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Abstract. For a graph G, a function ψ is called a bar visibility rep-
resentation of G when for each vertex v ∈ V (G), ψ(v) is a horizontal
line segment (bar) and uv ∈ E(G) iff there is an unobstructed, verti-
cal, ε-wide line of sight between ψ(u) and ψ(v). Graphs admitting such
representations are well understood (via simple characterizations) and
recognizable in linear time. For a directed graph G, a bar visibility rep-
resentation ψ of G, additionally, for each directed edge (u, v) of G, puts
the bar ψ(u) strictly below the bar ψ(v). We study a generalization of the
recognition problem where a function ψ′ defined on a subset V ′ of V (G)
is given and the question is whether there is a bar visibility representa-
tion ψ of G with ψ|V ′ = ψ′. We show that for undirected graphs this
problem together with closely related problems are NP-complete, but for
certain cases involving directed graphs it is solvable in polynomial time.

1 Introduction

The concept of a visibility representation of a graph is a classic one in compu-
tational geometry and graph drawing and the first studies on this concept date
back to the early days of these fields (see, e.g. [16,17] and [12] for a recent survey).
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In the most general setting, a visibility representation of a graph is defined as
a collection of disjoint sets from an Euclidean space such that the vertices are
bijectively mapped to the sets and the edges correspond to unobstructed lines of
sight between two such sets. Many different classes of visibility representations
have been studied via restricting the space (e.g., to be the plane), the sets (e.g.,
to be points or line segments) and/or the lines of sight (e.g., to be non-crossing or
axis-parallel). In this work we focus on a classic visibility representation setting
in which the sets are horizontal line segments (bars) in the plane and the lines
of sight are vertical. As such, whenever we refer to a visibility representation,
we mean one of this type. The study of such representations was inspired by
the problems in VLSI design and was conducted by different authors [9,13,14]
under variations of the notion of visibility. Tamassia and Tollis [16] gave an
elegant unification of different definitions and we follow their approach.

A horizontal bar is an open, non-degenerate segment parallel to the x-axis of
the coordinate plane. For a set Γ of pairwise disjoint horizontal bars, a visibility
ray between two bars a and b in Γ is a vertical closed segment spanned between
bars a and b that intersects a, b, and no other bar. A visibility gap between two
bars a and b in Γ is an axis aligned, non-degenerate open rectangle spanned
between bars a and b that intersects no other bar.

For a graph G, a visibility representation ψ is a function that assigns a distinct
horizontal bar to each vertex such that these bars are pairwise disjoint and satisfy
additional visibility constraints. There are three standard visibility models:

– Weak visibility. In this model, for each edge {u, v} of G, there is a visibility
ray between ψ(u) and ψ(v) in ψ(V (G)).

– Strong visibility. In this model, two vertices u, v of G are adjacent if and only
if there is a visibility ray between ψ(u) and ψ(v) in ψ(V (G)).

– Bar visibility. In this model, two vertices u, v of G are adjacent if and only if
there is a visibility gap between ψ(u) and ψ(v) in ψ(V (G)).

The bar visibility model is also known as the ε-visibility model in the literature.
A graph that admits a visibility representation in any of these models is a

planar graph, but the converse does not hold in general. Tamassia and Tollis [16]
characterized the graphs that admit a visibility representation in these models
as follows. A graph admits a weak visibility representation if and only if it is
planar. A graph admits a bar visibility representation if and only if it has a
planar embedding with all cut-points on the boundary of the outer face. For
both of these models, Tamassia and Tollis [16] presented linear time algorithms
for the recognition of representable graphs, and for constructing the appropri-
ate visibility representations. The situation is different for the strong visibility
model. Although the planar graphs admitting a strong visibility representation
are characterized in [16] (via strong st-numberings), Andreae [1] proved that
the recognition of such graphs is NP-complete. Summing up, from a computa-
tional point of view, the problems of recognizing graphs that admit visibility
representations and of constructing such representations are well understood.

