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Abstract. An ortho-polygon visibility representation of an n-vertex
embedded graph G (OPVR of G) is an embedding preserving drawing of
G that maps every vertex to a distinct orthogonal polygon and each edge
to a vertical or horizontal visibility between its end-vertices. The vertex
complexity of an OPVR of G is the minimum k£ such that every polygon
has at most k reflex corners. We present polynomial time algorithms that
test whether G has an OPVR and, if so, compute one of minimum ver-
tex complexity. We argue that the existence and the vertex complexity
of an OPVR of G are related to its number of crossings per edge and
to its connectivity. Namely, we prove that if G is 1-plane (i.e., it has
at most one crossing per edge) an OPVR of G always exists while this
may not be the case if two crossings per edge are allowed. Also, if G is a
3-connected 1-plane graph, we can compute in O(n) time an OPVR of
G whose vertex complexity is bounded by a constant. However, if G is a
2-connected 1-plane graph, the vertex complexity of any OPVR of G may
be 2(n). In contrast, we describe a family of 2-connected 1-plane graphs
for which an embedding that guarantees constant vertex complexity can
be computed. Finally, we present the results of an experimental study
on the vertex complexity of OPVRs of 1-plane graphs.

1 Introduction

Visibility representations are among the oldest and most studied methods to
display graphs. The first papers appeared between the late 70s and the mid 80s,
mostly motivated by VLSI applications (see, e.g., [15,24,25,31,32,34]). These
papers were devoted to bar wisibility representations (BVR) of planar graphs
where the vertices are modeled as non-overlapping horizontal segments, called
bars, and the edges correspond to vertical visibilities, i.e. vertical segments that
do not intersect any bar other than at their end points. The study of visibility
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representations of non-planar graphs started about ten years later when rec-
tangle visibility representations (RVR) were introduced in the computational
geometry and graph drawing communities (see e.g., [11,20,21,27]). Every vertex
is represented as an axis-aligned rectangle and two vertices are connected by an
edge using either horizontal or vertical visibilities. Figure 1(a) is an example of
a RVR of the complete graph K5. RVRs are an attractive way to draw a non-
planar graph: Edges are easy to follow because they do not bend and can have
only one of two possible slopes, edge crossings are perpendicular, textual labels
associated with the vertices can be inserted in the rectangles. Motivated by the
NP-hardness of recognizing whether a graph admits an RVR [27], Streinu and
Whitesides [28] initiated the study of RVRs that must respect a set of topologi-
cal constraints. They proved that if a graph G is given together with the cyclic
order of the edges around each vertex, the outer face, and a horizontal /vertical
direction for each edge, then there exists a polynomial-time algorithm to test
whether G admits an RVR that respects these constraints. Biedl et al. [5] have
shown that testing the representability of G is polynomial also with a different
set of constraints, namely when G is given with an embedding that must be pre-
served in the RVR. In these settings, however, even structurally simple “almost
planar” graphs may not admit an RVR. For example, the embedded graph of
Fig. 1(b) is 1-plane (i.e., it has at most one crossing per edge), and it does not
have an embedding-preserving RVR [5].

In this paper we introduce a generalization of RVRs. We study to what extent
such a generalization enlarges the family of graphs that are representable, and
we describe testing and drawing algorithms. Let G be an embedded graph. An
ortho-polygon wisibility representation of G (OPVR of G) is an embedding-
preserving drawing of G that maps each vertex to a distinct orthogonal polygon
and each edge to a vertical or horizontal visibility between its end-vertices. For
example, Fig. 1(c) is an embedding-preserving OPVR of the graph of Fig. 1(b). In
Fig. 1(c) all vertices except two are rectangles: The non-rectangular vertices have
a reflex corner each; intuitively, each of them is “away from a rectangle” by one
reflex corner. We say that the OPVR of Fig. 1(c) has vertex complexity one. More
generally, we say that an OPVR has vertex complexity k, if k is the minimum
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Fig. 1. (a) An RVR of K5. (b) An embedded graph G that does not admit an embedding
preserving RVR. (c) An embedding preserving OPVR of G with vertex complexity one.
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integer such that any polygon representing a vertex has at most k reflex corners.
We are not only interested in characterizing and testing what graphs admit
an OPVR, but we also aim at computing representations of minimum vertex
complexity (RVRs if possible). The main results in this paper are as follows.

— In Sect. 3 we present a combinatorial characterization of the graphs that admit
an OPVR. This leads to an O(n?)-time algorithm that tests whether an
embedded graph G with n vertices admits an embedding-preserving OPVR.
If so, an embedding-preserving OPVR of G with minimum vertex complex-
ity is computed in O(n% log% n) time. An implication of this characteriza-
tion is that any 1-plane graph admits an embedding-preserving OPVR. We
remark that 1-planar graphs have been widely studied in recent years (see, e.g.,
[2,4-6,8,16-18,22,29,33].

