designed comparison methods. We evaluated the results with four metrics, which
are Precision, Recall, F1-score and MRR (Mean Reciprocal Rank [7]). F1-score
is the harmonic mean of precision and recall. Mean Reciprocal Rank is used
for evaluating the quality of the ranking lists. For a mention m, the reciprocal
rank in EL is the multiplicative inverse of the rank for m’s referent entity. For
example, if the correct referent entity of m is in the second place in the ranking
lists generated by some EL algorithm, the reciprocal rank is 1/2.

4.2 Comparsion Methods

We compared our approach with the following methods.

– TabEL: TabEL [2] is the current state-of-the-art system for EL in Web tables,
and it uses a collective classification technique with several general features to
collectively disambiguate all mentions in a given Web table. Besides, any KB
can be used for EL in Web tables with TabEL.

8 https://github.com/jxls080511/MK-EL.

https://github.com/jxls080511/MK-EL

250 T. Wu et al.

Table 1. The overall EL results evaluated with each single KB

Knowledge base Approach Precision Recall F1-score MRR

Chinese Wikipeida TabEL 0.823 0.809 0.816 0.858

LIEGE 0.778 0.747 0.762 0.813

Our-s 0.830 0.797 0.813 0.860

Our-m-e 0.861 0.821 0.841 0.881

Our-m-(e+n) 0.873 0.828 0.850 0.887

Baidu Baike TabEL 0.659 0.628 0.643 0.707

LIEGE 0.629 0.576 0.601 0.670

Our-s 0.696 0.652 0.673 0.725

Our-m-e 0.758 0.705 0.731 0.746

Our-m-(e+n) 0.774 0.727 0.750 0.776

Hudong Baike TabEL 0.681 0.649 0.665 0.780

LIEGE 0.661 0.632 0.646 0.751

Our-s 0.708 0.642 0.673 0.768

Our-m-e 0.729 0.700 0.714 0.787

Our-m-(e+n) 0.744 0.708 0.726 0.796

– LIEGE : LIEGE [16] is a general approach to link the string mentions in list-
like Web tables (multiple rows with one column) to the entities in a given KB.
It proposes an iterative substitution algorithm with three features to EL in
Web lists. This approach can also be applied to EL in Web tables with any
KB.

– Our-s: It is a degenerate version of our approach. It only uses our proposed
approach for EL with a single KB and does not utilize the rules with “sameAs”
relations to improve the EL results.

– Our-m-e : It is also a degenerate version of our approach. After performing
EL with each single KB, it only uses existing “sameAs” relations (without
newly learned “sameAs” relations) to improve the EL results.

4.3 Result Analysis

In the whole version of our proposed approach (denoted as Our-m-(e+n)), we
first apply a graph-based algorithm without using any specific information to
EL in Web tables with each single KB, and then we leverage the existing and
newly learned “sameAs” relations between the entities from different KBs to help
improve the results of EL. Table 1 gives the overall results of our approach and
the designed comparison methods evaluated with each single KB, and we can
see that:

– Our approach for EL with a single KB, i.e. Our-s, is comparable to the state-of-
the-art system TabEL and outperforms LIEGE, which reflects the effectiveness
of our proposed graph-based algorithm.

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 251

– Our-m-e is always better than Our-s in precision, recall, F1-score and MRR.
It shows the value of our proposed heuristic rules for improving the EL results
of Our-s.

– The whole version of our approach, i.e. Our-m-(e+n) outperforms all the other
comparison methods, which verifies the superiority of our approach for EL in
Web tables with multiple linked KBs. Compared with Our-m-e, the better
performance of Our-m-(e+n) demonstrates that the newly learned “sameAs”
relations are beneficial to solve the conflicts among the EL results of Our-s
with different KBs.

Besides, we also calculated the precision, recall and F1-score as the evaluation
results of our approach (i.e. Our-m-(e+n)) on the whole Zhishi.me. The precision
is 0.831, recall is 0.903 and F1-score is 0.866. The most important thing is that
the recall is significantly improved, which shows EL in Web tables with multiple
linked KBs can really ensure a good coverage.

5 Conclusions and Future Work

In this paper, we presented a new approach for EL in Web tables with multi-
ple linked KBs. We first proposed an algorithm based on graph-based iterative
probability propagation to perform EL with each single KB. In order to improve
the EL results generated by the first step, we then applied three heuristic rules
leveraging the existing and newly learned “sameAs” relations between the enti-
ties from different KBs. The experimental results showed that our approach not
only outperforms the designed state-of-the-art comparison methods in different
evaluation metrics, but also can use any single KB or linked KBs for EL in the
Web tables.

As for the future work, we first will build more benchmarks of other languages
for the new task of EL in Web tables with multiple linked KBs and further verify
the effectiveness of our approach in other languages, especially English. We then
plan to provide APIs or tools as the programming interface of our proposed
approach. Finally, we also consider to extend our approach to cross-lingual entity
linking in Web tables with multiple linked KBs.

Acknowledgements. This work is supported in part by the National Natural Science
Foundation of China (NSFC) under Grant No. 61272378, the 863 Program under Grant
No. 2015AA015406 and the Research Innovation Program for College Graduates of
Jiangsu Province under Grant No. KYLX16 0295.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76298-0 52

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-540-76298-0_52

252 T. Wu et al.

2. Bhagavatula, C.S., Noraset, T., Downey, D.: TabEL: entity linking in web tables.
In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 425–441. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25007-6 25

3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: Dbpedia-a crystallization point for the web of data. Web Seman.
Sci. Serv. Agents WWW 7(3), 154–165 (2009)

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: SIGMOD,
pp. 1247–1250 (2008)

5. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search
engine. Comput. Netw. 56(18), 3825–3833 (2012)

6. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. PVLDB 1(1), 538–549 (2008)

7. Craswell, N.: Mean reciprocal rank. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems, p. 1703. Springer, Heidelberg (2009)

8. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds
of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1),
3133–3181 (2014)

9. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Fuzzy annotation
of web data tables driven by a domain ontology. In: Aroyo, L., et al. (eds.) ESWC
2009. LNCS, vol. 5554, pp. 638–653. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02121-3 47

10. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. PVLDB 3(1–2), 1338–1347 (2010)

11. Mulwad, V., Finin, T., Joshi, A.: Semantic message passing for generating linked
data from tables. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp.
363–378. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3 23

12. Muñoz, E., Hogan, A., Mileo, A.: Using linked data to mine RDF from wikipedia’s
tables. In: WSDM, pp. 533–542 (2014)

13. Navigli, R., Ponzetto, S.P.: Babelnet: building a very large multilingual semantic
network. In: ACL, pp. 216–225 (2010)

14. Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving chinese
linking open data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 205–220.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25093-4 14

15. Pereira, B.: Entity linking with multiple knowledge bases: an ontology modulariza-
tion approach. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 513–520.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11915-1 33

16. Shen, W., Wang, J., Luo, P., Wang, M.: Liege: link entities in web lists with
knowledge base. In: SIGKDD, pp. 1424–1432 (2012)

17. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW, pp. 697–706 (2007)

18. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a large ontology from wikipedia
and wordnet. Web Seman. Sci. Serv. Agents WWW 6(3), 203–217 (2008)

19. Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a web of semantic data for
interpreting tables. In: WebSci, vol. 5 (2010)

20. Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering semantics of tables on the web. PVLDB 4(9), 528–538 (2011)

http://dx.doi.org/10.1007/978-3-319-25007-6_25
http://dx.doi.org/10.1007/978-3-642-02121-3_47
http://dx.doi.org/10.1007/978-3-642-02121-3_47
http://dx.doi.org/10.1007/978-3-642-41335-3_23
http://dx.doi.org/10.1007/978-3-642-25093-4_14
http://dx.doi.org/10.1007/978-3-319-11915-1_33

Entity Linking in Web Tables with Multiple Linked Knowledge Bases 253

21. Zhang, Z.: Learning with partial data for semantic table interpretation. In:
Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014.
LNCS (LNAI), vol. 8876, pp. 607–618. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13704-9 45

22. Zhang, Z.: Towards efficient and effective semantic table interpretation. In: Mika,
P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 487–502. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-11964-9 31

http://dx.doi.org/10.1007/978-3-319-13704-9_45
http://dx.doi.org/10.1007/978-3-319-13704-9_45
http://dx.doi.org/10.1007/978-3-319-11964-9_31

Towards Multi-target Search of Semantic Association

Xiang Zhang1,2(✉) and Yulian Lv3

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
x.zhang@seu.edu.cn

2 Key Laboratory of Data Engineering and Knowledge Services,
Nanjing University, Nanjing, China

3 College of Software Engineering (Suzhou), Southeast University, Suzhou, China
lvyulian@seu.edu.cn

Abstract. Semantic association represents group relationship among objects in
linked data. Searching semantic associations is complicated, which involves the
search of multiple objects and the search of their group relationships simultane‐
ously. In this paper, we propose this kind of search as a multi-target search, and
we compare it to traditional search tasks, which we classify as single-target search.
A novel search model is introduced, and the notion of virtual document is used
to extract linguistic information of semantic associations. Multi-target search is
finally fulfilled by a PageRank-like ranking scheme and a top-K selection policy
considering object affinity. Experiments show that our approach is effective in
improving retrieval precision on semantic associations.

Keywords: Linked data · Semantic association · Multi-target search

1 Introduction

Linked data provides good practice for connecting and sharing objects by URI and RDF.
An important knowledge we can discovered in linked data is the explicit or hidden
relationship among objects, which is named as semantic associations. Stated in [1],
semantic association is defined as group relationships among multiple objects.

At present, massive semantic associations can be discovered efficiently from large
volume of linked data. But few studies have been done on searching these semantic
associations and making use of them in a friendly and efficient manner. It was proposed
to transform semantic associations into text-based structure and searching based on
keywords in [2]. However, this approach still lacks considerations on the group rela‐
tionships. Traditional keyword-based search only consider the hit of the keywords in
single information target in a dataset, which can be a single document or a web page.
We name it as single-target search. In our cases, the search model involves the search
of multiple objects and the group relationships simultaneously. For example, a search
of associations could be a set of keywords: “Tim Berners-Lee”, “Ted Nelson” and “Doug
Engelbart”. Each set of keywords in this search hits an object. User wants to find out
the group relationships among these three scientists. Thus, searching semantic associ‐
ations is a complicated combination of multiple single-target searches.

© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 254–262, 2016.
DOI: 10.1007/978-3-319-50112-3_19

In this paper, we propose a multi-target search model of semantic associations in
Sect. 4. The notion of virtual document is used also in Sect. 4 to extract linguistic infor‐
mation of semantic associations. In Sect. 5, multi-target search is fulfilled by a
PageRank-style ranking scheme and a top-K selection policy considering object affinity.
Experiments are discussed in Sect. 6, showing that our approach is feasible in improving
retrieval precision.

2 System Architecture

An overview of the architecture of multi-target search is given in Fig. 1. Association
Miner discovers meaningful semantic associations in multiple linked data, and then
passes the mining results to Association Indexer. The latter uses a VDoc Extractor to
build the linguistic information of each association. Once a user poses a multi-target
search on indexed associations, the search will be divided into multiple single-target
searches, each performed by a corresponding Single-Target Query Processor. The
Association Ranker will sort the search result based on a Static Ranker, which rank the
results using a PageRank-style ranking algorithm to filter out important associations,
and also on a Top-K Selector, which utilizes an Object Affinity Assessor to control the
size of result set and makes a reasonable combination of the multiple single-target search
into a multi-target one. The final search result will return to user through Multi-Target
Query Processor.

Fig. 1. The architecture of searching system of semantic association

Towards Multi-target Search of Semantic Association 255

3 Discovering Semantic Associations

Early definitions of semantic association are based on RDF paths between two objects.
In [3], Aleman declared that, if two objects are semantically connected by a semantic
path then they are semantically associated. In [4], Kochut used defined directionality
path to characterize semantic associations. But path-based definition of semantic asso‐
ciations is not able to characterize complex group relationships among multiple objects.
Thus, a graph-based definition was proposed in [1], in which a semantic association is
a graph instantiation of a frequent subgraph called link pattern.

Figure 2(b) shows a link pattern discovered in real-world linked data. It represents
a paper-presenting association among “Author”, “Publication” and “Conference”. This
pattern is discovered by pattern-growth frequent subgraph mining algorithm, assuring
the pattern is typical and meaningful. Figure 2(a) presents two semantic associations.
One is a paper-presenting event in WWW2004 conference, the other is on ISWC2003
conference. Both are instantiations of the link pattern shown in Fig. 2(b). A discussion
was given in [1] on mining link patterns and semantic associations.

Fig. 2. (a) An example of semantic associations (b) corresponding link pattern

4 Searching Semantic Association

4.1 Search Model

Traditional keyword-based search only consider the hit of the keywords in single infor‐
mation target in a dataset, which can be a single document or a web page. Single-target
search is not applicable in the context of semantic association search, as explained in
previous section. A typical search in our context will be composed of several separated
sub-query, in which each indicates a user need expecting a certain object, and the
expected semantic associations are the group relationship among these expected objects.

Definition 1 (Multi-target Search Model): A multi-target search model is a quad‐
ruple: , where:

(1) is the set of objects in linked data;
(2) is a set of semantic associations discovered in linked data;

256 X. Zhang and Y. Lv

(3) is the query set. A query is a set of sub-queries: in which
each sub-query is a bag of query keywords, and will be posed to hit a set of objects
in .

(4) is the query function comprising two sub-functions. is a function

mapping a sub-query to a set of objects. For a sub-query ,
is the set of hit objects. is a function mapping a query to a set of semantic

associations. For a query and , is the
research result of , in which each association contains at least one object from

 to .

Multi-target search model is a two-step search model. Given a semantic association
query containing sub-queries, the first step of the search model aims at finding separated
sets of objects using sub-queries. The second step of the model utilizes the sets of objects
hit in the first step to find appropriate semantic associations. The sub-queries in multi-
target search model enable a search with finer granularity comparing to single-target
search model.

4.2 Search Process

The graph structure of the semantic association brings a great barrier to the process of
searching. Transforming the graph into text-based structure is a good idea. Therefore,
we borrowed the notion of virtual document referred in [5].

Briefly, for a literal node, the description is a collection of words derived from the
literal itself; for a URI, it is a collection of words extracted from the local name,
rdfs:label, rdfs:comment and other possible annotations.

Given an object o, its linguistic information is a bag of words defined in Eq. 1:

(1)

Here, LN(o) represents the bag of words in the local name of o, RL(o) represents the
bag of words in the rdfs:label of o, RC(o) represents the bag of the rdfs:comment of o
and OA(o) represents the bag of the other possible annotations. The operator stands
for merging several sets of words together.

When a multi-target search is posed, it will be divided into single-target ones and
each single-target search will look for corresponding objects, then a resulted set of asso‐
ciations will be built using hit objects, shown in Algorithm 1.

Towards Multi-target Search of Semantic Association 257

5 Ranking Scheme

The time complexity of finding the intersection of semantic association will be
, when the keywords are frequent words, the amount of hit objects may

be very large and response time may be unacceptable for user. So a top-K selection
policy is used to control the volume of results, and meanwhile to sort objects according
to mutual affinity.

A PageRank-like static ranking scheme is firstly performed on resulted objects, to
evaluate their importance and authority. For object oi, its importance is calculated as
Eq. 2, in which N is total number of objects, L(oj) is the number of objects that connected
with oj and the value of damping factor d is 0.85.

(2)

Next, for each group of hit objects in a single-target search, top-2 K objects are
selected according to their PageRank value. Further, top-K objects are selected based
on the evaluation of their affinity to objects in other groups. For object oi and oj, the
affinity between them is as Eqs. 3 and 4. Here am represents a semantic association.

(3)

(4)

258 X. Zhang and Y. Lv

6 Evaluation

6.1 Dataset

DBpedia is used as dataset in this paper. It is a widely-used linked data on structured
information extracted from Wikipedia. As of September 2014, the entire DBpedia
dataset contains about 30 billion triples. A part of it is used as our dataset, which includes
54,046,420 triples. 14,608 linked patterns and 47,535,150 semantic associations are
discovered from this dataset.

6.2 Evaluation Method

Since we don’t find any other similar research about multi-target search of semantic
association, we performed experiments comparing our multi-target search model to a
pure single-target search model as stated in [2]. Both response time and retrieval preci‐
sion are evaluated between two search models based on 500,000 randomly selected
semantic associations. The size of result is also considered in the experiment because it
will affect the time cost for user to understand the results.

A set of keywords are randomly picked to construct 10 variable-length different
queries. A human ground truth is built by semantic web experts for the evaluation of
precision. For each query, we select top 20 records from two models respectively as a
potential set of records. Since the two models may produce the result overlap, the size
of set may less than 40. Then we invite experts to pick up the top 10 useful semantic
associations these match the query keywords as possible from the set. The statistical
information of the amount of hit objects is shown in Table 1, the amount that each group
of keywords hit is separated by ‘|’, the amount of result of each query will be shown in
Sect. 6.4

Table 1. Statistical information of hit objects

Query 1 Query 2 Query 3 Query 4 Query 5
179 | 209 11 | 11 | 4 102 | 1 | 13 71 | 120 | 5 1 | 8
Query 6 Query 7 Query 8 Query 9 Query 10
102 | 1 | 6 | 12 7 | 9 | 8 2 | 1 223 | 1 31 | 86

6.3 Evaluation on Response Time and Precision

The horizontal axis in Figs. 3 and 4 present 10 different queries. The vertical axis is the
response time and precision of each query in Figs. 3 and 4 respectively. The blue column
presents the single-target search model and the red column presents the multi-target
search model.

Towards Multi-target Search of Semantic Association 259

Fig. 3. Evaluation on response time (Color figure online)

Fig. 4. Evaluation on precision (Color figure online)

Figure 3 shows that, the response time of single-target search model is quite stable,
the average response time is about 400 ms, but that of multi-target search vary a lot.
When users search with popular keywords, it may hit large quantities of objects, and
then get a large size of result. The search process may take a long time. Figure 4 shows
that the average precision of single target search model is 61%, the average of multi-
target search model is 74%.

6.4 Evaluation on Result Size

Figure 5 clearly presents the significant difference of result sizes with or without top-K
selection. The average value of result size with top-K selection is 35, while it is 109
without top-K selection. The result size with top-K selection is only about 12%–72% of
that without top-K selection. A top-K selection policy can control the volume of results
effectively, and it will also take user less time to distinguish useful information.

260 X. Zhang and Y. Lv

Fig. 5. Evaluation on result size (Color figure online)

7 Related Work

Traditional definition of semantic association is paths connecting two objects. In [3], if
two objects are semantically connected by a semantic path then they are semantically
associated. In [6], Myungjin proposed a semantic association search methodology that
consists of how to find relevant information for a given user’s query. In [7], Viswanathan
presented a method to find relevant semantic association paths through user-specific
intermediate entities.

Virtual document is constructed and used for ontology matching in [8]. The size of
virtual document is easy to control, can be applied to search. Therefore we transform
the semantic association into text-based structure in [2]. In order to solve the problem
of short text, we propose k-step virtual document.

Top-K algorithm is widely used in RDF research. In [9], Tran proposed a novel
algorithm for the exploration of top-K matching subgraphs. In [10], Huiying Li present
an algorithm for searching top-K answers on RDF data. In our paper, top-K algorithm
is used to control the size of result and search space.

8 Conclusions and Future Works

In this paper, a multi-target search model is proposed for searching semantic association.
Comparing to single-target search model, our model consider the search of multiple
objects and their group relationship simultaneously. The notion of virtual document is
used to extract and represent linguistic information of objects and semantic associations.
A PageRank-style ranking scheme and a top-K selection policy considering object
affinity are used. Experiments show that our approach is feasible in improving retrieval
precision.

In our future wok, the type of object will be taken into consideration to achieve higher
retrieval accuracy. The search system will be evaluated on its efficiency on large-volume
semantic associations.

Towards Multi-target Search of Semantic Association 261

Acknowledgements. The work was supported by the National High-Tech Research and
Development (863) Program of China (No. 2015AA015406), the Open Project of Jiangsu Key
Laboratory of Data Engineering and Knowledge Service (No. DEKS2014KT002), and National
Natural Science Foundation of China (No. 61472077). We would like to thank Xing Li for his
efforts in implementation and evaluations.

References

1. Zhang, X., Zhao, C., Wang, P., Zhou, F.: Mining link patterns in linked data. In: Gao, H., Lim,
L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 83–94. Springer,
Heidelberg (2012)

2. Wang, C., Zhang, X., Lv, Y., Ji, L., Wang, P.: Searching semantic associations based on virtual
document. In: Qi, G., Tang, J., Du, J., Pan, J.Z., Yu, Y. (eds.) CSWS 2013. CCIS, vol. 406,
pp. 62–75. Springer, Heidelberg (2013)

3. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Sheth, A.P.: Context-aware semantic
association ranking, vol. 1, no. 3, pp. 33–50 (2003)

4. Kochut, K.J., Janik, M.: SPARQLeR: extended SPARQL for semantic association discovery.
Semant. Web Res. Appl. 4519, 145–159 (2007)

5. Le, B.T., Dieng-Kuntz, R., Gandon, F.: On ontology matching problems. In: Proceedings of
the International Conference on Enterprize Information Systems, pp. 236–243 (2003)

6. Lee, M., Kim, W.: Semantic association search and rank method based on spreading activation
for the semantic web. In: Proceedings of the International Conference on Industrial
Engineering and Engineering Management, pp. 523–1527 (2009)

7. Viswanathan, V., Krishnamurthi, I.: Finding relevant semantic association paths through user-
specific intermediate entities. Hum. Centric Comput. Inf. Sci. 2(1), 1–11 (2012)

8. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching. In:
Proceedings of the International Conference on World Wide Web, pp. 23–31 (2006)

9. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for
efficient keyword search on graph-shaped (RDF) data. In Proceedings of the IEEE
International Conference on Data Engineering, pp. 405–416 (2009)

10. Li, H., Wang, Y.: Ranked keyword query on semantic web data. In: Proceedings of the
International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2285–2289 (2010)

262 X. Zhang and Y. Lv

Linking Named Entity in a Question
with DBpedia Knowledge Base

Huiying Li(B) and Jing Shi

School of Computer Science and Engineering, Southeast University,
Nanjing 210096, People’s Republic of China

{huiyingli,220151530}@seu.edu.cn

Abstract. The emerging Linked Open Data provides an opportunity to
answer the natural language question based on knowledge bases (KB).
One challenge of the question answering (QA) problem is to link the
entity mention in the question with the entity in the existing knowledge
base. This study proposes an approach to link entity mention with a
DBpedia entity. We propose an entity-centric indexing model to help
search candidate entities in KB. After obtaining the candidate entities,
we expand the context of the entity mention with WordNet and Concept-
Net, we compute the context similarity between the expanded context
and the property value of the candidate entity and the popularity of the
candidate entity. Finally, we rerank the candidate entities by leveraging
these features. Evaluations are performed on DBpedia version 2015, the
evaluation tests show that our approach is promising in dealing with
linking named entity in DBpedia.

1 Introduction

Linked Open Data (LOD) aims to publish structured data to enable the inter-
linking of such data and therefore enhance their utility [1]. It shares information
that can be read automatically by computers and allows data from different
sources to be connected and queried. LOD consists of an unprecedented volume
of structured datasets currently amounts to 50 billion facts that are represented
as Resource Description Framework (RDF) triples on the web. Recently, many
large scale publicly available knowledge bases including DBpedia [2] and YAGO
[3] have emerged.

The large amount of Linked Data has become an important resource to sup-
port question answering. However, many challenges are encountered in return-
ing a right answer based on the knowledge base for a natural language question
(utterance). The following example represents a question and some snippets in
DBpedia.