Recently, a lot of attention has been paid to the question of extending par-
tial representations of graphs. In this setting a representation of some vertices of
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the graph is already fixed and the task is to find a representation of the whole
graph that extends the given partial representation. Problems of this kind are
often encountered in graph drawing and are sometimes computationally harder
than testing for existence of an unconstrained drawing. The problem of extend-
ing partial drawings of planar graphs is a good illustration of this phenomenon.
On the one hand, by Fáry’s theorem, every planar graph can be drawn in the
plane so that each vertex is represented as a point, and edges are pairwise non-
crossing, straight-line segments joining the corresponding points. Moreover, such
a drawing can be constructed in linear time. On the other hand, testing whether
a partial drawing of this kind (i.e., an assignment of points to some of the
vertices) can be extended to a straight-line drawing of the whole graph is NP-
hard [15]. However, an analogous problem in the model that allows the edges to
be drawn as arbitrary curves instead of straight-line segments has a linear-time
solution [2]. A similar phenomenon occurs when we consider contact represen-
tations of planar graphs. Every planar graph is representable as a disk contact
graph or a triangle contact graph. Every bipartite planar graph is representable
as a contact graph of horizontal and vertical segments in the plane. Although
such representations can be constructed in polynomial time, the problems of
extending partial representations of these kinds are NP-hard [4].

In this paper we initiate the study of extending partial visibility represen-
tations of graphs. From a practical point of view, it may be worth recalling
that visibility representations are not only an appealing way of drawing graphs,
but they are also typically used as an intermediate step towards constructing
visualizations of networks in which all edges are oriented in a common direction
and some vertices are aligned (for example to highlight critical activities in a
PERT diagram). Visibility representations are also used to construct orthogonal
drawings with at most two bends per edge. See, e.g. [6] for more details about
these applications. The partial representation extension problem that we study
in this paper occurs, for example, when we want to use visibility representations
to incrementally draw a large network and we want to preserve the user’s mental
map in a visual exploration that adds a few vertices and edges per time.

Both for weak visibility and for strong visibility, the partial representation
extension problems are easily found to be NP-hard. For weak visibility, the hard-
ness follows from results on contact representations by Chaplick et al. [4]. For
strong visibility, it follows trivially from results by Andreae [1]. Our contribu-
tion is the study of the partial representation extension problem for bar visibility.
Hence, the central problem for this paper is the following:

Bar Visibility Representation Extension:
Input: (G,ψ′); G is a graph; ψ′ is a map assigning bars to a V ′ ⊆ V (G).
Question: Does G admit a bar visibility representation ψ with ψ|V ′ = ψ′?
One of our results is the following.

Theorem 1. The Bar Visibility Representation Extension Problem is
NP-complete.
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The proof is a standard reduction from PlanarMonotone3Sat problem,
which is known to be NP-complete thanks to de Berg and Khosravi [3]. The
reduction uses gadgets that simulate logic gates and constructs a planar boolean
circuit that encodes the given formula. Theorem1 is proven in AppendixD. We
investigate a few natural modifications of the problem. Most notably, we study
the version of the problem for directed graphs. We provide some efficient algo-
rithms for extension problems in this setting. A visibility representation induces
a natural orientation on edges of the graph – each edge is oriented from the lower
bar to the upper one. This leads to the definition of a visibility representation
for a directed graph. The function ψ is a representation of a digraph G if, addi-
tionally to satisfying visibility constraints, for each directed edge (u, v) of G, the
bar ψ(u) is strictly below the bar ψ(v). Note that a planar digraph that admits
a visibility representation also admits an upward planar drawing (see e.g., [10]),
that is, a drawing in which the edges are represented as non-crossing y-monotone
curves.

A planar st-graph is a planar acyclic digraph with exactly one source s and
exactly one sink t which admits a planar embedding such that s and t are on the
outer face. Di Battista and Tamassia [7] proved that a planar digraph admits an
upward planar drawing if and only if it is a subgraph of a planar st-graph if and
only if it admits a weak visibility representation. Garg and Tamassia [11] showed
that the recognition of planar digraphs that admit an upward planar drawing
is NP-complete. It follows that the recognition of planar digraphs that admit
a weak visibility representation is NP-complete, and so is the corresponding
partial representation extension problem. Nevertheless, as is shown in Lemma1
(see Appendix A for the proof), the situation might be different for bar visibility.

Lemma 1. Let st(G) be a graph constructed from a planar digraph G by adding
two vertices s and t, the edge (s, t), an edge (s, v) for each source vertex v of G,
and an edge (v, t) for each sink vertex v of G. A planar digraph G admits a bar
visibility representation if and only if the graph st(G) is a planar st-graph.

As planar st-graphs can be recognized in linear time, the same is true for planar
digraphs that admit a bar visibility representation. The natural problem that
arises is the following:
Bar Visibility Representation Extension for Digraphs:
Input: (G,ψ′); G is a digraph; ψ′ is a map assigning bars to a V ′ ⊆ V (G).
Question: Does G admit a bar visibility representation ψ with ψ|V ′ = ψ′?
Although we do not provide a solution for this problem, we present an effi-
cient algorithm for an important variant. A bar visibility representation ψ of a
directed graph G is called rectangular if ψ has a unique bar ψ(s) with the lowest
y-coordinate, a unique bar ψ(t) with the highest y-coordinate, ψ(s) and ψ(t)
span the same x-interval, and all other bars are inside the rectangle spanned
between ψ(s) and ψ(t). See Fig. 1 for an example of a rectangular bar visibility
representation of a planar st-graph.