— In Sect.4 we prove that every 3-connected 1-plane graph admits an OPVR
whose vertex complexity is bounded by a constant and that this representation
can be computed in O(n) time. This implies an O(n i /log n)-time algorithm
to compute OPVRs of minimum vertex complexity for these graphs. Biedl
et al. [5] proved that not every 3-connected 1-plane graph has a representation
with zero vertex complexity, and we show a lower bound of two for infinitely
many graphs of this family.

— In Sect. 4 we also study 2-connected 1-plane graphs. Not every 2-connected 1-
plane graph can be augmented to become 3-connected (and 1-plane). This has
a strong impact on the vertex complexity of the corresponding OPVRs. We
prove that an embedding-preserving OPVR of a 2-connected 1-plane graph
may require £2(n) vertex complexity. Also, we show a sufficient condition that
allows to compute an embedding that guarantees constant vertex complexity
in O(n) time.

— In Sect.5 we discuss the results of an experimental study whose aim is to
estimate both the vertex complexity of these drawings in practice and the
percentage of vertices that are not represented as rectangles.

Some proofs and technicalities are omitted and can be found in [14].

2 Preliminaries

We assume familiarity with basic terminology of graph drawing [13]. We only
consider simple drawings of graphs, i.e., drawings where two edges have at most
one point in common (either a common endpoint or a common interior point
where the two edges properly cross each other). A graph is planar if it admits
a crossing free drawing. Such a drawing subdivides the plane into topologically
connected regions, called faces. The infinite region is the outer face. A planar
embedding of a graph is an equivalence class of planar drawings that define the
same set of faces. A plane graph is a planar graph with a given planar embedding.
Let f be a face of a plane graph GG. The number of vertices encountered in the
closed walk along the boundary of f is the degree of f, denoted as deg(f). If G is
not 2-connected a vertex may be encountered more than once, thus contributing
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more than one unit to the degree of the face. The concept of planar embedding
can be extended to non-planar drawings. Given a non-planar drawing, replace
each crossing with a dummy vertex. The resulting planarized drawing has a
planar embedding. An embedding of a graph G is an equivalence class of drawings
of G whose planarized versions have the same planar embedding. An embedded
graph G is a graph with a given embedding: An embedding-preserving drawing
I' of G is a drawing of G whose embedding coincides with that of G.

A bar visibility representation (BVR) is strong if each visibility between
two bars corresponds to an edge of the graph, while it is weak when visibilities
between non adjacent bars may occur. An orthogonal polygon is a polygon whose
sides are axis-aligned. A corner of an orthogonal polygon is a point of the poly-
gon where a horizontal and a vertical side meet. A corner is a reflex corner if it
forms a 37” angle inside the polygon. An ortho-polygon visibility representation
(OPVR) of a graph G maps each vertex v of G to a distinct orthogonal polygon
P(v) and each edge (u,v) of G to a vertical or horizontal visibility connecting
P(u) and P(v) and not intersecting any other polygon P(w), for w & {u,v}. The
intersection points between visibilities and polygons are the attachment points.
We adopt the e-visibility model [21,28,31,34], where the segments represent-
ing the edges can be replaced by strips of non-zero width; this implies that an
attaching point never coincides with a corner of a polygon. An OPVR is on an
integer grid if all its corners and attachment points have integer coordinates.
Given an OPVR, we can extract a drawing from it as follows. For each vertex
v, place a point inside polygon P(v) and connect it to all the attachment points
of the boundary of P(v); this can be done without creating any crossing and
preserving the circular order of the edges around the vertices. Thus, we refer
to an OPVR as a drawing and we extend to OPVRs all the definitions given
for drawings. An OPVR + of an embedded graph is embedding preserving if the
drawing extracted from + is embedding preserving. The vertex complexity of an
OPVR is the maximum number of reflex corners in any polygon representing a
vertex. An optimal OPVR is an OPVR with minimum vertex complexity.

3 Test and Optimization for Embedded Graphs

Any embedded graph G that admits an OPVR is
biplanar, i.e., its edge set can be bicolored so that
each color class induces a plane subgraph (use red for
the horizontal and blue for the vertical edges of an .
OPVR of G). However, a biplanar graph G may not I
have an embedding preserving OPVR. An example is
given in Fig.2 (thin and bold edges define the two
colors). The boundary of face f in the figure contains
six edge crossings and no vertex. In any OPVR, each Fig.2. An embedded
crossing forms a 7 angle inside f, thus the orthogo- graph with no embedding-
nal polygon representing f would have six 5 corners preserving OPVR.

and no ‘%’T corners in its interior, which is impossible.