Sample question: “what town was martin luther king assassinated in?”.

Sample knowledge base: A snippet of DBpedia dataset is shown in Fig. 1, which
lists three different instances named “martin luther king”.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 263–270, 2016.
DOI: 10.1007/978-3-319-50112-3 20

264 H. Li and J. Shi

Fig. 1. RDF snippet Example

In examining the sample question and the sample knowledge base, we find that
to answer the assassinated town of the civil rights leader Martin Luther King, we
should map the queried “martin luther king” to the civil rights leader, then retrieve
the assassinated town of this entity from the knowledge base directly.

Hence, the primary task for question answering is to locate the entity mention
in the question and link it with an entity in the knowledge base. Locating entity
mention (Named Entity Recognition) is out of the scope of our paper. We focus
on the entity linking task in this paper. We propose an approach to link the
entity mention in a question with an entity in the knowledge base. We index the
surface forms for every entity in DBpedia by Lucene. Using this index, we can
generate a ranked candidate entity list for each entity mention. Furthermore, the
context similarity and entity popularity of the candidate entities are calculated,
then we rerank the candidate entities with the combination of these measures.

The remainder of this article is organized as follows: Sect. 2 introduces the
related work. Section 3 proposes the method to generate candidate entities.
Section 4 presents the named entity linking approach. Section 5 details the exper-
imental results of our approach. Section 6 concludes the study.

2 Related Work

The emergence of large scale knowledge bases like DBpedia and YAGO has
spurred great interests in the entity linking task, which maps the textual entity
mention to its corresponding entity in the knowledge base. [5] is the first work
that considers Wikipedia as an information source for named entity disambigua-
tion. The disambiguation is performed using an SVM kernel that compares the
lexical context around the ambiguous named entity to the context of the candi-
date Wikipedia page. The subsequent work on Wikification [6–8] recognize the
global document-level topical coherence of the entities. [6] addresses the entity

Linking Named Entity in a Question with DBpedia Knowledge Base 265

linking problem through maximizing the agreement between the text of the
mention document and the context of the Wikipedia entity, as well as the agree-
ment among the categories associated with the candidate entities. [7] defines
the semantic context as a set of unambiguous surface forms in the text, and
uses the Normalized Google Distance (NGD) [9] to compute the relatedness.
[8] formalizes the Disambiguation to Wikipedia task as an optimization prob-
lem with local and global variants, and analyzes their strengths and weaknesses.
LINDEN [10] is a framework to link named entities in text with a knowledge
base unifying Wikipedia and Word-Net, by leveraging the rich semantic knowl-
edge embedded in the Wikipedia and the taxonomy of the knowledge base. The
semantic associativity and semantic similarity are considered based on the con-
structing of semantic Network. A probabilistic approach is proposed in [11],
entity mentions are disambiguated jointly across an entire document by com-
bining a document-level prior of entity co-occurrences with local information
captured from mentions and their surrounding context.

3 Candidate Entity Generation

Given an entity mention m, we generate the set of candidate entities Em in this
section. Generally, the candidates in Em should have the name of the surface
form of m. To solve this problem, we need to build an index for all entities
in the knowledge base. We also find that the information in the KB is usually
entity-centric, and many triples describe the property (attribute and relation)
value pairs of an entity. Based on this observation, we consider the entity as the
basic index unit.

We group the properties into multiple categories to reduce the fields number
and preserve some of the original structure. Totally, we group RDF properties
into five fields for a given entity e, and these fields and their values are listed as
follows:

– Name: The Name field collects the name attributes of entity e, and we consider
the name attribute as foaf : name, dbonto : alias, rdfs : label or the attribute
ends with “name”, “label”, or “title”.

– Type: The Type field represents the rdf : type attribute of entity e.
– Attribute: The Attribute field collects the literal attributes except for the name

attributes. The field values are the corresponding attribute values, and the
attribute names are also indexed for QA.

– OutRelation: The OutRelation field collects the object attributes from entity
e to other entities ei. The field values are a list of items, and each item
represents an object attribute information for entity e. The item is composed
of the object attribute name, the name of entity ei, and the class and super
class type of entity ei.

– InRelation: The InRelation field collects the object attributes from other enti-
ties ei to entity e. The field values are a list of items, and each item is composed
of the object attribute name, the name of entity ei, and the class and super
class type of entity ei.

266 H. Li and J. Shi

Based on the proposed index method, we index all the entities in KB by
Lucene. For each mention m, we look up the index and search for the mention
m directly in the name field. We take the entity mention as the keyword to
perform a search in Lucene. The entities returned by Lucene are considered as
candidate entities. Each returned entity is assigned a relevance score by Lucene.
We represent this relevance score by LS(m, e), it means the Lucene score for
entity e.

For entity mention “martin luther king” in question “what town was martin
luther king assassinated in?”, three entities in Fig. 1 are returned as candidate
entity. The entity with highest Lucene score is Martin Luther BB King, then
Martin Luther King, Sr., finally Martin Luther King, Jr. Based on the context
in the question, entity Martin Luther King, Jr. should be the linked entity. We
find that although our index can help search candidate entities and rank them
by Lucene score LS(m, e). It is not enough for named entity linking.

4 Named Entity Linking

In this section, we discuss how to rerank the candidate entities generated in
Sect. 3.

4.1 Context Similarity

Our guiding premise is that the property of the target entity should be similar
to the context of the entity mention. Given an entity mention m, Em is the
set of candidate entities generated in Sect. 3. Based on the guiding premise, one
reranking factor is the cosine similarity between the context of the entity mention
and the properties of the candidate entity.

CosSim(m, prop) =
m.T • prop.T

||m.T || • ||prop.T || (1)

For every property prop of candidate entity e, prop.T contains the words
of the property, the words of the property value, and the words of the value
type. Where m.T contains all words occurring around the entity mention in the
question. Meanwhile, to expand the context of the entity mention, we import
its synonyms and related words with the help of WordNet and ConceptNet.
WordNet is used to obtain the synonyms, and ConceptNet is used to obtain the
related words and similar words. The prop.T and m.T are represented in the
standard vector space model, where each component corresponds to a term, and
the term weight is the frequency of the term.

CS(m, e) =
∑

prop∈e

CosSim(m, prop) (2)

The value of Context similarity for each candidate entity e is defined as the
sum of the CosSim to each property.

Linking Named Entity in a Question with DBpedia Knowledge Base 267

4.2 Entity Popularity

Given an entity mention m, Em is the set of candidate entities. The other rerank-
ing factor is the entity popularity. Each e ∈ Em containing the same surface form
m has different popularity, some entities are rare and some entities are popular
for the given surface form. A popular entity means that there are many entities
which points to it. Based on the inRelation field index in Sect. 3, we can calculate
the number of links which point to an entity.

For example, for the entity mention “martin luther king”, the entity
Martin Luther BB King and Martin Luther King, Sr. are much rarer than
Martin Luther King, Jr., and in most cases when people mention “martin luther
king”, they mean the civil rights leader rather than other two entities.

Hence, we define the popularity score PS(e) for entity e as:

PS(e) =
num(e)∑

ce∈Em
num(ce)

(3)

where num(e) is the number of links which points to entity e.

4.3 Candiates Reranking

Based on the three score factors introduced above, we can rerank the candidate
entities. We consider using a linear reranking function as follows:

ê = argmax
e∈Em

S(m, e) (4)

where S(m, e) is the reranking score for each e ∈ Em, it can be calculated by:

S(m, e) = W • Xm(e) (5)

The feature vector Xm(e) is generated for each e ∈ Em where Xm(e) =<
LS(m, e), CS(m, e), PS(e) >. These features affect the reranking score, different
features have different degrees of importance. The weight vector W , namely,
W =< w1, w2, w3 >, which gives different weights for each feature in Xm(e).
It can be learned by training on the question answer dataset. Therefore, the
candidate entities can be reranked according the their score S(m, e), the top − 1
entity ê is selected as the predicted mapping entity for mention m.

To learn the weight vector W by training on the question answer dataset,
we use Support Vector Machine(SVM) based on maximum interval. The SVM
is completed by Libsvm toolkit1.

4.4 Detecting Unlinkable Mention

The disambiguation method discussed above implicitly assumes that DBpedia
contains all entities that the entity mention refers to. In practice, there may be
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/#nuandone.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone

268 H. Li and J. Shi

contexts where entity mention m refers to an entity e that is not covered in
DBpedia, especially when e is not a popular entity. We call this entity mention
as unlinkable mention. To deal with the unlinkable mention, we adopt a simple
method and learn a threshold τ to validate the top one entity e for entity mention
m. If S(m, e) is less than the threshold τ , we consider entity mention m as
unlinkable.

5 Experimental Study

We use the WEBQUESTIONS dataset [12], which consists of 5,810 ques-
tion/answer pairs, as test questions. The questions are split into training and
testing sets, which contain 3,778 questions and 2,032 questions, respectively. We
learn the weight vector W by training on the training dataset, and test our
approach on the testing dataset. The real-world RDF dataset DBpedia 2015 is
selected as the KB to answer the questions.

We adopt the evaluation measure precision which is used in most work about
entity linking. The precision is calculated as the number of correctly linked entity
mentions divided by the total number of all mentions. Since the entities are
returned by ranked score, we evaluate the precisions at different k (k means how
many entities are returned). The precision of top−k is calculated as the number
of entity mentions, which is correctly linked in top − k entities, divided by the
total number of all mentions.

Table 1. Feature set effectiveness over the “What” questions

Feature Set top-1 top-2 top-3

Number Precision Number Precision Number Precision

LS 452 0.40 522 0.46 560 0.50

LS+CS 512 0.61 563 0.67 589 0.70

LS+PS 508 0.60 536 0.63 538 0.63

LS+CS+PS 545 0.65 595 0.71 600 0.72

To evaluate the effectiveness of our approach on different questions, we
consider three typical questions in the testing sets of the WEBQUESTIONS,
“What” questions, “Who” questions, and “Where” questions.

Table 1 shows the precisions of the proposed approach on “What” questions.
We analyze the effectiveness of different feature sets, it shows the precision and
the number of correctly linked mentions obtained by our approach with differ-
ent feature sets. It can be seen that every feature has a positive impact on the
performance of our approach, and with the combination of all features our app-
roach can obtain the best result. The precisions of LS are the results that only
Lucene score is considered. The improvement achieved by adding CS (context
similarity) feature to LS is greater than that can be achieved by adding PS

Linking Named Entity in a Question with DBpedia Knowledge Base 269

(popularity score) feature, which means that the CS feature is quite useful to
deal with entity linking problem in “What” questions.

It shows the precisions at different k (k = 1, 2, and 3 respectively). For a
tested question, the result is considered to be right when the right target entity
is returned in the top-k results. The best result is 0.65 when only top-1 entity
is considered. It is nature the precision increases to 0.72 when top-3 entities are
considered.

Table 2. Feature set effectiveness over the “Who” questions

Feature Set top-1 top-2 top-3

Number Precision Number Precision Number Precision

LS 168 0.63 201 0.75 209 0.78

LS+CS 164 0.62 187 0.70 200 0.75

LS+PS 192 0.72 202 0.76 209 0.78

LS+CS+PS 179 0.67 196 0.74 202 0.76

But the precision of unlinkable mention is only 0.18, it means that the sim-
ple threshold setting method is not effective for detecting unlinkable mention.
Although the precision of unlinkable mention can be increased by changing the
threshold, but it decreases the precision of entity linking.

Table 3. Feature set effectiveness over the “Where” questions

Feature Set top-1 top-2 top-3

Number Precision Number Precision Number Precision

LS 138 0.56 169 0.69 180 0.73

LS+CS 143 0.58 167 0.68 173 0.70

LS+PS 172 0.70 187 0.76 188 0.76

LS+CS+PS 154 0.63 176 0.72 177 0.72

Table 2 shows the precisions on “Who” questions. The PS feature has a
positive impact on the performance of our approach, but the CS feature has a
slight improve on the performance, sometimes it has a negative impact on the
contrary. It leads that our approach only obtains a little improve of precision
with the combination of all features.

Table 3 shows the precisions on “Where” questions. The results are similar
to those in Table 2, the PS feature obtains the best result.

270 H. Li and J. Shi

6 Conclusions

In this study, we propose a named entity linking approach on the DBpedia
dataset. We set up an entity-centric indexing, candidate entities are returned
according to the LS score given an entity mention. Then we consider a set of
useful features for entity linking. The CS feature measures the cosine similarity
between the context of the mention and the property values of the candidate
entity. The PS feature measures the popularity of the candidate entity. Finally,
a SVM re-ranker is used to score each candidate entity. The evaluation tests
show that our approach is promising in dealing with entity linking problem on
Linked Data.

Acknowledgments. The work is supported by the Natural Science Foundation of
Jiangsu Province under Grant BK20140643 and the National Natural Science Founda-
tion of China under grant No. 61502095.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. IJSWIS 5(3),
1–22 (2009)

2. Zaveri, A., Kontokostas, D., Sherif, M.A., Bühmann, L., Morsey, M., Auer, S.,
Lehmann, J.: User-driven quality evaluation of DBpedia. In: 9th International Con-
ference on Semantic Systems (I-SEMANTICS 2013), pp. 97–104 (2013)

3. Suchanek, F., Kasneci, G., Weikum, G.: Yago: a large ontology from wikipedia and
wordnet. J. Web Semant. 6(3), 203–217 (2008)

4. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

5. Bunescu, R., Pasca, M.: Using encyclopedic knowledge for named entity disam-
biguation. In: Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 9–16 (2006)

6. Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data.
In: Proceedings of EMNLP-CoNLL, pp. 708–716 (2007)

7. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the
17th Conference on Information and Knowledge Management, pp. 509–518 (2008)

8. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local, global algorithms for
disambiguation to wikipedia. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pp.
1375-1384 (2011)

9. Cilibrasi, R.L., Vitanyi, P.M.B.: The google similarity distance. IEEE Trans.
Knowl. Data Eng. 19(3), 370–383 (2007)

10. Shen, W., Wang, J., Luo, P., Wang, M.: LINDEN: linking named entities with
knowledge base via semantic knowledge. In: Proceedings of WWW, pp. 449–458
(2012)

11. Ganea, O., Ganea, M., Lucchi, A., Eickhoff, C., Hofmann, T.: Probabilistic bag-
of-hyperlinks model for entity linking. In: Proceedings of WWW (2016)

12. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on Freebase from
question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1533–1544 (2013)

Applications of Semantic Technologies

Hypercat RDF: Semantic Enrichment for IoT

Ilias Tachmazidis1(B), John Davies2, Sotiris Batsakis1, Grigoris Antoniou1,
Alistair Duke2, and Sandra Stincic Clarke2

1 University of Huddersfield, Huddersfield, UK
i.tachmazidis@hud.ac.uk

2 British Telecommunications, Ipswich, UK

Abstract. The rapid growth of sensor networks and smart devices has
led to the generation of an increasing amount of information. Such infor-
mation typically originates from various sources and is published in dif-
ferent formats. One of the key prerequisites for the Internet of Things
(IoT) is interoperability. The Hypercat specification defines a lightweight
JSON-based hypermedia catalogue, and is tailored towards the exist-
ing needs of industry. In this work, we propose a semantic enrichment
of Hypercat, defining an RDF-based catalogue. We propose an ontol-
ogy that captures the core of the Hypercat RDF specification and pro-
vides a mapping mechanism between existing JSON and proposed RDF
properties. Finally, we propose a new type of search, called Seman-
tic Search, which allows SPARQL-like queries on top of semantically
enriched Hypercat catalogues and discuss how this semantic approach
offers advantages over what was previously available.

1 Introduction

In 2014, Innovate UK (the UK’s innovation agency) funded the Internet of Things
Ecosystem Demonstrator programme. Eight industry-led projects were funded
to deliver IoT ‘clusters’, each centred around a data hub to aggregate and expose
data feeds from multiple sensor types.

A major objective of the programme was to address interoperability and this
led to Hypercat, a standard for representing and exposing Internet of Things
data hub catalogues [6] over web technologies, to improve data discoverability
and interoperability. The idea is to enable distributed data repositories (hubs)
to be used jointly by applications through making it possible to query their
catalogues in a uniform machine-readable format. This enables applications to
identify and access the data they need, whatever the data hub in which they
are held.

As described in the specification of Hypercat (Beart et al. [3]), this is achieved
through employing the same principles on which linked data and the web are
built: data accessible through standard web protocols and formats (HTTPS,
JSON, REST); the identification of resources through URIs; and the establish-
ment of common, shared semantics for the descriptors of datasets. From this
perspective, Hypercat represents a pragmatic starting point to solving the issues
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 273–286, 2016.
DOI: 10.1007/978-3-319-50112-3 21

274 I. Tachmazidis et al.

of managing multiple data sources, aggregated into multiple data hubs, through
linked data and web approaches. It incorporates a lightweight, JSON-based app-
roach based on a technology stack used by a large population of web developers
and as such offers a very low barrier to entry.

Each Hypercat catalogue lists and annotates any number of URIs (which
typically identify data sources), each having a set of relation-value pairs (meta-
data) associated with it. In this way, Hypercat allows a server to provide a set
of resources to a client, each with a set of semantic annotations. Importantly,
there is only a small set of core mandatory metadata relations which a valid
Hypercat catalogue must include, thus implementers are free to use any set
of annotations to suit their needs. A Hypercat developer community is emerg-
ing, with open source tools becoming available1. Hypercat provides a standard,
machine-processable means for resource discovery, which enables an interopera-
ble ecosystem.

The complexity and diversity of IoT data sets is one of the main reasons why
they have emerged as a key use case for linked data and semantic technologies
recently2. Linked data enable the integration of data into a common, browsable
and accessible knowledge graph, while leaving data distributed and managed in
different systems, under the control of different contributors. The use of linked
data technologies has been effective in many cases where information from dif-
ferent sources needs to be put together in a generic way, to enable a variety
of applications, without the need to encode the constraints of the applications
in the data model. Semantic web technologies add to this the ability to apply
meaningful data models (ontologies) both to improve interoperability between
systems, and to enable improved data analysis (see e.g. Lecue et al. [8]). It is
therefore natural to consider how the Hypercat specification could be serialised
in a semantic language and to investigate the benefits that could accrue from
such a materialisation and that is the subject of this paper. One can envisage
a more expressive, richer catalogue where data policies/licences, as well as the
data flows that relate to them (see d’Aquin et al. [5]) are represented as machine
readable information, enabling the implementation of inference rules to support
automated reasoning in tasks such as data discovery and policy validation. This
can be achieved using Semantic Web technologies [1] such as RDF and OWL
that allow for representation of the meaning of data.

In this paper, we propose a semantic enrichment of the Hypercat specifi-
cation that further increases interoperability by defining an RDF-based cata-
logue. Catalogue information is published based on a well-defined ontology that:
(a) captures the core of the Hypercat RDF specification and (b) provides a
mapping mechanism between existing JSON and proposed RDF properties. We
describe how existing Hypercat JSON catalogues can be systematically trans-
lated into Hypercat RDF catalogues. We then propose a new type of search,

1 https://hypercatiot.github.io/.
2 See for example the “Semantic Cities” - http://research.ihost.com/semanticcities14/

- series of workshops.

https://hypercatiot.github.io/
http://research.ihost.com/semanticcities14/

Hypercat RDF: Semantic Enrichment for IoT 275

which allows SPARQL-like queries on top of semantically enriched Hypercat
catalogues that capture the semantic hierarchy of classes and properties.

The rest of the paper is organized as follows. Section 2 provides background
on Semantic Web technologies. Section 3 presents the current Hypercat 3.00 spec-
ification. Section 4 introduces the Hypercat ontology, while Sect. 5 describes the
translation of a JSON-based catalogue into an RDF-based catalogue. Section 6
presents the Hypercat RDF specification, while Sect. 7 introduces Semantic
Search. We conclude in Sect. 8.

2 Background

The Semantic Web [1] evolved out of the Web with the aim to represent Web
content in a form that is machine understandable and processable. Today, Web
content, in HTML format, retrieved using search engines is typically suitable for
human consumption, while content that is generated automatically from data-
bases is usually presented without the original structural information of a given
database. Formats such as JSON3 are used for data exchange in a structured way,
enabling machines to parse and generate data. However, even these formats do
not address the following problem: the meaning of Web content is not machine-
accessible. Semantic Web technologies are used to represent the semantics of
Web content in a machine readable form in order to apply intelligent methods
(i.e., reasoning) and automate tasks that are currently handled manually by
users. Automating tasks is even more important today for the proliferation of
connected devices that are part of the Internet of Things (IoT) [7].

Machine readable semantics of concepts of an application domain can be
defined using Semantic Web standards. Specifically, an ontology is an explicit
and formal specification of a conceptualization. An ontology consists of defini-
tions of concepts (classes of objects) of the domain and relationships between
these concepts (e.g., class hierarchies), and can be defined using the Web Ontol-
ogy Language OWL [2]. OWL is a W3C standard and the current version is
OWL 24. Facts about application domain objects and their relations can be
asserted using the RDF5 format. Using RDF, Web resources are connected using
a labelled graph representation, and simple ontologies containing descriptions of
these resources can be defined using RDF Schema or RDF/S6.

Using Semantic Web standards such as RDF and OWL, Web resources are
represented with machine readable semantics, allowing for automatically inter-
fering implied facts about these resources. Retrieving information represented
using RDF format can be achieved using the SPARQL query language7, which
is a W3C standard and the current version is SPARQL 1.18. Furthermore, rea-
soning and querying can be combined for retrieving not only explicitly asserted
3 http://www.json.org/.
4 http://www.w3.org/TR/owl2-overview/.
5 http://www.w3.org/RDF/.
6 http://www.w3.org/TR/rdf-schema/.
7 http://www.w3.org/TR/rdf-sparql-query/.
8 http://www.w3.org/TR/sparql11-query/.

http://www.json.org/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/

276 I. Tachmazidis et al.

facts, but also implied facts based on asserted facts and concept definitions and
their relations into an ontology. Automatic inference and retrieval is very impor-
tant when data is voluminous and changes fast (e.g., streaming data) which is a
typical case in Internet of Things application scenarios.

3 Hypercat 3.00 Specification

In this section, we provide the basic notions of the Hypercat 3.00 specification9.
Hypercat is a lightweight JSON-based hypermedia catalogue format for expos-
ing collections of URIs, with each URI having any number of RDF-like triple
statements about it.

By definition, a Hypercat catalogue is a file representing an unordered col-
lection of resources on the web, with each item in the catalogue referring to a
single resource by its URI. Thus, a Hypercat catalogue may expose a collection
of resources, such as data feeds, and provide links to external Hypercat cata-
logues. Although the definition of a catalogue within a catalogue is not allowed,
catalogues may be linked by referring to other catalogue URIs. In addition, a
given catalogue may provide metadata about itself and each catalogue item.

The structure of a Hypercat catalogue is defined based on a Catalogue Object,
which is a JSON object. A given Catalogue Object contains the following proper-
ties: (a) items, which is a list of items (JSON array of zero or more Item Objects),
and (b) catalogue-metadata, which is an array of Metadata Objects describing
the catalogue object (JSON array of Metadata Objects).

An Item Object (from the items array) is a JSON object, which contains the
following properties: (a) href, which is an identifier for the resource item (URI as
a JSON string), and (b) item-metadata, which is an array of Metadata Objects
describing the resource item (JSON array of Metadata Objects).

A Metadata Object is a JSON object, which describes a single relationship
between the parent object (either the catalogue or catalogue item) and some
other entity or concept denoted by a URI, such a relationship is applicable to
both the catalogue itself and each catalogue item. A Metadata Object contains
the following properties: (a) rel, which is a relationship between the parent object
and a target noun, expressed as a predicate (URI of a relationship as a JSON
string), and (b) val, the entity (noun) to which the rel property applies (JSON
string, optionally the URI of a concept or entity).