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.4
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.1
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Fig. 1. A planar st-graph G and a rectangular bar visibility representation ψ of G.

Tamassia and Tollis [16] showed that a planar digraph G admits a rectangular
bar visibility representation if and only if G is a planar st-graph. In Sect. 3 we
give an efficient algorithm for the following problem:
Rectangular Bar Visibility Representation Extension for st-graphs:
Input: (G,ψ′); G is a planar st-graph; ψ′ is a map assigning bars to a V ′ ⊆ V (G).
Question: Does G admit a rectangular bar visibility representation ψ with
ψ|V ′ = ψ′?
The main result in this paper is the following.

Theorem 2. The Rectangular Bar Visibility Representation Extension Problem
for an st-graph with n vertices can be solved in O

(
n log2 n

)
time.

Our algorithm exploits the correspondence between bar visibility representations
and st-orientations of planar graphs, and utilizes the SPQR-decomposition.

The rest of the paper is organized as follows. Section 2 contains the necessary
definitions and description of the necessary tools. Section 3 contains the general
ideas for the proof of Theorem 2. The omitted parts of the proof are reported in
AppendixC together with some figures illustrating the ideas behind the proofs.
Section 4 mentions further results from the full version and open problems.

2 Preliminaries

For a horizontal bar a, functions y(a), l(a), r(a) give respectively the y-coordinate
of a, the x-coordinate of the left end of a, and the x-coordinate of the right end
of a. For any bounded object Q in the plane, we use functions X(Q) and Y (Q)
to denote the smallest possible, possibly degenerate, closed interval containing
the projection of Q on the x-, and on the y-axis respectively. We denote the left
end of X(Q) by l(Q) and the right end of X(Q) by r(Q). Let a and b be two
horizontal bars with y(a) < y(b). We say that Q is spanned between a and b if
X(Q) ⊆ X(a), X(Q) ⊆ X(b), and Y (Q) = [y(a), y(b)].

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.3
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For a graph G, we often describe the visibility representation ψ by providing
the values of functions yψ = y(ψ(v)), lψ = l(ψ(v)), rψ = r(ψ(v)) for any vertex v
of G. We drop the subscripts when the representation is known from the context.

Let G be a planar st-graph. An st-embedding of G is any planar embedding
with s and t on the boundary of the outer face. A planar st-graph together with
an st-embedding is called a plane st-graph. Vertices s and t of a planar (plane)
st-graph are called the poles of G. We abuse notation and we use the term planar
(plane) uv-graph to mean a planar (plane) st-graph with poles u and v. An inner
vertex of G is a vertex of G other than the poles of G. A real valued function ξ
from V (G) is an st-valuation of G if for each edge (u, v) we have ξ(u) < ξ(v).

Tamassia and Tollis [16] showed that the following properties hold for any
plane st-graph:

1. For every inner face f , the boundary of f consists of two directed paths with
a common origin and a common destination.

2. The boundary of the outer face consists of two directed paths, with a common
origin s and a common destination t.

3. For every inner vertex v, edges from v (to v) are consecutive around v.

Let G be a plane st-graph. We introduce two objects associated with
the outer face of G: the left outer face s∗ and the right outer face t∗.
Properties (1)–(3) allow us to introduce the following standard notions: left/right
face of an edge and a vertex, left/right path of a face, and the dual G∗ of G –
a planar st-graph with vertex set consisting of inner faces of G, s∗, and t∗. For
two faces f and g in V (G∗) we say that f is to the left of g, and that g is to the
right of f , if there is a directed path from f to g in G∗. See AppendixB.2 for
the precise definitions which follow the standard definitions given by Tamassia
and Tollis [16].