284 E. Di Giacomo et al.

In the following we first describe an algorithm that, given an embedded graph G
that admits an embedding preserving OPVR, computes an optimal OPVR of G
(Lemma 2). Then, we describe a characterization of the embedded graphs that
admit an embedding preserving OPVR (Lemma3). This leads to an efficient
testing algorithm and it implies that 1-plane graphs always admit an embed-
ding preserving OPVR. Both results extend the topology-shape-metrics (TSM)
framework to handle OPVRs. The TSM approach, briefly recalled below, was
introduced by Tamassia [30] to compute orthogonal drawings (see also [13,19]).

The TSM Framework. In an orthogonal drawing of a degree-4 graph each edge
is a polyline of horizontal and vertical segments. An angle formed by two con-
secutive segments incident to the same vertex is a verter-angle; an angle at a
bend is a bend-angle. The following basic property holds.

Property 1. Let f be a face of an orthogonal drawing and let N,(f) be the
number of vertex-angles of value « inside f, with a € {7, 37”, 2m}. Then: Nz (f)—

Nz (f) = 2N2x(f) = 41if f is an internal face and Nz (f) = Nax (f) — 2N2x(f) =
—4 if f is the outer face.

Given a degree-4 graph G, the TSM computes, in three steps, an orthogonal
drawing I" of G with minimum number of bends (see also [13]). The first step,
planarization, computes an embedding of G and replaces crossing points with
dummy vertices. The resulting plane graph G’ has n + ¢ vertices, where n and
c are the number of vertices and crossings of G, respectively. The second step,
orthogonalization, computes an orthogonal representation H of G’, which speci-
fies the values of all vertex-angles and the sequence of bends along each edge. H
is computed by means of a flow network N, where each unit of flow corresponds
to a 7 angle. Each verter-node in N corresponds to a vertex of G and supplies
4 units of flow; each face-node in N corresponds to a face of G’ and demands an
amount of flow proportional to its degree. Bends along edges correspond to units
of flow transferred across adjacent faces of G’ through the corresponding arcs of
N, and each bend has a unit cost in N. Network N is constructed in O(n + ¢)
time since it has O(n + ¢) nodes and arcs. Also, it always admits a feasible flow.
A feasible flow @ of cost b of N defines an orthogonal representation H of G’ with
b bends, and wvice versa. The third step, compaction, computes in O(n + ¢ + b)
time an orthogonal drawing preserving the shape of H on an integer grid of size
On+c+b)xOn+c+hb).

Our Approach. To exploit the TSM framework, we define a new plane graph
G obtained from the input embedded graph G as follows (refer to Figs.3(a)
and (b)). Replace each vertex v with a cycle C(v) of d = deg(v) vertices, so
that each of these vertices is incident to one of the edges formerly incident to v,
preserving the circular order of the edges around v. If d =1 or d = 2, C(v) is a
self-loop or a pair of parallel edges, respectively. C'(v) is the expansion cycle of v;
the vertices and the edges of C(v) are the expansion vertices and the expansion
edges, respectively. Also, replace crossings with dummy vertices. G is called the
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Fig. 3. (a) An embedded graph G and (b) its planarized expansion G. (c) An OPVR
~ of G and (d) the orthogonal drawing I" obtained from ~.

planarized expansion of G. The edges of G that are not expansion edges are the
original edges. Each expansion vertex has degree 3 and each dummy vertex has
degree 4. The next lemma and properties follow (see also Figs. 3(c) and (d)).

Lemma 1. An embedded graph G admits an embedding preserving OPVR if and
only if G admits an orthogonal representation with the following properties: P1.
Each vertex-angle inside an expansion cycle has value w. P2. FEach original edge
has no bend.

Property 2. If G is biplanar, for each face f of G that is not an expansion cycle,
deg(f) = 4.

Property 5. 1f G admits an embedding preserving OPVR, then for every internal
face f of G consisting only of dummy vertices, deg(f) = 4.

Lemma 2. Let G be an n-vertex embedded graph that admits an embedding pre-

serving OPVR. There ezists an O(ng log% n)-time algorithm that computes an
embedding preserving optimal OPVR ~ of G. Also, v has the minimum number
of total reflex corners among all embedding preserving optimal OPVRs of G.