The structure that is described above constitutes the basic core of any given
Hypercat catalogue. However, the Hypercat 3.00 specification defines a far more
detailed model compared to the aforementioned description. Thus, in the remain-
der of this paper, we explore each aspect of the Hypercat 3.00 specification while
providing the corresponding semantically enriched solution based on an OWL
ontology, which is asserted in RDF format.

9 http://www.hypercat.io/uploads/1/2/4/4/12443814/hypercat specification 3.00rc1-
2016-02-23.pdf.

http://www.hypercat.io/uploads/1/2/4/4/12443814/hypercat_specification_3.00rc1-2016-02-23.pdf
http://www.hypercat.io/uploads/1/2/4/4/12443814/hypercat_specification_3.00rc1-2016-02-23.pdf

Hypercat RDF: Semantic Enrichment for IoT 277

4 Hypercat Ontology

In this section, we provide the definition of an OWL ontology that captures
the aforementioned Hypercat structure, thus providing a translation mechanism
from a JSON-based to an RDF-based catalogue. The proposed Hypercat ontol-
ogy is available with the uri

http://portal.bt-hypercat.com/ontologies/hypercat

and captures the core properties that would enable the development of RDF-
based catalogues. Namespaces for the Hypercat ontology can be written prefixing
concepts and properties with “hypercat:”. Currently, it is part of an IoT Data
Hub10, while as a next step it will be proposed to the Hypercat community
for standardization. We believe that providing catalogues in RDF, based on a
well-defined ontology, would further increase interoperability and offer intelligent
reasoning capabilities.

Fig. 1. The hypercat ontology.

The Hypercat ontology consists of a class hierarchy that is depicted in Fig. 1,
a range of properties that are included in Tables 1, 2, and 3, and a set of individ-
uals that are described in Table 4. The core hierarchy is rich enough to capture
the corresponding constructs of the JSON-based catalogue while providing the
flexibility for further extensions.

As described above, a Metadata Object is applicable to both the catalogue
itself and each catalogue item. Thus, we define class MetadataAnnotator, which
captures metadata properties that are applicable to both Catalogue Objects and
Item Objects. Note that the Hypercat 3.00 specification defines certain properties
as applicable to either Catalogue Objects or Item Objects, but not both, as such
properties cannot be included in the definition of class MetadataAnnotator.

Subsequently, class MetadataAnnotator has two subclasses, namely class Cat-
alogue and class Item. In essence, class Catalogue models a Catalogue Object
defining properties that are applicable only to the catalogue’s metadata, while
class Item models an Item Object defining properties that are applicable only
10 http://portal.bt-hypercat.com/.

http://portal.bt-hypercat.com/ontologies/hypercat
http://portal.bt-hypercat.com/

278 I. Tachmazidis et al.

Table 1. MetadataAnnotator properties mapped to existing JSON properties

JSON-based RDF-based

urn:X-hypercat:rels:hasDescription:en rdfs:comment

urn:X-hypercat:rels:supportsSearch hypercat:supportsSearch

urn:X-hypercat:rels:isContentType hypercat:isContentType

urn:X-hypercat:rels:hasHomepage hypercat:hasHomepage

urn:X-hypercat:rels:containsContentType hypercat:containsContentType

urn:X-hypercat:rels:hasLicense hypercat:hasLicense

urn:X-hypercat:rels:acquireCredential hypercat:acquireCredential

Table 2. Catalogue properties mapped to existing JSON properties

JSON-based RDF-based

urn:X-hypercat:rels:eventSource hypercat:eventSource

urn:X-hypercat:rels:hasRobotstxt hypercat:hasRobotstxt

to an item’s metadata. In order to build a complete RDF-based catalogue, class
Catalogue is related to class Item through property hasItem, which means that
a given Catalogue may contain a collection of Items. Class Search models the
various types of searches that are supported by a given Catalogue, with the
two classes being related through property supportsSearch. The set of currently
supported searches is defined through individuals of class Search. Note that the
details of supported search types will be covered below.

5 Hypercat JSON to Hypercat RDF

Prior to exploring each aspect of the Hypercat 3.00 specification, we provide a
mapping of existing JSON properties and proposed RDF relations/individuals
for each defined class. Tables 1, 2, 3 and 4 can be used in order to create a
translator from a JSON-based catalogue to an RDF-based catalogue. Note that
this work is in line with recent developments in the Semantic Web community,
namely the translation of JSON data to RDF using RML11.

Table 3. Item properties mapped to existing JSON properties

JSON-based RDF-based

urn:X-hypercat:rels:accessHint hypercat:accessHint

urn:X-hypercat:rels:lastUpdated hypercat:lastUpdated

11 http://rml.io/.

http://rml.io/

Hypercat RDF: Semantic Enrichment for IoT 279

Table 4. Search individuals mapped to existing JSON properties

JSON-based RDF-based

urn:X-hypercat:search:simple hypercat:SimpleSearch

urn:X-hypercat:search:geobound hypercat:GeoboundSearch

urn:X-hypercat:search:lexrange hypercat:LexrangeSearch

urn:X-hypercat:search:multi hypercat:MultiSearch

urn:X-hypercat:search:prefix hypercat:PrefixSearch

For example, for the JSON-based catalogue with the uri

http://portal.bt-hypercat.com/cat

the following catalogue-metadata, namely metadata about the catalogue itself:

“rel”:“urn:X-hypercat:rels:isContentType”
“val”:“application/vnd.hypercat.catalogue+json”

will be translated into the following RDF triple, using Table 1:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#isContentType>
“application/n-triples”.

Note that we choose to represent our RDF-based catalogue in N-Triples12

format. Thus, we define that our RDF-based catalogue is of MIME type
“application/n-triples”. In addition, the URI of the catalogue needs to be changed
from http://portal.bt-hypercat.com/cat to

http://portal.bt-hypercat.com/cat-rdf

since the RDF-based catalogue will be stored in a different location.
This translation pattern applies to all properties of Tables 1 and 2 except

for property supportsSearch where, for the JSON-based catalogue, both rel
and val contain URIs. Thus, for the JSON-based catalogue http://portal.bt-
hypercat.com/cat, the following catalogue-metadata:

“rel”:“urn:X-hypercat:rels:supportsSearch”
“val”:“urn:X-hypercat:search:simple”

will be translated in the following RDF triple, using Tables 1 and 4:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch>.

Note that Table 4 provides the mapping from JSON-based URIs that repre-
sent the various types of searches to the RDF-based individuals of class Search,
which represent semantically the various types of searches.
12 http://www.w3.org/TR/n-triples/.

http://portal.bt-hypercat.com/cat
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#isContentType
http://portal.bt-hypercat.com/cat
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/cat
http://portal.bt-hypercat.com/cat
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch
http://www.w3.org/TR/n-triples/

280 I. Tachmazidis et al.

Finally, the following Item Object (in items):

“href”:“http://api.bt-hypercat.com/sensors/feeds/UUID”

and “item-metadata” containing

“rel”:“urn:X-hypercat:rels:lastUpdated”
“val”:“2015-12-01T00:00:00Z”

will be translated in the following RDF triple, using Table 3:

<http://api.bt-hypercat.com/sensors/feeds/UUID>
<http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated>
“2015-12-01T00:00:00Z”.

For properties that are not defined in Tables 1, 2, 3 and 4, Hypercat RDF
publishers are encouraged to develop their own OWL ontology by extending
the one proposed in this work. Thus, the newly defined ontology would capture
the meaning of their catalogue, by defining additional properties, and would
enable the full translation of their JSON-based catalogue into an RDF-based
catalogue. Alternatively, Hypercat RDF publishers could translate and publish
only standardized properties (using Tables 1, 2, 3 and 4). Even though in this
case the RDF-based catalogue would contain less information compared to the
JSON-based catalogue, it would still be a valid Hypercat RDF catalogue.

In order to fully translate the JSON-based catalogue of the BT Data Hub,
an extension of the core ontology has been developed and made available with
the uri

http://portal.bt-hypercat.com/ontologies/bt-hypercat

Namespaces for the BT Hypercat ontology can be written prefixing concepts
and properties with “bt-hypercat:”. In this way, “item metadata” containing

“rel”:“urn:X-bt:rels:feedTitle”,
“val”:“Met Office Datapoint Observations”

that could not be translated using the core ontology, can now be translated in
the following RDF triple, using the BT Hypercat ontology:

<http://api.bt-hypercat.com/sensors/feeds/UUID>
<http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed title>
“Met Office Datapoint Observations”.

6 Hypercat RDF Specification

In this section, we examine each aspect of the Hypercat RDF specification by
following the structure of (the JSON-based) Hypercat 3.00 specification.

http://api.bt-hypercat.com/sensors/feeds/UUID
http://api.bt-hypercat.com/sensors/feeds/UUID
http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated
http://portal.bt-hypercat.com/ontologies/bt-hypercat
http://api.bt-hypercat.com/sensors/feeds/UUID
http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_title

Hypercat RDF: Semantic Enrichment for IoT 281

Hypercat File Format Specification: We have already provided a descrip-
tion of the OWL ontology and how an RDF-based catalogue should be devel-
oped. In addition, we have presented all standard semantic properties and their
correspondence to JSON properties. However, we need to elaborate on several
aspects that have not been covered. Thus, each instance of class MetadataAn-
notator must include the mandatory property rdfs:comment, and may include
the optional properties hypercat:isContentType, hypercat:hasHomepage, hyper-
cat:containsContentType and hypercat:supportsSearch. In addition, each instance
of class Catalogue must include the mandatory property hypercat:isContentType.

As described above, we define each RDF-based catalogue in N-Triples format.
Thus, RDF-based catalogues are of MIME type “application/n-triples”. In terms
of extensibility, we follow the Hypercat 3.00 specification:

– An unknown metadata relationship should be ignored.
– New search method supported by a catalogue server may be added.
– Human readable descriptions may be added in any language.
– Old style catalogues may point to new style and vice versa without version

ambiguity.
– A catalogue may contain any number of other properties and classes as devel-

opers see fit as long as they are defined in an ontology.

Hypercat Server API Specification: An RDF-based Hypercat server follows
the JSON-based Hypercat server specification with several minor adjustments.
Every RDF-based Hypercat server must provide a publicly readable “/cat-rdf ”
endpoint serving a Hypercat document asserted in RDF. Requests to an RDF-
based Hypercat server, such as insert and delete, can be implemented in a similar
fashion as for a JSON-based Hypercat server, while the response will be an RDF-
based catalogue instead of a JSON-based catalogue.

A Simple Search Mechanism is implemented in a similar way on top of
RDF-based catalogues. For a given RDF-based catalogue http://portal.bt-
hypercat.com/cat-rdf, we can advertise that it supports the simple search mech-
anism by including the following triple:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch>.

All query parameters must be URL encoded and are all optional. If multiple
search parameters are supplied, the server must return the intersection of items
where search parameters match in a single item, combining parameters with
boolean AND.

Simple search supports the following parameters: (a) s, which is the N-Triple’s
subject, (b) p, which is the N-Triple’s predicate, and (c) o, which is the N-Triple’s
object. Note that each parameter should be inserted in exactly the same form
as it would appear in the RDF-based catalogue. For example, we could query a
given catalogue based on the following query strings (even though queries must
be URL encoded, for readability we present them as plain text):

http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch

282 I. Tachmazidis et al.

?s=<http://portal.bt-hypercat.com/ItemID>
?p=<http://portal.bt-hypercat.com/ontologies/hypercat#isContentType>
?p=<http://portal.bt-hypercat.com/ontologies/hypercat#

supportsSearch>&
o= <http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch>
?o=“2015-12-01T00:00:00Z”

Hypercat Subscription: The Hypercat 3.00 specification describes a simple
subscription system, providing an API for polling catalogues. A client subscribed
to a stream of events from a Hypercat server will receive a stream of events, with
each event containing an event name and a body. By first fetching a catalogue
and then accumulating catalogue events, a client may keep a synchronised local
copy of a given catalogue.

The existing Hypercat subscription mechanism can be used, with minor
changes, for an RDF-based catalogue. An RDF-based catalogue which can
be used for subscribing to, must be annotated with the property hyper-
cat:eventsource. For events concerning a specific catalogue item within a cat-
alogue, the event name is the (unique) N-Triple’s subject of all RDF triples for
the specified item. Moreover, the event body for an item update event is a set
of N-Triples (related to the specified item), while for an item deletion event, the
event body is an empty string.

Hypercat Resource Subscription: Hypercat provides the ability to link to
resources through URIs. Such resources may contain real-time data required by
various applications. Use-cases where client applications require real-time data
feeds from devices, hubs or other services are very common in the field of IoT. A
possible solution where all data are placed directly into Hypercat catalogues was
considered in the past, but was inapplicable due to the simple data model of a
JSON-based catalogue. On the other hand, an RDF-based catalogue could serve
as a solution for importing data directly into a Hypercat catalogue, given that
imported data is semantically enriched and is expressed as N-Triples. However,
we believe that such a decision should be part of a wider discussion within the
Hypercat community since incorporating data into a catalogue will result in
RDF-based catalogues providing a functionality that will not be supported by a
JSON-based catalogue.

Hypercat Signing: Hypercat Signing for an RDF-based catalogue remains an
open issue as JSON Web Signature is not applicable to RDF. Thus, we defer
Hypercat signing, based on a well-accepted standard, to future work. However,
the same intuition is applicable to an RDF-based catalogue, namely we can
create a signature for the entire catalogue or a specific item based on all triples
in the catalogue or triples that correspond to a specific item respectively.

Hypercat Security Access Hints: Although systems supporting Hypercat
should provide open data with traversable links whenever possible, many sys-
tems will potentially provide resources or catalogues only to authenticated
clients. Thus, where resources or catalogues are discoverable, but not accessible
without authentication, authentication information can be provided to clients.

http://portal.bt-hypercat.com/ItemID
http://portal.bt-hypercat.com/ontologies/hypercat#isContentType
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch

Hypercat RDF: Semantic Enrichment for IoT 283

An item that requires authentication, should point at a machine or human
readable description of the authentication method, using property hyper-
cat:accessHint. Note that in case multiple hypercat:accessHint declarations are
present, the client should assume that the resource can be accessed using multi-
ple authentication systems.

Hypercat Security Credential Acquisition: A Hypercat catalogue may sup-
port various methods of acquiring access credentials in order to access catalogues
and resources. Thus, a catalogue or item, should point at a self-describing web
page or resource helping the client acquire credentials, using property hyper-
cat:acquireCredential. Note that when multiple hypercat:acquireCredential dec-
larations are present, the client should assume that credentials can be acquired
in multiple ways.

Hypercat Geographic Bounding Box Search: A geographic search allows
for filtering items that fall within a geographic region, which is defined by a
bounding box. A given RDF-based catalogue may reuse the following properties:

http://www.w3.org/2003/01/geo/wgs84 pos#lat
http://www.w3.org/2003/01/geo/wgs84 pos#long

which are well-defined by an external ontology. In addition, a given RDF-
based catalogue can inform a client that geographic bounding box search is
supported, by including the following triple:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch>.

Geographic search supports the following parameters: (a) geobound-minlat,
which is the inclusive lower bound of latitude of bounding box, (b) geobound-
maxlat, which is the inclusive upper bound of latitude of bounding box, (c)
geobound-minlong, which is the inclusive lower bound of longitude of bounding
box, and (d) geobound-maxlong, which is the inclusive upper bound of longitude
of bounding box. Geographic search queries are submitted by providing the
aforementioned parameters.

Hypercat Lexicographic Range Search: Lexicographic search allows search-
ing for items which, when sorted lexicographically, fall between a minimum and
maximum. A given RDF-based catalogue can inform a client that lexicographic
range search is supported, by including the following triple:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#LexrangeSearch>.

The property hypercat:lastUpdated could be used for dates and time.
Lexicographic search supports the following parameters: (a) lexrange-p, which

is the N-Triple’s predicate to search on, (b) lexrange-min, which is the lower
bound of range to return (inclusive), and (c) lexrange-max, which is the upper

http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01/geo/wgs84_pos#long
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#LexrangeSearch

284 I. Tachmazidis et al.

bound of range to return (non-inclusive). Lexicographic search queries are sub-
mitted by providing the aforementioned parameters.

Hypercat Robots Exclusion Search: A given Hypercat RDF catalogue can
contain information for the client about an associated robots.txt file, which is
used by websites to communicate with web crawlers and other web robots,
using property hypercat:hasRobotstxt. Note that if a robots exclusion file is pro-
vided, it must be located at the BASE URL of a catalogue and it must be
named robots.txt, namely N-Triple’s object should contain a URI of the form
“[BASE URL]/robots.txt”.

Hypercat Multi-Search: Hypercat supports several different search exten-
sions, which are mainly variations of the simple search, and thus, only allow for
simple interactions with a catalogue. Combining geographic search and lexico-
graphic range search could be done by submitting two independent queries and
then processing the results accordingly. However, such a solution is inefficient.

Multi-search allows a client to combine single or multiple search mechanisms
supported by a server so as to retrieve only the items of interest. A given RDF-
based catalogue can inform a client that multi-search is supported, by including
the following triple:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#MultiSearch>.

In order to retain compatibility between JSON-based and RDF-based cat-
alogues, a multi-search query, for a given RDF-based catalogue, could be sub-
mitted as a single JSON object. Multi-search supports the following parameters:
(a) query, which is a JSON string, holding a URL query string as passed to
underlying search mechanism, (b) intersection, which is a JSON array of objects
that could contain query, intersection or union, and (c) union, which is a JSON
array of objects that could contain query, intersection or union. Searches may
be nested to allow complex mixing of union and intersection.

Hypercat Prefix Match Search: Prefix match search allows searching for
items where the N-Triple’s object specified in the query is a prefix match of the
N-Triple’s object in a triple describing a catalogue item. As with simple search,
any N-Triple’s predicate can be used. A given RDF-based catalogue can inform
a client that prefix match search is supported, by including the following triple:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#PrefixSearch>.

If multiple search parameters are supplied, the server must return the intersec-
tion of items where search parameters match a single item, combining parame-
ters with boolean AND. Prefix match search supports the following parameters:
(a) prefix-s, which is a prefix of the N-Triple’s subject, (b) prefix-p, which is a
prefix of the N-Triple’s predicate, and (c) prefix-o, which is a prefix of N-Triple’s
object.

http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#MultiSearch
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#PrefixSearch

Hypercat RDF: Semantic Enrichment for IoT 285

Hypercat Linked Data rel: The newly introduced Hypercat JSON rel for
specifying that the item at hand is an instance of an RDF class, namely
http://www.w3.org/1999/02/22-rdf-syntax-ns#type is part of the RDF con-
cepts vocabulary. Thus, we do not need to include a new property.

Hypercat License rel: Hypercat catalogues or linked resources may be avail-
able under a specific license. Thus, in order to allow clients to determine
the license under which the data is released, we specify the property hyper-
cat:hasLicense, which should point at a machine or human readable version of a
license. Where multiple hypercat:hasLicense declarations are present, the client
should assume that the resource is available under multiple licenses.

7 Semantic Search

Semantic search allows SPARQL-like queries on top of semantically enriched
Hypercat catalogues, providing a searching mechanism that captures the under-
lying semantic hierarchy. Given a query where rel (or N-Triple’s predicate) is
rdf:type and val (or N-Triple’s object) is bt-hypercat:Feed, with BT catalogue’s
ontology defining that bt-hypercat:SensorFeed is subclass of bt-hypercat:Feed,
semantic search will return all catalogue items that are instances of both bt-
hypercat:Feed and bt-hypercat:SensorFeed - this would not be possible without
the use of the Hypercat RDF to encode the subclass relationship.

A given JSON-based catalogue can inform a client that semantic search is
supported, by including the following rel val pair:

“rel”:“urn:X-hypercat:rels:supportsSearch”
“val”:“urn:X-hypercat:search:semantic”

while a given RDF-based catalogue must include the following triple:

<http://portal.bt-hypercat.com/cat-rdf>
<http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch>
<http://portal.bt-hypercat.com/ontologies/hypercat#SemanticSearch>.

If multiple search parameters are supplied, the server must bind them to a single
triple pattern and run a SPARQL query, including reasoning based on both
catalogue’s ontology and catalogue itself. Semantic search supports the following
parameters for JSON-based (resp. RDF-based) catalogues: (a) sem-href (resp.
sem-s), which is a resource URI (resp. the N-Triple’s subject), (b) sem-val (resp.
sem-p), which is a semantic metadata relation (resp. N-Triple’s predicate), and
(c) sem-rel (resp. sem-o), which is a semantic metadata value (resp. N-Triple’s
object).

In terms of implementation, reasoning over the given Hypercat ontology
can be performed using standard reasoners such as Pellet13 and HermiT14,

13 http://clarkparsia.com/pellet/.
14 http://hermit-reasoner.com/.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://portal.bt-hypercat.com/cat-rdf
http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch
http://portal.bt-hypercat.com/ontologies/hypercat#SemanticSearch
http://clarkparsia.com/pellet/
http://hermit-reasoner.com/

286 I. Tachmazidis et al.

while querying can be based on the query engine of Apache Jena15. Alterna-
tively, an OBDA approach proposed by Botoeva et al. [4] can be considered in
order to perform SPARQL queries over JSON data.

8 Conclusion

In this work, we presented a semantic enrichment of the Hypercat specification,
which allows the definition of an RDF-based catalogue. We proposed an ontol-
ogy that captures the core of the Hypercat RDF specification. In addition, we
showed how existing JSON-based catalogues can be translated into RDF-based
catalogues in an automated fashion. Finally, we proposed a new type of search,
called Semantic Search, which allows SPARQL-like queries on top of semantically
enriched catalogues.

In future work, we plan to propose and standardize the Hypercat RDF specifi-
cation by working closely with the Hypercat community. In addition, we intend
to collaborate with existing partners in order to provide a publicly available
converter from JSON-based to RDF-based catalogues, and a publicly available
implementation of Semantic Search. In this way, richer Hypercat catalogues will
provide a higher degree of interoperability.

References

1. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. Cooperative Information
Systems, 2nd edn. The MIT Press, Cambridge (2008)

2. Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 67–92. Springer, Heidelberg
(2004)

3. Beart, O.: Hypercat 3.00 specification (2016)
4. Botoeva, E., Calvanese, D., Cogrel, B., Rezk, M., Guohui Xiao, O., Relational, B.:

DBs: a study for MongoDB. In: Proceedings of the 29th International Workshop on
Description Logics, Cape Town, South Africa, 22–25 April 2016 (2016)

5. d’Aquin, M., Adamou, A., Daga, E., Liu, S., Thomas, K., Motta, E.: Dealing with
diversity in a smart-city datahub. In: ISWC, pp. 68–82 (2014)

6. Davies, J., Fisher, M.: Internet of things - why now? J. Inst. Telecommun. Prof.
7(3), 36–42 (2015)

7. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

8. Lécué, F., Tucker, R., Bicer, V., Tommasi, P., Tallevi-Diotallevi, S., Sbodio, M.:
Predicting severity of road traffic congestion using semantic web technologies. In:
Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. LNCS, vol. 8465, pp. 611–627. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-07443-6 41

15 https://jena.apache.org/index.html.

http://dx.doi.org/10.1007/978-3-319-07443-6_41
http://dx.doi.org/10.1007/978-3-319-07443-6_41
https://jena.apache.org/index.html

Enabling Spatial OLAP Over Environmental
and Farming Data with QB4SOLAP

Nurefşan Gür1(B), Katja Hose1, Torben Bach Pedersen1, and Esteban Zimányi2

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
{nurefsan,khose,tbp}@cs.aau.dk

2 Department of Computer and Decision Engineering, Université Libre de Bruxelles,
Bruxelles, Belgium
ezimanyi@ulb.ac.be

Abstract. Governmental organizations and agencies have been making
large amounts of spatial data available on the Semantic Web (SW). How-
ever, we still lack efficient techniques for analyzing such large amounts
of data as we know them from relational database systems, e.g., multi-
dimensional (MD) data warehouses and On-line Analytical Processing
(OLAP). A basic prerequisite to enable such advanced analytics is a
well-defined schema, which can be defined using the QB4SOLAP vocab-
ulary that provides sufficient context for spatial OLAP (SOLAP). In this
paper, we address the challenging problem of MD querying with SOLAP
operations on the SW by applying QB4SOLAP to a non-trivial spatial
use case based on real-world open governmental data sets across various
spatial domains. We describe the process of combining, interpreting, and
publishing disparate spatial data sets as a spatial data cube on the SW
and show how to query it with SOLAP operators.