3 Rectangular Bar Visibility Representations of st-graphs

In this section we provide an efficient algorithm that solves the rectangular bar
visibility representation extension problem for st-graphs. Our algorithm employs
a specific version of the SPQR-decomposition that allows us to describe all st-
embeddings of a planar st-graph. See AppendixB.1 for the exact definition which
follows the one given by Di Battista and Tamassia [8]. In particular, an SPQR-
tree T of a planar st-graph G consists of nodes of four different types: S for series
nodes, P for parallel nodes, Q for edge nodes, and R for rigid nodes. Each node μ
represents a pertinent graph Gμ, a subgraph of G which is an st-graph with poles
sμ and tμ. Additionally, μ has an associated directed multigraph skel(μ) called
the skeleton of μ. The only difference between our definition of the SPQR-tree
and the one given in [8] is that we do not add an additional edge between the
poles of the skeleton of a node. Our definition ensures that we have a one-to-
one correspondence between the edges of skel(μ) and the children of μ in T .
In Sect. 3.1, we use the SPQR-tree T of G to describe how a rectangular bar
visibility representation is composed of rectangular bar visibility representations
of the pertinent graphs of T .

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.2.2
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.2.1
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The skeleton of a rigid node has only two st-embeddings, one being the
flip of the other around the poles of the node. The skeleton of a parallel node
with k children has k! st-embeddings, one for every permutation of the edges
of the skeleton. The skeleton of a series node or an edge node has only one
st-embedding.

Section 3.1 presents structural properties of bar visibility representations in
relation to an SPQR-decomposition. In Sect. 3.2 we present an algorithm that
solves this extension problem in quadratic time. In AppendixC.6 we give a
refined algorithm that works in O

(
n log2 n

)
time for an st-graph with n vertices.

3.1 Structural Properties

Let Γ be a collection of pairwise disjoint bars. For a pair of bars a, b in Γ with
y(a) < y(b) let the set of visibility rectangles R(a, b) be the interior of the set of
points (x, y) in R

2 where:

1. a is the first bar in Γ on a vertical line downwards from (x, y),
2. b is the first bar in Γ on a vertical line upwards from (x, y).

Figure 1 shows (shaded area) the set of visibility rectangles R(s, 5). Note that
there is a visibility gap between a and b in Γ iff R(a, b) is non-empty. If R(a, b)
is non-empty, then it is a union of pairwise disjoint open rectangles spanned
between a and b.

Let G be a planar st-graph and let T be the SPQR-tree for G. Let ψ be a
rectangular bar visibility representation of G. For every node μ of T we define
the set Bψ(μ), called the bounding box of μ with respect to ψ, as the closure of
the following union:

⋃
{R(ψ(u), ψ(v)) : (u, v) is an edge of the pertinent digraph Gμ} .

If ψ is clear from the context, then the set Bψ(μ) is denoted by B(μ) and is called
the bounding box of μ. Let B(ψ) = X(ψ(V (G))) × Y (ψ(V (G))) be the minimal
closed axis-aligned rectangle that contains the representation ψ. It follows that:

1. B(ψ) = Bψ(μ), where μ is the root of T ,
2. each point in B(ψ) is in the closure of at least one set of visibility rectangles

R(ψ(u), ψ(v)) for some edge (u, v) of G,
3. each point in B(ψ) is in at most one set of visibility rectangles.

The following two lemmas describe basic properties of a bounding box.

Lemma 2 (Q-Tiling Lemma). Let μ be a Q-node in T corresponding to an
edge (u, v) of G. For any rectangular bar visibility representation ψ of G we have:

1. B(μ) is a union of pairwise disjoint rectangles spanned between ψ(u) and
ψ(v).

2. If B(μ) is not a single rectangle, then the parent λ of μ in T is a P -node,
and u, v are the poles of the pertinent digraph Gλ.

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.3.6
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The Basic Tiling Lemma presented below describes the relation between the
bounding box of an inner node μ and the bounding boxes of the children of μ in
any rectangular bar visibility representation of G. The next lemma justifies the
name bounding box for B(μ).

Lemma 3 (Basic Tiling Lemma). Let μ be an inner node in T with children
μ1, . . . , μk, k � 2. For a rectangular bar visibility representation ψ of G we have:

1. ψ(v) ⊆ B(μ) for every inner vertex v of Gμ.
2. B(μ) is a rectangle that is spanned between ψ(sμ) and ψ(tμ).
3. The sets B(μ1), . . . , B(μk) tile the rectangle B(μ), i.e., B(μ1), . . . , B(μk)

cover B(μ) and the interiors of B(μ1), . . . , B(μk) are pairwise disjoint.

In the next three lemmas we specialize the Basic Tiling Lemma depending
on whether μ is a P -node, an S-node, or an R-node. These lemmas allow us to
describe all tilings of B(μ) by bounding boxes of μ’s children. For Lemmas 4, 5,
and 7 we let μ1, . . . , μk be μ’s children. The next lemma follows from the Basic
Tiling Lemma and the Q-Tiling Lemma.