Proof. Since G admits an embedding preserving OPVR, it is biplanar. Hence it
has m < 6n—12 edges. By Lemma 1, an OPVR of G can be found by computing
an orthogonal representation that satisfies P1 and P2. This can be done by
computing a feasible flow in the Tamassia’s flow network N associated with G,
subject to these constraints: (i) Every arc of N from a vertex-node to a face-
node has fixed flow 2 if the face-node corresponds to an expansion cycle (which
implies a 7 angle inside the cycle), and fixed flow 1 otherwise (which implies a
7 angle inside the face); (ii) Arcs from two face-nodes such that none of them
corresponds to an expansion cycle of G are removed (to avoid bends on the
original edges). A feasible flow for N may not correspond to an optimal OPVR.
To minimize the vertex complexity we construct a different flow network as
follows. The amount of flow moved from a vertex-node to an adjacent face-node
is fixed a priori, and thus we can construct from N an equivalent flow network
N, such that all vertex-nodes are removed and their supplies are transferred onto
the supply of the adjacent face-nodes. Namely, each face-node vy corresponding
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to an expansion cycle f receives 2deg(f) units of flow, while its demand is
2deg(f) — 4 by definition. This is equivalent to saying that vy will supply 4
units of flow in N’. Similarly, each face-node vy corresponding to a face f that
is not an expansion cycle receives deg(f) units of flow, while its demand is
2deg(f) — 4 (or 2deg(f) + 4 if f is the outer face). This is equivalent to saying
that vy will demand flow deg(f) — 4 (deg(f) +4 if f is the outer face) in N’.
By Property 2, deg(f) > 4 and therefore deg(f) — 4 > 0. We now consider
every face f of G having dummy vertices only (if any), and the corresponding
face-node vy in N’. Note that vy is an isolated node of N’. Since G admits an
embedding preserving OPVR, by Property 3, deg(f) = 4; hence, we can remove
vy from N’ and conclude that f must be drawn as a rectangle. Thus, every
face-node in N’ corresponds to a face of G with at least one expansion vertex
on its boundary. Since every expansion vertex belongs to at most three faces
of G and there are O(n) expansion vertices, then N’ has O(n) nodes and arcs.
We also add gadgets to the network N’ in order to impose an upper bound h
on the number of reflex corners inside the polygons representing the expansion
cycles. Namely, let vy be a node of N’ corresponding to an expansion cycle f.
We replace vy with two face-nodes: a node v;}”, with zero supply and demand;

and a node v?“t, with the same supply as vy (which is 4). The incoming edges

of vy become incoming edges of v}”, while the outgoing edges of vy become
outgoing edges of v;"t. Finally, we add an edge (v}", v?“t) with capacity h. Let
N" be the flow network resulting by applying this transformation to all nodes
of N’ corresponding to expansion cycles. Since each unit of flow entering in vy
(now in v}") corresponds to a 37” angle inside f, a feasible flow of N defines
an orthogonal representation where each expansion cycle is a polygon with at
most h reflex corners, i.e., such a feasible flow defines an OPVR having vertex
complexity at most h. N is computed in O(n) time and has O(n) nodes and
arcs, as N’. In order to guarantee that the OPVR has the minimum number
of reflex corners among those with vertex complexity at most h, we compute a
feasible flow of minimum cost. Namely, we apply the min-cost flow algorithm of
Garg and Tamassia [19], whose complexity is O(xim”/logn”), where n” and
m/" are the number of nodes and arcs of N, respectively, and x is the cost of
the flow!. As already observed, both n”” and m’ are O(n). Also, since the value
of the flow is O(n) and in a min-cost flow each unit of flow moved along an
augmenting path can traverse each face-node at most once, we have y = O(n?).
Hence, a min-cost flow of N”' (if any) is computed in O(n3+/logn) time.

The supplied flow in N is 4n (four units for each expansion cycle) and each
unit of a min-cost flow can traverse a face-node at most once. Thus, the vertex
complexity of an embedding preserving optimal OPVR of G is k < 4n. We can
find the value of k by performing a binary search in the range [0, 4n], testing, for
each considered value h, if an OPVR with vertex complexity at most h exists.
The number of tests is O(logn) and each test takes O(n?+/Iogn) time, with the

algorithm described above. Thus, computing an orthogonal representation H

! Since N may not be planar, we cannot use the faster min-cost flow algorithm in [9].
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corresponding to an OPVR with vertex complexity k takes O(n% log% n) time.
A drawing of H is computed with the compaction step of the TSM. Since H has
at most k - n bends, this can be done in O((k + 1)n + ¢) = O(n?) time. O

We now introduce a new plane graph associated with the planarized expan-
sion G of G. Namely, let G be the dual graph of G where the dual edges
associated with the original edges are removed. G has a vertex for each face of
G and an edge between two vertices for every edge of an expansion cycle shared
by the two corresponding faces. We call G the simplified dual of G. Given a
connected component C of é*, denote by Fe the set of faces of G corresponding
to the vertices of C, by F5* the subset of F¢ corresponding to the expansion
cycles, and by F7® the set F¢ \ F§®. Finally, let f,,: be the outer face of G. We
give the following characterization.

Lemma 3. An embedded graph G admits an @kbedding preserving OPVR if
and only if for each connected component C of G we have Zfng” deg(f) =

4|Fc| — 8- 3, where B =1 if four € Fe and 3 =0 otherwise.

Lemma 3 leads to an O(n+c)-time algorithm that tests whether an embedded
graph G with n vertices and ¢ crossings admits an embedding preserving OPVR.
Indeed, the size of G is O(n + ¢) and thus the condition of Lemma3 can be
checked in O(n + ¢) time. If G is biplanar it has at most 6n — 12 edges, and
O(n+c) = O(n?). The next theorem summarizes the contribution of this section.