1 Introduction

In late 2012, the Danish government joined the Open Data movement by mak-
ing several raw digital data sets [3] freely available at no charge. These data sets
span domains such as environmental data, geospatial data, business data from
transport to tourism, fishery, forestry, and agriculture. GovAgriBus Denmark1

was an initial effort in 2014 to make Danish government Open Data from vari-
ous domains available as Linked Open Data (LOD) [2] on the Semantic Web in
order to pose queries across domains. If the corresponding domains can be related
through space and location, spatial attributes of these data sets become partic-
ularly interesting as we can derive spatial joins and containment relationships
that were not encoded in the original data sets. Danish government organizations
and agencies continue publishing data sets for new domains and update the cor-
responding data sets regularly on a yearly basis, which brings opportunities in
querying the expanding spatial data with analytical perspectives on the Semantic
Web. Responding to such queries is a complex task, which requires well-defined
schemas to facilitate OLAP operations on the Semantic Web. QB4SOLAP [7]
1 https://datahub.io/dataset/govagribus-denmark.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 287–304, 2016.
DOI: 10.1007/978-3-319-50112-3 22

https://datahub.io/dataset/govagribus-denmark

288 N. Gür et al.

aims to support intelligent multidimensional querying in SPARQL by provid-
ing context to SOLAP and its elements on the SW. However, QB4SOLAP has
not been applied on complex real-world data yet. This could bring particular
challenges with the use of real-world spatial data. In this paper, we address the
challenging problem of multidimensional querying with SOLAP operations on
the SW by applying QB4SOLAP on real-world open governmental data sets
from various domains. These domains span from livestock farming to environ-
ment, where many of them have spatial information.

In this paper, we design a spatial data cube schema with data from livestock
farming, environment, and geographical domains. Every data set is downloaded
from different governmental sources in various formats. The downloaded data is
prepared and conciliated with a spatial data cube schema in order to publish
it on the SW with QB4SOLAP. We use the common SOLAP operators [8] on
the spatial data cube for advanced analytical queries. These analytical queries
give perspective on the use case data sets that are linked and published with
QB4SOLAP as a unified spatial data cube. Having the use case data sets with
spatial attributes also allows us to reveal patterns across the use case domains
that were not possible before. We share our experiences with the best practices
and methods together with the lessons learned. Finally, we show how to formulate
and execute SPARQL queries with individual and nested SOLAP operations.

The remainder of this paper is structured as follows. Section 2 presents the
background and motivation, Sect. 3 discusses related work and presents the state-
of-the-art spatial data cubes on the SW. Section 4 presents the data sources for
the use case while Sect. 5 describes how to annotate and publish the use case
data as a spatial data cube on the SW. Section 6 presents SOLAP operators and
their SPARQL implementation. Section 7 presents a brief overview of the process
and reflects on the problems and improvements. Finally, Sect. 8 concludes the
paper with an outlook to future work.

2 Background and Motivation

The Semantic Web supports intelligent querying via SPARQL with active infer-
ence and reasoning on the data in addition to capturing its semantics. Linked
Open Data on the Semantic Web is an important source to support Business
Intelligence (BI). Multidimensional data warehouses and OLAP are advanced
analytical tools in analyzing complex BI data. State-of-the-art SW technologies
support advanced analytics over non-spatial SW data. QB4SOLAP supports
intelligent multidimensional querying in SPARQL by providing context to spa-
tial data warehouses and its concepts. Variety of the data is an intriguing concept
on both the Semantic Web and in complex BI systems. The variety of the data
and heterogeneous representation formats (e.g., CSV, JSON, PDF, XML, and
SHP) require underlying conceptualizations and data models with well-defined
spatial (and temporal) dependencies, which can be modeled with QB4SOLAP in
order to answer complex analytical queries. Complex queries cannot be answered
from within one domain alone but span over multiple disciplines and various data
sources. As a result, this paper is driven by the motivation of using QB4SOLAP

Enabling Spatial OLAP Over Environmental and Farming Data 289

as a proof of concept for spatial data warehouses on the Semantic Web by using
open (government) data of various domains from different sources, which creates
a non-trivial spatial use case.

3 State of the Art

Data warehouses and OLAP technologies have been successful for analyzing large
volumes of data [1], including integrating with external data such as XML [16].
Combining DW/OLAP technologies with RDF data makes RDF data sources
more available for interactive analysis. Kämpgen et al. propose an extended
model [11] on top of the RDF Data Cube Vocabulary (QB) [4] for interact-
ing with statistical linked data via OLAP operations directly in SPARQL. In
OLAP4LD [10], Kämpgen et al. suggest enhancing query performance of OLAP
operations expressed as SPARQL queries by using RDF aggregate views. The
W3C published a list of RDF cube implementations [19]. However, they all have
inherent limitations of QB and thus cannot support OLAP dimensions with
hierarchies and levels, and built-in aggregate functions.

Etcheverry et al. [6] introduce QB4OLAP as an extended vocabulary based
on QB, with a full MD metamodel, supporting OLAP operations directly over
RDF data with SPARQL queries. Matei et al. [12] use QB and QB4OLAP as a
basis to support OLAP queries in Graph Cube [20] with the IGOLAP vocabulary.
Jakobsen et al. [9] study OLAP query optimization techniques over QB4OLAP
data cubes. However, none of these approaches and vocabularies support spa-
tial DWs.

QB4SOLAP(v1) [7] is the first attempt to model and query spatial DWs on
the SW, and QB4SOLAP(v2) [8] is a foundation for spatial data warehouses
and SOLAP operators on the SW, which is currently under submission with
completely revised formal semantics of SOLAP operators and SPARQL query
generations algorithms. QB4SOLAP is an extension of QB4OLAP with spatial
concepts. The QB4OLAP vocabulary is compatible with the QB vocabulary.
Therefore QB4SOLAP provides backward compatibility with other statistical or
MD data cube vocabularies in addition to providing spatial context for query-
ing with SOLAP. Figure 1 depicts the QB4SOLAP(v2) vocabulary. Capitalized
terms with non-italic font represent RDF classes, capitalized terms with italic
font represent RDF instances, and non-capitalized terms represent RDF prop-
erties. Classes in external vocabularies are depicted in light gray background
and font. QB, QB4OLAP, and QB4SOLAP classes are shown with white, light
gray, and dark gray backgrounds. Original QB terms are prefixed with qb:2.
QB4OLAP and QB4SOLAP terms are prefixed with qb4o:3 and qb4so:4. Spa-
tial classes are prefixed with geo:5, where the spatial extension to QB4SOLAP is
based on the GeoSPARQL [15] standard from the Open Geospatial Consortium
(OGC) for representing and querying geospatial linked data on the SW.
2 RDF Cube: http://purl.org/linked-data/cube#.
3 QB4OLAP: http://purl.org/qb4olap/cubes#.
4 QB4SOLAP: http://w3id.org/qb4solap#.
5 GeoSPARQL: http://www.opengis.net/ont/geosparql#.

http://purl.org/linked-data/cube#
http://purl.org/qb4olap/cubes#
http://w3id.org/qb4solap#
http://www.opengis.net/ont/geosparql#

290 N. Gür et al.

QB4SOLAP is a promising approach for modeling, publishing, and querying
spatial data warehouses on the SW. However, it has only been validated with a
synthetic use case. Andersen et al. [2] consider publishing/converting open Dan-
ish governmental spatial data as Linked Open Data without considering the MD
aspects of geospatial data. In this paper, however, we validate QB4SOLAP with
a non-trivial use case, which is created as a spatial data cube from open Danish
government spatial data. Furthermore, we show how to exploit multidimensional
spatial linked data on the SW, which is not solely about adding semantics and
linking disparate data sets on the SW, but also about enabling analytical queries
by modeling them as spatial data cubes.

4 Source Data

In order create a spatial data cube of livestock holdings in Danish farms, we
have gathered data that is published by different agencies in Denmark. We have
found these domains to be particularly interesting as they represent a non-trivial
use case that covers spatial attributes and measures, which can be modeled in a
spatial data cube for multidimensional analysis. In the following we first give a
brief overview of the flat data and their sources, and then represent the whole
use case data set as a spatial data cube in Sect. 5.

Fig. 1. QB4SOLAP vocabulary

Enabling Spatial OLAP Over Environmental and Farming Data 291

The environmental protection agency under the Ministry of Environment and
Food of Denmark regulates the livestock units (DE)6 per area in order to keep
nitrate leaching under control in vulnerable areas. Prohibition rules against the
establishment of livestock farms and the siting of animal housing are determined
with respect to livestock units and distance to specific natural habitats (e.g.,
ammonia vulnerable areas, water courses, and water supply facilities etc.) [13].

Livestock Farming (CHR) Data. The Ministry of Environment and Food of
Denmark (http://en.mfvm.dk) publishes the central husbandry (livestock) reg-
istry (CHR) data, which is the central database used for registration of holdings
and animals. We refer to this set of data as CHR data. We have downloaded
several relevant data sets from http://jordbrugsanalyser.dk in livestock farming
domain. The CHR data collection is downloaded in SHP format as 6 data sets,
where each data set represents the state of the farms for a year between the years
2010 to 2015. SHP format is used for shapefiles, which store geometry informa-
tion of the spatial features in a data set. In each shapefile, there is information
about more than 40,000 farms. In total, the CHR data collection contains around
240,000 records. Farm locations are given as (X,Y) point coordinates. Each data
set has 24 attributes in which the important ones are: CHR - Central Husbandry
(animal) Registry (holding) number, CVR - Central Company Registry number
(owner company of the holding), DE (Livestock unit), Address of the holding
(Postnr and Commune), Geographical position of the holding (X and Y coor-
dinates), Different type of normalized herds, Number of animals for each herd,
Animal code and label, Animal usage code and purpose.

Environmental Data. Public environmental data is published on Denmark’s
environment portal http://www.miljoeportal.dk/, where we can find informa-
tion about nitrate catchment areas and vulnerable sites. The soil measurements
contain data from 2008 to 2015 [14]. We downloaded the data sets in SHP for-
mat, which have recently become available on the portal. The files record mea-
surements of the soil quality across Denmark. The environmental data collec-
tion contains 3 data sets about nitrogen reduction potentials and phosphor and
nitrate classifications of the soil. Temporal validity of the soil measurement data
is recorded in the attributes with timestamps. Each data set keeps records of
polygon areas. In total, the environmental data collection contains around 30,000
records. Datasets have attribute fields about the area of the polygons, CVR num-
ber of the data provider agency or company, responsible person name, etc. The
important attributes, which record the soil measurement data are: Nitrate class
type, Nitrogen reduction potentials, Phosphor class type.

Geographical (Regions) Data. The primary use case data is built around
livestock farming (CHR) and environmental data as mentioned above. In sorder
to pursue richer analysis upon this use case we enrich the spatiality of the use
6 Livestock units are used to produce statistics describing the number of livestocks in

farms.

http://en.mfvm.dk
http://jordbrugsanalyser.dk
http://www.miljoeportal.dk/

292 N. Gür et al.

case data by adding two geographical data sets; parishes and drainage areas
of Denmark. These data sets are spatially and topically relevant since we have
found pre-aggregated maps created by the Ministry of Environment and Food
of Denmark at parish and drainage area levels for livestock farming data. We
downloaded parishes and drainage areas of Denmark as SHP files from http://
www.geodata-info.dk/. The total number of records of the geographical data
collection are 2,300. These data sets have attribute fields such as: Drainage area
name, Parish name, Total area, etc.

Central Company Registry (CVR) Data. Danish companies, agencies and
industries are registered in the Central Company Register (CVR). Every live-
stock holding is owned by a company and has a CVR number. Environmental
data also records the CVR number of the corresponding data provider agencies.
Through this CVR number, we can access detailed information of the companies
and contact details of the responsible people. This collection allows evaluating
interesting queries with the selected domains given above. The CVR data is
published at http://cvr.dk and can be accessed via a web service with a Danish
social security number log-in. We accessed and downloaded only the data in CSV
format that are accredited for publishing. This data includes attributes such as:
Company name, Phone number, and Address etc.

5 Publishing Spatial Data Cubes with QB4SOLAP

The QB4SOLAP vocabulary allows to define cube schemas and cube instances.
A cube schema defines the structure of a cube as an instance of the class
qb:DataStructureDefinition in terms of dimension levels, measures, aggre-
gation functions (e.g., SUM, AVG, and COUNT) on measures, spatial aggre-
gation functions7 on spatial measures, fact-level cardinality relationships, and
topological relationships. The properties used to express these relationships are:
qb4o:level, qb:measure, qb4o:aggregateFunction8, qb4o:cardinality, and
qb4so:topologicalRelation respectively (Fig. 1). These schema level meta-
data are used to define MD data sets in RDF. Cube instances are the members
of a cube schema that represent level members, facts and measure values. We
describe the cube schema elements in Sect. 5.1 and the cube instances in Sect. 5.2
with their examples.

5.1 GeoFarmHerdState Cube Schema in RDF

As our use case we create a spatial data cube of livestock holdings that we
refer to as GeoFarmHerdState. The use case data cube is created from the flat
data sets of the livestock farming (CHR) data, the environmental data, the

7 Spatial aggregation functions aggregate two or more spatial objects and return a
new spatial object, e.g., union, buffer, and convexHull etc.

8 SpatialAggregateFunction is a subclass of AggregateFunction. Thus, measures and
spatial measures use the same property qb4o:aggregateFunction.

http://www.geodata-info.dk/
http://www.geodata-info.dk/
http://cvr.dk

Enabling Spatial OLAP Over Environmental and Farming Data 293

Herd

HerdCode
HerdName

Product

ProductCode
ProductName

O
w

ne
rs

hi
p

Ty
pe

Address

Farm

CHRnr
FarmLocation
LivestockUnit

Company

CVRnr
CompanyName

NumberOfAnimals
Location
NitrogenReduction +!
NitrateClass +!
PhosphorClass +!

GeoFarmHerdState Parish

ParishID
ParishName
ParishArea
ParishCenter

Geography

DrainageArea

WaterID
WaterName
WaterArea

Time

Year

Purpose

PurposeCode
PurposeName

Address

Commune

CommuneNr
CommuneName

Animal

AnimalCode
AnimalName U

sa
ge

ZIPCode

PostNr

Ti
m

eD
im

FarmDim
H

er
dD

im
ParishDim

Fig. 2. GeoFarmHerdState – conceptual MD schema of livestock holdings data

geographical (regions) data, and the company registry (CVR) data collections,
which are explained in Sect. 4. We create this data cube by thoroughly analyzing
the attributes of the flat data sets from the collected relevant domains and
conciliating them by foreign keys or by overlaying the SHP files of the spatial
data sets and deriving new attributes from the intersected areas. After deriving
useful spatial information across use case domains, we generalize the tabular data
of the several use case data sets into the GeoFarmHerdState data cube. Figure 2
shows the multidimensional conceptual schema of the GeoFarmHerdState spatial
cube. The multidimensional elements of the cube are explained in Remarks 1–7
followed by their examples in RDF. The underlying syntax for RDF examples is
given in Turtle. We prefix the schema elements of the GeoFarmHerdState cube
with gfs:.

Remark 1 (Dimensions). Dimensions provide perspectives to analyze the data.
The GeoFarmHerdState cube has four dimensions, in which the two of them
are spatial (FarmDim, ParishDim). All dimensions in the cube are defined with
qb:DimensionProperty. A dimension is spatial if it has at least one spatial level
(See Remark 3). Dimension hierarchies are defined with qb4o:hasHierarchy
property. Hierarchies and their types are explained later in Remark 2.

Example 1. We give two spatial dimensions as an example.

gfs:farmDim rdf:type qb:DimensionProperty; qb4o:hasHierarchy gfs:ownership , gfs:address.
gfs:parishDim rdf:type qb:dimensionProperty; qb4o:hasHierarchy gnw:geography.

294 N. Gür et al.

Remark 2 (Hierarchies). Hierarchies allow users to aggregate measures at var-
ious levels of detail. Hierarchies are composed of levels. A hierarchy is spatial
if it has at least one spatial level (See Remark 3). Hierarchies of the Geo-
FarmHerdState cube are given in ellipses (Fig. 2). Each hierarchy is defined with
qb4o:Hierarchy and linked to its dimension with the qb4o:inDimension prop-
erty. Levels that belong to the hierarchy are defined with the qb4o:hasLevel
property.

Example 2. We present the most interesting hierarchies from the GeoFarmHerd-
State cube as an example.

gfs:geogprahy rdf:type qb4o:Hierarchy; qb4o:inDimension gfs:parishDim; qb4o:hasLevel gfs:drainageArea.
gfs:usage rdf:type qb4o:Hierarchy; qb4o:inDimension gfs:animalDim; qb4o:hasLevel gfs:product , gfs:purpose.
gfs:address rdf:type qb4o:Hierarchy; qb4o:inDimension gfs:farmDim; qb4o:hasLevel gfs:zipCode , gfs:commune.

The Geography hierarchy is a non-strict spatial hierarchy. A spatial hiearchy
is non-strict if it has at least one (n− n) relationship between its levels. In the
Geography hierarchy (Fig. 2) the (n−n) cardinality represents that a parish may
belong to more than one drainage area. Usually, non-strict spatial hierarchies
arise when a partial containment relationship exists, which is given as Intersects
in our use case. Usage hierarchy is a generalized hierarchy with non-exclusive
paths to splitting levels (Product and Purpose) and has no joining level but
the top level All. Finally, the Address and Ownership hierarchies are parallel
dependent hierarchies. Parallel hierarchies arise when a dimension has several
hierarchies sharing some levels. Note that the Address hierarchy has different
paths from the Company and Farm levels (Fig. 2).

Remark 3 (Levels). Levels have a set of attributes (See Remark 4) that
describes the characteristics of the level members (See Remark 9). Levels are
defined with the qb4o:LevelProperty and their attributes are linked with the
qb4o:hasAttribute property. A level is spatial if it has an associated geometry.
Therefore, spatial levels have the property geo:hasGeometry, which defines the
geometry of the spatial level in QB4SOLAP.

Example 3. We present a spatial level (Parish) as an example with its attributes.
Attributes and spatial attributes of levels are further described in Remark 4.

gfs:parish rdf:type qb4o:LevelProperty; qb4o:hasAttribute gfs:parishID;
qb4o:hasAttribute gfs:parishName; qb4o:hasAttribute gfs:parishArea;
qb4o:hasAttribute gfs:parishCenter; geo:hasGeometry gfs:parishPolygon.

Note that the Parish level is defined as a spatial level because it has an asso-
ciated polygon geometry (gfs:parishPolygon), which is specified with the
geo:hasGeometry property. Some other spatial characteristics of the levels can
be recorded in the spatial attributes of the level such as the center point of the
parish (gfs:parishCenter).

Remark 4 (Attributes). Attributes and spatial attributes are defined with
the qb4o:LevelAttribute property and linked to their levels with the

Enabling Spatial OLAP Over Environmental and Farming Data 295

qb4o:inLevel property. An attribute is spatial if it is defined over a spa-
tial domain. Attributes are defined as ranging over XSD literals9 and spa-
tial attributes must be ranging over spatial literals, i.e., well-known text lit-
erals (WKT) from OGC schemas10. Spatial attributes are a sub-property of
the geo:Geometry class. Further, the domain of the spatial attribute should
be specified with rdfs:domain, which must be a geometry. Finally, the spa-
tial attribute must be specified as an instance of geo:SpatialObject with the
rdfs:subClassOf property. Examples of attributes are given in the following.

Example 4. We present spatial and some non-spatial attributes of the Parish
level.

gfs:parishID rdf:type qb4o:LevelAttribute; qb4o:inLevel gfs:parish; rdfs:range xsd:positiveInteger.
gfs:parishName rdf:type qb4o:LevelAttribute; qb4o:inLevel gfs:parish; rdfs:range xsd:string.
gfs:parishCenter rdf:type qb4o:LevelAttribute; rdfs:subPropertyOf geo:Geometry; qb4o:inLevel gfs:parish;

rdfs:domain geo:Point; rdfs:subClassOf geo:SpatialObject; rdfs:range geo:wktLiteral , virtrdf:Geometry.

We have mentioned in Remark 3 that spatial levels are defined through their
associated geometries, which are not given as a level attribute. For the Parish
level we present the following example of the corresponding geometry.

gfs:parishPolygon rdf:type geo:Geometry; rdfs:domain geo:MultiSurface;
rdfs:subClassOf geo:SpatialObject; rdfs:range geo:wktLiteral , virtrdf:Geometry.

Remark 5 (Hierarchy Steps). Hierarchy steps define the structure of the hier-
archy in relation to its corresponding, levels. A hierarchy step entails a roll-up
relation between a lower (child) level and an upper (parent) level with a cardinal-
ity. The cardinality (n−n, 1−n, n− 1, n−n) relationship describes the number
of members in one level that can be related to a member in the other level for
both child and parent levels. A hierarchy step is spatial if it relates a spatial child
level and a spatial parent level, in which case it entails a topological relation-
ship between these spatial levels. Both spatial and non-spatial hierarchy steps
are defined as a blank node with the qb4o:HierarchyStep property and linked
to their hierarchies with the qb4o:inHierarchy property. The parent and child
levels are linked to hierarchy steps with the qb4o:childLevel property and the
qb4o:parentLevel property. The cardinality of a hierarchy step is defined by
the qb4o:pcCardinality property. And finally, the topological relationship11 of
a hierarchy step is defined by the qb4so:pcTopoRel property.

Example 5. The following illustrates the hierarchy steps of the spatial hierarchy
Geography and non-spatial hierarchy Address as it has different paths from child
levels Farm and Company.

Geography hierarchy structure
:geography hs1 rdf:type qb4o:HierarchyStep; qb4o:inHierarchy gfs:geography;

qb4o:childLevel gfs:parish; qb4o:parentLevel gfs:drainageArea;
qb4o:pcCardinality qb4o:ManyToMany; qb4so:pcTopoRel qb4so:Intersects, qb4so:Within.

Address hierarchy structure

9 XML Schema Definition: http://www.w3.org/TR/xmlschema11-1/.
10 OGC Schemas: http://schemas.opengis.net/.
11 Topological relations are Boolean predicates that specify how two spatial objects are

related to each other, e.g., within, intersects, touches, and crosses etc.

http://www.w3.org/TR/xmlschema11-1/
http://schemas.opengis.net/

296 N. Gür et al.

:farm address hs1 rdf:type qb4o:HierarchyStep; qb4o:inHierarchy gfs:address;
qb4o:childLevel gfs:farm; qb4o:parentLevel gfs:zipCode;
qb4o:pcCardinality qb4o:ManyToOne.