Lemma 4 (P-Tiling Lemma). Let μ be a P -node. For any rectangular bar
visibility representation ψ of G we have:

1. If (sμ, tμ) is not an edge of G, then the sets B(μ1), . . . , B(μk) are rectangles
spanned between ψ(sμ) and ψ(tμ).

2. If (sμ, tμ) is an edge of G, then μ has exactly one child that is a Q-node, say
μ1, and:
– For i = 2, . . . , k, B(μi) is a rectangle spanned between ψ(sμ) and ψ(tμ).
– B(μ1) �= ∅ is a union of rectangles spanned between ψ(sμ) and ψ(tμ).

When μ is an S-node or an R-node, then there is no edge (sμ, tμ). By the
Q-Tiling Lemma and by the Basic Tiling Lemma, each set B(μi) is a rectangle
that is spanned between the bars representing the poles of Gμi

.

Lemma 5 (S-Tiling Lemma). Let μ be an S-node. Let c1, . . . , ck−1 be the
cut-vertices of Gμ encountered in this order on a path from sμ to tμ. Let c0 = sμ,
and ck = tμ. For any rectangular bar visibility representation ψ of G, for every
i = 1, . . . , k − 1, we have X(ψ(ci)) = X(B(μ)). For every i = 1, . . . , k, B(μi) is
spanned between ψ(ci−1) and ψ(ci) and X(B(μi)) = X(B(μ)).

The R-Tiling Lemma should describe all possible tilings of the bounding box
of an R-node μ that appear in all representations of G. Since there is a one-to-
one correspondence between the edges of skel(μ) and the children of μ, we abuse
notation and write B(u, v) to denote the bounding box of the child of μ that
corresponds to the edge (u, v). By the Basic Tilling Lemma, B(u, v) is spanned
between the bars representing u and v.

Suppose that ψ is a representation of G. The tiling τ = (Bψ(μ1), . . . , Bψ(μk))
of Bψ(μ) determines a triple (E , ξ, χ), where: E is an sμtμ-embedding of skel(μ),
ξ is an st-valuation of E , and χ is an st-valuation of E∗, that are defined as
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follows. Consider the following planar drawing of the st-graph skel(μ). Draw
every vertex u in the middle of ψ(u), and every edge e = (u, v) as a curve
that starts in the middle of ψ(u), goes a little above ψ(u) towards the rectangle
Bψ(u, v), goes inside Bψ(u, v) towards ψ(v), and a little below ψ(v) to the middle
of ψ(v). This way we obtain a plane st-graph E , which is an st-embedding of
skel(μ). The st-valuation ξ of E is just the restriction of yψ to the vertices from
skel(μ), i.e., ξ = yψ|V (skel(μ)). To define the st-valuation χ of E∗ we use the
following lemma.

Lemma 6 (Face Condition).

1. Let f be a face in V (E∗) different than t∗, and let v0, v1, . . . , vp be the right
path of f . There is a vertical line Lr(f) that contains the left endpoints of
ψ(v1), . . . , ψ(vp−1) and the left sides of Bψ(v0, v1), . . . , Bψ(vp−1, vp).

2. Let f be a face in V (E∗) different than s∗, and let u0, u1, . . . , um be the left
path of f . There is a vertical line Ll(f) that contains the right endpoints of
ψ(u1), . . . , ψ(uq−1) and the right sides of Bψ(u0, u1), . . . , Bψ(uq−1, uq).

3. If f is an inner face of E then Ll(f) = Lr(f).

The above lemma allows us to introduce the notion of a splitting line for
every face f in V (E∗); namely, it is: the line Ll(f) = Lr(f) if f is an inner face
of E , Lr(f) if f is the left outer face of E , and Ll(f) if f is the right outer face of
E . Now, let χ(f) be the x-coordinate of the splitting line for a face f in V (E∗).
To show that χ(f) is an st-valuation of E∗, note that for any edge (f, g) of E∗

there is an edge (u, v) of E that has f on the left side and g on the right side. It
follows that χ(f) = l(Bψ(u, v)) < r(Bψ(u, v)) = χ(g), proving the claim.

The representation ψ of G determines the triple (E , ξ, χ). Note that any other
representation with the same tiling τ = (Bψ(μ1), . . . , Bψ(μk)) of B(μ) gives the
same triple. To emphasize that the triple (E , ξ, χ) is determined by tiling τ , we
write (Eτ , ξτ , χτ ).