Theorem 1. Let G be an n-vertex embedded graph. There exists an O(n?)-time
algorithm that tests if G admits an embedding preserving OPVR and, if so, it
computes an embedding preserving optimal OPVR vy in O(n% log% n) time. Also,
v has the minimum number of reflex corners among all embedding preserving
optimal OPVRs of G.

We remark that an alternative algorithm to test whether G admits an embed-
ding preserving OPVR can be derived from the result in [3]. Namely, Alam
et al. [3] showed an algorithm to test whether an n-vertex biconnected plane
graph G admits an orthogonal drawing such that edges have no bends, and
each face f has most k; reflex corners. The time complexity of this algorithm is
O((nk)?)-time, where k = max e k. Thus, one can compute G and split each
expansion edge of G with 4n subdivision vertices (the maximum number of reflex
corners that a face can have). The resulting graph G has O(n?) vertices. Then
one can apply the algorithm by Alam et al. on G with ks = 4n for every face
f of G. However, this would lead to a time complexity O(n%) We conclude this
section by observing that the number of crossings per edge is a critical parameter
for the ortho-polygon representability of an embedded graph: Even two crossings
per edge may give rise to a graph that cannot be represented (see Fig.2). On
the positive side, the following theorem can be proved by applying Lemma 3.

Theorem 2. FEvery 1-plane graph admits an embedding-preserving OPVR.
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4 Bounds and Optimization for 1-Plane Graphs

Motivated by Theorem 2, in this section we study upper and lower bounds on the
vertex complexity of 1-plane graphs. We present a result about partitioning the
edges of a 3-connected 1-plane graph so that each partition set induces a plane
graph and one of these plane graphs has maximum vertex degree six, which is a
tight bound. This result may be of independent interest since it contributes to
recent combinatorial studies about partitioning the edge set of 1-plane graphs
into two plane subgraphs having special properties (see e.g. [1,10,23]). Next,
we use this result to show an upper bound of 12 and a lower bound of 2 on
the vertex complexity of 3-connected 1-plane graphs. Finally, we argue that
the vertex complexity of OPVRs of 1-plane graphs strongly depends on their
connectivity properties; namely, we show that if an n-vertex 1-plane graph G
is 2-connected and it can be augmented to become 3-connected only at the
expenses of loosing its 1-planarity, then the vertex complexity of any OPVR of
G may be 2(n). Also, for these graphs we show that a 1-planar embedding that
guarantees constant vertex complexity can be computed in O(n) time under the
assumption that they do not have a certain type of crossing configuration.

We shall distinguish between the crossing configurations depicted in Fig. 4.
Figure4(a) is a B-configuration if the dotted edges are missing, and it is an aug-
mented B-configuration otherwise. The crossing configurations of Figs. 4(b), (c),
and (d) are a kite, a W-configuration, and a T-configuration, respectively [5,33].
Figure4(e) depicts an augmented T-configuration. In the following we shall also
refer to crossing augmented 1-plane graphs [7]. A 1-plane graph G is crossing
augmented, when for each pair of crossing edges (u,v) and (w, z), the subgraph
of G induced by {u,v,w,z} is a K4. We call cycle edges of (u,v) and (w, z) the
four edges of the Ky different from (u,v) and (w, z) (they form a 4-cycle). Note
that a 1-plane graph can always be made crossing augmented in O(n) time, by
adding the missing cycle edges without introducing any new crossings [2,7,29].

GO

(a) B-conf. (b) Kite (¢) W-conf. (d) T-conf. (e) Aug. T-conf.

Fig. 4. Crossing configurations of 1-plane graphs.

Edge Partitions. An edge partition of a 1-plane graph G is a coloring of its edges
with one of two colors, red and blue, such that both the red graph Gr induced
by the red edges and the blue graph G p induced by the blue edges are plane.

Theorem 3. Let G be a 3-connected 1-plane graph with n vertices. There is
an edge partition of G such that the red graph has mazximum vertex degree siz
and this bound is worst case optimal. Also, such an edge edge partition can be
computed in O(n) time.
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Proof Sketch: We assume that G is crossing augmented. The proof relies on
claims that describe properties of the cycle edges of G which make it possible to
construct the desired partition of the edges of G.

Claim 1. There are no two cycle edges of G that cross each other.
Claim 2. Any edge of G is the cycle edge of at most two pairs of crossing edges.

Let G}, be the plane graph obtained from G by removing an edge for each pair
of crossing edges. We can arbitrarily choose what edges to remove, provided that
we never remove a cycle edge. Claim 1 ensures that this choice is always feasible.
Let G;‘ be a plane graph obtained by edge-augmenting G, so to become a plane
triangulation. We apply a Schnyder trees decomposition to G;‘, so to find an
orientation of its internal edges such that each internal vertex has exactly three
outgoing edges and the vertices of the outer face have no outgoing edge. Finally,

we arbitrarily orient the edges of the outer face of G;‘ .