:farm address hs2 rdf:type qb4o:HierarchyStep; qb4o:inHierarchy gfs:address;
qb4o:childLevel gfs:zipCode; qb4o:parentLevel gfs:commune;
qb4o:pcCardinality qb4o:ManyToOne.

:company address hs1 rdf:type qb4o:HierarchyStep; qb4o:inHierarchy gfs:address;
qb4o:childLevel gfs:company; qb4o:parentLevel gfs:zipCode;
qb4o:pcCardinality qb4o:ManyToOne.

:company address hs2 rdf:type qb4o:HierarchyStep; qb4o:inHierarchy gfs:address;
qb4o:childLevel gfs:zipCode; qb4o:parentLevel gfs:commune;
qb4o:pcCardinality qb4o:ManyToOne.

Remark 6 (Measures). Measures record the values of a phenomena being
observed. Measures and spatial measures are defined with qb:MeasureProperty.
A measure is spatial if it is defined over a spatial domain. Similarly to attributes
(Remark 4), measures are defined ranging over XSD literals and spatial measures
must be ranging over spatial literals.

Example 6. The following shows an example of a spatial measure (Location) and
a non-spatial measure (NumberOfAnimals).

gfs:location rdf:type qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;
rdfs:subClassOf geo:SpatialObject; rdfs:domain geo:Point;
rdfs:range geo:wktLiteral , virtrdf:Geometry.

gfs:numberOfAnimals rdf:type qb:MeasureProperty;
rdfs:subPropertyOf sdmx-measure:obsValue; rdfs:range xsd:decimal.

Remark 7 (Fact). Fact defines the data structure (DSD) of the cube with qb:
DataStructureDefinition. The dimensions are given as components and
defined with the qb4o:level property as the dimensions are linked to the
fact at the lowest granularity level. A fact is spatial if it relates two ore
more spatial levels. Similarly, measures are given as components of the fact
and are defined with the qb:measure property. Aggregation functions on mea-
sures and spatial aggregation functions on spatial measures are also defined
in the DSD with qb4o:aggregateFunction. Fact-level cardinality relation-
ships and topological relationships are defined with qb4o:cardinality and
qb4so:topologicalRelation in DSD, respectively (Fig. 1).

Example 7. The following shows the data structure definition of the cube Geo-
FarmHerdState, which is defined with corresponding measures and dimensions.

– GeoFarmHerdState Cube Definition of the Fact FarmHerdState
gfs:GeoFarmHerdState rdf:type qb:DataStructureDefinition;

Lowest level for each dimensions in the cube
qb:component [qb4o:level gfs:herd; qb4o:cardinality qb4o:ManyToOne];
qb:component [qb4o:level gfs:time; qb4o:cardinality qb4o:ManyToOne];
qb:component [qb4o:level gfs:farm; qb4o:cardinality qb4o:ManyToOne;

qb4so:topologicalRelation qb4so:Equals];
qb:component [qb4o:level gfs:parish; qb4o:cardinality qb4o:ManyToMany;

qb4so:topologicalRelation qb4so:Within];
Measures in the cube
qb:component [qb:measure gfs:numberOfAnimals; qb4o:aggregateFunction qb4o:Sum];
qb:component [qb:measure gfs:location; qb4o:aggregateFunction qb4so:ConvexHull];
qb:component [qb:measure gfs:nitrogenReduction; qb4o:aggregateFunction qb4o:Avg];
qb:component [qb:measure gfs:nitrateClass; qb4o:aggregateFunction qb4o:Avg];
qb:component [qb:measure gfs:phosphorClass; qb4o:aggregateFunction qb4o:Avg].

Enabling Spatial OLAP Over Environmental and Farming Data 297

5.2 GeoFarmHerdState Cube Instances in RDF

Cube instances are the members of a cube schema that represent level members
and facts (members), which are explained in Remarks 8 and 9 below. We prefix
the instances of the GeoFarmHerdState cube with gfsi:.

Remark 8 (Fact members). Fact members (i.e., facts of FarmHerdState) are
instances of the qb:Observation class. Each fact member is related to a set
of dimension base level members and has a set of measure values. Every fact
member has a unique identifier (IRI) which is prefixed with gfsi:.

Example 8. The following shows an example of a single fact member, which
represents the state of a farm with CHR no. 39679 in the year 2015 that has the
herd code 15.

gfsi:farm 39679 2015 rdf:type qb:Observation;
Dimension levels and base level members associated with the fact member

gfs:herdCode gfsi:herd 15; gfs:year gfsi:year 2015;
gfs:chrNumber gfsi:farm 39679; gfs:parishID gfsi:parish 8311;

Measures associated with the fact member
gfs:numberOfAnimals "100.0"ˆˆxsd:decimal; gfs:nitrateClass "3"ˆˆxsd:integer;
gfs:nitrogenReduction "0.75"ˆˆxsd:decimal; gfs:phosporClass "3"ˆˆxsd:integer;
gfs:location "POINT(8.3713 56.7912)"ˆˆgeo:wktLiteral.

Remark 9 (Level members). Level members are defined with qb4o:Level
Member. They are linked to their corresponding levels from the schema with the
qb4o:memberOf property. For each level member there is a set of attribute val-
ues. Due to the roll-up relations between levels of hierarchy steps (Remark 5), the
skos:broader property relates a child level member to its parent level member.

Example 9. The following shows an example of a child level member in the Parish
level and one of its parent level members in the DrainageArea level from the
Geography dimension. Figure 3 presents a map snapshot for fact members and
level members. Parish level member “Astrup” is highlighted and DrainageArea
level member “Mariager Inderfjord” is marked with red borders. Note that
Astrup intersects another drainage area “Langerak”, therefore it links to two
parent level members via skos:broader.

Parish level member
gfsi:parish 8648 rdf:type gfs:parish;

qb4o:memberOf gfs:parish; skos:broader gfsi:water 3710, gfsi:water 159;
gfs:parishID 8311; gfs:parishName"Astrup"; gfs:parishArea 46,118;
gfs:parishCenter"POINT(8.2552, 56.8176)"ˆˆgeo:wktLiteral;
gfs:parishPolygon"POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078
56.7281, 8.2987 56.7601, 8.2563 56.7763, 8.3112 56.8087, 8.3511 56.8137, 8.4038 56.7963))"ˆˆgeo:wktLiteral.

DrainageArea level member
gfsi:water 159 rdf:type gfs:drainageArea;

qb4o:memberOf gfs:drainageArea; gfs:waterID 159;
gfs:waterName"Mariager Inderfjord"; gfs:waterArea 267,477;
gfs:drainageGeo "POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664,
8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625, 8.3938, 56.7340, 8.3613 56.6802,
8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121 56.8441, 8.2806 56.8659,
8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"ˆˆgeo:wktLiteral.

298 N. Gür et al.

Fig. 3. GeoFarmHerdState – fact members and level members of Example 9 marked

6 SOLAP Operators over GeoFarmHerdState Cube

Spatial OLAP (SOLAP) operates on spatial data cubes. SOLAP increases the
analytical capabilities of OLAP by taking into account the spatial information
in the cube. SOLAP operators involve spatial conditions or spatial functions.
Spatial conditions specify constraints (i.e., spatial Boolean predicates) on the
geometries associated to cube members or measures, while spatial functions
derive new data from the cube, which can be used, e.g., to derive dynamic
spatial hierarchies.

6.1 SOLAP Operators

In what follows we present common SOLAP operators and examples of these
operators on GeoFarmHerdState cube.

Remark 10 (S-Slice). The s-slice operator removes a dimension from a cube
by choosing a single spatial value in a spatial level. It returns a cube with one
dimension less.

Example 10. We can perform an s-slice operation in different ways.
1. Slice on farms (state of the farms) of the largest parish.
2. Slice on farms (state of the farms) of the drainage area containing
"POINT(10.43951 55.47006)".

The first one applies a spatial function call (for finding the largest parish by
area) on a spatial level Parish and performs the slice. The second one applies a
spatial predicate (for finding where a given point is within a particular drainage
area) in a spatial level DrainageArea and performs the operation. The corre-
sponding SPARQL queries are:

Enabling Spatial OLAP Over Environmental and Farming Data 299

1 – s-slice with spatial function

SELECT ?obs WHERE {
?obs rdf:type qb:Observation;

gfs:parishID ?parish.

?parish gfs:parishPolygon ?parishGeo.

Inner select for finding the largest parish

{ SELECT ?x (MAX(?area) as ?maxArea) WHERE{
?obs rdf:type qb:Observation;

gfs:parishID ?parish.

?parish gfs:parishPolygon ?x.

BIND (bif:st area(?x) as ?area)}}
FILTER ?parishGeo = ?x) }

2 – s-slice with spatial predicate

SELECT ?obs WHERE {
?obs rdf:type qb:Observation;

gfs:parishID ?parish.

?parish qb4o:memberOf gfs:parish;

skos:broader ?drainageArea.

?drainageArea gfs:drainageGeo ?drainageGeo.

FILTER (bif:st within(”POINT(10.43951 55.47006)”,

?drainageGeo)) }

Remark 11 (S-Dice). The s-dice operator keeps the cells of the cube that satisfy
the spatial predicate over dimension levels, attributes, or measures. It returns a
subset of the cube with filtered members of the cube.

Example 11. In the following we show two examples of the s-dice operator.
1. Filter the farms located within 5 Km buffer from the center of a drainage area.
2. Filter the farms located within 2 Km distance from the center of their parish,
which are in the nitrate class I areas.

In the first s-dice operation, initially, a spatial function is applied on level
members of the DrainageArea level to get the center of their polygon geometries.
Then, the level members of the Farm level are filtered with a spatial Boolean
predicate with respect to the farm locations that are within a 5 Km buffer area of
the center of the drainage areas. In the second s-dice operation, a spatial function
is applied to the spatial measure farm location to get the distance of the farms
from the center of their parish, which is followed by Boolean predicates; to filter
the farms that are less than 2 Km away from the center of their parishes and are
on nitrate class I areas.

1 – s-dice on dimension levels

SELECT ?obs WHERE {
?obs rdf:type qb:Observation;

gfs:farmID ?farm;

gfs:parishID ?parish.

?farm gfs:farmLocation ?farmGeo.

?parish qb4o:memberOf gfs:parish;

skos:broader ?drainageArea.

?drainageArea gfs:waterPolygon ?drainagePoly.

BIND (bif:st centroid (?drainagePoly) as ?drainageCenter)

FILTER (bif:st within(?drainageCenter, ?farmGeo, 5)) }

2 – s-dice on measures

SELECT ?obs WHERE {
?obs rdf:type qb:Observation;

gfs:location ?farmLocation;

gfs:nitrateClass ?nitClass;

gfs:parishID ?parish.

?parish gfs:parishCenter ?parishCent.

BIND (bif:st distance (?farmLocation, ?parishCent)

AS ?distance)

FILTER (?distance < 2 && ?nitClass = 1)}

Remark 12 (S-Roll-up). The s-roll-up operator aggregates measures of a given
cube by using an aggregate function and a spatial function along a spatial dimen-
sion’s hierarchy. It returns a cube with measures at a coarser granularity for a
given dimension.

Example 12. In the following, we present two examples of the s-roll-up operator.
1. Total amount of animals in the farms, which are closest to their parishes’
center.
2. Average percentage of nitrogen reduction potentials in the parishes that are
within and/or intersect the drainage area “Nibe-Bredning”.

300 N. Gür et al.

In the first s-roll-up operator, measures are aggregated to the Parish level
after selecting the farms with respect to their proximity to the center of the
parish with a spatial function. In the second s-roll-up operator, measures are
aggregated to a specified drainage area (“Nibe-Bredning”) at the DrainageArea
level. We select all the possible topological cases where a parish intersects or
within the drainage area, which means measures from the farms that are outside
Nibe-Bredning are also aggregated to the level of this drainage area. In order to
prevent this, the query needs to include an s-drill-down operator (Remark 13)
to farms from Parish level and apply a spatial Boolean predicate to select the
farms within the drainage area and then aggregate.

1 – s-roll-up

SELECT ?parish (SUM(?animalCount) AS ?totalAnimals)

WHERE { ?obs rdf:type qb:Observation;

gfs:numberOfAnimals ?animalCount;

gfs:farmID ?farm;

gfs:parishID ?parish.

?farm gfs:farmLocation ?farmGeo.

?parish gfs:parishCenter ?parishCent.

Inner select for finding the

closest farms to the parish centers

{SELECT ?farm1 (MIN(?distance) AS

?minDistance) WHERE

{ ?obs rdf:type ab:Observation;

gfs:farmID ?farm1;

gfs:parishID ?parish1.

?farm1 gfs:farmLocation ?farm1Geo.

?parish1 gfs:parishCenter ?parish1Cent.

BIND (bif:st distance (?farm1Geo, parish1Cent)

AS ?distance) } GROUP BY ?farm1 }
FILTER (?farm = ?farm1 && bif:st distance

(?farmGeo, ?parishCent) = ?minDistance)}
GROUP BY ?parish

2 – s-roll-up

SELECT ?drainageArea (AVG(?nitRed) AS ?avgNitRed)

WHERE { ?obs rdf:type qb:Observation;

gfs:location ?farmLocation;

gfs:nitrogenReduction ?nitRed;

gfs:parishID ?parish.

?parish qb4o:memberOf gfs:parish;

gfs:parishPolygon ?parishGeo;

skos:broader ?drainageArea.

?drainageArea gfs:memberOf gfs:drainageArea;

gfs:waterPolygon ?drainageGeo;

gfs:waterName ?drainageName.

FILTER (bif:st within(?parishGeo, ?drainageGeo)

|| bif:st intersects(?parishGeo, ?drainageGeo)

&& ?drainageName =”Nibe-Bredning”)}
GROUP BY ?drainageArea

Remark 13 (S-Drill-down). The s-drill-down operator disaggregates measures
of a given cube by using an aggregate function and a spatial function along a
spatial dimension’s hierarchy. It is the inverse operator of s-roll-up, therefore s-
drill-down disaggregates the previously summarized data to a child level in order
to obtain measures at a finer granularity.

6.2 Nested SOLAP Operations

A nested set of SOLAP operators can be designed with the pattern (s−dice2(s−
roll−up1(. . . s−roll−upk(s−slice1(. . . s−slicen(s−dice1(DataCube))))))). Initially
a sub-cube is selected from the (spatial) data cube with the first s-dice. After-
wards, a number of s-slices can be applied, which is followed by a series of
s-roll-ups. Finally, the expression ends with another s-dice for getting the final
sub-cube at a coarser granularity by filtering the aggregated measures. In the
following, we present a nested SOLAP operation example for the running case
GeoFarmHerdState spatial data cube.

Example 13. (3s−roll−up(2s−slice(1s−dice(GeoFarmHerdState)))): This pat-
tern represents a typical nested SOLAP operation that can be paraphrased for

Enabling Spatial OLAP Over Environmental and Farming Data 301

the running use case as follows: 1Filter the farm states located within a 2 Km
distance from the center of their parish and 2slice on the parish which has the
most number of topological relations (intersects, within) with a drainage area,
3average the nitrogen reduction potential of the drainage areas intersecting with
the parish.

7 Discussion and Perspectives

In the following, we give and evaluate the steps of our process with respect to
the guidelines for publishing governmental linked data [18]. We discuss the par-
ticular challenges that we encountered and possible future improvements.

(1) Specification. The first step is to specify the scope of the data by identifying
and analyzing the data sources. We identified the data sources for the domains of
CHR data, Environmental data, Geographical data, and CVR data as described
in Sect. 4. In order to find the correct relations between these domains we had to
search documentations (i.e., [13,14]) and acquire knowledge about the domains’
interests. As the purpose is to publish open data, the definition of an Open Data
license is also required at this level.

(2) Modeling. We used the spatially extended MultiDim model [17] for design-
ing the MD conceptual schema of the use case spatial data cube (Fig. 2) from
the collected flat data sets. This process requires good knowledge of spatial data
warehouses and its concepts. In order to model the spatial data cube in RDF,
QB4SOLAP provides the state-of-the-art semantic spatial data cubes. Therefore,
we annotate the designed use case conceptual schema with QB4SOLAP.

Modeling the RDF data with QB4SOLAP provides all the core concepts of
spatial data warehouses (i.e., spatial dimensions, spatial levels, and spatial hier-
archies) for spatial data on the SW. Therefore, QB4SOLAP conveniently handles
the conceptual modeling process of DWs on the SW and clearly describes the
certain relations that should be considered during the logical modeling process
(e.g., cardinality and topological relationships to create integrity constraints for
ER models).

(3) Generation. This step of the overall process involves the most complex
tasks. In order to fully generate a spatial data cube in RDF the following sub-
processes are performed: transformation and data conciliation.

(3.1) Transformation. The RDF triples were generated with ad-hoc C# code
for mapping from relational CSV files to RDF. In total, 12 CSV files were orga-
nized based on the relational representation (snowflake schema) of an MD con-
ceptual model such that: We obtained one fact table with foreign keys of the
related dimension (base) levels and measures, four tables with each dimensions’
base level, and seven tables for the remaining levels along the hierarchies. These
12 tables are related by referential integrity constraints. Every level table also
records the level attributes and attribute values. In order to create this relational
CSV files, we pursued a number of data conciliation activities as described in
the following item.

302 N. Gür et al.

(3.2) Data Conciliation. Initial data sets are downloaded in different formats
i.e., SHP format for CHR, Environmental, and Geographical data; CSV format
for CVR data. In order to create the desired relational implementation of the
use case spatial data cube, we used the unique identifiers (i.e., CVR and CHR
numbers) or utilized spatial joins by joining attributes from one geometry fea-
ture to another based on the spatial containment relationship. For instance, we
overlaid the point coordinates of the farms from CHR data and polygon coor-
dinates of three environmental data sets in order to intersect and find the soil
quality measurements for NitrogenReduction, NitrateClass and PhosphorClass
of each farm. Another interesting spatial join is utilized for relating the Parish
level members with DrainageArea level members. Since there is an (n− n) car-
dinality relationship, some parishes intersect with more than one drainage area,
thus we used topological relationships (intersects and within) to find the related
child and parent level members. For interacting and handling the spatial data,
we used QGIS with integration to PostGIS12. We used PostgreSQL to create
and export relational tables.

The lack of tools for mapping a spatial multidimensional model to the rela-
tional model has been an impediment since we have to use topological rela-
tionships, where there is an (n − n) cardinality relationship. Therefore, seman-
tic ETL for data warehouses [5] is an important research topic, which requires
improvements also for spatial data. Semi-automated tool support of geo-semantic
ETL for publishing data warehouses on the SW is a promising improvement for
handling the above processes such that the spatial joins can be processed effi-
ciently. Before publishing the final RDF data, a comprehensive data cleansing
step is essential for removing redundant columns and cleaning the noise due to
unescaped characters, denormalized spatial literals, and encoding problems.

(4) Publication. In order to store and publish the RDF data we chose the Vir-
tuoso Universal Server as a triple store. The details about the SPARQL endpoint
can be found on the project page http://extbi.cs.aau.dk/GeoFarmHerdState.

Publication of metadata in Danish and English languages should be com-
pleted. Also for enabling efficient discovery of published spatial data cubes,
adding an entry of the data in the CKAN repository (datahub.io) is required.

(5) Exploitation. The goal of our research is to re-use open government data
and publish it as spatial data cubes on the SW for advanced multidimensional
analysis. Therefore, we show how to query in SPARQL with SOLAP operators.

We recognize the need for non-expert SW users to write their spatial ana-
lytical queries in our high-level SOLAP language instead of the lower-level com-
plex SPARQL language. Thus, a query system with a GUI that can interpret
spatial data cube schemas for allowing users to perform high level SOLAP
operations is ongoing work. Performing SOLAP queries in SPARQL to work
over multiple RDF cubes with s-drill-across and supporting spatial aggrega-
tion (s-aggregation) over spatial measures are other important improvements on
exploitation of spatial data cubes.

12 QGIS: http://www.qgis.org/ PostGIS: http://postgis.net/.

http://extbi.cs.aau.dk/GeoFarmHerdState
http://www.qgis.org/
http://postgis.net/

Enabling Spatial OLAP Over Environmental and Farming Data 303

8 Conclusion and Future Work

The need for spatial analytical queries on the Semantic Web increases constantly
with regularly published open government data, but there is a lack of effective
solutions and efficient models. As a first attempt to publish spatial data cubes
from open data, we have shown that the QB4SOLAP vocabulary can be used
to link Danish government data that is published in different domains. First,
we have studied the use case data sets thoroughly with corresponding regula-
tions and requirements in order to satisfy cross-domain interests (e.g., tracking
soil quality in livestock farms and farm animals density on drainage areas etc.).
Second, we have conciliated the flat data sets in order to model the MD con-
cepts of a spatial data cube. Third, we described the most popular individual
SOLAP operators and a nested SOLAP operation pattern with examples and
their SPARQL implementation.

In this paper, the QB4SOLAP vocabulary is validated by a non-trivial spatial
use case. As a proof of concept, we showed that linking spatial (governmental
open) data on the Semantic Web can be achieved at an advanced level, not solely
linking spatial open data on the SW but also modeling this data for advanced
analytical queries with SOLAP operations.

Several directions are interesting for future research: developing a geo-
semantic ETL tool to support the process of creating spatial data cubes on
the SW, a GUI for non-expert users to perform SOLAP operations on SW spa-
tial cubes, extending the use case and implementing advanced SOLAP queries,
such that; as s-drill-across and s-aggregation on the SW.

Acknowledgments. This research is partially funded by “The Erasmus Mundus
Joint Doctorate in Information Technologies for Business Intelligence Doctoral Col-
lege (IT4BI-DC)”.