Now, assume that E is an st-embedding of skel(μ), ξ is an st-valuation of E ,
and χ is an st-valuation of the dual of E . Consider the function φ that assigns
to every vertex v of skel(μ) the bar φ(u) defined as follows: yφ(v) = ξ(v),
lφ(v) = χ(left face of v), rφ(v) = χ(right face of v). Firstly, Tamassia and Tol-
lis [16] showed that φ is a bar visibility representation of skel(μ) and that
for τ = (Bφ(μ1), . . . , Bφ(μk)), we have (Eτ , ξτ , χτ ) = (E , ξ, χ). Secondly, there
is a representation ψ of G that agrees with τ on skel(μ), i.e., such that
τ = (Bψ(μ1), . . . , Bψ(μk)). To construct such a representation, we take any
representation ψ of G, translate and scale all bars in ψ to get Bψ(μ) = Bφ(μ),
and represent the pertinent digraphs Gμ1 , . . . , Gμk

so that the bounding box of
μi coincides with Bφ(μi) for i = 1, . . . , k. This leads to the next lemma.

Lemma 7 (R-Tiling Lemma). Let μ be an R-node. There is a bijection
between the set {(Bψ(μ1), . . . , Bψ(μk)) : ψ is a rectangular bar visibility rep-
resentation of G} of all possible tilings of the bounding box of μ by the bounding
boxes of μ1, . . . , μk in all representations of G, and the set {(E , ξ, χ) : E is an
st-embedding of skel(μ), ξ is an st-valuation of E, χ is an st-valuation of the
dual of E}.
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3.2 Algorithm

Let G be an n-vertex planar st-graph and let ψ′ be a partial representation
of G with the set V ′ of fixed vertices. We present a quadratic time algorithm
that tests if there exists a rectangular bar visibility representation ψ of G that
extends ψ′. If such a representation exists, the algorithm can construct it in the
same time.

In the first step, our algorithm calculates yψ. Namely, the algorithm checks
whether yψ′ : V ′ → R is extendable to an st-valuation of G. When such an
extension does not exist, the algorithm rejects the instance (G,ψ′); otherwise
any extension of yψ′ can be used as yψ. The next lemma verifies this step’s
correctness.

Lemma 8. Let ψ be a rectangular bar visibility representation of G that
extends ψ′.

1. The function yψ is an st-valuation of G that extends yψ′ ,
2. If y is an st-valuation of G that extends yψ′ , then a function φ that sends every

vertex v of G into a bar so that yφ(v) = y(v), lφ(v) = lψ(v), rφ(v) = rψ(v) is
also a rectangular bar visibility representation of G that extends ψ′.

Clearly, checking whether yψ′ is extendable to an st-valuation of G, and con-
structing such an extension can be done in O(n) time. In the second step, the
algorithm computes the SPQR-tree T for G, which also takes linear time.

Before we describe the last step in our algorithm, we need some preparation.
For an inner node μ in T we define the sets V ′(μ) and C(μ) as follows:

V ′(μ) = the set of fixed vertices in V (Gµ) � {sµ, tµ},

C(μ) =

{ ∅, if V ′(μ) = ∅;
the smallest closed rectangle containing ψ′(u) for all u ∈ V ′(μ), otherwise.

The set C(μ) is called the core of μ. For a node μ whose core is empty, our
algorithm can represent Gμ in any rectangle spanned between the poles of Gμ.
Thus, we focus our attention on nodes whose core is non-empty.

Assume that μ is a node whose core is non-empty. We describe the ‘possible
shapes’ the bounding box of μ might have in a representation of G that extends
ψ′. The bounding box of μ is a rectangle that is spanned between the bars
corresponding to the poles of Gμ. By the Basic Tiling Lemma, if C(μ) is non-
empty then B(μ) contains C(μ). For our algorithm it is important to distinguish
whether the left (right) side of B(μ) contains the left (right) side of C(μ). This
criterion leads to four types of representations of μ with respect to the core of μ.

The main idea of the algorithm is to decide for each inner node μ whose core
is non-empty, which of the four types of representation of μ are possible and
which are not. The algorithm traverses the tree bottom-up and for each node
and each type of representation it tries to construct the appropriate tiling using
the information about possible representations of its children. The types chosen
for different children need to fit together to obtain a tiling of the parent node.
In what follows, we present our approach in more detail.
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Let μ be an inner node in T . Fix φ′ = ψ′|V ′(μ). Function φ′ gives a partial
representation of the pertinent digraph Gμ obtained by restricting ψ′ to the
inner vertices of Gμ. Let x, x′ be two real values. A rectangular bar visibility
representation φ of Gμ is called an [x, x′]-representation of μ if φ extends φ′ and
X(φ(sμ)) = X(φ(tμ)) = [x, x′]. We say that an [x, x′]-representation of μ is:

– left-loose, right-loose (LL), when x < l(C(μ)) and x′ > r(C(μ)),
– left-loose, right-fixed (LF ), when x < l(C(μ)) and x′ = r(C(μ)),
– left-fixed, right-loose (FL), when x = l(C(μ)) and x′ > r(C(μ)),
– left-fixed, right-fixed (FF ), when x = l(C(μ)) and x′ = r(C(μ)).