Claim 3. Let (u,v) and (w,z) be two crossing edges of G. Then either {u,v}
or {w, z} have both an outgoing edge in G, that is a cycle edge of (u,v) and
(w, z).

We use Claim 3 to partition the edge set of G as follows. For each pair of
crossing edges (u,v) and (w, z) of G we color with the red color the edge con-
necting the pair, {u,v} or {w, z}, for which Claim 3 holds. By this choice, each
end-vertex of a red edge has one outgoing edge among the cycle edges of (u,v)
and (w, z). Since every vertex is incident to at most three outgoing edges in
G;‘, and since each edge is the cycle edge of at most two pairs of crossing edges
(Claim 2), by this procedure at most six edges for each vertex get the red color.
The proof that this bound on the vertex degree of G is tight uses a graph con-
structed as follows: Start with a sufficiently large plane triangulation G, and
insert an augmented T-configuration inside every face of G,. The tightness of the
bound can then be derived by a counting argument based on Euler’s formula.
The linear time complexity follows from the fact that G has O(n) edges (see
e.g. [29]) and that Schnyder trees can be constructed in O(n) time [26]. O

A L L
AR\ L.

(a) (b) (c)

Fig. 5. (a) An edge partition of a 1-plane graph G; red (blue) edges are dashed (solid).
(b) A strong BVR ~g of Gp. (c¢) Insertion of the red edges into y5. (d) An OPVR
of G.
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Vertex Complexity Bounds for 3-Connected 1-Plane Graphs. Theorem 3 can be
used to construct an OPVR of a 3-connected 1-plane graph whose vertex com-
plexity does not depend on the input size. The idea for this construction is as
follows. Let Gp and Gg be the plane graphs defined by the edge partition of
Theorem 3; see e.g. Fig.5(a). Under the assumption that G is crossing aug-
mented, it can be proved that Gp is 2-connected, which implies that it admits
a strong BVR ~p (this can be computed in O(n) time [31]); see e.g. Fig. 5(b).
Assume that two vertices u and v are connected by a red edge and let yg(u)
and vp(v) be the horizontal bars representing them. We attach a vertical bar to
~vp(u) and a vertical bar to yp(v) such that each vertical bar shares an end-vertex
with the horizontal bar and the two vertical bars can see each other horizontally.
This makes it possible to draw the horizontal red edge (u,v); see e.g. Fig. 5(c).
Once all red edges have been added to vp, every vertex v is represented as a
“rake”-shaped object consisting of one horizontal bar and at most six vertical
bars (we have a vertical bar for each red edge incident to v and there are at most
six such edges). This “rake”-shaped object can then be used as the skeleton of an
orthogonal polygon that has two reflex corners per vertical bar; see e.g. Fig. 5(d).

Theorem 4. Let G be a 3-connected 1-plane graph with n vertices. There exists
an O(n)-time algorithm that computes an an embedding-preserving OPVR of G
with vertex complexity at most 12, on an integer grid of size O(n) x O(n).

Based on Theorem 4, we can significantly improve the time complexity of an
algorithm that computes an optimal OPVR.

Theorem 5. Let G be a 3-connected 1-plane graph with n vertices. There exists
an O(n%\/log n)-time algorithm that computes an embedding-preserving optimal
OPVR ~ of G, on an integer grid of size O(n) x O(n). Also, v has the mini-
mum number of total reflex corners among all the embedding preserving optimal
OPVRs of G.

The following lower bound can be proved.

Theorem 6. There is an infinite family G of 3-connected 1-plane graphs such
that for any graph G of G, any embedding preserving OPVR has vertex complezity
at least two.

2-Connected 1-Plane Graphs. The next theorem shows a lower bound on the
vertex complexity of 2-connected 1-planar graphs (and that cannot be augmented
to become 3-connected without losing 1-planarity).

Theorem 7. For every positive integer n, there exists a 2-connected 1-planar
graph G with O(n) vertices such that, for every 1-planar embedding of G, any
embedding preserving OPVR of G has vertex complexity £2(n).