References

1. Abelló, A., Romero, O., Pedersen, T.B., Aramburu, M.J., et al.: Using semantic
web technologies for exploratory OLAP: a survey. TKDE 27, 571–588 (2014)

2. Andersen, A.B., Gür, N., Hose, K., Jakobsen, K.A., Pedersen, T.B.:
Publishing danish agricultural government data as semantic web data. In: Sup-
nithi, T., Yamaguchi, T., Pan, J.Z., Wuwongse, V., Buranarach, M. (eds.) JIST
2014. LNCS, vol. 8943, pp. 178–186. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-15615-6 13

3. Arendt, J.B.: Denmark releases its digital raw material, Ministry of Finance of
Denmark, October 2012. http://uk.fm.dk/news/

4. Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube Vocabulary (2014)
5. Nath, D.R.P., Hose, K., et al.: Towards a Programmable Semantic Extract-

Transform-Load Framework for Semantic Data Warehouses. In: DOLAP, pp. 15–24
(2015)

6. Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses
on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-10160-6 5

http://dx.doi.org/10.1007/978-3-319-15615-6_13
http://dx.doi.org/10.1007/978-3-319-15615-6_13
http://uk.fm.dk/news/
http://dx.doi.org/10.1007/978-3-319-10160-6_5
http://dx.doi.org/10.1007/978-3-319-10160-6_5

304 N. Gür et al.

7. Gür, N., Hose, K., Pedersen, T.B., Zimányi, E.: Modeling and querying spatial
data warehouses on the semantic web. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S.
(eds.) JIST 2015. LNCS, vol. 9544, pp. 3–22. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-31676-5 1

8. Gür, N., Pedersen, T.B., Zimányi, E., Hose, K.: A foundation for spatial data
warehouses on the semantic web. Journal paper, under submission (2016)

9. Jakobsen, K.A., Andersen, A.B., Hose, K., Pedersen, T.B.: Optimizing RDF data
cubes for efficient processing of analytical queries. In: COLD (2015)

10. Kämpgen, B., Harth, A.: OLAP4LD – a framework for building analysis applica-
tions over governmental statistics. In: Presutti, V., Blomqvist, E., Troncy, R., Sack,
H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 389–394.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11955-7 54

11. Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked
data via OLAP operations. In: Simperl, E., Norton, B., Mladenic, D., Della Valle,
E., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp.
87–101. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46641-4 7

12. Matei, A., Chao, K.-M., Godwin, N.: OLAP for multidimensional semantic web
databases. In: Castellanos, M., Dayal, U., Pedersen, T.B., Tatbul, N. (eds.) BIRTE
2013-2014. LNBIP, vol. 206, pp. 81–96. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46839-5 6

13. Danish Ministry of the Environment. Consolidated Act on Livestock Farming Envi-
ronmental Approvals (2012). http://eng.mst.dk/media

14. Directive, Nitrates: Danish nitrate action programme 2008–2015 regarding the
nitrates directive; 91/676/eec. Technical report, Nitrates Directive (2012)

15. Open Geospatial Consortium: GeoSPARQL: A geographic query language for RDF
data. W3C Recommendation (2014)

16. Pedersen, D., Riis, K., Pedersen, T.B.: Query optimization for OLAP-XML feder-
ations. In: DOLAP, pp. 57–64 (2002)

17. Vaisman, A., Zimányi, E.: Spatial data warehouses. In: Vaisman, A., Zimányi, E.
(eds.) Data Warehouse Systems. Design and Implementation. DCSA, pp. 427–473.
Springer, Heidelberg (2014)

18. Villazón-Terrazas, B., Vilches-Blázquez, L., Corcho, O., Gómez-Pérez, A.: Method-
ological guidelines for publishing government linked data. In: Wood, D. (ed.) Link-
ing Government Data, pp. 27–49. Springer, New York (2011)

19. W3C.: Data Cube Implementations (2014). https://www.w3.org/2011/gld/wiki/
Data Cube Implementations

20. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multi-
dimensional networks. In: SIGMOD, pp. 853–864 (2011)

http://dx.doi.org/10.1007/978-3-319-31676-5_1
http://dx.doi.org/10.1007/978-3-319-31676-5_1
http://dx.doi.org/10.1007/978-3-319-11955-7_54
http://dx.doi.org/10.1007/978-3-662-46641-4_7
http://dx.doi.org/10.1007/978-3-662-46839-5_6
http://dx.doi.org/10.1007/978-3-662-46839-5_6
http://eng.mst.dk/media
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations

Classification of News by Topic
Using Location Data

Zolzaya Dashdorj1(B), Muhammad Tahir Khan2,
Loris Bozzato3, and SangKeun Lee1

1 Korea University, 1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
{zolzaya,yalphy}@korea.ac.kr

2 Taiger Singapore, 3 Fusionopolis Place #04-56, Galaxis, Singapore, Singapore
tahir.khan@taiger.com

3 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
bozzato@fbk.eu

Abstract. In this work, we will consider news articles to determine geo-
localization of their information and classify their topics on the basis of
an available open data source: OpenStreetMap (OSM). We propose a
knowledge-based conceptual and computational approach that disam-
biguates place names (i.e., geo-objects and regions) mentioned in news
articles in terms of geographic coordinates. The geo-located news arti-
cles are analyzed to identify local topics: we found that the mentioned
geo-objects are a good proxy to classify news topics.

1 Introduction

Enormous amount of information has been generated over web sources and social
platforms by the activities of millions of people worldwide. The quantitative
understanding of such information provides great impacts on the analysis of
human behaviors and human dynamics on a macro-level [5,6,12]. However, in
order to carry out the analysis on a micro level (i.e., provinces and districts),
there is a need for geo-localization of information that describes different contexts
of events (i.e., emergency vs non emergency) or human activities. Obtaining
such useful and explanatory information from web sources and social platforms
becomes an emerging interest in the areas of information retrieval, data mining
and social network analysis [8].

However, the Natural Language Processing (NLP) successfully recognizes
micro level entities (i.e., organization and location) from free text. But, it suffers
from the ambiguity of place names mentioned in news in terms of geographic
coordinates. To solve such ambiguity problem, previous studies [10,13] rely on
geo-referenced texts in social platforms which include geo-coordinates in the
meta data. More recent studies have considered to study local topics on social
media [9] based on the area-specific term occurrence, estimating area specific
scores of terms and occurrences using term frequency, as well as average and
standard deviation of the longitude and latitude of raw geotagged information.

c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 305–314, 2016.
DOI: 10.1007/978-3-319-50112-3 23

306 Z. Dashdorj et al.

(a) Place Names Over Countries in GeoNames
vs OSM

(b) Ambiguous Place Names: OpenStreetMap

Fig. 1. Open spatial data-sources

However, geotagged information in media has not been studied much to deter-
mine local topics and no previous work has been done in the identification of
local topics from non geo-referenced information on media. The fact that news
topics can be extracted from the geo-localization of the article, which has not
received an attention: still, researchers have studied topic modeling on news
favorably using Latent Dirchlet Allocation (LDA) [2].

In this paper, we propose a news classification model based on location data
included in the news by disambiguating the place names mentioned in the news,
without an expensive estimation cost on geographical features. In order to deal
with ambiguous place names mentioned in news in terms of geographic coor-
dinates, we implement several heuristic disambiguation techniques using well
known publicly available geographic gazetteers, namely Geo-names database
(GNS) 1 and OpenStreetMap (OSM) 2. However, GNS has been exploited in
few studies [14]. But, it describes a less number of geo-names in some countries,
while the OSM is well enriched with more geo-names including also geo-objects
(i.e., organizations) that voluntarily collected with the official language of coun-
tries and other eight common languages. For example, the number of geo-names
collected in GNS covering the country, Mongolia is around 7,017 in total which
is almost 22 times smaller than the geo-objects we have collected from OSM.
Figure 1(a) shows a comparative number of geo-names across different countries
in public data-sources: GNS 3 vs OSM 4.

Thus, we use the OSM which is an open spatial data-source of rich informa-
tion about geographical objects and features that localized over official adminis-
trative divisions of countries. Our research is concentrated on news articles which
does not contain any geo-references data and to the best of our knowledge, this
research is the first attempt on using OSM for news classification. The potential

1 http://www.geonames.org.
2 http://www.openstreetmap.org/.
3 http://www.geonames.org/statistics.
4 http://osmstats.neis-one.org/?item=countries.

http://www.geonames.org
http://www.openstreetmap.org/
http://www.geonames.org/statistics
http://osmstats.neis-one.org/?item=countries

Classification of News by Topic Using Location Data 307

application of this research is a location based recommender system in mobile
computing and social networks.

2 Method Definition

We first build a knowledge base, called Gazeto, consisting of place names tax-
onomy referring to different coordinates, extracted from OSM. We define the
term, place name in this research as a geographical coordinate associated to
an organization or an administrative division. We apply conceptual and geo-
computational approaches to web crawled news contents in order to identify the
place names associated with the most likelihood that refer to their actual loca-
tions. Finally, we evaluate if news topic is predictable based on location features
like regions, organizations, categories organization, by classifying the news into
local topics as well as global topics. In this context, local topics are defined as
topics which are identified from the news associated to location features. In the
following sections, we will explain in detail each of the steps of our methods.

2.1 Place Names Knowledge Base

Using spatial open data in OSM, we collected the spatial features of 165,179
Points of Interest (POIs) over the entire country of Mongolia including of
378,491 properties (i.e., name, geo-object type, address) by using a spatial tool,
OSM2PGSQL5, and stored in geographical datastore - PostgreSQL6. In OSM,
geo-objects are described in a pair of key and value e.g., restaurant is a sub type
of the category amenity. The OSM dataset also contains a number of additional
features like e.g. email, address, and website. We discarded these features and
kept only primary features as described in OSM Wiki website7 i.e., geo-objects
along with their categories, such as sport shop, fast food restaurant and oth-
ers. Using an OSMonto ontology [4], the primary features are refined to 125,398
geo-objects. We added a collection of hierarchical administrative divisions (e.g.,
countries, provinces, cities) in our KB. According to OSM, up to 8 administra-
tive levels can be stored. The relations between geo-objects and administrative
divisions are computed by PostGIS 8 functions allowing us to identify the admin-
istrative division of a given geo-object or the ascendant administrative division
of a given division. We express a place name LN for an organization which is
expressed by the pair of administrative division and geo-object name that for-
malized as: 〈Country, Province, District, Geo-Object〉. In total, we have collected
4,422 place names in our knowledge base. The ambiguity of place names refer-
ring to different coordinates is described in Fig. 1(b). Below 500 place names are
ambiguous in terms of geo-references.

5 http://wiki.openstreetmap.org/wiki/Osm2pgsql.
6 http://www.postgresql.org/.
7 http://wiki.openstreetmap.org/wiki/Map Features.
8 http://postgis.net/.

http://wiki.openstreetmap.org/wiki/Osm2pgsql
http://www.postgresql.org/
http://wiki.openstreetmap.org/wiki/Map_Features
http://postgis.net/

308 Z. Dashdorj et al.

2.2 Place Names Disambiguation Methods

To choose a correct location Lj for the ambiguous candidate LNi, we use heuris-
tics in a similar fashion as [8,14]. However, the study was evaluated on macro-
context (i.e., country, city and province). We propose the following heuristic
techniques given news articles for place name disambiguation. The comparable
baselines are NP and UC approaches.

– NLP Pos Tagger (NP). We adopt CRF Classifier—Stanford Named Entity
Recognizer (NER) [7] for identifying the entities (i.e., organization and loca-
tion) from given news articles. We train the sample data using one versus the
rest method.

– Unique Consistency (UC). We examine if the candidate is non-ambiguous
compared to the place names in our KB. Non ambiguous candidate refers
to only one geographic coordinate. For entity extraction, we use the NLP
package, LingPipe NER (Alias-i 2008) [1]: setting all matches phrase with-
out case sensitive in the mapping. This approach will constitute our baseline
estimation.

– Sequence Consistency (SC). The phrases in a paragraph are ordered and
correlated to each other. Most place names are intuitively related to the near
place names. We examine if the ascendant of the candidate LNi is the same
as the non ambiguous place name on the left side LNi−1 or the right side
LNi+1 for the disambiguation.

– Distance Consistency (DC). The candidate with the minimum distance to
non ambiguous place names will be chosen for disambiguation. If there is no
non ambiguous place name defined in the news article, the candidate location
is disambiguated based on the minimum distance to the central point of all
the locations that associated to ambiguous candidates in the news.

– Category Consistency (CC). We verify the category of the candidate
whether it is defined the same as the most probable category of non ambigu-
ous place names in the news for the disambiguation. Otherwise, we check
the similarity between the category of the candidate and the most probable
category identified in terms of the parent category.

– Neighborhood Category Consistency (NCC). We check here up to 10
nearby geo-objects within the radius = 5 m to the candidate if those share
the same category as the most probable category of non-ambiguous place
names in the news for the disambiguation. Otherwise, the similarity between
the category of the nearby geo-objects to the candidate is calculated as the
approach CC.

2.3 Classification of Local Topics from News

We classify topics over news based on OSMonto categorical taxonomies. First,
we identify the correlation between geo-objects and news topics based on
OSMOnto taxonomies, in order to estimate if the news topics are predictable
based on such categorical taxonomies using learning algorithms. We then

Classification of News by Topic Using Location Data 309

implement SVM multi-class classification using the one-against-all method.
The news sets are pre-computed to generate the categorical probability dis-
tribution based on geo-object occurrence (Ppoi) and categorical term occurrence
(Pnews). The correlation is estimated by Bhattacharyya coefficient9 which is a
correlation coefficient between the news category distribution Pnews and categor-
ical geo-object distribution Ppoi over the entire news text: BC(Ppoi, Pnews) =∑n

i=1

√
Ppoi(i) ∗ Pnews(i), where BC is equal to 0 for a complete mismatch,

otherwise 1 for a perfect match. The distributions, Ppoi, Pnews are labeled by k
class denoted by k-mean. We construct k SVM models where k is the number
of classes that describes categories organization and categorical terms based on
the most geo-object occurrence and categorical term occurrence in each news,
respectively. The vector features are the words in each news. The SVM for class
k is constructed using the set of training examples and their desired outputs,
(xi, yi). The mth SVM is trained with all of the examples in the mth class with
positive labels, and all other examples with negative labels. The the decision
function is: x = argmaxm=1,...,k((wm)Tφ(x)+ bm), where x is in the class which
has the largest value of the decision function.

2.4 Classification of Global Topics from News

Given news articles where the place names are disambiguated, we obtain global
topics comparing with the local topics based on the geo-location features using
one of the most popular topic model, latent Dirichlet allocation (LDA) [2]. In this
study, we use Fast LDA [11] to evaluate the topic modeling based on perplexity.
The perplexity, used by convention in language modeling. The algorithm uses
a substantially smaller number of variational parameters, with no dependency
on the dimensionality of the dataset. By calculating the perplexity of a test set,
we can evaluate the generalization ability of a model, a lower perplexity score
indicates better generalization performance. For a dataset Dtest, the perplexity
is: perplexity(Dtest) = exp−

∑
d log(P (wd))∑

d Nd
, where wd are the words in test dataset

that are not repeated, Nd is the whole words in test dataset.

3 Experimental Results and Evaluation

3.1 Data Pre-Processing

To the best of our knowledge, there is no ground-truth resource to evaluate
our approach. We decided to build our own evaluation set to estimate the per-
formance of our model, sampling 510 english news articles10 crawled from a
daily newspaper site, UB Post11. One may notice that the amount of dataset

9 Wiki link: https://en.wikipedia.org/wiki/Bhattacharyya distance.
10 Dataset: https://www.dropbox.com/sh/sio0goqw2soaavd/AABZHaNdcNC3VAN1

XbKgCATPa?dl=0.
11 http://ubpost.mongolnews.mn/.

https://en.wikipedia.org/wiki/Bhattacharyya_distance
https://www.dropbox.com/sh/sio0goqw2soaavd/AABZHaNdcNC3VAN1XbKgCATPa?dl=0
https://www.dropbox.com/sh/sio0goqw2soaavd/AABZHaNdcNC3VAN1XbKgCATPa?dl=0
http://ubpost.mongolnews.mn/

310 Z. Dashdorj et al.

Table 1. Place names in the knowledge base

All LN # Ambiguous LN # Non-ambiguos LN # Top categories # Total categories

9,099 952 3,232 56 721

is not very large: this is due to the cost constraints on geographic computa-
tion. The geo-objects which tagged in English language: name, official name
and name : en, are considered. Table 1 shows the total number of place names
which populated in our KB including 21 provinces, 9 districts and the capital
city. 11% of them is ambiguous referring to different coordinates, and the rest is
non-ambiguous unique entities.

3.2 Disambiguation of Place Names

We identified a total of 1,847 locations in the set of sampled news. Table 2 shows
the performance accuracy for the disambiguation methods. Precision, or Accu-
racy, is calculated as the number of correctly disambiguated locations divided
by the number of locations identified in the news samples. Since we do not
have a ground-truth resource to compare our approach, the baseline estimation
is considered as an unique consistency (UC) approach. By combining all the
methods, we out perform the baseline approach by 53 % more. We analyzed
such correlation on the reduced categories which could make a more sense natu-
rally about news topics, such as: office, shop, amenity, cuisine, leisure, tourism,
sport, historic, nature, religion, public transportation and other. The correlation
result is described in the table, where the (reduced) BC is relatively increased
for all news. This indicates that the news topics are strongly correlated to the
geo-objects mentioned in the text without considering locations.

3.3 Local Topics Identification

To avoid mis-disambiguation of place names in the news, we consider the place
names which generated by the reliable ground truth (baseline) methods, UC and
NP. This provides unique place names referred to one coordinate only. Given the
news text, we estimate the statistical feasibility on news topics prediction based
on geo-object types, vice versa. For example, a given news “KFC is opened near
central square in Mongolia as the nations first ever western fast food chain”, the
geo-object KFC is a fast food type of amenity and a business building which are
described in OSMonto. Then, the topic of the news is associated to food and
business. In fact, we can come up with an assumption that the local topics can
be identified by the geo-objects described in the news text.

We pre-process the data by removing stop words in text D. We got totally
13,714 number of vocabularies in the text corpus. The BOW model is interpreted
as a feature vector of the words given text D across each document. The BOW
as vector for each news is labeled by the top categories in OSMonto when a
geo-object is mentioned in the news text.

Classification of News by Topic Using Location Data 311

Table 2. Disambiguation and identification of place names on news sample

Method # Count Accuracy Average BC Reduced BC

NP 1,105 out of 4,231 26% 52% 52%

UC (Baseline) 837 45% 55% 69%

UC + SC 936 51% 53% 68%

UC + DC 1,356 73% 63% 83%

UC + DC + CC 1,382 75% 64% 83%

UC + DC + CC + NCC 1,813 98% 50% 89%

Table 3. SVM classifier

Estimation Categories
Organization - UC

Categories
Organization - NP

Categorical
Terms

Overall Accuracy 60.84 79.17 70.47

Macro-F1 50.0 100.0 100.0

In OSMonto, there are 385 category combinations in total: using these cate-
gories, we would like to classify the news topics. The categories are hierarchically
organized into two-levels. For example, a restaurant is a sub-type of amenity,
and a supermarket is a sub-type of shop. We sampled the dataset containing
a geo-object found in articles in order to categorize the news. The result is
reported on one against all validation (we chose 70 % for training and 30 %
for testing; therefore we performed a random permutation before splitting the
dataset for training and testing) in multi-class SVM classifier. The SVM classi-
fier is denoted by a library, LIBSVM [3] which uses a linear kernel with penalty
cost C=1. The news are localized based on the most likelihood administrative
divisions or the most likelihood organizations. Table 3 shows the accuracy and
macro-f1 of multi-class SVM classifier in average, over news categorized by the
top categories organization which disambiguated by the baseline techniques UC
and NP. Among the experiments, a classifier Categories Organization - NP per-
forms well around 79.17 % of accuracy which considers news sets categorized by
the top categories based on geo-object occurrence, where the place names have
been disambiguated by NP method. This shows the geo-objects in news text
as a proxy to predict news topics. But the overall accuracy and Macro-F1 are
relatively small on a classifier Categories Organization - UC on the same cate-
gorized test sets, where we applied the UC method. This might be the impact
of the dataset size that generated by UC method which generates a baseline set
of news with non-ambiguous place names, around 45 % of geo-localized news.
We also tested the classifier Categorical Terms on news categorized by the top
categories based on the categorical word term occurrence. The result shows a
similar accuracy with the classifier on the dataset of categories organization that

312 Z. Dashdorj et al.

indicates news topics are strongly correlated with the geo-objects mentioned in
the news.

3.4 Global Topics Identification

In this study, we propose to classify news topics over the entire set incorporating
with the Fast LDA to obtain lower dimensional feature representation for our
subsequent classification task. The perplexity based evaluation is performed on
test sets given a certain location features like organizations, categories organiza-
tion and locations, respectively. In this paper, we took a sample as 10 % of the
data for test purpose and used the rest for model training.

Fig. 2. Perplexity Over Entire and Geo-Located Dataset

Therefore we performed a random permutation before splitting the dataset
for training and testing in the classifier. Hyper-parameter is set: use Dk/D to
initialize alpha where Dk is the number of data points in class k and D is the
total number of data points, ε = 0.01, where k is the number of topics and V is
the vocabulary size, ε is the laplacian smoothing parameter. The comparison of
average perplexities over the training set, the test set and the classified test sets
by location, organization and category organization (i.e., Oyu-tolgoi mining), is
presented in Fig. 2. From the comparison, we observed similar perplexities in
training and test set, but mildly higher perplexity on the test dataset. But the
perplexities on the classified test sets are relatively lower that indicates a better
performance. Thus, the global LDA classifier does not work well and it highlights
that local topic identification is important to consider. For instance, we obtained
a lowest perplexity on topic-15, where the model performs better, comparing the
perplexities in training set and location feature classified test sets.

4 Conclusion and Discussion

We introduced a knowledge base geo-location recognition model based on Open-
StreetMap as it allows us to extract the knowledge about geo-referenced place

Classification of News by Topic Using Location Data 313

names in hierarchical administrative divisions. Using the knowledge base, our
conceptual and computation methods can identify place names (i.e., organi-
zations and administrative divisions) in free text that can be applied for any
language. The place names disambiguation techniques perform reasonably well,
around 98%. Therefore, we found that news topics are strongly correlated to the
location based features mentioned in news and showed that geo-object is a good
proxy to predict news topics, with around 79.17% accuracy (98% accuracy on
reduced categories). However, news correlation to locations is highly dependent
on the granularity of the city. Our approach could be largely affected by the dis-
tribution of geo-objects contributed to OSM, over different countries. In future
works, we would like to use other gazetteers (i.e., GeoNames, Open Directory
Project) for collecting a sufficient amount of location based features. For topic
classification and rating task, we will analyze topics over time changes based on
the features like topics importance and topics sentiment.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (number 2015R1A2A1A10052665).

References

1. Alias-i. LingPipe 4.1.0 (2008). http://alias-i.com/lingpipe/
2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.

Res. 3, 993–1022 (2003)
3. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM

Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/
∼cjlin/libsvm

4. Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R.: Osmonto - an
ontology of openstreetmap tags. In: State of the map Europe (SOTM-EU) (2011)

5. Dashdorj, Z., Serafini, L., Antonelli, F., Larcher, R.: Semantic enrichment of mobile
phone data records. In: MUM, p. 35. ACM (2013)

6. Dashdorj, Z., Sobolevsky, S.: Impact of the spatial context on human communi-
cation activity. In: Proceedings of the 2015 ACM UbiComp/ISWC Adjunct 2015,
Osaka, Japan, 7–11 September 2015, pp. 1615–1622 (2015)

7. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43nd
Annual Meeting of the Association for Computational Linguistics, pp. 363–370
(2005)

8. Inkpen, D., Liu, J., Farzindar, A., Kazemi, F., Ghazi, D.: Detecting and disam-
biguating locations mentioned in twitter messages. In: Gelbukh, A. (ed.) CICLing
2015. LNCS, vol. 9042, pp. 321–332. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-18117-2 24

9. Ishida, K.: Estimation of user location and local topics based on geo-tagged text
data on social media. In: 2015 IIAI 4th International Congress on Advanced
Applied Informatics (IIAI-AAI), pp. 14–17, July 2015

10. Kinsella, S., Murdock, V., O’Hare, N.: “I’m eating a sandwich in glasgow”: Mod-
eling locations with tweets. In: Proceedings of the 3rd International Workshop on
Search and Mining User-generated Contents, SMUC 2011. ACM, New York (2011)

http://alias-i.com/lingpipe/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1007/978-3-319-18117-2_24
http://dx.doi.org/10.1007/978-3-319-18117-2_24

314 Z. Dashdorj et al.

11. Shan, H., Banerjee, A.: Mixed-membership naive bayes models. Data Min. Knowl.
Disc. 23(1), 1–62 (2011)

12. Sobolevsky, S., Sitko, I., Grauwin, S., des Combes, R.T., Hawelka, B., Arias, J.M.,
Ratti, C.: Mining urban performance: Scale-independent classification of cities
based on individual economic transactions. CoRR, abs/1405.4301 (2014)

13. Van Laere, O., Quinn, J., Schockaert, S., Dhoedt, B.: Spatially aware term selection
for geotagging. IEEE Trans. Knowl. Data Eng. 26(1), 221–234 (2014)

14. Volz, R., Kleb, J., Mueller, W.: Towards ontology-based disambiguation of geo-
graphical identifiers. In: Bouquet, P., Stoermer, H., Tummarello, G., Halpin, H.
(eds.) Proceedings of the WWW 2007 Workshop I3: Entity-Centric Approaches to
Information and Knowledge Management on the Web, Canada, CEUR Workshop
Proceedings (2007)

Monitoring and Automating Factories Using
Semantic Models

Niklas Petersen1,2(B), Michael Galkin1,2,3, Christoph Lange1,2,
Steffen Lohmann2, and Sören Auer1,2

1 University of Bonn, Bonn, Germany
{petersen,galkin,langec,auer}@cs.uni-bonn.de

2 Fraunhofer IAIS, Sankt Augustin, Germany
steffen.lohmann@iais.fraunhofer.de

3 ITMO University, Saint Petersburg, Russia

Abstract. Keeping factories running at any time is a critical task for
every manufacturing enterprise. Optimizing the flows of goods and ser-
vices inside and between factories is a challenge that attracts much atten-
tion in research and business. The idea to fully describe a factory in a
digital form to improve decision making is called a virtual factory. While
promising virtual factory frameworks have been proposed, their seman-
tic models lack depth and suffer from limited expressiveness. We propose
an enhanced semantic model of a factory, which enables views spanning
from the high level of supply chains to the low level of machines on the
shop floor. The model includes a mapping to relational production data-
bases to support federated queries on different legacy systems in use. We
evaluate the model in a production line use case, demonstrating that it
can be used for typical factory tasks, such as assembly line identification
or machine availability checks.