The next lemma justifies this categorization of representations. It says that
if a representation of a given type exists, then every representation of the same
type is also realisable.

Lemma 9 (Stretching Lemma). Let μ be an inner node whose core is non-
empty. If μ has an LL-representation, then μ has an [x, x′]-representation for
any x < l(C(μ)) and any x′ > r(C(μ)). If μ has an LF-representation, then μ
has an [x, x′]-representation for any x < l(C(μ)) and x′ = r(C(μ)). If μ has an
FL-representation, then μ has an [x, x′]-representation for x = l(C(μ)) and any
x′ > r(C(μ)).

The main task of the algorithm is to verify which representations are feasible
for nodes that have non-empty cores. We assume that: μ is an inner node whose
core is non-empty; μ1, . . . , μk are the children of μ, k � 2; λ1, . . . , λk′ are the
children of μ with C(λi) �= ∅, 0 � k′ � k; θ(λi) is the set of feasible types of
representations for λi, θ(λi) ⊆ {LL,LF, FL, FF}. We process the tree bottom-
up and assume that θ(λi) is already computed and non-empty.

Let x and x′ be two real numbers such that x � l(C(μ)) and x′ � r(C(μ)).
We provide an algorithm that tests whether an [x, x′]-representation of μ exists.
We use it to find feasible types for μ by calling it 4 times with appropriate values
of x and x′. While searching for an [x, x′]-representation of μ our algorithm tries
to tile the rectangle [x, x′] × [y(sμ), y(tμ)] with B(μ1), . . . , B(μk). The tiling
procedure is determined by the type of μ. Note that as the core of a Q-node is
empty, the algorithm splits into three cases: μ is an S-node, a P -node, and an
R-node. The pseudocode for the algorithms is given in AppendixC.3.

Case S. μ is an S-node. In this case we attempt to align the left and right
side of the bounding box of each child λ of μ to x and x′ respectively. For
example, if the core of λ is strictly contained in [x, x′], then λ must have an LL-
representation. The other cases follow similarly. We also must set the x-intervals
of the bars of the cut vertices of Gμ to [x, x′]. The S-Tiling Lemma and the
Stretching Lemma imply the correctness of this approach.

Case P. μ is a P -node. In this case we attempt to tile the rectangle [x, x′] ×
[y(sμ), y(tμ)] by placing the bounding boxes of the children of μ side by side from
left to right. The order of children whose cores are non-empty is determined by
the position of those cores. We sort λ1, . . . , λk′ by the left ends of their cores.
Let li = l(C(λi)) and ri = r(C(λi)), r0 = x, lk′+1 = x′, and without loss of
generality l1 < . . . < lk′ .

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.3.3
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We need to find enough space to place the bounding boxes of children whose
cores are empty. Additionally, if (sμ, tμ) is an edge of G, then we need to leave at
least one visibility gap in the tiling for that edge. Otherwise, if (sμ, tμ) is not an
edge of G, we need to close all the gaps in the tiling. A more detailed description
of the algorithm follows.

If there are λi, λi+1 such that the interior of the set X(C(λi)) ∩ X(C(λi+1))
is non-empty, then we prove that there is no [x, x′]-representation of Gμ. Indeed,
by the P-Tiling Lemma and by C(λi) ⊆ B(λi), the interior of B(λi) ∩ B(λi+1)
is non-empty and hence tiling of B(μ) with B(μ1), . . . , B(μk) is not possible.
Additionally, if r(C(λi)) = l(C(λi+1)), then neither a right-loose representation
of λi nor a left-loose representation of λi+1 can be used, so we delete such types
of representations from θ(λi) and θ(λi+1). If that leaves some θ(λi) empty, then
an [x, x′]-representation of μ does not exist. These checks take O(k′) time.