Proof Sketch: We prove the claim for a fixed 1-planar embedding (the proof
can be easily extended to all 1-planar embeddings of G). Consider the 1-plane
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U

(a) K

Fig. 6. Illustration for the proof of Theorem 7.

graph K in Fig.6(a). It has 2 vertices on its outer face, v and v, plus 6 inner
vertices. We now construct G as follows. Attach n + 1 copies K1,..., K41 of
K all sharing w and v. The copies are attached in parallel without introducing
any further crossing, as shown in Fig. 6(b). Also connect u and v with an edge
on the outer face. The resulting graph G has 8(n + 1) — 2n = 6n + 8 = O(n)
vertices. Also, G is 2-connected and 1-plane by construction, hence it admits an
OPVR by Theorem 2. Consider now an embedding preserving OPVR of G and
the corresponding orthogonal drawing I'. Between any two consecutive copies
K; and K;11 (i=1,...,n), there is a face f; of G having two expansion vertices
of C(u) (the expansion cycle of u) and two expansion vertices of C(v) on its
boundary, together with two dummy vertices; see Fig. 6(c). Each dummy vertex
forms one 5 angle inside f;. Each expansion vertex forms one 7 angle inside f;.
Hence, there are at least six 5 angles inside f;. Since the original edges of f; have
no bends, by Property 1 the two expansion edges of f; must form (at least) two
37” angles inside f;. In I" there are n of such faces requiring two angles of 37” each
from an expansion edge. If every vertex of GG is represented by a polygon with
vertex complexity at most k, the edges of each expansion cycle form at most
4 + k angles of 37" inside their incident faces (that are not expansion cycles). At
least ten of these angles are inside the outer face of I' (Property 1), and hence
it must be (4 4+ k)2 — 10 > 2n, that is k > n + 1. O
The graphs used to prove Theorem 7 contain several W-configurations. For
a contrast, we can show that the absence of W-configurations suffices to find a
1-planar embedding that admits an OPVR with constant vertex complexity.

Theorem 8. Let G be a 2-connected 1-plane graph with n vertices and no W-
configurations. A 1-planar OPVR of G with vertex complexity at most 22 on an
integer grid of size O(n) x O(n) can be computed in O(n) time.

5 Experiments and Open Problems

We implemented the optimization algorithm of Theorem 1 using the GDToolkit
library [12]. To evaluate the performance of the algorithm in practice, we tested
it on a large set of 1-plane graphs, which always admit an OPVR (Theorem 2).
In addition, we have the following two objectives: (i) Measure the vertex com-
plexity of the computed OPVRs; in particular, for 3-connected 1-plane graphs
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we expect values close to the lower bound of 2. (i) Establishing “how much”
the computed drawings look like RVRs. For every computed OPVR with ver-
tex complexity k, we measure the percentage of polygons with 4 reflex corners
(i €]0,...,k]). Since our optimization algorithm computes the optimal solution
having the minimum number of reflex corners (see Theorem 1), we expect a high
number of rectangles. We generated three different subsets of (simple) 1-plane
graphs, which we call GEN, BIC, and TRIC, respectively. Each subset consists of
170 graph. The number of vertices of each graph ranges from 20 to 100. The
graphs in GEN are general 1-plane graphs, while those in BIC and in TRIC are
2-connected and 3-connected, respectively. All graphs are maximal (no further
edges can be added in their embedding while preserving 1-planarity). The exper-
iments confirmed both our expectations. The optimization algorithm took less
than 15 s for all instances up to 60 vertices, and about 41 s on the largest instance
with 100 vertices on a common laptop. The optimal solutions of all GEN graphs
required vertex complexity 1, except two of them with vertex complexity 0. The
average percentage of rectangles is around 90%, and never below 80% in any
instance. Hence, most of the drawing looks like an RVR. The running times for
BIC and TRIC reflect the behavior observed for GEN (with some more demanding
large instances). For every graph of TRIC we found a drawing with vertex com-
plexity either 1 or 2. Most of the BIC graphs required vertex complexity 2, some
required vertex complexity 3, and only one graph required vertex complexity 4.
The percentage of vertices drawn as rectangles is very high also for BIC and TRIC
(around 80% for BIC and around 75% for TRIC).

The results in this paper naturally raise several interesting open prob-
lems. Among them: (1) Close the gap between the upper bound and the lower
bound on the vertex complexity of OPVRs of 3-connected 1-plane graphs (see
Theorems 5 and 6). (2) We find it interesting to study the problem of computing
OPVRs that maximize the number of rectangular vertices, even at the expenses
of sub-optimal vertex complexity. (3) Theorem 8 constructs 1-planar embeddings
that guarantee constant vertex complexity. What 2-connected 1-plane graphs
admit a 1-planar OPVR with constant vertex complexity?

References

1. Ackerman, E.: A note on l-planar graphs. Discrete Appl. Math. 175, 104-108
(2014)

2. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-
connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol.
8242, pp. 83-94. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03841-4_8

3. Alam, M.J., Kobourov, S.G., Mondal, D.: Orthogonal layout with optimal
face complexity. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 121-133. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8_10

4. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp.
97-108. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40104-6_9


http://dx.doi.org/10.1007/978-3-319-03841-4_8
http://dx.doi.org/10.1007/978-3-662-49192-8_10
http://dx.doi.org/10.1007/978-3-662-49192-8_10
http://dx.doi.org/10.1007/978-3-642-40104-6_9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Ortho-Polygon Visibility Representations of Embedded Graphs 293