1 Introduction

The Industry 4.0 vision [2] aims at digitizing engineering, production and manu-
facturing with the goal of (i) a seamless integration of devices, sensors, machines
as well as software and IT systems, (ii) increased flexibility thanks to pushing
more intelligence from centralized planning systems to the edge, (iii) increased
efficiency due to automated data exchange and analysis within the value chain.
Currently, much information is isolated within different applications, which pre-
vents efficient access for real-time analytics [8]. The ultimate goal of Industry 4.0
(and related initiatives with different names in different regions, such as Indus-
trie du Futur in France or Industrial Internet in the US) is the creation of a
Smart Factory [6].

A Smart Factory is defined as a factory that supports people and machines
in performing their tasks by providing context-aware information. For instance,
the location of information about orders, products, machines, the available work
force and the overall factory are rarely available in a unified database and format.
The related idea of a Virtual Factory [14] proposes a framework that links all
c© Springer International Publishing AG 2016
Y.-F. Li et al. (Eds.): JIST 2016, LNCS 10055, pp. 315–330, 2016.
DOI: 10.1007/978-3-319-50112-3 24

316 N. Petersen et al.

Fig. 1. Virtual factory framework as proposed by [12]

this information together, providing a mirror of the real factory (see Fig. 1) and
thus paving the way towards more innovative factory prototyping, assembly line
optimization, product design and mass customization [12].

In order to realize such a virtual factory, a number of interoperability chal-
lenges need to be solved. These include the identification of relevant data and
information, their representation, unified access and interlinking. Of particular
importance in this regard is the support of different views on the data (logistics
and supply chain, manufacturing, quality control, etc.), the support of different
levels of granularity of information representation (operational, strategic, etc.) as
well as the access and integration of various data models and structures as used
by existing systems and applications (XML, relational, enterprise models, etc.).

An integrated approach that provides a holistic view on an enterprise and
its assets (such as factories) has not yet emerged. To fill this gap, we develop
the notion of a Semantic Factory, employing semantic knowledge representation
formalisms and technologies. The rationale is to employ a network of ontologies
and vocabularies as a semantic fabric to represent, interlink and integrate the
heterogeneous information being distributed in a variety of systems and informa-
tion sources (e.g. manufacturing execution, quality management and enterprise
resource planning systems or sensors, etc.). For creating the ontology, in a first
step, we represent the static assets of an enterprise, such as its factories, assembly
lines, workforce, etc. We then integrate dynamic information including business
processes, shift plans, orders, etc. Finally, we map our model to production data-
bases that contain the respective data for the dynamically changing concepts.

The mappings are performed in a minimally-invasive way, equipping existing
systems of record with semantic interfaces (e.g. by using the W3C R2RML stan-
dard for mapping relational data to RDF). As a result, information and data
in a factory can be integrated in a pay-as-you-go fashion, where mappings as
well as the network of Semantic Factory ontologies evolve as required by specific
use cases and application scenarios. Examples of use cases are (1) energy man-
agement, where the energy consumption is allocated to specific machines, work

Monitoring and Automating Factories Using Semantic Models 317

orders or customers, and (2) tool management, with the goal to minimize the
time needed to equip machines with the required tools. In addition to introducing
the Semantic Factory model, we demonstrate how decisions within an enterprise
can be based on data currently hidden in different legacy systems. This includes
the performance of supply chains, the detection of suitable assembly lines and
the analysis of assets on a map.

The rest of the paper is structured as follows: We provide motivating exam-
ples and derive requirements for an integrated virtual factory representation in
Sect. 2. In Sect. 3, we give an overview of related work. The overall architecture
and factory ontology as its core model are presented in Sect. 4. In Sect. 5, we
describe the implementation. We evaluate the performance of our approach in
Sect. 6. The paper is concluded in Sect. 7 with an outlook on future work.

2 Motivating Examples and Requirements

A key motivation of our Semantic Factory model is to establish a holistic
and integrated view on an enterprise in order to reduce the overall complexity
and improve decision making. This includes the workforce, business processes,
machines, shift plans, supply chains, etc. While a lot of this information is already
captured by different IT systems, it is rarely accessible in a combined way with-
out investing significant manual effort. Thus, the goal of this work is to make all
data that is currently stored in various systems available in a unified model to
support users with different roles in decision making.

2.1 Motivating Examples

An example is a factory planner who requires diverse information about order
plans, workforce availability and machine maintenance dates. Another example
is a machinist who needs to know which tools are to be mounted into which
machine, where these tools are located, where the material is stored and what
quality control standards are required during the production process. A con-
troller, on the other hand, wants to keep track of the productivity of a factory
and get an overview of certain Key Performance Indicators (KPIs). These com-
prise, in particular, information on the production time and effort required by
each machine for each product, such as employee effort and energy consumption
data.

To provide all those stakeholders with the information needed to perform
their tasks and optimize decision making, we aim at semantically describing
as many assets of a factory as possible, taking into account information from
different manufacturing systems.

318 N. Petersen et al.

2.2 Requirements

We elicited the following requirements in the context of a research project for a
global manufacturing company. The company’s objective to gain a better picture
of its assets (e.g. machines and factories) led us to develop an ontology that serves
as the core element in the overall architecture.

From descriptions of the assets provided by the company and from inter-
viewing domain experts, we gained an overview on typical tasks, processes and
problems of each stakeholder. The interviews took place at the company site in
multiple meetings, where the company’s current IT infrastructure was described
in detail. That way, we gathered requirements for the Semantic Factory model
step by step:

Semantic Multi-modality. The types of data found in a factory context are
diverse. Hence, the representation of various information, including attribute
trees, relational, sensor, tabular, graph and entity data, must be supported.

Multi-dimensionality. Information along several dimensions must be repre-
sented and captured, such as:

– Business processes: Temporal views on diverse business activities are required
to judge the success of an enterprise.

– Spatial hierarchies: The exploration of assets from a geographical perspective
must be possible to increase the findability of said assets and related informa-
tion.

– Lifecycle: Product and business lifecycles must be represented to support
strategy management and business innovation.

Multi-granularity. Views on different levels of detail must be provided:

– Components: Instant access to sensor and component data must be enabled
to support possible intervention measures.

– Factories: To decrease the complexity of factories, master and operational
data needs to be accessible in a singular view.

– Organization: A big picture of all business units is needed, including their
hierarchies and responsibilities.

Traceability and Integration. Data and information is currently spread
across various systems, such as manufacturing execution systems, quality assur-
ance systems, enterprise resource planning systems, etc. It is important to inte-
grate all relevant information from these systems, while maintaining the systems’
record-keeping character. When integrating information from these systems, the
provenance of the data must be preserved, and changes to information in the
source systems must be reflected in the integrated views, wherever possible in
real time.

Monitoring and Automating Factories Using Semantic Models 319

3 Related Work

There are two categories of related work: (i) existing frameworks that aim to
describe factories as completely as possible, and (ii) existing ontologies repre-
senting assembly lines.

Terkaj et al. [13] propose a Virtual Factory Data Model represented as
an OWL ontology based on the Industry Foundation classes (IFC)1 standard.
The purpose of their ontology is to describe business processes that involve
machines requiring specific resources. However, the advantage of modeling each
concept twice, once as a class whose instances represent real occurrences (e.g.
IfcProduct, IfcProcess), and then as a class whose instances are sup-
posed to describe generic objects and types (e.g. IfcTypeProduct “describes
a generic object type that can be related to a geometric or spatial context”,
IfcTypeProcess “describes a generic process type to transform an input into
output”) is not clearly justified. A significant part of the ontology employs such
a logical duplication which is misleading for non-experts. Furthermore, the ratio-
nale of proposing property classes such as VffProcessProperties to “char-
acterize processes” instead of using object or data properties is not described.

Chen et al. [4] propose a multi-agent framework to monitor and control
dynamic production floors. The ontology, serialized in XML, is optimized for the
communication between different agents. It describes Radio-Frequency Identifi-
cation (RFID) tags [16] attached to factory objects and addresses requirements
specific to a bike manufacturing use case. Although RFID sensors are an impor-
tant component of Industry 4.0, the purely XML-based ontology without logical
formalisms behind, as they are provided by RDF(S) and OWL, lacks semantics
and does not allow for universal and convenient querying.

Büscher et al. [3] introduce the Virtual Production Intelligence platform
based on the Condition Based Factory Planning (CBFP) approach. The authors
developed an OWL-based CBFP ontology advocating “the decoupling of domain
business logic and the technical implementation of a planning system” [3]. The
ontology is relatively small, consisting of only five classes. As it is not available
online, we consider the CBFP ontology rather abstract and superficial. Detailed
evaluations and experiments are not provided, making it hard to assess the prac-
tical contribution of the work.

Kim et al. [7] propose an OWL ontology and an information sharing frame-
work to allow collaborative assembly design. The heart of the ontology is the
assembly line and its direct environment. The ontology defines assemblies and
constraints leveraging capabilities of SWRL and OWL. However, the lack of a
published online version prevented us from reusing it. Nevertheless, the concep-
tual design influenced the one of our ontology, i.e., several concepts in the classes
hierarchy and a few properties have been recreated.

1 http://www.buildingsmart-tech.org/specifications/ifc-overview.

http://www.buildingsmart-tech.org/specifications/ifc-overview

320 N. Petersen et al.

Ameri et al. [1] propose the Digital Manufacturing Market (DMM), a seman-
tic web-based framework for agile supply chain deployment. DMM employs the
Manufacturing Service Description Language (MSDL) at a semantic level. MSDL
is an upper-level ontology expressed in OWL DL. Description Logic is exten-
sively used to characterize supply and demand entities on several levels, such
as the supplier, shop, machine and process levels. However, the granularity and
ramification (especially for an upper-level ontology) impose restrictions on the
usability, i.e., only a domain expert would have enough expertise to create a
working model with accompanying queries. Furthermore, the ontology is again
not available online, which prevented us from performing a thorough semantic
analysis and considering an adaptation of concepts.

Zuehlke [17] introduces the SmartFactory initiative, which comprises best
practices from the technical, architectural, planning, security and human dimen-
sions. The initiative is envisioned to define and elaborate on the concept of
factory-of-things as a vision of future manufacturing. Although semantic services
involving ontologies and knowledge bases are claimed to be a part of the concept,
the author does neither provide any examples nor references of such ontologies.
Therefore, the presented concept is rather an implementation roadmap than a
technical contribution.

4 Semantic Factory Architecture and Ontology

Based on the requirements presented in Sect. 2, we designed an architecture
for a Semantic Factory application (see Fig. 2). Its core is a factory ontology,
which describes real world objects, such as employees, machines and factories,
locations of assets and their relations with each other. Operational data, such as
information about work orders, machine sensor and process data, is also covered
by the factory ontology; in practice, this data is dynamically mapped from the
respective databases to the ontology.

The ontology is made available through an RDF triple store. Different appli-
cations can execute queries on the data, which is expressed as RDF or available
in relational databases. Finally, for geospatial data, an external map provider
service is used for drawing, among others, factories on a world map.

The following subsections explain how we developed the factory ontology
following the methodology proposed by Uschold et al. [15]. We first defined the
purpose and scope of the ontology; then, we captured step-by-step the domain
knowledge, conceptualized and formalized the ontology and aligned it with exist-
ing ontologies. Finally, we evaluated the ontology by measuring the performance
of certain queries for different sized datasets (see Sect. 6).

4.1 Purpose and Scope

The purpose of the ontology is to provide a holistic view of an enterprise. This
is realized by implementing the requirements specified in Sect. 2. The intended

Monitoring and Automating Factories Using Semantic Models 321

Fig. 2. Semantic Factory architecture

users are different stakeholders of an enterprise, such as managers, machine oper-
ators and controllers. Each of them needs different information to effectively
and efficiently perform the corresponding tasks and duties. Thus, the ontology
enables viewing the factory from different perspectives to support each class of
stakeholders in their decision making.

4.2 Capturing Domain Knowledge

We captured the domain knowledge in three ways:

1. The company provided us with descriptive material of the domain, including
maps of factories, descriptions of machines and work orders, process infor-
mation, sensor data and tool knowledge. The types of input material ranged
from formatted and unformatted text documents to spreadsheets and SQL
dumps.

2. A live demonstration of a particular machine execution was given, including
a discussion of further contextual information which was missing in the mate-
rial. In subsequent meetings, open questions were clarified and concrete use
cases of the ontology were discussed.

3. We reviewed relevant existing ontologies with the intention to build upon
available conceptualizations and formalizations of domain knowledge.

322 N. Petersen et al.

Fig. 3. Core concepts of the factory ontology

4.3 Conceptualizing and Formalizing

The resulting ontology comprises 86 classes, 73 object properties and 142
datatype properties. Since it has been designed to support an industrial project
with sensitive business logic descriptions, not the entire ontology could be made
publicly available. However, the part of the ontology that can be published is
accessible via a permanent URL2. In the following, we describe the ontology,
starting from the high-level organizational layer to the low-level machine and
sensor layers. The core concepts of the ontology are depicted in Fig. 3.

In any concrete scenario, the class Enterprise is instantiated to represent
the organization to which all further resources belong. Possible instances may
be “Volkswagen”, “General Electric” or “Samsung”. Inter-organizational supply
chains could involve multiple enterprises. Different production locations of an
enterprise are described using the class Plant. A plant can comprise one or
many Buildings, such as an office building, a factory building or a warehouse
building. Typically, we can assume that each building serves a single function,
though other configurations can also be represented, as OWL ontologies support

2 https://w3id.org/i40/smo/.

https://w3id.org/i40/smo/

Monitoring and Automating Factories Using Semantic Models 323

multi-membership. Therefore, the subclasses of Building are not defined to be
disjoint in the ontology.

Each Factory building may have one or multiple AssemblyLines. An
assembly line usually consists of a sequence of multiple machines. The classes
MillingMachine and MetalLathe are examples of subclasses of the abstract
class Machine. Machines can be configured to use certain Tools to produce
specific work pieces. As an example, a milling machine may be equipped with
different lathes or end mills of varying granularity. WorkPieces represent every-
thing which is an output of a machine. Once a work piece reaches its final
stage of production, it becomes a product and is ready for shipping. Plants,
factories and machines may have a representation of their geographical location
(ngeo:Geometry3), which can, for instance, be used by front-end applications
to display them on a map. A clear description of the entire capital of an enterprise
supports the controllers and managers to keep track of utilized and unutilized
assets.

As a next step, we describe the part of the ontology that represents the every-
day operation of a factory. Employees are instances of the class foaf:Person.
Each employee is qualified to operate specific machines (canOperate) and
skilled to use certain tools (isSkilled). The class WorkOrder describes
orders driven by customers. Each such order contains one or more Processes,
which need to be executed to fully complete the order. Typical processes
may be the configuration of a machine, the execution of a machine, qual-
ity control, etc. Each order has a due date and a sales price. The proper-
ties requiresMachine, hasInput, needsConfig, isExecutedBy are used
together with the Process class. For example, they define which Machine is
required for that process together with the needed configuration (tools assem-
bled) and the input Material. All these details are required by the machine
operator in the event of reconfiguring the machine for a specific order.

4.4 Aligning with Existing Ontologies

The ontology includes concepts and properties from well-known ontologies. The
Semantic Sensor Ontology4 provides us with a rich description of sensors, their
measurements, devices and related concepts. The workforce and employees are
described based on definitions by the Friend of a friend (FOAF)5 ontology.
Coordinates of factories and machines are based on the latitude and longitude
definitions of the W3C Geo Vocabulary6. Finally, we reused geometrical concepts,
such as the representation of polygons, from the NeoGeo Geometry Ontology7.

3 Prefixes are defined according to http://prefix.cc.
4 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn.
5 http://xmlns.com/foaf/spec/.
6 https://www.w3.org/2003/01/geo/wgs84 pos.
7 http://geovocab.org/geometry.html.

http://prefix.cc
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://xmlns.com/foaf/spec/
https://www.w3.org/2003/01/geo/wgs84_pos
http://geovocab.org/geometry.html

324 N. Petersen et al.

5 Implementation and Application

We developed a software system that implements the presented Semantic Factory
architecture and ontology and applied it to industry data. In this section, we
first describe the front-end and back-end implementation. Then, we illustrate
its usage by presenting various SPARQL queries that retrieve information for
different production management tasks.

5.1 Front-End

The front-end is realized as a web application to facilitate access from different
devices. The decision is motivated by the diversity of IT systems, platforms and
devices usually deployed in a factory. The application uses the web framework
AngularJS 8, which follows the model-view-controller design pattern to separate
logic from representation. We created multiple views to address the collected
requirements:

The map view (Fig. 4a) projects all instances (e.g. buildings, machines) with a
geographical representation on a map by making use of the map provider MapBox
API 9. This API offers map tiles based on the open geographical database Open-
StreetMap10. The projection itself is realized using the leaflet.js11 JavaScript
library. Coordinates in the factory ontology are represented using the NeoGeo
Geometry Ontology12 concepts and properties translated into leaflet geo-
graphical objects to be drawn on the map.

Further information, such as the person currently operating a machine, which
order is executed or the status of a machine, is provided in the machine view
that can be opened from the map view (see Fig. 4b) or independently by the
machine operator. Besides static information, the pop-up contains also links to
operational views and services. For example, the machine operator can follow the
order link to retrieve additional information of that order. Furthermore, based
on the tools required for the next machine operation, the “Find available tools”
functionality points to the respective geographical location of the tools in the
factory. The links “Visualize”, “Analyze” and “Predict” point to external pages
that provide additional graphical content about the machine, machine usage
indicators and prediction dates when machine parts are worn out and need to
be replaced.

5.2 Back-End

The back-end consists of a Python web server13 that supports REST API calls
from the front-end. Each request triggers the generation of SPARQL queries
8 https://angularjs.org.
9 https://www.mapbox.com/developers/.

10 http://www.openstreetmap.org.
11 http://www.leafletjs.com.
12 http://geovocab.org/geometry.html.
13 http://flask.pocoo.org.

https://angularjs.org
https://www.mapbox.com/developers/
http://www.openstreetmap.org
http://www.leafletjs.com
http://geovocab.org/geometry.html
http://flask.pocoo.org

Monitoring and Automating Factories Using Semantic Models 325

(a) Map View (b) Machine View

Fig. 4. Implementation of the Semantic Factory (geographic views).

executed either on the factory ontology or the production databases. To provide
access to the ontology, the Python library rdflib14 is used.

Access to the relational production databases is realized using the D2RQ15

system. D2RQ provides a generator for creating an RDF mapping file for the
database tables and columns, thus preserving the schema of the relational data-
base. Using the mapping file, incoming SPARQL queries are translated ad-hoc
into SQL queries and are executed on the respective database. Thus, D2RQ acts
as a gateway between the web server and relational databases.

Once the data is obtained, it is returned in JSON data format16 and processed
by the respective front-end controller.

5.3 Factory Queries

In the following, we provide a set of SPARQL queries that demonstrate the usage
of the factory ontology.

Order Feasibility Check. Listing 1.1 shows a query that determines if certain
machines in the factory are free to use or already scheduled for other production
plans. Each factory work order contains a list of tasks to be completed by a
different machine. Thus, each needed machine is checked for its availability. Only
if all machines are available, the query returns a positive answer such that the
work order can be started. The query always checks the current state of the
factory.

14 https://github.com/RDFLib/rdflib.
15 http://d2rq.org.
16 http://json.org.

https://github.com/RDFLib/rdflib
http://d2rq.org
http://json.org

326 N. Petersen et al.

1 ASK

2 {
3 # get tasks
4 ?order a :WorkOrder .
5 ?order :requiredMachines ?machineList .
6 ?machineList rdfs:member ?machine.
7

8 # check if the needed machines are free
9 EXISTS { ?machine :isFree false } .

10 }

Listing 1.1. Order feasibility check

Retrieve Geographical Coordinates. Listing 1.2 shows a query to retrieve
the machines, their names and coordinates. The outline of a machine is conceived
as a polygon, represented as an rdf:List of geographical points, each with
latitude and longitude, which is linked to the machine using the ngeo:posList
datatype property. This information is returned to the front-end to be projected
on the world map.

1 SELECT ?machine ?label
2 (GROUP_CONCAT(?lat ; separator=";") AS ?lats)
3 (GROUP_CONCAT(?long ; separator=";") AS ?longs)
4 WHERE {
5 ?machine rdfs:label ?label .
6 ?machine ngeo:posList/rdf:rest*/rdf:first ?point .
7 ?point geo:lat ?lat .
8 ?point geo:long ?long .
9 } GROUP BY ?machine ?label

Listing 1.2. Retrieve geographical coordinates of machines

Suitable Assembly Lines. Listing 1.3 shows a query to find suitable assembly
lines with regard to their sequence. Assembly lines that contain more machines
than required but fulfill the correct order are still considered suitable. Thus,
certain stations may be skipped within an assembly line.

Suppose, for example, that the machines 2 and 4 are required for an order.
Suitable assembly lines include those having the following sequences of machines:
2,4 or 1,2,3,4,5. Sequences such as 4,2 or 4,3,2 are considered non-
suitable.