Let Qi = [ri, li+1]× [y(sμ), y(tμ)] for i ∈ [0, k′]. We say that Qi is an open gap
(after λi, before λi+1) if Qi has non-empty interior. In particular, if x = r0 < l1
(rk′ < lk′+1 = x′) then there is an open gap before λ1 (after λk′). On the one
hand, if there is an edge (sμ, tμ) or there is at least one μi whose core is empty
then we need at least one open gap to construct an [x, x′]-representation. On
the other hand, if (sμ, tμ) is not an edge of G then we need to close all the gaps
in the tiling. There are two ways to close the gaps. Firstly, the representation of
each child node whose core is empty can be placed so that it closes a gap. The
second way is to use loose representations for children nodes λ1, . . . , λk′ .

Suppose that c is a function that assigns to every λi a feasible type of repre-
sentation from the set θ(λi). Whenever c(λi) is right-loose or c(λi+1) is left-loose,
we can stretch the representation of λi or λi+1, so that it closes the gap Qi. We
describe a simple greedy approach to close the maximum number of gaps in this
way. We processes the λi’s from left to right and for each one: we close both
adjacent gaps if we can (i.e. LL ∈ θ(λi)); otherwise, we prefer to close the left
gap if it is not yet closed rather than the right gap. This is optimal by a simple
greedy exchange argument.

If there are still g > 0 open gaps left and (sμ, tμ) is not an edge of G, then
each open gap needs to be closed by placing in this gap a representation of one
or more of the children whose core is empty. Thus, it is enough to check that
k − k′ � g. The correctness of the described algorithm follows by the P-Tiling
Lemma, and the Stretching Lemma.

Case R. μ is an R-node. The detailed discussion of this case is reported in
AppendixC.4. Here, we sketch our approach. By the R-Tiling Lemma, the set of
possible tilings of B(μ) by B(μ1), . . . , B(μk) is in correspondence with the triples
(E , ξ, χ), where E is a planar embedding of skel(μ), ξ is an st-valuation of E ,
and χ is an st-valuation of E∗. To find an appropriate tiling of B(μ) (that yields
an [x, x′]-representation of μ) we search through the set of such triples. Since
μ is a rigid node, there are only two st-embeddings of skel(μ) and we consider
both of them separately. Let E be one of these planar embeddings. Since the
y-coordinate for each vertex of G is already fixed, the st-valuation ξ is given by
the y-coordinates of the vertices from skel(μ). It remains to find an st-valuation
χ of E∗, i.e., to determine the x-coordinate of the splitting line for every face.

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.3.4
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We claim that the existence of an st-valuation χ is equivalent to checking the
satisfiability of a carefully designed 2-CNF formula. For every child λ of μ whose
core is non-empty, we introduce two boolean variables that indicate which type
(LL, LF, FL, FF) of representation is used for λ. Additionally, for every inner face
f of E we introduce two boolean variables: the first (the second) indicates if the
splitting line of f is set to the leftmost (rightmost) possible position determined
by the bounding boxes of nodes on the left (right) path of f . Now, using those
variables, we can express that: feasible representations of the children nodes are
used, splitting line of a face f agrees with the choice of representation for the
nodes on the boundary of f (see Face Condition Lemma), the choice of splitting
lines gives an st-valuation of E∗.

In Appendix C.4 we present a formula construction that uses a quadratic
number of clauses and results in a quadratic time algorithm. In AppendixC.6,
we present a different, less direct, approach that constructs smaller formulas for
R-nodes and leads to the O

(
n log2 n

)
time algorithm. Therefore, Lemma 8, and

the discussion of cases S, P, and R, together with the results in AppendixC
imply Theorem 2.

4 Concluding Remarks and Open Problems

We considered the representation extension problem for bar visibility repre-
sentations and provided an efficient algorithm for st-graphs and showed NP-
completeness for planar graphs. An important variant of bar visibility represen-
tations is when all bars used in the representation have integral coordinates, i.e.,
grid representations. Any visibility representation can be easily modified into
a grid representation. However, this transformation does not preserve coordi-
nates of the given vertex bars. Indeed, we can show (in AppendixD.3) that the
(Rectangular) Bar Visibility Representation Extension problem is NP-hard on
series-parallel st-graphs when one desires a grid representation.

We conclude with two natural, interesting open problems. The first one is to
decide if there exists a polynomial time algorithm that checks whether a par-
tial representation of a directed planar graph is extendable to a bar visibility
representation of the whole graph. Although we show an efficient algorithm for
an important case of planar st-graphs, it seems that some additional ideas are
needed to resolve this problem in general. The second one is to decide if there is
an efficient algorithm for recognition of digraphs admitting strong visibility rep-
resentation, and for the corresponding partial representation extension problem.
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