Biedl, T.C., Liotta, G., Montecchiani, F.: On visibility representations of non-
planar graphs. In: Fekete, S.P., Lubiw, A. (eds) SoCG 2016, LIPIcs, vol. 51, pp.
19:1-19: 16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). http://
www.dagstuhl.de/dagpub/978-3-95977-009-5

Brandenburg, F.J.: 1-Visibility representations of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421-438 (2014)

Brandenburg, F.J.: On 4-map graphs, 1-planar graphs, their recognition problem.
CoRR, abs/1509.03447 (2015). http://arxiv.org/abs/1509.03447

Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
and 1-planarity hard. STAM J. Comput. 42(5), 1803-1829 (2013)

Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Algo-
rithms Appl. 16(3), 635-650 (2012)

Czap, J., Hudék, D.: On drawings and decompositions of 1-planar graphs. Electr.
J. Comb. 20(2), P54 (2013)

Dean, A.M., Hutchinson, J.P.: Rectangle-visibility representations of bipartite
graphs. Discrete Appl. Math. 75(1), 9-25 (1997)

Di Battista, G., Didimo, W.: GDToolkit. In: Tamassia, R. (ed.) Handbook of Graph
Drawing and Visualization, pp. 571-597. CRC Press, Boca Raton (2013)

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-
Hall, Upper Saddle River (1999)

Di Giacomo, E., Didimo, W., Evans, W.S., Liotta, G., Meijer, H., Montecchiani,
F., Wismath, S.K.: Ortho-polygon visibility representations of embedded graphs.
ArXiv e-prints, abs/1604.08797v2 (2016). http://arxiv.org/abs/1604.08797v2
Duchet, P., Hamidoune, Y., Las Vergnas, M., Meyniel, H.: Representing a planar
graph by vertical lines joining different levels. Discrete Math. 46(3), 319-321 (1983)
Eades, P., Hong, S.-H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear
time algorithm for testing maximal 1-planarity of graphs with a rotation system.
Theor. Comput. Sci. 513, 65-76 (2013)

Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7-8), 961-969 (2013)

Evans, W.S., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.K.: Bar 1-
visibility graphs vs. other nearly planar graphs. J. Graph Algorithms Appl. 18(5),
721-739 (2014)

Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications
to graph drawing. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 201-216.
Springer, Heidelberg (1997). doi:10.1007/3-540-62495-3_49

Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-
two graphs. Comput. Geom. 13(3), 161-171 (1999)

Kant, G., Liotta, G., Tamassia, R., Tollis, I.G.: Area requirement of visibility
representations of trees. Inf. Process. Lett. 62(2), 81-88 (1997)

Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theory 72(1), 30-71 (2013)

Lenhart, W.J., Liotta, G., Montecchiani, F.: On partitioning the edges of 1-planar
graphs. CoRR, abs/1511.07303 (2015). http://arxiv.org/abs/1511.07303

Otten, R.H.J.M., Van Wijk, J.G.: Graph representations in interactive layout
design. In: IEEE ISCSS, pp. 914-918. IEEE (1978)

Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations
of planar graphs. Discrete Comput. Geom. 1, 343-353 (1986)

Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.), SODA
1990, pp. 138-148. STAM (1990)


http://www.dagstuhl.de/dagpub/978-3-95977-009-5
http://www.dagstuhl.de/dagpub/978-3-95977-009-5
http://arxiv.org/abs/1509.03447
http://arxiv.org/abs/1604.08797v2
http://dx.doi.org/10.1007/3-540-62495-3_49
http://arxiv.org/abs/1511.07303

294

27.

28.

29.

30.

31.

32.

33.

34.

E. Di Giacomo et al.

Shermer, T.C.: On rectangle visibility graphs III. External visibility and com-
plexity. In: Fiala, F., Kranakis, E., Sack, J.-R., (eds.) CCCG 1996, pp. 234-239.
Carleton University Press (1996)

Streinu, 1., Whitesides, S.: Rectangle visibility graphs: characterization, construc-
tion, and compaction. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607,
pp. 26-37. Springer, Heidelberg (2003). doi:10.1007/3-540-36494-3_4

Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math.
24(4), 1527-1540 (2010)

Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comp. 16(3), 421-444 (1987)

Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar
graphs. Discrete Comput. Geom. 1(1), 321-341 (1986)

Thomassen, C.: Plane representations of graphs. In: Progress in Graph Theory, pp.
43-69. AP (1984)

Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335-341
(1988)

Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Rourke, J.O. (ed),
SoCG 1985, pp. 147-152. ACM (1985)


http://dx.doi.org/10.1007/3-540-36494-3_4

	Ortho-Polygon Visibility Representations of Embedded Graphs
	1 Introduction
	2 Preliminaries
	3 Test and Optimization for Embedded Graphs
	4 Bounds and Optimization for 1-Plane Graphs
	5 Experiments and Open Problems
	References