The query itself works as follows: First, assembly line candidates are filtered
(MINUS) based on whether they contain the required machines in the work order.
Second, of those assembly lines, the position of the needed machines is calculated.
This is achieved by preparing the needed order (?reqSequence) and then

Monitoring and Automating Factories Using Semantic Models 327

retrieving the position of each machine in that order (?machineSeq). Third,
these sequences are concatenated into strings and, finally, it is checked by a
regular expression if the sequence is increasing.17

1 SELECT ?assemblyLine {
2 ?assemblyLine :machineList ?lists .
3

4 # filter all assembly lines with the wrong order
5 FILTER REGEX(?seq,"ˆ0*1*2*3*4*5*6*7*8*9*$")
6

7 # concatenate order of the lists into a string
8 {SELECT ?lists (GROUP_CONCAT(?machineSeq; separator="")
9 AS ?seq)

10

11 #Machine Sequence, _sorted_ by required order Sequence
12 {SELECT ?lists ?machineSeq {
13 {SELECT ?lists ?machineInstance ?machines
14 (STRAFTER(STR(?memberProp), "_") AS ?machineSeq)
15 {?lists rdfs:member ?machineInstance .
16 ?lists ?memberProp ?machineInstance .
17 ?machineInstance a ?machines . }}
18

19 # get required Sequence of the Work Order
20 {SELECT ?machines (STRAFTER(STR(?prop), "_")
21 AS ?requiredSeq) {
22 :sampleOrder :requiredMachines ?orderList .
23 ?orderList ?prop ?machines .
24 FILTER (STRSTARTS(STR(?prop), STR(rdf:_)))}
25 ORDER BY ?requiredSeq}
26

27 # Identify Assembly Lines Candidates
28 {SELECT ?lists ?assembly
29 {?assembly d:machineList ?lists.}}
30 MINUS

31 {SELECT ?lists {
32 ?lists a rdf:Seq .
33 ?workOrder :requiredMachines ?neededMachineList

.
34 ?neededMachineList rdfs:member ?machineType .
35 FILTER NOT EXISTS{?lists (rdfs:member/a) ?machineType

.}}}
36 } ORDER BY ?lists ?requiredSeq
37 } GROUP BY ?lists }}

Listing 1.3. Find suitable assembly lines

17 The query is limited to sequences of up to 9 machines but may be extended.

328 N. Petersen et al.

6 Evaluation

We evaluated our factory ontology and software application by testing the per-
formance of the SPARQL queries introduced in Subsect. 5.3. These queries were
chosen due to their representativeness in an industrial setting. For that, we pre-
pared multiple datasets, consisting of 10 K, 100 K, 1 M, 2 M and 5 M triples. The
datasets contain generated test data based on our factory ontology, such as order
information, workforce details, assembly lines, etc.

The queries were executed using the ARQ SPARQL processor version
2.13.018. The machine we used for the experiment contains 8 GB of RAM, 256 GB
SSD and an Intel i7-3537U CPU with 2.00 GHz.

Figure 5 depicts the results of the performance evaluation. While the growth
for the “Retrieve machine coordinates” query of Listing 1.2 is linear, a response
time of 25 s in larger datasets is not satisfactory for a front-end application. Thus,
large datasets should be split to keep the execution time end-user friendly.

10K 100K 1M 2M 5M

0

5

10

15

20

25

Dataset size in triples

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d
s

Retrieve machine coordinates (1.2)

Order feasibility check (1.1)

Suitable assembly lines (1.3)

Fig. 5. Query execution performance

Similarly, as in the previous query, the execution time for the “Order Feasi-
bility Check” query of Listing 1.1 grows linearly. While the overall performance

18 https://jena.apache.org/documentation/query/.

https://jena.apache.org/documentation/query/

Monitoring and Automating Factories Using Semantic Models 329

is slightly better, one should nevertheless keep machine status data in an isolated
dataset.

Finally, for the large “Suitable Assembly Lines” query of Listing 1.3, it is
rather surprising that the execution time is quite similar to the short previous
queries. As before, with a linear growth, the performance evolution becomes
predictable and it is recommended to split instance data depending on certain
services.

Overall, ontology-centered web applications are feasible with a satisfactory
performance. As a common rule of thumb, the acceptable response time for
complex operations is less than 10 s in order to keep the user’s attention on the
task [9]. Thus, certain crucial instance data should be kept in different triple
stores to stay below that threshold.

However, the d2rq system for accessing relational databases reveals perfor-
mance issues. First experiments using ontop19 to query databases seem to be
a promising alternative.

7 Conclusion and Future Work

The use of data-centric approaches in engineering, manufacturing and produc-
tion is currently a widely discussed topic (cf. Industry 4.0, smart manufacturing
or cyber-physical systems initiatives). The complexity of data integration in gen-
eral is perceived to be one of the major bottlenecks of the field. A key issue in
engineering, manufacturing and production is to be able to efficiently and effec-
tively manage factories.

This paper described an ontology and an integration infrastructure to obtain
a holistic view of the status of a factory from different perspectives. We see the
work presented in this paper as a first step towards establishing an ontology-
based integration approach for manufacturing, which is centered around a com-
mon information model, but at the same time supports the management of data
in a decentralized manner in the existing systems of record. The integration
follows a loosely-coupled architecture, where the decentralized data sources are
mapped on demand to the factory ontology. The factory ontology is not supposed
to be a fixed, monolithic schema, but rather a flexible, evolving and interlinked
knowledge fabric. For this purpose, we have developed the collaborative vocab-
ulary development methodology and support environment VoCol [5].

We see a number of directions for future work. In particular, the Semantic
Factory approach could be expanded from single factories to an integration app-
roach covering the entire enterprise as well as supply networks (e.g. based on the
SCOR model [10]) involving a large number of organizations. Another promising
direction of future work is the exploitation of the integrated data for advanced
analytics and forecasting [11].

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) in the context of the projects LUCID (grant no.
01IS14019C), SDI-X (no. 01IS15035C) and Industrial Data Space (no. 01IS15054).

19 http://ontop.inf.unibz.it.

http://ontop.inf.unibz.it

330 N. Petersen et al.

References

1. Ameri, F., Patil, L.: Digital manufacturing market: a semantic web-based frame-
work for agile supply chain deployment. J. Intell. Manuf. 23(5), 1817–1832 (2012)

2. Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization,
decentralization and network building change the manufacturing landscape: an
industry 4.0 perspective. Int. J. Mech. Ind. Sci. Eng. 8(1), 37–44 (2014)

3. Büscher, C., Voet, H., Krunke, M., Burggräf, P., Meisen, T., Jeschke, S.: Semantic
information modelling for factory planning projects. Procedia CIRP 41, 478–483
(2016)

4. Chen, R.S., Tu, M.A.: Development of an agent-based system for manufacturing
control and coordination with ontology and rfid technology. Expert Syst. Appl.
36(4), 7581–7593 (2009)

5. Halilaj, L., Petersen, N., Grangel-González, I., Lange, C., Auer, S., Coskun, G.,
Lohmann, S.: Vocol: an integrated environment to support version-controlled
vocabulary development. In: 20th International Conference on Knowledge Engi-
neering and Knowledge Management. Springer Verlag (2016, in print)

6. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios: a
literature review. Technische Universität Dortmund, Dortmund (2015)

7. Kim, K.Y., Manley, D.G., Yang, H.: Ontology-based assembly design and informa-
tion sharing for collaborative product development. Comput. Aided Des. 38(12),
1233–1250 (2006)

8. Newman, D., Gall, N., Lapkin, A.: Gartner defines enterprise information archi-
tecture. Gartner Group (2008)

9. Nielsen, J.: Response times: The 3 important limits. Usability Engineering (1993)
10. Petersen, N., Grangel-González, I., Coskun, G., Auer, S., Frommhold, M., Tramp,

S., Lefrançois, M., Zimmermann, A.: SCORVoc: vocabulary-based information
integration and exchange in supply networks. In: 10th International Conference
on Semantic Computing (ICSC 2016), pp. 132–139. IEEE (2016)

11. Petersen, N., Lange, C., Auer, S., Frommhold, M., Tramp, S.: Towards federated,
semantics-based supply chain analytics. In: Abramowicz, W., Alt, R., Franczyk, B.
(eds.) BIS 2016. LNBIP, vol. 255, pp. 436–447. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-39426-8 34

12. Sacco, M., Pedrazzoli, P., Terkaj, W.: VFF: virtual factory framework. In: Pro-
ceedings of 16th International Conference on Concurrent Enterprising (ICE 2010),
pp. 21–23. IEEE (2010)

13. Terkaj, W., Urgo, M.: Virtual factory data model to support performance evalu-
ation of production systems. In: Proceedings of the Workshop on Ontology and
Semantic Web for Manufacturing (OSEMA 2012). CEUR-WS, vol. 886, pp. 24–27
(2012)

14. Upton, D.: The real virtual factory. Harvard Bus. Rev. 74(4), 123–133 (1996)
15. Uschold, M., Gruninger, M., et al.: Ontologies: principles, methods and applica-

tions. Knowl. Eng. Rev. 11(2), 93–136 (1996)
16. Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1),

25–33 (2006)
17. Zuehlke, D.: SmartFactory–towards a factory-of-things. Annu. Rev. Control 34(1),

129–138 (2010)

http://dx.doi.org/10.1007/978-3-319-39426-8_34
http://dx.doi.org/10.1007/978-3-319-39426-8_34

Author Index

Ahlstrøm, Kim 186
Ahn, Jinhyun 83
Antoniou, Grigoris 273
Auer, Sören 116, 315

Bąk, Jarosław 47
Batsakis, Sotiris 273
Blinkiewicz, Michał 47
Bobed, Carlos 3
Bozzato, Loris 305

Chen, Ruibin 231
Cui, Jiawen 56

Dashdorj, Zolzaya 305
Davies, John 273
Debattista, Jeremy 116
Dimou, Anastasia 204
Du, Jianfeng 231
Duke, Alistair 273

Egami, Shusaku 127, 152

Feng, Zhiyong 213

Galkin, Michael 315
Gong, Saisai 67
Guclu, Isa 3
Gür, Nurefşan 287

Heyvaert, Pieter 204
Horyu, Daisuke 32
Hose, Katja 186, 287
Hu, Wei 67

Im, Dong-Hyuk 83

Jiang, Zeyuan 56
Joo, Sungmin 32

Kawamura, Takahiro 127, 152
Khan, Muhammad Tahir 305
Kim, Hong-Gee 83

Kobayashi, Norio 99, 136
Koide, Seiji 15, 32
Kollingbaum, Martin J. 3
Kozaki, Kouji 136

Lange, Christoph 116, 315
Lee, SangKeun 305
Lenz, Kai 99, 136
Li, Haoxuan 67
Li, Huiying 263
Li, Yuan-Fang 3
Liu, Qi 231
Lohmann, Steffen 315
Lv, Yulian 254

Mannens, Erik 204
Masuya, Hiroshi 99, 136

Ohsuga, Akihiko 127, 152

Pan, Jeff Z. 3
Pedersen, Torben Bach 186, 287
Petersen, Niklas 315
Piao, Zhixin 239

Qi, Guilin 239
Qu, Yuzhong 67

Sei, Yuichi 127
Shi, Jing 263
Song, Zhenyu 213
Staab, Steffen 171
Stincic Clarke, Sandra 273
Su, Xiaoheng 231

Tachmazidis, Ilias 273
Tahara, Yasuyuki 127
Takeda, Hideaki 15, 32
Takezaki, Akane 32
Tiropanis, Thanassis 171

Uehara, Yuri 127

Verborgh, Ruben 204

Wan, Hai 231
Wang, Botao 56
Wang, Ruiming 239
Wang, Xianyu 56
Wang, Xin 171
Wang, Xin 213
Wu, Gang 56
Wu, Tianxing 239

Xu, Liang 239

Yamaguchi, Atsuko 136
Yamamoto, Yasunori 136
Yan, Shengjia 239
Yoshida, Tomokazu 32

Zhang, Wenxuan 231
Zhang, Xiang 254
Zhang, Xiaowang 213
Zimányi, Esteban 287

332 Author Index

	Preface
	Organization
	Keynotes
	Managing Dynamic Ontologies: Belief Revision and Forgetting
	The Rise of Approximate Ontology Reasoning: Is It Mainstream Yet?
	Contents
	Ontology and Data Management
	How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted?
	1 Introduction
	2 Related Work and Background
	3 Our Approach
	3.1 Class Complexity Assertions Metrics

	4 Experimental Setup
	4.1 Evaluation Metrics
	4.2 Data Collection

	5 Results and Evaluation
	5.1 Combining 91 Metrics with CCA
	5.2 Using CCA Metrics Instead of some ABox metrics in 91 Metrics v.1
	5.3 Using CCA Metrics Instead of some ABox metrics in 91 Metrics v.2
	5.4 Evaluation

	6 Conclusion
	References

	Inquiry into RDF and OWL Semantics
	1 Introduction
	2 History of Set Theory and Type Theory
	2.1 RDF Sematics and Sets of Objects
	2.2 Cantor's Paradox and His Final Legacy
	2.3 Comprehension Principle and Russell Paradox
	2.4 Zermelo's Axiom of Separation
	2.5 NBG and Set Theory of KIF 3.0
	2.6 Russell's Ramified Type Theory

	3 Formalization of RDF/OWL Semantics Based on Higher Order Types
	3.1 Preliminary Explanations of Notations, Denotations, and Universe of Discourse
	3.2 Higher Order Classes
	3.3 Subsumption in Higher Order Classes
	3.4 Universal Class in Higher Order Classes
	3.5 Universal Metaclass in Higher Order Classes

	4 Meta-Modeling Criteria in RDFS and OWL
	5 Related Work and Discussion
	6 Conclusion
	References

	Designing of Ontology for Domain Vocabulary on Agriculture Activity Ontology (AAO) and a Lesson Learned
	1 Introduction
	2 An Existing Resource: AGROVOC
	3 Designing of Agricultural Activity Ontology
	3.1 The Structuralization of the Agricultural Activities
	3.2 Polysemic Concepts
	3.3 Synonym

	4 Reasoning by Agriculture Activity Ontology
	5 Web Services Based on Agricultural Activity Ontology
	5.1 Namespace of Agriculture Activity
	5.2 Version History
	5.3 Data Sharing

	6 Discussion and Future Work
	7 Conclusion
	References

	SQuaRE: A Visual Approach for Ontology-Based Data Access
	1 Introduction
	2 Preliminaries
	3 SPARQL Queries and R2RML Mappings Environment
	4 Related Tools
	5 Summary and Future Work
	References

	Compression Algorithms for Log-Based Recovery in Main-Memory Data Management
	Abstract
	1 Background
	2 Overview
	2.1 Architecture
	2.2 The Implements of Recovery Strategy

	3 Algorithm
	3.1 Recovery
	3.2 Logging Compression

	4 Experiments
	4.1 Experimental Environment
	4.2 Group Commit of Dictionary Encoding
	4.3 Group Commit of Indirect Encoding
	4.4 Comparing of Recovery

	5 Conclusions
	References

	Linked Data
	An Empirical Study on Property Clustering in Linked Data
	1 Introduction
	2 Property Relatedness Measures
	2.1 Lexical Similarity Between Property Names
	2.2 Semantic Relatedness Between Property Names
	2.3 Distributional Relatedness Between Properties
	2.4 Range Relatedness Between Properties
	2.5 Overlap of Property Values

	3 Property Clustering Algorithms
	4 Combination Methods
	5 Empirical Study
	5.1 Dataset
	5.2 Experiment Setup
	5.3 Results of Relatedness Measures and Clustering Algorithms
	5.4 Results of Combination Methods

	6 Application to Entity Browsing
	7 Related Work
	8 Discussion of Findings
	9 Conclusion
	References

	A MapReduce-Based Approach for Prefix-Based Labeling of Large XML Data
	1 Introduction
	2 Preliminarily
	3 Related Work
	4 Motivation
	5 The Proposed Approach
	5.1 PrxMR
	5.2 PrxMR+

	6 Performance Study
	6.1 Labeling Time
	6.2 Label Size

	7 Conclusion
	References

	RIKEN MetaDatabase: A Database Platform as a Microcosm of Linked Open Data Cloud in the Life Sciences
	1 Introduction
	2 Related Work
	3 Requirement Specifications for the Life-Science Database Platform
	3.1 Requirements for Cloud-Based Databases in the Life Sciences
	3.2 Data Integration

	4 Grand Design of the RDF-based RIKEN MetaDatabase Platform
	4.1 RDF Data Structure Suitable for Life-Science Data Integration
	4.2 Tabular Data Model
	4.3 Correspondence with the RDF Scheme
	4.4 RDF Data Generation and Publication
	4.5 User Interface for Data Input and Output

	5 Data Display Functions
	6 Implementation
	7 Available Databases
	7.1 Database Directory Service

	8 Discussion
	8.1 Contributions of RIKEN MetaDatabase for Different Types of Users
	8.2 Contributions of RIKEN MetaDatabase to Inter-labs and Global Data Integration
	8.3 Open Issues

	9 Conclusions
	References

	A Preliminary Investigation Towards Improving Linked Data Quality Using Distance-Based Outlier Detection
	1 Introduction
	2 Related Work
	3 Improving Dataset Quality by Detecting Incorrect Statements
	3.1 Approach

	4 Experiments and Evaluations
	4.1 Discussion

	5 Conclusions
	References

	Information Retrieval and Knowledge Discovery
	Linked Data Collection and Analysis Platform for Music Information Retrieval
	1 Introduction
	2 Related Work
	3 Schema Design of Music Information
	3.1 Selection of Audio Features
	3.2 Design of the Schema

	4 Music Information Extracting
	4.1 System Overview
	4.2 Analyzing Audio Features
	4.3 Searching Music Metadata
	4.4 Adding Linked Data
	4.5 Confirming Results

	5 Example of Music Analysis
	6 Conclusion and Future Work
	References

	Semantic Data Acquisition by Traversing Class--Class Relationships Over Linked Open Data
	1 Introduction
	2 Related Work
	3 Data Acquisition Based on Class--Class Relationships
	3.1 SPARQL Builder
	3.2 SBM
	3.3 Class Graphs

	4 Removal of Empty Paths
	4.1 Measure to Remove Empty Paths
	4.2 Evaluation of the Measure Through Computational Experiment

	5 Discussion and Conclusion
	References

	Estimation of Spatio-Temporal Missing Data for Expanding Urban LOD
	1 Introduction
	2 Illegally Parked Bicycle LOD
	2.1 Building IPBLOD
	2.2 Complementing and Estimating Temporally Missing Values
	2.3 Visualization of IPBLOD

	3 Estimating Spatial Missing Data
	3.1 Finding Stagnation Points Using CFD
	3.2 Filtering Stagnation Points Using DBpedia Japanese
	3.3 Evaluation and Discussion

	4 Related Work
	5 Conclusion and Future Work
	References

	RDF and Query
	ASPG: Generating OLAP Queries for SPARQL Benchmarking
	1 Introduction
	2 Generating OLAP Queries from Linked Data
	2.1 Background of OLAP Operations
	2.2 Generating Dice and Slice Queries in SPARQL
	2.3 Generating Roll-Up and Drill-Down Queries in SPARQL
	2.4 Generating Basic Graph Patterns
	2.5 Complexity Analysis

	3 DBOB: A Benchmark Constructed with ASPG
	4 Evaluation
	4.1 DBOB Quereis Vs. OLAP4LD-SSB Queries
	4.2 Evaluating Virtuosos with DBOB

	5 Related Work
	5.1 Related Query Generators
	5.2 Related Benchmarks

	6 Conclusions and Future Plan
	References

	Towards Answering Provenance-Enabled SPARQL Queries Over RDF Data Cubes
	1 Introduction
	2 Preliminaries
	2.1 Encoding Provenance
	2.2 Provenance-Enabled RDF Data Cubes

	3 Processing Provenance-Enabled Analytical Queries
	3.1 Provenance-Enabled Analytical Queries
	3.2 Native Querying Strategy
	3.3 Preliminary Analysis

	4 Context Index
	4.1 Structure
	4.2 Lookup
	4.3 Construction

	5 Index-Based Native Strategy
	6 Materialization Strategy
	6.1 Materialization Strategy
	6.2 Index-Based Materialization Strategy

	7 Experiments
	7.1 Experimental Environment
	7.2 Results

	8 Related Work
	9 Conclusions and Future Work
	References

	Data Analysis of Hierarchical Data for RDF Term Identification
	1 Introduction
	2 Related Work
	3 Example: RDF Term Identification Using Data Analysis
	4 Algorithms
	5 Evaluation
	6 Conclusion
	References

	PIWD: A Plugin-Based Framework for Well-Designed SPARQL
	1 Introduction
	2 Preliminaries
	2.1 RDF
	2.2 Semantics of SPARQL Patterns
	2.3 Well-Designed Pattern
	2.4 OPT Normal Form

	3 Well-Designed And-Opt Tree
	3.1 WDAO-tree Structure
	3.2 Rewritting Rules over WDAO-tree
	3.3 WDAO-tree Construction

	4 PIWD Demonstration
	4.1 PIWD Overview
	4.2 Answering Queries over PIWD

	5 Experiments and Evaluations
	5.1 Experiments
	5.2 Evaluation on PIWD

	6 Related Works
	7 Conclusion
	References

	Knowledge Graph
	Non-hierarchical Relation Extraction of Chinese Text Based on Scalable Corpus
	1 Introduction
	2 Related Work
	3 Extraction Based on Scalable Corpora
	3.1 Part One: Expand the Scalable Corpora
	3.2 Part Two: Extract Relations
	3.3 Density Extraction Algorithm
	3.4 Improved Apriori Algorithm
	3.5 Prune Sentences
	3.6 Similarity Analysis

	4 Experiment and Analysis
	5 Conclusion
	References

	Entity Linking in Web Tables with Multiple Linked Knowledge Bases
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Entity Linking with a Single KB
	3.2 Improving Entity Linking with Multiple Linked KBs

	4 Experiments
	4.1 Data Set and Evaluation Metrics
	4.2 Comparsion Methods
	4.3 Result Analysis

	5 Conclusions and Future Work
	References

	Towards Multi-target Search of Semantic Association
	Abstract
	1 Introduction
	2 System Architecture
	3 Discovering Semantic Associations
	4 Searching Semantic Association
	4.1 Search Model
	4.2 Search Process

	5 Ranking Scheme
	6 Evaluation
	6.1 Dataset
	6.2 Evaluation Method
	6.3 Evaluation on Response Time and Precision
	6.4 Evaluation on Result Size

	7 Related Work
	8 Conclusions and Future Works
	Acknowledgements
	References

	Linking Named Entity in a Question with DBpedia Knowledge Base
	1 Introduction
	2 Related Work
	3 Candidate Entity Generation
	4 Named Entity Linking
	4.1 Context Similarity
	4.2 Entity Popularity
	4.3 Candiates Reranking
	4.4 Detecting Unlinkable Mention

	5 Experimental Study
	6 Conclusions
	References

	Applications of Semantic Technologies
	Hypercat RDF: Semantic Enrichment for IoT
	1 Introduction
	2 Background
	3 Hypercat 3.00 Specification
	4 Hypercat Ontology
	5 Hypercat JSON to Hypercat RDF
	6 Hypercat RDF Specification
	7 Semantic Search
	8 Conclusion
	References

	Enabling Spatial OLAP Over Environmental and Farming Data with QB4SOLAP
	1 Introduction
	2 Background and Motivation
	3 State of the Art
	4 Source Data
	5 Publishing Spatial Data Cubes with QB4SOLAP
	5.1 GeoFarmHerdState Cube Schema in RDF
	5.2 GeoFarmHerdState Cube Instances in RDF

	6 SOLAP Operators over GeoFarmHerdState Cube
	6.1 SOLAP Operators
	6.2 Nested SOLAP Operations

	7 Discussion and Perspectives
	8 Conclusion and Future Work
	References

	Classification of News by Topic Using Location Data
	1 Introduction
	2 Method Definition
	2.1 Place Names Knowledge Base
	2.2 Place Names Disambiguation Methods
	2.3 Classification of Local Topics from News
	2.4 Classification of Global Topics from News

	3 Experimental Results and Evaluation
	3.1 Data Pre-Processing
	3.2 Disambiguation of Place Names
	3.3 Local Topics Identification
	3.4 Global Topics Identification

	4 Conclusion and Discussion
	References

	Monitoring and Automating Factories Using Semantic Models
	1 Introduction
	2 Motivating Examples and Requirements
	2.1 Motivating Examples
	2.2 Requirements

	3 Related Work
	4 Semantic Factory Architecture and Ontology
	4.1 Purpose and Scope
	4.2 Capturing Domain Knowledge
	4.3 Conceptualizing and Formalizing
	4.4 Aligning with Existing Ontologies

	5 Implementation and Application
	5.1 Front-End
	5.2 Back-End
	5.3 Factory Queries

	6 Evaluation
	7 Conclusion and Future Work
	References

	Author Index

